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Neurotrophins and neurodegeneration

 

There is growing evidence that reduced neurotrophic sup-
port is a significant factor in the pathogenesis of  neurode-
generative diseases such as Alzheimer’s disease (AD),
Parkinson’s disease (PD) and amyotrophic lateral sclerosis
(ALS). In this review we discuss the structure and func-
tions of  neurotrophins such as nerve growth factor, and
the role of  these proteins and their tyrosine kinase (Trk)
receptors in the aetiology and therapy of  such diseases.
Neurotrophins regulate development and the mainte-
nance of  the vertebrate nervous system. In the mature ner-
vous system they affect neuronal survival and also
influence synaptic function and plasticity. The neurotro-
phins are able to bind to two different receptors: all bind to
a common receptor p75

 

NTR

 

, and each also binds to one of  a
family of  Trk receptors. By dimerization of  the Trk recep-

tors, and subsequent transphosphorylation of  the intracel-
lular kinase domain, signalling pathways are activated.
We discuss here the structure and function of  the neu-
rotrophins and how they have been, or may be, used ther-
apeutically in AD, PD, Huntington’s diseases, ALS and
peripheral neuropathy. Neurotrophins are central to many
aspects of  nervous system function. However they have
not truly fulfilled their therapeutic potential in clinical tri-
als because of  the difficulties of  protein delivery and phar-
macokinetics in the nervous system. With the recent
elucidation of  the structure of  the neurotrophins bound to
their receptors it will now be possible, using a combination
of  

 

in silico

 

 technology and novel screening techniques, to
develop small molecule mimetics with much improved
pharmacotherapeutic profiles.
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The neurotrophins and their receptors

 

Over the last two decades much progress has been made in
understanding the relationship between neurotrophins,
their receptors and neurodegenerative diseases. In partic-
ular nerve growth factor (NGF) and its receptor TrkA have
a prominent role in both the aetiology and the treatment of
Alzheimer’s disease (AD). In Huntington’s disease the
mutant protein huntingtin leads to a down-regulation of
brain-derived neurotrophic factor (BDNF) in the basal gan-
glia leading to neuronal loss, opening up the possibility of
BDNF therapy. Moreover, startling clinical results have
been found using intraparenchymal injection of  a related
neurotrophic factor, glial-derived neurotrophic factor
(GDNF), for the treatment of  Parkinson’s disease (PD). This

review discusses in depth the involvement of  the neurotro-
phins in neurodegenerative diseases.

 

Neurotrophins, a historical perspective

 

The first neurotrophin to be discovered was NGF. In 1948
it was shown that, when fragments of  a mouse sarcoma
were grafted into the body wall of  chick embryos, the sen-
sory nerve fibres from the chick dorsal root ganglion (DRG)
penetrated into the sarcoma [29]. Later sympathetic fibres
were also shown to penetrate the sarcoma, and the sympa-
thetic ganglia innervating the tumour increased in vol-
ume [120]. Subsequent purification studies led to the
isolation of  a nucleoprotein fraction with nerve growth-
promoting activities. A systemic search of  mammalian tis-
sues showed that male mouse salivary glands contained
relatively large amounts of  NGF [42]. Further work estab-
lished that NGF is released by the target tissues of  sympa-
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thetic and sensory fibres, and is taken up by the fibres and
retrogradely transported to the cell body. From this work
the Neurotrophic Factor Hypothesis is developed . This
proposed that a developing neurone, having extended pro-
cesses into its target organ, would be in competition with
other neurones for limited supplies of  target-produced
neurotrophic factors. Those that obtain the growth factor
survive; those that do not die.

The sequencing of  mouse salivary gland NGF, in 1971
[93], provided information on its primary structure but
more importantly also paved the way for the cloning of  the
mouse and human genes. The human NGF gene is located
on the short arm of  chromosome 1 (1p22) [66] and codes
for a polypeptide of  307 amino acids which, when the sig-
nal peptide and pro region are cleaved, gives rise to a
mature protein of  118 amino acids which naturally exists
as a noncovalently bound homodimer.

