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The amyloid peptides Ab40 and Ab42 of Alzheimer’s disease

are thought to contribute differentially to the disease

process. Although Ab42 seems more pathogenic than

Ab40, the reason for this is not well understood. We

show here that small alterations in the Ab42:Ab40 ratio

dramatically affect the biophysical and biological proper-

ties of the Ab mixtures reflected in their aggregation

kinetics, the morphology of the resulting amyloid fibrils

and synaptic function tested in vitro and in vivo. A minor

increase in the Ab42:Ab40 ratio stabilizes toxic oligomeric

species with intermediate conformations. The initial toxic

impact of these Ab species is synaptic in nature, but this

can spread into the cells leading to neuronal cell death.

The fact that the relative ratio of Ab peptides is more

crucial than the absolute amounts of peptides for the

induction of neurotoxic conformations has important

implications for anti-amyloid therapy. Our work also

suggests the dynamic nature of the equilibrium between

toxic and non-toxic intermediates.
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Introduction

Amyloid b (Ab) peptides generated from the amyloid

precursor protein (APP) by b- and g-secretase-mediated clea-

vage (Annaert and De Strooper, 2002) are thought to have

an important function in the neurodegenerative process

in Alzheimer’s disease (AD) (Hardy and Selkoe, 2002).

g-Secretase cleavage of APP generates a heterogeneous mixture

of Ab peptides varying in length at their carboxytermini (Sato

et al, 2003; Qi-Takahara et al, 2005; Kakuda et al, 2006).

Additional heterogeneity is generated at the aminoterminus

by aminopeptidases, glutaminylcyclases and other modifica-

tions (Pike et al, 1995; Saido et al, 1996) (reviewed in De

Strooper, 2010). It has been proposed that some of these

variations might contribute to the neurotoxic properties of

Ab peptides (Schilling et al, 2008).

The major Ab species recovered from serum, cerebrospinal

fluid and cell culture supernatants is 40 amino acids long

(Ab40) (Haass and Selkoe, 1993; Scheuner et al, 1996).

Interest in a second peptide, Ab42, which is detected at

about 10-fold lower levels, was strongly stimulated by the

observation that familial AD causing mutations in the APP

gene and/or in the gene encoding the g-secretase complex

component presenilin increased the relative production of

Ab42 relative to Ab40 (Suzuki et al, 1994; Duff et al, 1996;

Scheuner et al, 1996). We reported earlier (Bentahir et al,

2006) that clinical mutations in presenilin do not necessarily

increase the production of Ab, but that they mainly affect the

spectrum of the Ab peptides generated by g-secretase. As

patients with presenilin mutations present an early and

aggressive form of the disease, it seems then logical to

propose that the absolute quantity of Ab peptides produced

in the brain might be less important than the quality of the Ab

peptides (reflected in a changed Ab42 to Ab40 ratio) for the

generation of elusive toxic Ab species (De Strooper, 2007).

The implications of such hypothesis for current efforts in

drug development is important because lowering the absolute

amounts of Ab in patients would then be less crucial than the

restoration of the correct ratios of Ab peptides. Earlier studies

have already provided evidence that Ab40 and Ab42 affect

each other’s aggregation rates and toxic effects (Snyder et al,

1994; Frost et al, 2003; Yoshiike et al, 2003; Wang et al, 2006;

Kim et al, 2007; Yan and Wang, 2007; Jan et al, 2008).

Generally, it is found that Ab42 has fast aggregation kinetics,
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which can be inhibited by Ab40 in a concentration-dependent

manner. Interesting in vivo studies have further shown that

increased levels of Ab40 peptides in the brain actually might

have a protective effect (Wang et al, 2006; Kim et al, 2007).

In the past, a lot of attention has gone to the accumulation

of Ab in plaques and the relationship between amyloid

plaques and AD. However, little or no correlation was

found between the total burden of Ab peptide deposited

into plaques in the brain and the degree of neurodegeneration

in the patients (Terry et al, 1991; Price and Morris, 1999).

More recently, this discrepancy has been confirmed with

modern amyloid imaging techniques (Aizenstein et al,

2008; Reiman et al, 2009). Obviously, it is possible that

these patients are in a preclinical phase of the disease, and

follow-up studies are underway to investigate this.

Nevertheless, these observations support the concept that

the amyloid fibrils are biologically largely inert and that not

all conformations of Ab are equally toxic (Martins et al, 2008;

Shankar et al, 2008). A series of intermediate soluble aggre-

gates of Ab peptides, such as ‘Ab-derived diffusible ligands’

(ADDLs) (Lambert et al, 1998) or ‘natural toxic oligomers’

(Walsh et al, 2002), have been identified. The mechanism of

their neurotoxic activity remains not only subject of intense

investigation, but also the precise conformation(s) of the

toxic species remains uncertain (Kayed et al, 2003; Hepler

et al, 2006). Dimers were proposed to potently disrupt

synaptic plasticity (Klyubin et al, 2008; Shankar et al,

2008), an Ab species of 56 kDa has been found neurotoxic

in Tg2576 mice (Lesne et al, 2006), lipid-induced oligomers

from mature fibrils (Martins et al, 2008), ADDLs (Lambert

et al, 1998; Gong et al, 2003; Lacor et al, 2007) and annular

assemblies (Lashuel et al, 2002) were shown to exert neuro-

toxic effects, affect synapse function and even memory for-

mation in mice. It should be noted that in many of the

publications, the identified toxic species are presented as

stable, defined structures, although it seems logical to assume

that their assembly and disassembly is a dynamic and con-

tinuous process, at least in the initial stages, and the alter-

native possibility that toxicity is present over a series of

conformers or sizes should not be disregarded (Hepler et al,

2006; Martins et al, 2008; Ono et al, 2009). Toxicity seems to

be higher with tetramers than dimers for instance (Ono et al,

2009). The question is thus how biophysical parameters

influence this process in vivo and affect the relative distribu-

tion of Ab species over toxic and non-toxic conformations

over time. Given the complexity of the biophysical environ-

ment in which Ab aggregation occurs in vivo, such question is

extremely difficult to address. Nevertheless, it is possible to

analyse the dynamic features of this process in simplified and

controlled conditions in vitro, and to evaluate the effect of the

relative concentrations of Ab40 and Ab42 to the generation of

neurotoxic species over time.

We hypothesized here that the early onset of AD by APP

and/or presenilin mutations that increase the Ab42:Ab40
ratios can be explained by interactions between Ab40 and

Ab42, which provide stability to intermediate, neurotoxic

species. We used biophysical methods and a novel cellular

assay to analyse the establishment of neurotoxicity over time

in different Ab mixtures. We found that very minor changes

in the relative amount of Ab42 versus Ab40 (Ab42:Ab40)

has dramatic effects on the dynamic behaviour of toxic

Ab species. Our findings provide an important biological

addition to the original ‘Ab42 seeding hypothesis’ (Jarrett and

Lansbury, 1993), which focused on amyloid fibril formation.

These dynamic oligomeric species exhibit initial synapto-

toxicity and cause later neurotoxicity in primary hippocampal

neurons and affect memory formation in mice, underlining

their potential importance for the understanding of AD.

Results

As the objective of this study was to investigate how Ab40 and

Ab42 affect each others’ biophysical and biological properties,

it was important to prepare a pre-aggregate-free Ab solution

and to validate the mixtures using mass spectrometry

(Supplementary Figure) and anti-Ab40- and anti-Ab42-specific

antibodies (Supplementary Figure 1E). We found that the

sequential treatment of 1,1,1,3,3,3-hexafluor-2-propanol

(HFIP)-Ab films (rPeptide) with HFIP, dimethyl sulphoxide

(DMSO) and then removal of DMSO using a desalting column

provide excellent results with mixtures of primarily mono-

meric peptides in the appropriate relative amounts

(Supplementary Figure 1, see also Materials and methods).

Fourier transform infrared (FTIR) spectroscopy validated the

complete removal of all HFIP and DMSO (not shown).

Aggregation rate of Ab peptides is strongly influenced

by the ratio Ab42:Ab40
Ab peptide was incubated at a concentration of 50mM in

50mM Tris–HCl, 1mM EDTA, pH 7.5 at 251C. The aggrega-

tion process of a range of Ab42:Ab40 ratios (10:0 to 0:10)

tested by Thioflavin T (ThT) fluorescence yielded a typical

sigmoidal curve as generally observed for aggregating pro-

teins and peptides (Figure 1A shows four examples) (Harper

and Lansbury, 1997). The formation of an Ab nucleus, which

is not reactive with the fluorescent ThT probe during the

so-called ‘lag phase’, is followed by rapid elongation of

ThT-positive Ab aggregates to form fibrils (the ‘elongation

phase’). Both the length of the lag phase and the rate of

aggregation were affected by the ratio of Ab42:Ab40 (Figure 1B

and C). The lag phase for pure Ab40 alone was B2.5 h

(±0.3 h). Addition of 10% Ab42 (Ab42:Ab40¼1:9) resulted

in a small, but reproducible increase in the lag phase

(B2.9±0.3 h) (Figure 1B). A further increase in the

Ab42:Ab40 ratio decreased paradoxically the length of the

lag phase to B0.5±0.01 h. From a ratio of 3:7 onwards, no

difference was observed compared with Ab42 alone. The

elongation rate was fastest for pure Ab40 and was slowed

down by addition of Ab42 (Figure 1C). Remarkably, judging

from the lag phase of aggregation, the 1:9 and the 3:7 ratio

showed two opposite ends of the spectrum (Figure 1B). These

ratios, in addition to 10:0 and 0:10 were selected for our

further studies. The choice for 3:7 can be also rationalized as

it reflects roughly the ratio of Ab42 and Ab40 in patients with

familial AD (Duff et al, 1996; Mann et al, 1996; Scheuner

et al, 1996; Citron et al, 1997). Thus, both time and the

Ab42:Ab40 ratios are two important parameters when con-

sidering the biophysical properties of Ab, and we decided to

investigate how these parameters determine Ab-oligomer

toxicity. We describe in the rest of the paper the different

Ab mixtures as an Ab42:Ab40 ratio, incubated for an indicated

time at an Ab concentration of 100 mM in 50mM Tris–HCl,

1mM EDTA, pH 7.5 at 251C. Thus, (3:7, 2 h) means a ratio of

three Ab42 versus seven Ab40 peptides incubated for 2 h under
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given buffer conditions before addition to the cell culture.

Final concentration of Ab in cell culture is in most experi-

ments 1mM apart from a few in which 10mM was used as

indicated. On the basis of our further experiments, it

appeared that at any time point only a small fraction of the

peptides is in a toxic active conformation.

The Ab42:Ab40 ratio is a driver of acute synaptic

alterations

One problem with Ab toxicity assays is the delay between the

actual preparation of the oligomer samples used for the

biophysical analysis and the moment when the biological

read out becomes available to assess the neurotoxicity. We,

therefore, sought to set up an assay that allows verifying

biological effects of Ab preparations within the time frame of

the biophysical experiments. We plated mouse hippocampal

neurons on microelectrode array (MEA)-based chips

(Figure 2A) (Stett et al, 2003) and recorded spontaneous

firing rates in the neuronal networks before and after treat-

ment with Ab mixtures at a final concentration of 1 mM.

Representative traces of responses of cultures treated with

different Ab mixtures are displayed in Figure 2B.

Interestingly, treatment with pure Ab40 mixtures (0:10, 2 h)

appeared to enhance synaptic activity measured as sponta-

neous firing rate, whereas (1:9, 2 h) mixtures had no effect on

spontaneous synaptic activity (Figure 2B and C). In contrast,

Ab42 alone (10:0, 2 h) or with Ab40 (3:7, 2 h) readily sup-

pressed spontaneous neuronal activity within 40min after

addition of the peptides (Figure 2B and C). As a control of the

oligomers species status during the course of the recording,

we followed changes in fluorescent ThTemission over 40min

of Ab mixtures at 1mM in neuronal culture medium at 371C,

which mimics the conditions of the cell culture experiments

(Figure 2D). The Ab mixtures appeared stable over the time

frame of the experiment at least as far as it concerns ThT

incorporation. We next assayed how different Ab42:Ab40
ratios evolve over time with regard to synaptotoxic proper-

ties. Ab42:Ab40 ratio mixtures were incubated for 0, 1.5, 4, 6

and 20h before addition to the cultures. Synaptic firing rates

were recorded for 40min as above using MEA. Figure 2E

shows that synaptic effects were little after treatment of the

cells with mixtures of Ab shortly after dissolving them in

buffer (t¼ 0 h, Figure 2E). Toxicity was, however, already

significantly high after 1.5 h of aggregation in the (3:7, 1.5 h)

and the (10:0, 1.5 h) mixtures. The synaptotoxic potential in

the (3:7) and (10:0) ratios remained stable up to 20 h

(Figure 2E). Remarkably, 1:9 or 0:10 ratios did not result in

major synaptic effects at any incubation point (Figure 2E). To

validate the findings, we performed double immunostaining

for the synaptic marker synaptophysin and Ab oligomers

using the A11 antibody (Kayed et al, 2003). Figure 2F

shows that Ab (3:7) and Ab (10:0) mainly co-localized

with the synaptic marker, whereas staining was not observed

with the (1:9) and (0:10) ratio. Extensive washing of

the neurons to remove Ab species did not interfere with

consecutive A11 staining, indicating the rather irreversible

nature of the binding of these synaptic active species to the

neurons (not shown).

To prove Ab specificity of the observed effects, we pre-

incubated cells with anti-oligomer A11 or anti-Ab antibody

6E10 before treatment with Ab (10:0, 2 h) ratio. The altera-

tions in the synaptic activity by toxic intermediates are

indeed Ab specific, as cells pre-incubated with antibodies

are no longer susceptible to the neurotoxic effects

(Figure 2G). We also further explored the reversibility of

these Ab effects on synaptic function. Removal of Ab (3:7,
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Figure 1 Ab42 determines the kinetics of Ab aggregation. (A) Ag-
gregation kinetics of 50 mM Ab ratios in 50mM Tris, 1mM EDTA at
251C for 6 h by Thioflavin T (ThT) assay shows how the ratio of
Ab42:Ab40 (e.g. 3:7) influences the aggregation kinetics. The colour
codes are maintained in all following figures. (B) Quantitative
analysis of lag phase, showing the time (hours) of the initial part
of curves as in (A), during which no increase in ThT fluorescence
signal is detected using different Ab42:Ab40 ratios as indicated.
(C) Quantitative analysis of the elongation rate, derived from
(A) as rate of fluorescence change, which is the slope of the linear
phase of exponential growth in (A), using different Ab ratios as
indicated. Numbers are averages of three independent experiments.
Error flags indicate s.d. calculated over the three independent
experiments. Statistical significance of the results was established
by P-values using paired two-tailed t-tests, and only shown for the
four ratios further studied in the text. Statistical significance levels
were in (B, C): *Po0.005, **Po0.001, ***Po0.0001. P-value of
Ab40 (0:10) and (1:9)¼ 0.09, and P-value of Ab40 (0:10) and
(1:9)¼ 0.0058 in panels B and C, respectively.
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2 h) and Ab (10:0, 2 h) after 40min of incubation on the

neuronal cultures by extensive washes with medium did not

restore synaptic activity over the next 6 h in line with the

immunofluorescence data (Figure 2H). However, 18 h after

the wash out of Ab (3:7, 2 h) and Ab (10:0, 2 h), we found

partial synaptic activity recovery at some electrodes,

although the profile of the action potentials (APs) displayed

a slightly different character than the ones recorded before

the treatment (Figure 2H). Given the long time needed for

some recovery and the fact that the profiles after recovery

were different from those before, it seems likely that this

partial restoration of neuronal activity is due to the genera-

tion of novel synaptic contacts rather than recovery of exist-

ing synapses.

In an alternative paradigm to validate the MEA measure-

ments and to evaluate the effect of Ab on the postsynaptic

response only, we performed patch-clamp experiments on

2-week-old neurons and recorded spontaneous electrical

activity comprising APs and excitatory postsynaptic poten-

tials (EPSPs) (Figure 3). The effects of Ab addition were

already observed after a few minutes (Hartley et al, 1999)

and the changes in APs and EPSPs frequency were, therefore,

assessed at 7min and compared with the APs and EPSPs

frequency measured during 1min before Ab was applied

(time point ‘�1min’). It is clear that the Ab (3:7, 2 h) has a

profound effect on the EPSP frequency, indicating a block of

spontaneous postsynaptic depolarizations Neither APs nor

EPSPs were affected by Ab (1:9, 2 h), and significant increase

in APs rate was observed in case of Ab (0:10, 2 h), in line with

the MEA data. As it can be seen, synaptotoxic signatures of

Ab42:40 ratios are similar regardless of extra- or intracellular

mode of measurement.