 

The neurotrophin family

 

In addition to NGF, another factor was purified from pig
brain that demonstrated neuronal growth-promoting
activities [13]; this was later called BDNF. Cloning of  the
gene [119] (present on human chromosome 11: 11p13
[128]) revealed close homologuey to NGF with 51 identi-
cal amino acids; such similarity suggested that it also
existed as a homodimer. By using the contiguous regions
between NGF and BDNF to design oligonucleotides for
polymerase chain reaction cloning, a third related protein
called neurotrophin 3 (NT-3) was cloned [59,94,127].
This is located on human chromosome 12 (12p13) [128].
Finally after an exhaustive search the last of  the neurotro-
phin family was identified and cloned in Xenopus (NT-4)
[80]. The equivalent human cDNA was sufficiently differ-
ent from Xenopus NT-4 for it to be thought a separate gene
and called NT-5 [19]. Subsequently it was realized that
they are homologueous genes and this neurotrophin is
often now termed NT-4/5. NT-4/5 is present on human
chromosome 19 (19q13.3) [18]. NT-6 has only been
found in fish [75]. All the neurotrophins are synthesized
as precursor proteins (approximately 30 kDa in size)
and are cleaved to form the mature form, and all form
noncovalent-linked homodimers where each monomer is
approximately 13 kDa. They are all basic proteins with iso-
electric points above 9.0. Because of  the characteristic for-
mation of  a double loop formed by two disulphide bonds,
penetrated by a third disulphide bond, they are classed as
part of  the Cysteine Knot Superfamily. The X-ray crystal

structures of  the neurotrophins have all been elucidated
and are shown in Figure 1. Shown for comparison is the
structure of  a related protein, GDNF, which is also a mem-
ber of  the Cysteine Knot Superfamily. This protein is briefly
mentioned in this review because of  its recent success in
PD trials.

 

Neurotrophin receptors: identification and 
structure

 

P75

 

NTR

 

 receptor

 

The receptors for NGF were first identi-
fied on chick sensory ganglia and DRG using receptor-
binding techniques with 

 

125

 

I-labelled NGF [194]. Origi-
nally this receptor was thought to be specific for NGF,
although its method of  signalling was unclear. It was even-
tually established, by analysis of  the binding kinetics, that
there were two receptors present: one with a dissociation
constant (Kd) of  approximately 10

 

-

 

11

 

M and the other with
a Kd of  approximately 10

 

-

 

9

 

M. The molecular weights were
subsequently determined by cross-linking experiments
and found to be approximately 140 kDa and approxi-
mately 75 kDa, respectively. The lower-affinity receptor
was cloned from rat [161] and human [103] and was usu-
ally referred to as p75

 

NGFR

 

. It is now known to be a common
receptor for all of  the neurotrophins (p75

 

NTR

 

) [169]. The
3.8 kb mRNA for p75

 

NTR

 

 encodes a 427 amino acid protein
containing a 28 amino acid signal peptide, a single trans-
membrane domain and a 155 amino acid cytoplasmic
domain. The gene is present on the human chromosome
17 (17q21–22) [97]. A schematic of  the structure of  the
p75

 

NTR

 

 and that of  the tyrosine kinase (Trk) receptors is
given in Figure 2. The p75

 

NTR

 

 receptor was shown to be a
member of  the tumour necrosis superfamily of  receptors
[26,35] and contains a cytoplasmic ‘death’ domain [122],
a domain known to be involved in apoptosis.

Neurotrophin binding to p75

 

NTR

 

 has been shown to
affect cell survival [14] and axonal outgrowth [17,207].
Independent of  Trk, the binding of  neurotrophins to the
p75

 

NTR

 

 receptor results in activation of  NF

 

kb

 

, a transcrip-
tion factor [33], and c-Jun N-terminal kinase kinase [34].
Recently p75

 

NTR

 

 has been shown to interact with the Nogo
receptor which is involved in myelin-associated inhibition
of  axonal elongation [53].

 

Trk receptors: discovery and structure

 

In 1986 a human
oncogene was isolated from colon carcinoma and was
called 

 

trk

 

 (tyrosine receptor kinase) [130]. The gene con-
sisted of  a fusion between a known muscle protein, tro-
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pomyosin, and a receptor kinase domain from an
unknown protein. Use of  the sequence of  the Trk domain to
screen cDNA libraries led to the identification of  the proto-
oncogene 

 

trkA

 

 [131]. The fact that the expression profile
for 

 

trkA

 

 correlated with the location of  those neurones that
respond to NGF and that the size of  the TrkA protein was
approximately 140 kDa led to the breakthrough by Klein
[107] that TrkA was the receptor for NGF. Screening of
cDNA libraries had led to the identification of  the related
genes 

 

trkB

 

 [110] and 

 

trkC

 

 [118]. TrkB protein was shown
to be a receptor for BDNF [109] and NT-4/5 [108] and

TrkC was found to be a receptor for NT-3 [118]. The pro-
tein Trk domains of  TrkA, TrkB and TrkC were found to be
87% homologueous at the amino acid level. TrkA, like
NGF, is located on chromosome 1 (1q21–22), TrkB is on
chromsome 9 (9p22.1) and TrkC is on chromosome 15
(15q25). Northern analysis using probes for 

 

trkA

 

, 

 

trkB

 

 and

 

trkC

 

 demonstrated that their expression is restricted pri-
marily to the nervous system.