Toxic Ab species are oligomeric and dynamic structures

We used transmission electron microscopy (TEM) to char-

acterize the morphology of the species populated during fibril

formation. At the starting point of incubation, no fibrils are

detected with any of the different Ab ratios (Figure 4A,

column 0h). With time, the pure Ab42 (10:0) solution showed

mature fibril formation consistent with the fast nucleation

observed by ThT fluorescence. The fibrils have typical long,

negatively stained amyloid fibril morphology as is frequently

observed for other amyloid-forming proteins or peptides

(Chamberlain et al, 2000). Upon longer incubation, these

fibrils progressively transform into a dense network of clus-

tered fibrils. Ab42:Ab40 (0:10) and (1:9) ratios developed

fibrils after B6 h, which have similar characteristics to the

fibrils observed in the (10:0) ratio, but display in addition a

regular twist pattern, which is not observed in the Ab42 fibrils

(Figure 4A, most right column, arrows indicate twist pattern).

The (3:7) ratio in contrast showed no fibrils at this time point,

and the first aggregates appeared only after B9 h. These

aggregates differed markedly in their morphologies as they

interacted heavily with the uranyl acetate stain used to

visualize the aggregates in TEM and also formed densely

fibrous and fractured networks in which individual fibrils

cannot be distinguished, which is similar to the later stages of

Ab42 aggregation (not shown). Interestingly, the fast nuclea-

tion and aggregation kinetics of the (3:7) ratio as observed

using ThT fluorescence assays (Figure 1) did not coincide

with the early appearance of mature aggregates using elec-

tron microscopy (Figure 4A). This suggested that the (3:7)

ratio rapidly generates small ThT-positive oligomers, but that

these do not propagate towards assemblies that are suffi-

ciently large to allow visualization with EM. Although EM

experiments confirmed clearly the dramatic differences in the

aggregation properties of the different mixtures, they did not

allow visualizing the postulated toxic species responsible for

the synaptic effects observed in the MEA experiments with

the (3:7) ratio. We hence set out to further identify the

presence of smaller oligomeric Ab using the complementary

technique of tapping mode atomic force microscopy (AFM).

The various Ab ratios under investigation were screened at

1.5 h incubation, which is a time point that yields strong

synaptotoxicity for ratios (3:7) and (10:0), but not for ratios

(1:9) and (0:10) (Figure 2E). Interestingly, we observed

oligomer formation for all four ratios of Ab42:Ab40
(Figure 4B), even for the two non-synaptotoxic ratios (1:9)

and (0:10). This finding implies that oligomer formation per

se is not directly linked to the toxic effects of Ab. We infer that

the internal organization of the oligomers might make them

toxic to neuronal cells. Native PAGE showed that (10:0) and

(3:7) already display a wide range of oligomers and fibrillar

material that did not enter the gel after 4 h incubation. SDS–

PAGE in contrast shows at the same time points only low-

molecular weight oligomers (Supplementary Figure S2). It,

therefore, seems that SDS–PAGE dissociates the larger native

structures in the toxic mixtures. The smaller oligomeric SDS-

resistant structures can only be considered ‘building blocks’

of larger toxic structures. As no clear differences were

observed in oligomerization state between the four different

ratios that could explain the variation in cytotoxicity, we used

in situ FTIR spectroscopy to obtain information on the

conformation of the Ab peptides and aggregates in solution.

We found that the initial spectra of the different Ab mixtures

at t¼ 0, when peptides are mainly monomeric, are character-

ized by a broad peak at 1654 cm�1 indicative of random coil

structure (Goormaghtigh et al, 1994). This spectrum gradu-

ally converts into a defined and sharper peak at 1627 cm�1

(Figure 5). The intensity at 1627 cm�1 is indicative for

b-sheet-organized aggregates (Chirgadze and Nevskaya,

1976) and the concomitant increases of the FTIR signal at

1627 cm�1 with a decreased signal at 1654 cm�1 suggested a

transition from disordered monomeric structures to b-sheet

enriched-oligomeric structures in all mixtures (Figure 5, pa-

nels A–D). Conformational changes are rapidly evolving for

the three Ab ratios that contain Ab42, but the rate of this

change does not seem to predict toxicity: Ab42 is toxic at

1.5 h, whereas ratio 1:9 is not. For Ab40 alone (Figure 5A) and

for Ab (1:9) (Figure 5B), it appears that the loss of unordered

structure (1654 cm�1) coincided with a prompt transition into

amyloid fibrillar b-sheet structure (1627 cm�1), suggesting a

two-state manner in the mixtures that develop at inverse

rates. This is not observed for Ab (3:7) and Ab (10:0),

suggesting that there is an intermediate, which seems to be

correlated with toxicity.

Long-term cellular toxicity of Ab mixtures

Although the changes in synaptic activity are clearly an

early effect of the toxic conformations in the Ab preparations,

it remained unclear whether these initial hits on the

synapse could also evolve to full cellular neurotoxicity.

This is an important question with regard to AD as the

disease is characterized in essence by neuronal cell loss. We

Neurotoxic Ab mixtures
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investigated, therefore, the effects of the different Ab42:Ab40
ratios over two distinct concentrations (1 mM, which ap-

peared sub-lethal and 10 mM, which appeared lethal) on the

staining pattern of primary hippocampal neurons with

the synaptic marker synaptophysin or with the early apoptotic

markers cleaved caspase-3 and annexinV/propidium iodide

(PI). Treatment of cells with 1mM concentration of Ab ratios

(the same as used for the MEA experiments) for 12h clearly

decreased synaptophysin staining for the Ab (3:7, 2 h) and Ab

(10:0, 2h) ratios. At this concentration, no or little effect on

appearance of apoptotic markers in the neuronal cells was

observed (Figure 6A; quantified in Figure 6C), further indicat-

ing that the initial effect of the Ab toxic intermediates is at

the synapses. However, 10-fold higher concentration of Ab
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(3:7, 2 h) and Ab (10:0, 2 h) ratios resulted not only in the

loss of synaptophysin staining, but was accompanied by

a strong increase in the early apoptotic markers, annexin

V/PI and cleaved caspase-3 staining (Figure 6B; quantified in

Figure 6D). In contrast, synapses remained intact and no early

apoptotic marker induction was caused by Ab (0:10, 2 h) and

Ab (1:9, 2 h) ratios at both 1 and 10mM concentrations after

12h of treatment (Figure 6C and D). This finding indicates that

synaptotoxic and cytotoxic effects of Ab intermediates are both

ratio and concentration dependent.
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Figure 3 Patch-clamp measurements in primary cultures of neurons. (A–D) Firing pattern of spontaneously active patch-clamped neurons
1min before and 7min after the treatment with different Ab ratios (2 h) as indicated. (E) Measurement in control conditions (only buffer)
(F) Relative changes in spontaneous action potentials (AP) frequency expressed as per cent of initial (�1min) rate. Note the early increase in
AP rate for Ab40 (0:10)-treated neurons. The other ratios do not reach statistical significance as compared with control likely because of the
comparatively short time of treatment. (G) Relative change in single excitatory postsynaptic potentials (EPSP). Note the significantly decreased
EPSPs rate for Ab42:Ab40 ratio 3:7 (Po0.03 versus control, unpaired two-tailed t-test) after only 7min of treatment. Values are per cent of initial
firing rate±s.e.m. of at least three independent experiments. Statistical significance of the data is indicated by *Po0.035 or **Po0.01 in
(F) and (G).

Figure 2 Mixed Ab oligomers result in a rapid synaptotoxic response in primary neurons. (A) Neurons stained with Fluo-4 were cultured
8 days in vitro (DIV) on the MEA chip. (B) Firing pattern of neurons from representative electrodes at 0, 10, 20 and 40min treatment with
different Ab ratios prepared as indicated (e.g. 0:10, 2 h means an Ab42:Ab40 ratio of 0 versus 10, and 2 h means 2 h incubation before addition
to the culture). Note the significantly decreased firing rate and amplitude for Ab42:Ab40 ratios 10:0 and 3:7 after 20min of treatment.
(C) Spontaneous electrical synaptic activity recordings of hippocampal neurons during 40min of treatment with 1mM Ab ratios incubated for
2 h prior to the addition to cells. Values are per cent of initial firing rate±s.e.m. of 3–5 independent experiments. Statistical significance
(unpaired two-tailed t-test) of the data versus control is indicated by *Po0.01 or **Po0.001 in the figure. Notice that a strong reduction in
spontaneous synaptic firing versus correspondent control (buffer-treated chips) can be observed after 20 and 40min in the medium of the 3:7
and 10:0 Ab42:Ab40 ratios. (D) Oligomers dissolved in culture medium remain stable with regard to ThT tinctorial properties for at least 40min.
Ab ratios were prepared and at specific time intervals of incubation, that is 0, 1.5, 4 and 22h, Ab aliquots were removed and diluted to 1mM in
cell culture medium containing ThT. The stability of the aggregates at 371C in cell culture medium was deduced from the stability of the ThT
signal over 40min. Blue bars represent different Ab42:Ab40 ratios as indicated in the figure. Compare signals directly upon dilution into cell
culture medium (‘0min’) at 371C with signals obtained after 40min incubation at 371C (‘40min’). Values are averages of three experiments.
(E) Different ratios of Ab peptides were generated and added to neuronal cultures diluted to a final concentration of 1 mM, either immediately
(0 h) or after 1.5h; 4h, 6 h or 20h of incubation. Synaptotoxicity was measured by recording a decreased rate of firing 40min after adding the Ab
mixtures to the neurons. Statistical significance levels determined as a function of s.e.m.: ***Po0.0001, n¼ 6 chips, **Po0.001, n¼ 3 chips,
*Po0.01, n¼ 3 chips, difference between 6h ratio (3:7) and (10:0): *Po0.012 (unpaired two-tailed t-test). (F) Synaptic localization of mixed
Ab oligomers. Fluorescence microscopy images of hippocampal neurons stained for synaptophysin (red) and Ab oligomers (A11 antibody)
(green) after 1 h treatment with 1 mM of the indicated Ab ratios, incubated for 2 h prior the addition to cells. Right panel: magnification
of selected region stained with synaptophysin (red) and Ab oligomers (A11 antibody, green). Oligomeric Ab co-localizes with synapses.
(G) Rescue of spontaneous electrical synaptic activity after the treatment with ratio (10:0, 2 h) in the presence or absence of anti-oligomer A11
or anti-Ab 6E10 antibody, final concentration 10 mgml–1. Values are per cent of initial firing rate±s.e.m., of three independent experiments,
except for the control with non-specific antibody, which was performed only once. (H) Example of firing recovery after treatment with 10mM
(10:0, 2 h). Raw data streams are shown in black, and corresponding spike shapes are in red. The treatment completely inhibited spontaneous
activity in 6min. Then the medium was refreshed, and signals were measured after overnight recovery (18 h). Note partial restoration of initial
firing profile along with appearance of another spike population endowed with slightly different waveform and amplitude. Spike sorting is
performed in MC Rack software.
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We evaluated the time course of caspase-3 activation and

its sub-cellular localization versus the synaptic marker sy-

naptophysin in both sub-lethal (1 mM) and lethal (10mM)

concentrations of the (3:7, 2 h) ratio (Figure 6E). Cells treated

with 1mM (3:7, 2 h) showed that cleaved caspase-3 after 2

and 6 h was mostly observed in areas positive for synapto-

physin staining. Further treatment up to 12 h resulted in loss

of synapses as indicated by loss of staining for synaptophy-

sin; however, the cleaved caspase-3 immunostaining did not

propagate to the soma and nucleus. Treatment with 10 mM

(3:7, 2 h) caused in contrast strong activation of caspase-3 at

the synapses already after 2 h (Figure 6E). In addition,

immunostaining for activated caspase-3 was clearly detect-

able after 6 h in the soma of the cells. At 12 h, this concentra-

tion resulted in loss of synaptic staining with synaptophysin

antibodies and strong staining of activated caspase-3 in the

soma and nucleus indicative of cell apoptosis (Figure 6E). A

similar pattern was detected with (10:0, 2 h), but not for

(0:10, 2 h) or (1:9, 2 h) (not shown). These data indicate that

the Ab toxicity observed at the level of the synapses can

spread towards the cell body depending on the type of Ab

species and concentration of toxic intermediates. In addition,

the observation suggests that synapse toxicity and cellular

toxicity are related.

To further confirm that the different Ab preparations

exerted cellular toxicity, we used a Cell-Titer Blue viability

assay on neurons 48 h after they had been exposed to 10 mM

of different Ab ratios, taken at the start of the aggregation

process (0 h in Figure 6F) and during the propagation reac-

tion (1, 2, 4 and 12 h in Figure 6F). In agreement with the

previous studies, monomers (Figure 6F, 0 h) and mature fibril

preparations (Figure 6, 12 h) are largely inert towards neu-

rons (Aksenov et al, 1996; Martins et al, 2008). In contrast,

the Ab42:Ab40 (3:7, 1 and 2 h) and (10:0, 1 and 2 h) exhibited

clear neurotoxicity (Figure 6F). Both (1:9) and (0:10) did not

exhibit neurotoxicity at any stage of the aggregation process

(Figure 6F). Collectively, these data indicate that stabilized

intermediates in the Ab (10:0) and (3:7) ratios bind to

synapses and inhibit synaptic activity, and affect neuronal

viability at higher concentrations.
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0 h 4 h 9 h

10:0
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6 hAβ1–42:Aβ1–40 9 h

Ratio 0:10 Ratio 1:9

Ratio 3:7 Ratio 10:0
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250 nm
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10 

0 

A

B

Figure 4 Characterization of Ab oligomers with transmission electron microscopy and atomic force microscopy. (A) Transmission electron
microscopy images of Ab ratios incubated for 0, 4, 6 and 9h. Images shown are representative for two experiments. Time of appearance and
fibril morphology are affected by Ab42:Ab40 ratio and mature fibril formation is delayed for the synaptotoxic 3:7 ratio. The bars represent 0.2 mm
size. The last column shows a magnification of the area indicated by squares in the panels of 9 h. The bars represent 0.04mm size. The arrows
indicate a regular twist pattern observed in the 1:9 and 0:10 fibrils. (B) AFM height images of Ab oligomers formed by incubation of 70mM Ab
for 1.5 h at 251C in 50mM Tris, 1mM EDTA. The buffer image is shown as a control. The bar represents 250nm size.
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Ab ratio affects behaviour and learning alteration

in mice

We finally evaluated to what extent the different Ab ratio

mixtures affected memory formation in mice in vivo. We

injected mice intraventricularly with 6 ml of 100 mM Ab mix-

tures allowed to aggregate for 1.5 h before the injection. The

effect of these Ab preparations on memory formation was

tested using passive avoidance and contextual/auditory-cue

fear conditioning as described previously (Martins et al,

2008). In a light–dark step-through task (passive avoidance

test), animals were trained to memorize an electrical shock

that followed entrance to a dark compartment. When the test

was repeated 24 h later, animals injected with (0:10, 1.5 h) or

(1:9, 1.5 h) recalled the electroshock correctly and showed a

latency to enter the dark room of 232±15 and 273±16 s,

respectively, which was not significantly different from con-

trol mice injected with buffer (256±20 s)-control group not

shown. Injection of (10:0, 1.5 h) or (3:7, 1.5 h) before the

shock, however, inhibited strongly the formation of new

memory. These animals showed significantly faster entrance

latencies of 134±12 and 165±19 s, respectively (Po0.002)

(Figure 7A). Contextual and auditory-cue fear conditioning

experiments confirmed these results. Injection of (10:0)

and (3:7) 90min before conditioning disturbed the typical

freezing behaviour observed 24 h after the training when

the animals were exposed again to the contextual stimulus

(B50%, Po0.006) or the auditory-cue fear conditioning

experiment (39%, Po0.004) (Figure 7B). These results

show that also in the complex environment of a living animal

clear differences can be observed between the different

Ab ratios similar to those observed in biophysical and

cellular assays.

Discussion

One of the most challenging issues in AD research is the

unresolved nature of the Ab-peptide conformation(s) that

exert neurotoxicity. Our current work shows that Ab-asso-

ciated toxicity is a dynamic property and that a critical

equilibrium between the two major Ab species, Ab40 and

Ab42, exists, which determines the rate of appearance of these

toxic properties as assessed in neuronal cell culture and in

brains of animals in vivo. Our study design has taken this

dynamic behaviour into account by indicating the time of

aggregation of the peptides used in each experiment. We

found that relative high concentrations of Ab are needed to

induce fibrillization and toxic-oligomer conformation.

Although this might seem an artificial situation, one should

realize that by increasing the Ab concentrations, processes

which otherwise take decades become accelerated to the

extent that they can be studied in laboratory conditions.

Most importantly, such high concentrations of Ab might

actually be even quite relevant for what happens in vivo. A

recent publication suggested indeed that intracellular com-

partments accumulate Ab at high mM concentrations, which

could create the conditions for the local formation of the

elusive toxic conformations of Ab peptides (Hu et al, 2009).