These Trk receptors form a homologueous family of
proteins, each comprising about 800 amino acids with
half  of  the residues at the amino terminus forming the
extracellular portion of  the receptor. Examination of
sequence motifs in the extracellular region of  the Trk
receptors showed that there are five distinct domains
[180] (Figure 2). Mutational and domain-swapping

 

Figure 3.

 

Comparison of  the X-ray crystal structures of  known Trk-
neurotrophin complexes. C

 

a

 

 traces of  the TrkBIg2:NT-4/5 (cyan and 
blue, respectively) and TrkAIg2:NGF (pink and red, respectively). 
Note that in each case the N-terminal of  each neurotrophin is now 
fully visible and forms intimate contact with the Trk receptors.
Trk, tyrosine kinase; Ig, immunoglobulin; NT, neurotrophin; NGF, 
nerve growth factor.

 

Figure 1.

 

X-ray crystal structures of  (

 

A

 

) NGF homodimer; (

 

B

 

) 
BDNF:NT-3 heterodimer, a recombinant protein which may not exist 
naturally, made for the structural determination of  both proteins 
simultaneously [168]; (

 

C

 

) NT-4 homodimer; and (

 

D

 

) GDNF 
homodimer. One chain is shown in yellow, the other in blue. The 
disulphide bonds which form the cysteine knot motif  are shown in 
green and are only shown for one chain for 

 

A

 

, 

 

C

 

 and 

 

D

 

. For 

 

B

 

 they are 
shown for both monomers because this comprises of  two different 
neurotrophins. The two monomers of  GDNF are connected by a 
disulphide bond, which is shown in red. The N-terminal amino acid 
for each of  the chains is indicated. Note that in each case several 
amino acids are missing in the structures. GDNF is not a 
neurotrophin but is of  the cysteine knot superfamily, which all share 
a similar overall monomer fold.
NGF, nerve growth factor; BDNF, brain-derived neurotrophic factor; 
NT, neurotrophin; GDNF, glial-derived neurotrophic factor.

 

Figure 2.

 

Schematic representation of  the p75

 

NTR

 

 and a generic 
tyrosine kinase receptor showing individual domains.
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experiments suggested that the immunoglobulin (Ig)-like
domains were involved in ligand binding [153]. The
expression and purification of  recombinant Ig domains in

 

Escherichia coli

 

 allowed the determination of  the dissocia-
tion constants for their ligands, the neurotrophins
[95,167]. These studies conclusively showed that the Ig
domains bind to the neurotrophins with similar affinity to
the wild type membrane-bound receptors [95,167]. The
X-ray crystal structures of  TrkAIg2, TrkBIg2 and TrkCIg2
domains have been determined [167,203] but in each
case, the structures generated were those of  artificial
strand-swapped dimers where the A strand from each
monomer sits next to the B strand of  the other monomer.
The correct structures were generated using molecular
modelling and showed that the Ig2 domains adopt an I-set
fold. Subsequently the crystal structures of  NGF bound to
TrkAIg2, NT-4/5 bound to TrkBIg2 (Figure 3) and a
model of  BDNF bound to TrkBIg2 showed that the original
models of  the Ig2 domains were indeed correct
[12,149,210].

Differential splice variants of  TrkA, TrkB and TrkC, pro-
ducing additional short amino acid sequences in the jux-
tamembrane domains of  the receptors, may have effects on
ligand interactions [40,182,190]. There is also differential
splicing of  exons coding for the intracellular portion of  the
TrkB and TrkC receptors. Both these receptors have forms
that do not have kinase domains, the functions of  which
are thought to include clearance of  ligand, and perhaps
inhibition of  dimerization thus reducing response [57].

 

Signalling through the Trk receptors

 

Binding of  the neurotrophins to the Trk receptors initiates
signalling cascades, by means of  phosphorylation of
tyrosine residues on the cytoplasmic domains of  the recep-
tors. Phosphorylation induces docking of  adapter proteins
with phosphotyrosine-binding or src-homologuey-2
motifs. These adapter proteins couple the receptors to
intracellular signalling cascades, which include the phos-
phatidylinositol-3-kinase/Akt kinase pathway, phospholi-
pase C

 

g

 

 and the Ras kinase pathway [106] ultimately
leading to activation of  gene expression, neuronal survival
and neurite outgrowth.