It turns out that a small relative increase of Ab42, compar-

able with those observed in patients with familial cases of AD
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Figure 5 Conformational transitions observed using Fourier transform infrared (FTIR) spectroscopy. FTIR spectra were collected continuously
upon incubation of Ab ratios at 251C to investigate conformational changes over time. (A) Ab42:Ab40 (0:10), (B) Ab42:Ab40 (1:9), (C): Ab42:Ab40
(3:7) and (D) Ab42:Ab40 (10:0). Intensity at 1654 cm�1 in red characteristic for disordered structure ( ) and intensity at 1627 cm�1 in black (m)
characteristic for amyloid fibril structure. Intensities are averages of three independent experiments and normalized against buffer. Notice that
the transition of ratio (3:7) and (10:0) cannot be explained by a two-state transition model (the two curves do not cross at the 50%
intersection), whereas (0:10) and (1:9) can completely be accounted for by the two states. Insets show typical spectra for the different Ab ratios
recorded at 0 h (black) and after incubation for 8 h (red).
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(Duff et al, 1996; Mann et al, 1996; Scheuner et al, 1996;

Citron et al, 1997), dramatically influenced the final effects

on spontaneous synaptic activity and viability of neuronal

cells and on memory formation in animals. This correlated

with remarkable changes in the biophysical behaviour of the

Ab peptides as assessed in a variety of approaches. Thus, we

find that shifting the ratio of Ab42:Ab40 from (1:9) to (3:7)

shortened nucleation time strongly, whereas fibril elongation

time remained similar as measured by ThT incorporation. In

EM, the (3:7) ratio revealed only visible fibrillar structures

after prolonged incubation compared with the other three

ratios investigated. Both experiments together suggested that

intermediary assemblies of Ab peptides became stabilized in

the (3:7) ratio, which were too small to be observed in EM,

but which, as evaluated in MEA, exerted strong effects on

synaptic activity. In SDS–PAGE, these assemblies apparently

fall apart in small multimeric Ab oligomers as observed by

others (Walsh et al, 2002; Shankar et al, 2008), but from non-

denaturing PAGE analysis, we deduced that these ‘building

blocks’ are part of larger structures present in the toxic
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Figure 6 Mixed Ab oligomers affect synapses at low concentration and induce cell death at higher concentrations. (A, B) Fluorescence
microscopy images of hippocampal neurons stained for annexin V (green)/PI (red) (upper row), cleaved caspase-3 (middle row) and
synaptophysin (green)/DAPI (blue) (bottom row) after 12 h treatment with (A) 1mM Ab ratios and (B) 10 mM Ab ratios incubated for 2 h before
the addition to cells. Fluorescence intensity quantification for annexin V, cleaved caspase-3 and synaptophysin staining (C) 1mM and (D) 10 mM
of Ab ratios. Values are intensity±s.e.m., **Po0.001 and *Po0.003, of five different areas from two independent experiments. (E) Time
course of fluorescence microscopy study of hippocampal neurons stained for synaptophysin (red) and cleaved caspase-3 (green) after treatment
with 1 and 10mM 3:7 ratio Ab oligomers incubated for 2 h prior the addition to cells (blue: DAPI) figure representative for two independent
experiments. (F) Cell-Titer Blue viability assay of hippocampal neurons treated with 10mM Ab ratios incubated for different time periods before
the addition to cells. The Cell-Titer Blue reagent conversion was determined 48h after the treatment. Values are OD±s.e.m., **Po0.01, three
independent experiments performed in triplicates.
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mixtures on the neuronal cultures. Investigation by AFM

further underlined that oligomeric Ab was present in all Ab

ratio preparations, suggesting that the presence of oligomers

per se are not directly linked with toxic effects. We suggest,

therefore, that the toxic aggregates of Ab in our assays were

dynamic in nature and could assemble and disassemble when

in solution in the culture medium of the cells. In addition,

based on the results obtained by AFM, one can assume that

not the size but the structure of the intermediate oligomers

dictates their stability and synaptotoxic potential. Indeed,

with FTIR spectroscopy, we found indications for particular

conformational transitions in the peptides that are specific for

this postulated toxic intermediate situation. Going from

monomeric Ab (disordered at 1654 cm�1) to fibrillar Ab

(parallel b-sheet at 1627 cm�1) (Chirgadze and Nevskaya,

1976; Goormaghtigh et al, 1994), we find in the Ab40 (0:10)

or Ab42:Ab40 (1:9) preparations that the unstructured state

converted to the b-sheet conformation without intermediary

structures. In contrast, the patterns of conversion in the

Ab42:Ab40 (3:7) and the Ab42 (10:0) ratios indicated the

existence of an intermediate conformation (Figures 4D and

5C). The current work also suggests the prolonged time

window of existence of such intermediate states in the (3:7)

ratio.

Ab42 drives apparently this reaction. As shown in

Supplementary Figures 3 and 4, interactions of Ab42 and

Ab40 occur random (Supplementary Figures 3 and 4).

Previously, it has been shown that Ab42 induces indeed the

aggregation of Ab40 (Jarrett and Lansbury, 1993; Snyder et al,

1994; Yoshiike et al, 2003; Yan and Wang, 2007; Jan et al,

2008). We show here that the relative amount of Ab42 is most

crucial in this regard as shown by the dramatic shift in

properties from Ab42:Ab40 ratio (1:9) towards the FAD-like

Ab42:Ab40 ratio (3:7). In fact, ratio (1:9) is nucleating very

late (Figure 1), but once the nucleation occurs, this mixture

rapidly forms mature and well-organized fibrils (Figure 4A),

in which oligomer formation is observed by AFM (Figure 4B),

but not by TEM. Collectively, the data suggest that the Ab

(1:9) and (0:10) ratios most probably bypassed the synapto-

toxic stage and aggregated once nucleation had been induced

quite rapidly into non-toxic mature fibrils (Figures 2E–F

and 4A) and, therefore, did not bind and affect synapses.

In contrary, Ab (3:7) and Ab (10:0) ratios were enriched

with synaptotoxic intermediates that bind to synapses and

inhibit spontaneous synaptic activity. It should be mentioned

that it has been already suggested that neurotoxicity by Ab is

not exerted by a specific species, but that in contrast the

polymerization reaction itself, which depends on monomer

concentration and nucleation rate, drives toxicity (Wogulis

et al, 2005). Our data seem indeed more compatible with

a dynamic interpretation of Ab toxicity, and argue against

a simple receptor-ligand mechanism mediated by a precise

Ab species as has been proposed by several others (e.g.

Lauren et al, 2009).

A wide range of evidences indicate that Ab oligomers and

protofibrillar intermediates, regardless of their origin or pre-

paration, attack synapses, block LTP and disrupt cognitive

functions (Walsh et al, 2002; Gong et al, 2003; Cleary et al,

2005; Calabrese et al, 2007; Lacor et al, 2007; Martins et al,

2008; Tew et al, 2008). One of the questions in these assays is

whether the species that exerts the toxicity as measured in the

biological assay is the same as the one that is analysed in the

biophysical assays. We developed, therefore, an acute cellular

assay to measure synaptic effects very early after addition of

the Ab preparations. We observed changes in the sponta-

neous firing rate of neurons in culture already within 20min

incubation with Ab ratio mixtures (Figure 2D and E). We

confirmed that the ThT tinctorial properties of the different

Ab preparations used were minimally changed over the time

frame of 40min. This assay was performed in neuronal

culture medium and at the same dilution and temperature

used in the cellular assays, further strengthening our assump-

tion that the toxicity measured in the MEA cellular assay was

indeed associated with the Ab aggregation state characterized

in the biophysical assays. This acute toxicity was further

confirmed by measuring EPSP of neurons in culture: as early

as 7min after addition of the Ab mixtures toxicity, measured

as decreased rate of EPSP, was detected.
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Figure 7 Toxic Ab affects behaviour and learning of mice.
(A) Passive avoidance; 1.5 h after intraventricular injection with
6 ml of Ab ratios incubated for 2 h before the injection, latency of
entrance in the dark cage during the training (white) was tested.
The latency of entrance during the testing was performed 24h later
(black) (values are latency mean±s.e.m., Po0.002, control
(n¼ 13), Ab40 and ratio 1:9 (n¼ 12), ratio 3:7 and Ab42 (n¼ 11)).
(B) Conditional fear response; 1 h after intraventricular injection
with 6ml of Ab ratios, habituation was induced. Animals were
exposed to the training after an additional 4 h. The freezing re-
sponse was recorded 24 h later for context-dependent (white bars)
and auditory cue-dependent (black bars) memory formation. Values
are per cent freezing mean±s.e.m., Ab ratios (0:10) and (1:9):
n¼ 13 for ratio (3:7) and (10:0): n¼ 14.
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We addressed the question of synaptotoxic versus cyto-

toxic effects of Ab intermediates. We show that intermediates

from the Ab (3:7) ratio specifically bind synapses (Figure 2F)

without major cytotoxicity as assessed by caspase-3 and

annexin staining (Figure 6). Our data also provide some

preliminary evidence that the initial synaptotoxicity is accom-

panied by some local synaptic activation of caspase-3

(Figure 6) occurring in parallel to the functional inactivation

of synapses (Figure 2), which needs further exploration.