 

Interactions of  Trk and p75

 

NTR

 

Binding of  neurotrophins to their Trk receptors causes sig-
nalling events which promote neurone survival, whereas

activation of  the p75

 

NTR

 

 pathway triggers apoptosis and
cell death [20]. The capacity of  NT-3 to activate TrkA, and
of  NT-3 and NT-4/5 to activate TrkB is regulated by p75

 

NTR

 

[21]. It is likely that neurotrophins can bind both Trk and
p75

 

NTR

 

 simultaneously, and that Trk receptors and p75

 

NTR

 

may interact with each other [20,21].

 

Distribution of  the neurotrophins and their 
receptors in the brain

 

All of  the neurotrophins show different distributions
through the peripheral nervous system and central ner-
vous system (CNS) with distinct and overlapping specific-
ity towards subpopulations of  sensory neurones of  both
neural crest and neural placode origin. Highest levels of
BDNF mRNA, NGF mRNA and NT-3 mRNA in the adult
mouse brain [91] are found in the hippocampus, with 50
times more BDNF mRNA being present than NGF mRNA.
NT-3 is by far the most highly expressed in the immature
CNS and expression dramatically decreases with matura-
tion. BDNF expression is low in developing regions of  the
CNS and increases as these regions mature, whereas NGF
expression varies during the development dependant on
the region [126]. Cholinergic neurones project from the
basal forebrain nucleus (nucleus basalis of  Meynert, nbM)
to the hippocampus and neocortex with 80–90% of  the
neurones in the human/primate nbM being cholinergic
[137,138]. If  

 

125

 

I-NGF is injected into the hippocampus or
the cortex, it is taken up by the terminals of  cholinergic
cells and retrogradely transported back to the cell bodies in
the basal forebrain [181]. Thus levels of  NGF mRNA in var-
ious regions of  the brain were found to correlate with the
degree of  basal forebrain cholinergic innervation [114]
with highest levels of  NGF and NGF mRNA in the hippoc-
ampus and cerebral cortex. Figure 4 shows a human basal
forebrain neurone stained with anti-p75

 

NTR

 

.
Immunohistochemical and 

 

in situ

 

 analysis of  the distri-
bution of  p75

 

NTR

 

 in rat and primate brain [4,49,111,165]
and colocalization of  choline acetyltransferase (ChAT) and
p75

 

NTR

 

 immunoreactivity [50,111] show that p75

 

NTR

 

 is
almost exclusively located on basal forebrain cholinergic
neurones. More recently, examination of  the distribution
of  TrkA protein and mRNA in rat and human brain shows
that TrkA is also expressed on basal forebrain cholinergic
neurones [186,189] although there are some TrkA-
positive, p75

 

NTR

 

-negative neurones in the striatum
[4,50,189]. By contrast TrkB and TrkC are much more
widely distributed [36].
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Alzheimer’s disease

 

Overview of  symptoms and pathogenesis

 

Alzheimer’s disease is the most common form of  dementia
in the elderly. It is characterized by memory loss and con-
fusion, together with neuropathological changes includ-
ing neuronal loss, extracellular deposits of  amyloid
plaques and intracellular deposition of  hyperphosphory-
lated tau (‘tangles’) [2]. Rarely, cases are familial, with
autosomal dominance, because of  mutations in the pro-
teins amyloid precursor protein (APP), or presenilin 1 or 2
(PS1, PS2); but most cases are sporadic, of  unknown aeti-
ology, although the presence of  a particular isoform of  the
protein apolipoprotein E, apoE4, results in an increased
risk of  AD in the general population. It is widely thought
that pathology is related to increased production of  a 4-
kDa peptide called amyloid or A

 

b

 

, processed from APP by
enzymes known as 

 

b

 

-secretase (BACE: 

 

b

 

 site APP cleaving
enzyme) and 

 

g

 

-secretase (associated with PS1/2) and
recent evidence shows that enzymes associated with the
processing of  APP may be affected in sporadic AD
[96,202].

 

The cholinergic deficit and current treatment

 

The earliest symptom of  AD is a loss of  short-term memory.
This has been associated with the early and substantial
decline in cholinergic function in the cortex and hippoc-
ampus [27,48,156]. The majority of  the cholinergic neu-
rones innervating the cortex and hippocampus originate
from the basal forebrain nuclei including the medial septal
nucleus and the nbM [137]. Lesions of  the innervating
cholinergic pathways or administration of  anticholin-
ergics such as scopolamine result in impaired ability to
perform certain memory tasks [56,164]. Currently the
only successful drug therapies for AD are acetylcholinest-
erase inhibitors, which inhibit the breakdown of  acetyl-
choline and thus potentiate its action. Early trials [193]
showed great improvements in patients using the anticho-
linesterase tacrine (Cognex). Now large multicentre stud-
ies have shown that tacrine treatment is of  some benefit in
some AD patients, and although not as dramatic as in the
original study it is able to improve cognitive function sig-
nificantly [11]. Side-effects were cause for concern,
however, second-generation cholinesterase inhibitors,
donepezil (Aricept), rivastigmine (ENA 713, Exelon), and
galantamine (Reminyl), are better tolerated resulting in

cognitive improvement in over half  the patients, often for
6–9 months or even longer.

 

Cholinergic cell loss in Alzheimer’s disease

 

In AD, cholinergic cells of  the basal forebrain may be either
lost or atrophied, although, in general, the loss of  cortical
cholinergic activity far exceeds the neuronal loss in the
nbM. There is a variance as to extent of  loss reported, prob-
ably mainly because of  age of  patients, as brain samples
from younger patients often show more extreme losses
[3,72,87,143]. Analysis of  cholinergic cells in brains from
severely demented patients who died in their late 70s and
80s, visualized using anti-p75

 

NTR

 

, showed only moderate
cell loss in most areas of  the nbM [3]. Dementia (Kew) score
correlated best with accumulated neuronal losses in the
intermediate and posterior regions, areas reported by oth-
ers as most affected [143,201]. In normal and AD basal
forebrain, similar amounts of  mRNA for p75

 

NTR

 

 were found
by Northern blotting [72] and with ligand binding studies
of  p75

 

NTR

 

 [143,201]; although studies examining the num-
ber of  TrkA positively staining cells in AD basal forebrain
have generally shown a marked reduction in AD [25,145].

It has been suggested that the observed degeneration of
these cholinergic cells in AD may be caused by reduced
trophic support; that is, a lack of  production of  NGF in the
cerebral cortex and hippocampus. However, measure-
ments of  the content of  NGF protein in brain have shown
nonsignificant [5] or significant [47] increases, not
decreases as expected, in cerebral cortex in AD. Recent evi-
dence suggests that the situation is not quite so straightfor-
ward. By use of  Western blotting, pro-NGF rather than
mature NGF was seen to be doubled in AD parietal cortex
[61]. Thus the balance between pro-NGF and mature NGF
may be critical [36]. In addition, it is possible that there is
a dysfunction in retrograde transport of  NGF from the tar-
get tissues to the cell bodies. Support for this hypothesis
comes from a study that shows defective transport in NGF
in a model of  Down’s syndrome or trisomy 21. Down’s syn-
drome invariably results in the symptoms and pathology of
AD by the fourth decade of  life. This is thought to be caused
by the presence of  an extra copy of  the APP gene in Down’s
syndrome patients, possibly leading to an increased amy-
loid burden. In a study using a mouse model of  this disor-
der (trisomy 16), there was no retrograde transport of
radio-iodinated NGF from the hippocampus to the septum
in trisomic mice, compared with almost complete trans-
port in wild-type littermates [45]. If  this were also true of
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AD, it would explain why NGF levels are not diminished in
target areas of  the cholinergic basal forebrain cells. In
addition, we know that NGF content, whilst not reduced in
the cerebral cortex and hippocampus, is decreased in the
basal forebrain [144].

 

NGF restores cholinergic function

 

Numerous studies have shown that administration of  NGF
to the basal forebrain cholinergic neurones 

 

in vitro

 

 results
in increased survival and up-regulation of  ChAT (the
enzyme involved in synthesis of  acetylcholine) activity
[71,83–85,88,132]. This is also true 

 

in vivo

 

. Lesion of  the
connection between the septum and the hippocampus,
involving severing of  the fimbria-fornix in rats, prevents
the retrograde transport of  NGF down cholinergic fibres to
the cell bodies, resulting in cholinergic cell atrophy. Intrac-
erebroventricular (icv) administration of  NGF has been
shown to abolish this degeneration [68,82,86,116,213]
and the cognitive deficits arising from these lesions
[129,212,213]. In addition, a subpopulation of  aged rats
which perform poorly in the Morris water maze and have
reduced cholinergic function is able to function normally
after icv infusion of  NGF [63–65].