Interestingly, higher concentrations of the Ab(3:7) ratio

caused caspase-3 activation in the soma as well (Figure 6).

The findings in the current manuscript impact on our

understanding of the function of the different Ab species

and their relative contribution to synapse toxicity and neu-

ronal cell death in the brain of AD patients. The paradox of

loss of function of several presenilin mutations causing AD

(reviewed in De Strooper, 2007) indicates that at least in these

FAD cases, a lower generation of Ab peptide can still be

associated with disease and progressive amyloid accumula-

tion. In vivo experiments are in line with this conclusion:

more amyloid pathology was observed in transgenic mice

expressing a PS1 mutant allele over a PS1 null allele than over

a PS1 wild-type allele (Wang et al, 2006). Our work explains

that it is indeed possible to come to very different, patholo-

gically relevant, situations with the same quantitative Ab

load, but with a qualitatively different Ab mix. This could

potentially explain the early and aggressive neurodegenera-

tion in the brain of presenilin FAD patients, even with a loss

of function of g-secretase (Bentahir et al, 2006). If indeed the

specific mix of the different Ab peptides with specific con-

formation in the brain dictates the synapse and neuronal

toxicity potential of the Ab load in FAD and, by extrapolation,

in sporadic AD brain, these observations have obviously

important implications for the development of anti-amyloid

medication.

Materials and methods

Preparation of Alzheimer’s b-peptide ratios
Ab peptide was dissolved at a concentration of 1mgml–1 in HFIP
(99þ%, Aldrich Cat. # 10,522-8). Ab42 and Ab40 were then mixed
in molar ratios of (0:10), (1:9), (3:7) and (10:0). HFIP was
evaporated using a gentle stream of argon gas and the peptide film
was resolved using DMSO, (Sigma Cat. # D4540) at a final
concentration of 1mgml–1. The peptide was separated from DMSO
with a 5-ml HiTrapTM desalting column (GE Healthcare, Sweden).
Complete removal of DMSO was confirmed by FTIR: DMSO
provides spectral maxima at 1011 and 951 cm�1. The peptide was
eluted into a 50-mM Tris, 1mM EDTA buffer, pH 7.5 and the peptide
concentration was measured using Bradford assay. The samples
were kept on ice until experiments started, with a maximum lag
time of 20min.

ThT fluorescence
Ab protein concentrations were normalized to 50 mM by further
dilution using 50mM Tris, 1mM EDTA containing buffer and a final
concentration of 12mM ThT was added in a Greiner 96-well plate.
The fibrillation kinetics were followed in situ using a Fluostar
OPTIMA fluorescence plate reader at an excitation wavelength of
440nm and an emission wavelength of 480nm. Readings were
recorded in triplicate every 10min for a period of 6 h.

Transmission electron microscopy
Aliquots (5ml) of the Ab preparation were adsorbed to carbon-
coated FormVar film on 400-mesh copper grids (Plano GmbH,
Germany) for 1min. The grids were blotted, washed twice in
droplets of Milli-Q water and stained with 1% (wt/vol) uranyl

acetate. Samples were studied with a JEOL JEM-2100 microscope
at 200kV.

Fourier transform infrared spectroscopy
Ab solutions were applied to the FTIR sample holder and incubated
for 8 h at 251C. InfraRed spectra were recorded on a Bruker Tensor
27 infrared spectrophotometer (Bruker Optik GmbH, Ettlingen,
Germany) equipped with a Bio-ATR II accessory. The spectro-
photometer was continuously purged with dried air. Spectra were
recorded at a spectral resolution of 4 cm�1 and 120 accumulations
were performed per measurement. FTIR spectra were recorded
every 5min in situ at a wavelength range from 900 to 3500 cm�1.
The obtained spectra were baseline subtracted and rescaled in the
amide I area, which spans from B1600 to B1700 cm�1.

Spontaneous synaptic activity recording by MEA
Neurons were plated at 1000 cellsmm–2 on an MEA substrate
(Multichannel Systems GmbH, Germany) and grown for 8–10 days.
The spontaneous firing rate of the neuronal network was recorded
simultaneously from at least 10 successful electrodes (out of 60
available) (Pine, 1980; Potter and DeMarse, 2001). During the
recording experiment, a temperature controller from Multichannel
Systems was used to maintain the MEA platform temperature at
371C. The basal firing rate was recorded during 5min. Upon
treatment with Ab, the spontaneous synaptic activity was con-
tinuously recorded during 40min. Raw signals from MEA electrodes
were amplified by MEA1060 amplifier (gain 1200) from Multi-
channel Systems and digitized by the A/D MC_Card at a sampling
rate of 25 kHz; MC_Rack 3.5.10 software (Multichannel Systems)
was used for data recording and processing. The raw data stream
was high-pass filtered at 200Hz, and the threshold for spike
detection was set to 5 s.d. of the average noise amplitude computed
during the first 1000ms of recording. A number of spikes detected
by every electrode per time bin of 60 s was normalized to baseline
(firing rate in the absence of treatment). After data analysis, the
firing rates at 10, 20 and 40min of treatment were extracted and
presented as percentage of initial rate.

Patch-clamp experiments
Two-week-old neurons from at least five independent hippocampal
cultures were patch clamped, and spontaneous electrical activity
comprising APs and EPSPs was recorded. Quartz glass pipettes with
an inner diameter of 1mm were pulled using a P-2000 Laser Puller
(Sutter) to obtain pipettes with series resistance of 2–4MO. The
pipette solution consisted of 140mM KCl, 5mM EGTA, 5mM NaCl,
5mM Na2ATP, 10mM HEPES, 1mM MgCl2, pH 7.2. After the
formation of a gigaseal, the cell membrane was ruptured using ZAP
pulses to obtain the whole-cell configuration. Then, APs and EPSPs
were recorded in current clamp mode using a Multiclamp 700B
amplifier connected to a Digidata 1440 acquisition card and
Clampex 10.2 software (Molecular Devices). Neurons were kept in
neurobasal cell medium supplemented with 10% HEPES. Different
ratios of Ab were added to the measurement chamber by manual
pipetting. The number of EPSPs before and after the treatment were
analysed in 1min segments by means of the Clampfit software
(Molecular Devices).

Learning and memory tests
Passive avoidance learning was tested in a step-through box. During
training, dark-adapted mice were placed in the small illuminated
compartment of the box. After 5 s, a sliding door to the larger dark
compartment was opened, and entry latency was recorded. The
door was closed as soon as all four feet were on the grid floor, and a
slight foot shock (0.3mA, 2 s) was delivered using a constant
current shocker (Med Associates). Retention was tested 24 h later
using the same procedure, and entry was recorded up to 300 s
cutoff. The results are expressed as latency to enter the dark
compartment before and after the foot shock.

In cue- and context-dependent fear conditioning the uncondi-
tioned stimulus (US) (an electric shock) is paired with a CS (the
tone) to elicit a freezing response, a reliable measure of fear in
rodents. On the first day, the animals were placed in the testing
chamber (22.5� 32.5� 33.3 cm; Plexiglas cage with a grid floor)
and were allowed to acclimatize for 5min. On day 2, they were first
allowed to explore the testing chamber for 2min (pre-US score). A
30-s tone (conditioned stimulus (CS)) was delivered (frequency,
2150±200Hz; Star Micronics, Piscataway, NJ), which coterminated
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with a 2 s, 0.35mA foot shock (the US). Two minutes later, a second
pairing of the CS and US was presented, followed by another 30 s
exploration (post-US score). Twenty-four hours later, the animals
were returned to the testing chamber for 5min exploration in the
same context as the previous day (context score). Ninety minutes
later, the animals were returned to the test chamber, but now the
grid floor was hidden with a Plexiglas plate and odourized sawdust
to alter the context of the testing chamber. The animals were
observed for 6min. During the first 3min, no stimulus was
delivered (pre-CS score). During the next 3min phase, the auditory
cue was delivered (CS score). Freezings were automatically
recorded. A freezing score was expressed as the percentage of
freezing, when the threshold was defined equally through all
experiments in each of the five trial blocks.