 

Clinical trials with NGF protein

 

Intracerebroventricular administration of  NGF

 

In clinical
trials in the early 90s, three AD patients in Sweden were
administered mouse NGF icv [104,151] continuously for
up to 3 months. Two of  these patients were given up to a
total of  6.6 mg. The results were different in each patient. In
general, some improvements were seen in a few of  the cog-
nitive tests: in one patient cortical blood flow was increased,
and another showed increased glucose metabolism; 

 

11

 

C
nicotine binding in the cortex was increased in the two
patients given the higher dose. Nevertheless, there were
side-effects. The two patients with higher doses showed loss
of  weight and appetite, and all three patients reported pain.
These symptoms all ceased when the NGF infusion was
stopped. However, in addition, a dose-related Schwann cell
hyperplasia after icv administration of  rhNGF in rats
[52,214] and primates [214] has been observed. Histologi-
cal examination showed atypical hyperplastic tissue,
attached to the dorsal and lateral surface of  the medulla
and the spinal cord. This hyperplasia was reversible: in the
Day-Lollini study [52] it was significantly reduced after
8 weeks and completely abolished after 52 weeks. These

studies suggest that infusion with icv administration of
NGF will probably result in a similar hyperplasia in man
and, although probably reversible and nonmalignant, it
may be partly responsible for pain. It is also worthy of  note
that this is caused by the presence of  p75

 

NTR

 

 receptors, not
TrkA, because these hyperplastic cells were found to be
immunoreactive for p75

 

NTR

 

 but not TrkA. Thus it may be
better to administer NGF by some other route to avoid side-
effects associated with icv administration.

 

Other routes of  administration

 

Studies have shown that
retroviral transfected fibroblasts, expressing NGF, rescue
cholinergic neurones after a fimbria fornix lesion in the rat
[23]. In addition, aged rhesus monkeys, with atrophy in
the cholinergic basal forebrain, injected with NGF-
expressing fibroblasts into the tissue adjacent to the basal
forebrain, restored numbers of  ChAT-positive subcortical
neurones after 3 months [185]. In April 2001, a 60-year-
old Caucasian woman, in the early stages of  AD, was
surgically implanted with her own modified fibroblasts,
transfected with a virus-expressing NGF. The patient
received five implants of  modified cells near the nbM. We
await results of  this trial by researchers at the University of
California at San Diego and the Salk Institute for Biological
Sciences. In addition, reports have shown that following
injection of  

 

125

 

I-NGF into the olfactory bulb of  rats, radio-
labelled NGF was found to be retrogradely transported spe-
cifically to basal forebrain cholinergic nuclei [7]. Similarly
it has been shown that radio-labelled NGF can be trans-
ported into the brain following administration as nose
drops [39,197]. This may be a feasible mode of  administra-
tion for the future.

 

A link between NGF and the neuropathology of  
Alzheimer’s disease

 

In the phenotypes of  knockouts of  both NGF and TrkA
[46,184] there are large reductions in ChAT immunoreac-
tivity in the basal forebrain and loss of  cholinesterase
activity in both the hippocampal and cortical issues. Mice
that are heterozygous for the NGF deletion have deficits in
spatial memory function in the Morris water maze [37,38]
that correlate with losses in ChAT-positive basal forebrain
neurones.

Recently, a transgenic mouse (AD11) has been estab-
lished which produces antibodies to NGF [32,175]. These
antibodies accumulate throughout the adult life of  the
animal thus obviating the developmental problems
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associated with the NGF knockout. The mice acquire an
age-dependent pathology reminiscent of  human AD,
including amyloid plaques, and hyperphosphorylated tau
in cortical and hippocampal neurones [32]. In addition
they display extensive cortical cell loss, cholinergic deficit
in the basal forebrain and behavioural deficits. Recently
the effects of  intranasal administration of  NGF and intra-
parenchymal injection of  galantamine have been studied
in these mice [31]. A variety of  regimes at 2, 6 and
6.5 months of  age were assessed with striking results.
Administration of  NGF (1.2–12

 

m

 

g on alternate days) or
galantamine (3.5 mg/kg daily) completely restored the
number of  ChAT-immunopositive neurones to normal
values. In addition, NGF reversed deposition of  hyper-
phosphorylated tau in 2- and 6-month-old and markedly
reduced amyloid plaques in the 6- and 6.5-month-old
rats. It had no effect, however, on deposited APP in cere-
bral vessels. By contrast galantamine removed APP depo-
sition but had no effect on hyperphosphorylated tau. It
did, however, remove amyloid plaques almost as effec-
tively as NGF. Surprisingly the acetylcholinesterase inhib-
itors tacrine and physostigmine had no effect on any of
these parameters and it was suggested by the authors that
it is the nicotinic receptor modulating effects of  galan-
tamine that are important here. These studies suggest
that it is a lack of  available NGF that begins the process of
plaque and tangle formation. It seems that galantamine is
able to reverse the plaque deposition but not tangle forma-
tion. In the future it will be interesting to note if  AD
patients, on a regime of  galantamine, have lower plaque
numbers than expected.

 

BDNF in Alzheimer’s disease

 

In addition to the link between NGF and AD there is some
evidence to implicate changes in BDNF and TrkB in the
disease process. Firstly, BDNF mRNA has been reported as
decreased in AD hippocampal samples by 

 

in situ

 

 hybrid-
ization [157], and by immunocytochemical techniques;
BDNF protein levels are reported as reduced in neurones
of  the hippocampus and temporal cortex [44]. There is
also some evidence to suggest a change in the TrkB recep-
tor. Immunopositive, truncated (95 kDa) TrkB receptors
are reported as present in amyloid plaques of  the hippoc-
ampus [43]. In the basal forebrain, immunostaining
showed a large reduction in TrkA, TrkB and TrkC expres-
sion in AD [176], whereas 

 

in situ

 

 hybridization showed no
change in TrkB [24]. In parietal cortex mRNA of  TrkB

was reported as unchanged whereas TrkA was reduced to
less than 50% of  normal value [90]. However, Western
blotting showed a selective reduction of  TrkB catalytic
form (145 kDa), not the truncated form, in both frontal
and temporal cortex [6], with blots showing a preponder-
ance of  truncated over catalytic form of  TrkB. Interest-
ingly, studies on PS1 knockouts have shown that the
maturation of  TrkB and BDNF-inducible TrkB autophos-
phorylation is compromised in neurones lacking PS1
[148]. The inference here is that mutations in PS1 (as
seen in familial AD) may be having an effect on neurotro-
phin transport.

If  there is loss of, or aberrant processing or defective
transport of, the Trk receptors in AD or other disease
states, this may have important consequences for specific
groups of  neurones, some being more vulnerable than
others.

 

Huntington’s disease

 

Symptoms and neuropathology

 

Huntington’s disease is an autosomal dominant neurode-
generative disease characterized by a progressive choreic
moment disorder. In addition, there are cognitive abnor-
malities and emotional disturbance, with symptoms often
beginning in mid-adulthood. Neuropathology includes
the loss of  neurones particularly from the striatum and
cerebral cortex. In the striatum there is selective degener-
ation of  medium-sized spiny projection neurones
[51,163,206] (Figure 5). The protein huntingtin is cen-
tral to the pathogenesis of  this disease, in which hunting-
tin is mutated by the presence of  a polyglutamine
expansion at the N-terminus [152]. It is a large cytoplas-
mic protein (over 3140 amino acids) and is highly
expressed in the brain. In almost every case, proteins with
repeats of  fewer than 38 glutamine residues are harmless,
but those with repeats of  more than 41 glutamine resi-
dues form toxic neuronal nuclear aggregates in the
affected neurones, and it has been shown that exon I of
the 

 

huntingtin

 

 gene, with an expanded CAG repeat, is suf-
ficient to cause a progressive neurological phenotype in
transgenic mice [15].

 

Protective effects in animal models

 

The striatal spiny neurones, so vulnerable in Hunting-
ton’s disease, require BDNF for survival and differentia-
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tion [99,142,205], and BDNF protects the majority of
striatal projection neurones from excitotoxin lesions
[1,30]. Other trophic factors are able to protect certain
subsets of  these neurones [1]. Overexpression of  wild-type
huntingtin protein in cell lines and ‘knock-in’ transgenic
mice leads to increased levels of  BDNF mRNA and protein
[218]. By contrast it has been shown that mutant hun-
tingtin down-regulates BDNF production [218]: thus a
reduction in BDNF expressed was seen in cells lines estab-
lished from a ‘knock-in’ mouse where a 109 CAG triplet

repeat had been inserted into the endogenous mouse 

 

hun-
tingtin

 

 gene. In addition BDNF protein level was reduced
in striatum and cortex of  transgenic mice overexpressing
mutant huntingtin. Most importantly BDNF levels in cor-
tical tissue are reduced by 45% in brains from Hunting-
ton’s disease patients [218]. Various studies on animal
models suggest neurotrophic factors may be of  benefit in
promoting the survival of  striatal neurones. In animals
treated with the excitotoxin quinolinic acid, cells geneti-
cally engineered to release the neurotrophins BDNF, NT-
3, or NT-4/5 were implanted into the striatum. All these
neurotrophins were shown to promote the survival of  stri-
atal projection neurones, with BDNF being most effective
as a survival agent [133,155] and NT-3 most successful
at initiating differentiation [154]. Whether this therapeu-
tic potential of  the neurotrophins will extend to the clinic
remains to be seen.