Statistics
Differences between groups were examined using unpaired two-
tailed t-tests, and one-way or two-way repeated measurements
ANOVA procedures with Fisher’s method. Significance levels for
each experiment are indicated in the figure legends. Significance in
Cell-Titer Blue viability assay, MEA assay, ThT assays
and immunofluorescence intensity assay was established using
two-tailed t-tests.

Additional Materials and methods are in Supplementary data.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).

Acknowledgements

We thank Adrian Lo, Leen Van Aerschot for technical assistance in
animal behaviour studies, Elke Maes, Mieke Vanbrabant, Karen Van
Keer and Olga Krylychkina for technical assistance in culturing
neurons and Sebastian Munck for confocal microscopy and help
with data analysis. This work was supported by the Fund for
Scientific Research, Flanders; the Artificial SynApse (IWT ASAP),
Federal Office for Scientific Affairs, Belgium IUAP P6/43, a
Methusalem grant of the KULeuven and the Flemish Government,
an MEMOSAD (F2-2007-200611) of the European Union, an FWO
Odysseus grant and the Alzheimer Research Trust (ART) UK.

Conflict of interest

The authors declare that they have no conflict of interest.

References

Aizenstein HJ, Nebes RD, Saxton JA, Price JC, Mathis CA, Tsopelas
ND, Ziolko SK, James JA, Snitz BE, Houck PR, Bi W, Cohen AD,
Lopresti BJ, DeKosky ST, Halligan EM, Klunk WE (2008) Frequent
amyloid deposition without significant cognitive impairment
among the elderly. Arch Neurol 65: 1509–1517

Aksenov MY, Aksenova MV, Butterfield DA, Hensley K, Vigo-Pelfrey
C, Carney JM (1996) Glutamine synthetase-induced enhancement
of beta-amyloid peptide A beta (1–40) neurotoxicity accompanied
by abrogation of fibril formation and A beta fragmentation.
J Neurochem 66: 2050–2056

Annaert W, De Strooper B (2002) A cell biological perspective on
Alzheimer’s disease. Annu Rev Cell Dev Biol 18: 25–51

Bentahir M, Nyabi O, Verhamme J, Tolia A, Horre K, Wiltfang J,
Esselmann H, De Strooper B (2006) Presenilin clinical mutations
can affect gamma-secretase activity by different mechanisms.
J Neurochem 96: 732–742

Calabrese B, Shaked GM, Tabarean IV, Braga J, Koo EH, Halpain S
(2007) Rapid, concurrent alterations in pre- and postsynaptic
structure induced by naturally-secreted amyloid-beta protein.
Mol Cell Neurosci 35: 183–193

Chamberlain AK, MacPhee CE, Zurdo J, Morozova-Roche LA,
Hill HA, Dobson CM, Davis JJ (2000) Ultrastructural organization
of amyloid fibrils by atomic force microscopy. Biophys J 79:
3282–3293

Chirgadze YN, Nevskaya NA (1976) Infrared spectra and resonance
interaction of amide-I vibration of the paraellel-chain pleated
sheets. Biopolymers 15: 627–636

Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G,
Johnson-Wood K, Lee M, Seubert P, Davis A, Kholodenko D,
Motter R, Sherrington R, Perry B, Yao H, Strome R, Lieberburg I,
Rommens J, Kim S, Schenk D et al (1997) Mutant presenilins of
Alzheimer’s disease increase production of 42-residue amyloid
beta-protein in both transfected cells and transgenic mice. Nat
Med 3: 67–72

Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA,
Selkoe DJ, Ashe KH (2005) Natural oligomers of the amyloid-beta
protein specifically disrupt cognitive function. Nat Neurosci 8:
79–84

De Strooper B (2007) Loss-of-function presenilin mutations in
Alzheimer disease. Talking Point on the role of presenilin muta-
tions in Alzheimer disease. EMBO Rep 8: 141–146

De Strooper B (2010) Proteases and proteolysis in Alzheimer
disease: a multifactorial view on the disease process. Physiol
Rev 90: 465–494

Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-tur J, Hutton M,
Buee L, Harigaya Y, Yager D, Morgan D, Gordon MN, Holcomb L,
Refolo L, Zenk B, Hardy J, Younkin S (1996) Increased amyloid-

beta42(43) in brains of mice expressing mutant presenilin 1.
Nature 383: 710–713

Frost D, Gorman PM, Yip CM, Chakrabartty A (2003) Co-incorpora-
tion of A beta 40 and A beta 42 to form mixed pre-fibrillar
aggregates. Eur J Biochem 270: 654–663

Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, Krafft
GA, Klein WL (2003) Alzheimer’s disease-affected brain: pre-
sence of oligomeric A beta ligands (ADDLs) suggests a molecular
basis for reversible memory loss. Proc Natl Acad Sci USA 100:
10417–10422

Goormaghtigh E, Cabiaux V, Ruysschaert JM (1994) Determination
of soluble and membrane protein structure by Fourier transform
infrared spectroscopy. II. Experimental aspects, side chain
structure, and H/D exchange. Subcell Biochem 23: 363–403

Haass C, Selkoe DJ (1993) Cellular processing of beta-amyloid
precursor protein and the genesis of amyloid beta-peptide. Cell
75: 1039–1042

Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s
disease: progress and problems on the road to therapeutics.
Science 297: 353–356

Harper JD, Lansbury Jr PT (1997) Models of amyloid seeding in
Alzheimer’s disease and scrapie: mechanistic truths and physio-
logical consequences of the time-dependent solubility of amyloid
proteins. Annu Rev Biochem 66: 385–407

Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM,
Teplow DB, Selkoe DJ (1999) Protofibrillar intermediates of
amyloid beta-protein induce acute electrophysiological changes
and progressive neurotoxicity in cortical neurons. J Neurosci 19:
8876–8884

Hepler RW, Grimm KM, Nahas DD, Breese R, Dodson EC, Acton P,
Keller PM, Yeager M, Wang H, Shughrue P, Kinney G, Joyce JG
(2006) Solution state characterization of amyloid beta-derived
diffusible ligands. Biochemistry 45: 15157–15167

Hu X, Crick SL, Bu G, Frieden C, Pappu RV, Lee JM (2009) Amyloid
seeds formed by cellular uptake, concentration, and aggregation
of the amyloid-beta peptide. Proc Natl Acad Sci USA 106:
20324–20329

Jan A, Gokce O, Luthi-Carter R, Lashuel HA (2008) The ratio of
monomeric to aggregated forms of Abeta40 and Abeta42 is an
important determinant of amyloid-beta aggregation, fibrillogen-
esis, and toxicity. J Biol Chem 283: 28176–28189

Jarrett JT, Lansbury Jr PT. (1993) Seeding ‘one-dimensional crystal-
lization’ of amyloid: a pathogenic mechanism in Alzheimer’s
disease and scrapie? Cell 73: 1055–1058

Kakuda N, Funamoto S, Yagishita S, Takami M, Osawa S, Dohmae
N, Ihara Y (2006) Equimolar production of amyloid beta-
protein and amyloid precursor protein intracellular domain

Neurotoxic Ab mixtures

I Kuperstein et al

&2010 European Molecular Biology Organization The EMBO Journal VOL 29 | NO 19 | 2010 3419

http://www.embojournal.org


from beta-carboxyl-terminal fragment by gamma-secretase.
J Biol Chem 281: 14776–14786

Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman
CW, Glabe CG (2003) Common structure of soluble amyloid
oligomers implies common mechanism of pathogenesis. Science
300: 486–489

Kim J, Onstead L, Randle S, Price R, Smithson L, Zwizinski C,
Dickson DW, Golde T, McGowan E (2007) Abeta40 inhibits
amyloid deposition in vivo. J Neurosci 27: 627–633

Klyubin I, Betts V, Welzel AT, Blennow K, Zetterberg H, Wallin A,
Lemere CA, Cullen WK, Peng Y, Wisniewski T, Selkoe DJ, Anwyl
R, Walsh DM, Rowan MJ (2008) Amyloid beta protein dimer-
containing human CSF disrupts synaptic plasticity: prevention by
systemic passive immunization. J Neurosci 28: 4231–4237

Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood
M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberra-
tions in synapse composition, shape, and density provide a
molecular basis for loss of connectivity in Alzheimer’s disease.
J Neurosci 27: 796–807

Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos
M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang
C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar
ligands derived from Abeta1-42 are potent central nervous system
neurotoxins. Proc Natl Acad Sci USA 95: 6448–6453

Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury Jr PT (2002)
Neurodegenerative disease: amyloid pores from pathogenic mu-
tations. Nature 418: 291

Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM
(2009) Cellular prion protein mediates impairment of synaptic
plasticity by amyloid-beta oligomers. Nature 457: 1128–1132

Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher
M, Ashe KH (2006) A specific amyloid-beta protein assembly in
the brain impairs memory. Nature 440: 352–357

Mann DM, Iwatsubo T, Cairns NJ, Lantos PL, Nochlin D, Sumi SM,
Bird TD, Poorkaj P, Hardy J, Hutton M, Prihar G, Crook R, Rossor
MN, Haltia M (1996) Amyloid beta protein (Abeta) deposition in
chromosome 14-linked Alzheimer’s disease: predominance of
Abeta42(43). Ann Neurol 40: 149–156

Martins IC, Kuperstein I, Wilkinson H, Maes E, Vanbrabant M,
Jonckheere W, Van Gelder P, Hartmann D, D’Hooge R, De
Strooper B, Schymkowitz J, Rousseau F (2008) Lipids revert
inert Abeta amyloid fibrils to neurotoxic protofibrils that affect
learning in mice. EMBO J 27: 224–233

Ono K, Condron MM, Teplow DB (2009) Structure-neurotoxicity
relationships of amyloid beta-protein oligomers. Proc Natl Acad
Sci USA 106: 14745–14750

Pike CJ, Overman MJ, Cotman CW (1995) Amino-terminal deletions
enhance aggregation of beta-amyloid peptides in vitro. J Biol
Chem 270: 23895–23898

Pine J (1980) Recording action potentials from cultured neurons
with extracellular microcircuit electrodes. J Neurosci Methods 2:
19–31

Potter SM, DeMarse TB (2001) A new approach to neural cell culture
for long-term studies. J Neurosci Methods 110: 17–24

Price JL, Morris JC (1999) Tangles and plaques in nondemented
aging and ‘preclinical’ Alzheimer’s disease. Ann Neurol 45:
358–368

Qi-Takahara Y, Morishima-Kawashima M, Tanimura Y, Dolios G,
Hirotani N, Horikoshi Y, Kametani F, Maeda M, Saido TC,
Wang R, Ihara Y (2005) Longer forms of amyloid beta protein:
implications for the mechanism of intramembrane cleavage by
gamma-secretase. J Neurosci 25: 436–445

Reiman EM, Chen K, Liu X, Bandy D, Yu M, Lee W, Ayutyanont N,
Keppler J, Reeder SA, Langbaum JB, Alexander GE, Klunk WE,
Mathis CA, Price JC, Aizenstein HJ, DeKosky ST, Caselli RJ (2009)
Fibrillar amyloid-beta burden in cognitively normal people at 3

levels of genetic risk for Alzheimer’s disease. Proc Natl Acad Sci
USA 106: 6820–6825

Saido TC, Yamao-Harigaya W, Iwatsubo T, Kawashima S (1996)
Amino- and carboxyl-terminal heterogeneity of beta-amyloid
peptides deposited in human brain. Neurosci Lett 215: 173–176

Sato T, Dohmae N, Qi Y, Kakuda N, Misonou H, Mitsumori R,
Maruyama H, Koo EH, Haass C, Takio K, Morishima-Kawashima
M, Ishiura S, Ihara Y (2003) Potential link between amyloid beta-
protein 42 and C-terminal fragment gamma 49–99 of beta-amy-
loid precursor protein. J Biol Chem 278: 24294–24301

Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird
TD, Hardy J, Hutton M, Kukull W, Larson E, Levy-Lahad E,
Viitanen M, Peskind E, Poorkaj P, Schellenberg G, Tanzi R,
Wasco W, Lannfelt L, Selkoe D et al (1996) Secreted amyloid
beta-protein similar to that in the senile plaques of Alzheimer’s
disease is increased in vivo by the presenilin 1 and 2 and
APP mutations linked to familial Alzheimer’s disease. Nat Med
2: 864–870

Schilling S, Zeitschel U, Hoffmann T, Heiser U, Francke M, Kehlen
A, Holzer M, Hutter-Paier B, Prokesch M, Windisch M, Jagla W,
Schlenzig D, Lindner C, Rudolph T, Reuter G, Cynis H, Montag D,
Demuth HU, Rossner S (2008) Glutaminyl cyclase inhibition
attenuates pyroglutamate Abeta and Alzheimer’s disease-like
pathology. Nat Med 14: 1106–1111

Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE,
Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM,
Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-beta protein
dimers isolated directly from Alzheimer’s brains impair synaptic
plasticity and memory. Nat Med 14: 837–842

Snyder SW, Ladror US, Wade WS, Wang GT, Barrett LW, Matayoshi
ED, Huffaker HJ, Krafft GA, Holzman TF (1994) Amyloid-beta
aggregation: selective inhibition of aggregation in mixtures of
amyloid with different chain lengths. Biophys J 67: 1216–1228

Stett A, Egert U, Guenther E, Hofmann F, Meyer T, Nisch W,
Haemmerle H (2003) Biological application of microelectrode
arrays in drug discovery and basic research. Anal Bioanal
Chem 377: 486–495

Suzuki N, Cheung TT, Cai XD, Odaka A, Otvos Jr L, Eckman C,
Golde TE, Younkin SG (1994) An increased percentage of long
amyloid beta protein secreted by familial amyloid beta protein
precursor (beta APP717) mutants. Science 264: 1336–1340

Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R,
Hansen LA, Katzman R (1991) Physical basis of cognitive altera-
tions in Alzheimer’s disease: synapse loss is the major correlate
of cognitive impairment. Ann Neurol 30: 572–580

Tew DJ, Bottomley SP, Smith DP, Ciccotosto GD, Babon J, Hinds
MG, Masters CL, Cappai R, Barnham KJ (2008) Stabilization
of neurotoxic soluble beta-sheet-rich conformations of the
Alzheimer’s disease amyloid-beta peptide. Biophys J 94:
2752–2766

Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS,
Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of
amyloid beta protein potently inhibit hippocampal long-term
potentiation in vivo. Nature 416: 535–539

Wang R, Wang B, He W, Zheng H (2006) Wild-type presenilin 1
protects against Alzheimer’s disease mutation-induced amyloid
pathology. J Biol Chem 29: 29

Wogulis M, Wright S, Cunningham D, Chilcote T, Powell K, Rydel
RE (2005) Nucleation-dependent polymerization is an essential
component of amyloid-mediated neuronal cell death. J Neurosci
25: 1071–1080

Yan Y, Wang C (2007) Abeta40 protects non-toxic Abeta42 monomer
from aggregation. J Mol Biol 369: 909–916

Yoshiike Y, Chui DH, Akagi T, Tanaka N, Takashima A (2003)
Specific compositions of amyloid-beta peptides as the determi-
nant of toxic beta-aggregation. J Biol Chem 278: 23648–23655

Neurotoxic Ab mixtures

I Kuperstein et al

The EMBO Journal VOL 29 | NO 19 | 2010 &2010 European Molecular Biology Organization3420


	Neurotoxicity of Alzheimeraposs disease Abeta peptides is induced by small changes in the Abeta42 to Abeta40 ratio
	Introduction
	Results
	Aggregation rate of Abeta peptides is strongly influenced by the ratio Abeta42:Abeta40
	The Abeta42:Abeta40 ratio is a driver of acute synaptic alterations

	Figure 1 Abeta42 determines the kinetics of Abeta aggregation.
	Toxic Abeta species are oligomeric and dynamic structures
	Long-term cellular toxicity of Abeta mixtures

	Figure 3 Patch-clamp measurements in primary cultures of neurons.
	Figure 2 Mixed Abeta oligomers result in a rapid synaptotoxic response in primary neurons.
	Figure 4 Characterization of Abeta oligomers with transmission electron microscopy and atomic force microscopy.
	Abeta ratio affects behaviour and learning alteration in mice

	Discussion
	Figure 5 Conformational transitions observed using Fourier transform infrared (FTIR) spectroscopy.
	Figure 6 Mixed Abeta oligomers affect synapses at low concentration and induce cell death at higher concentrations.
	Figure 7 Toxic Abeta affects behaviour and learning of mice.
	Materials and methods
	Preparation of Alzheimeraposs beta-peptide ratios
	ThT fluorescence
	Transmission electron microscopy
	Fourier transform infrared spectroscopy
	Spontaneous synaptic activity recording by MEA
	Patch-clamp experiments
	Learning and memory tests
	Statistics
	Supplementary data

	Acknowledgements
	References