 

Parkinson’s disease

 

Overview of  symptoms and neuropathology

 

Parkinson’s disease is a slow, progressive disease involving
rigidity and tremor of  the limbs, postural instability and
bradykinesia of  the limbs and body. It has a peak onset after
the age of  60 years and affects about 1% of  people over this
age. The motor symptoms of  PD are directly related to the
loss of  pigmented cells in the substantia nigra, a nucleus in
the ventral midbrain, and to the reduction of  the neu-
rotransmitter dopamine in the striatum. The characteris-
tic hallmark is also the presence of  the Lewy body,
containing the proteins ubiquitin and alpha-synuclein,
within the cytoplasm of  dying nerve cells. The neuronal
loss has been proposed to occur by the action of  free radi-
cals and environmental toxins. Genetic linkages have been
found in several families [69,158]; the two best described
are 

 

alpha-synuclein

 

 on chromosome 4 and 

 

parkin

 

 on chro-
mosome 6.

 

Current treatment

 

Most symptoms arise from a deficiency of  dopamine and
most anti-Parkinson drugs restore or mimic the actions of
dopamine. Most commonly levodopa (Atamet or Sinemet)
is given to improve motor symptoms, in combination with
carbidopa that inhibits peripheral breakdown. The effects
of  levodopa are transient, because it does not slow down
the continuing loss of  dopaminergic cells.

 

Figure 5.

 

Golgi-stained section from human striatum showing a 
medium-sized spiny neurone. These neurones degenerate in 
Huntington’s disease.

 

Figure 4.

 

Photomicrograph of  a human basal forebrain 
magnocellular, hyperchromic, cholinergic neurone stained using an 
antibody to the p75

 

NTR

 

 receptor. Note perinuclear, dendritic and 
axonal staining.
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Implantation of  dopamine-rich tissue into the striatum
aims to replace the lost nigral cells. Possible sources are
dopamine-like cells from the patient’s adrenal gland or
carotid body. The results of  such operations have been
largely unsuccessful because of  the low percentage of
dopaminergic cells and low neuronal survival rate. Nigral
cells from substantia nigra may be an alternative, possibly
from pig brain, and embryonic stem cells implanted in the
brains of  mice and rats have been shown to transform into
dopaminergic cells and connect with nearby brain cells
[22].

Another alternative is the use of  transplanted embry-
onic neural tissue. Small open-label (no control group)
studies have reported long-term improvement in PD
patients [55]. However, the first placebo-controlled study
using transplanted embryonic neural tissue reported less
successful results, with some transplants producing severe
side-effects [67] which have been attributed to some
aspects of  the protocol used, such as tissue-storage and
surgical methods.

 

Trophic factors

 

Combination of  implants and trophic factors

 

Studies have
been carried out on implanted cells and tissue, which sug-
gest that pretreatment of  cells with trophic factors may
improve cell survival [60,81,134]. In mesencephalic pri-
mary cultures, addition of  NT-4/5 increases survival of
dopaminergic neurones, size of  the neuronal soma and the
complexity of  dendritic branching [191]. NT-4/5 infusions
can increase the efficacy of  nigral grafts in rat models of  PD
[81,98]. In addition, BDNF treatment has been shown to
increase number of  dopaminergic neurones and the
release of  dopamine in cultures before grafting into rat
models [92,187].

GDNF (see Figure 1) is a survival factor for mesencepha-
lic dopaminergic neurones [123]. It is able to improve
motor deficits in animal models of  PD, lesioned by
6-hydroxydopamine or 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) [77]. Various methods of
administration of  GDNF have been employed including use
of  viral vectors, implantation of  cells and protein infusion
[112,219]. In cultures of  foetal midbrain GDNF increases
survival and differentiation of  dopaminergic neurones
[124,139,208] and promotes cell survival and fibre
growth in nigral grafts [76,102,172,183,217]. Beneficial
effects have been seen in a combined treatment of  BDNF
and GDNF on foetal nigral tissue [140,178]. Two studies

showed benefit from chronic delivery of  GDNF in nonhu-
man primates. Kordower and colleagues [112] used a len-
tiviral vector to transfect the striatum and substantia nigra
of  Parkinson rhesus monkeys. The infusion was carried
out 1 week after MPTP toxicity and therefore it is possible
that its effects were partly caused by neuroprotective
effects of  GDNF. Recently Grondin and colleagues [77]
showed that infusion of  GDNF into the lateral ventricle or
the dorsal putamen in a primate MPTP model of  PD
reversed a 3-month motor dysfunction. During the first
month of  treatment both methods produced a marked
reduction in bradykinesis and rigidity, and an increased
number of  nigro-striatal dopaminergic fibres and cell bod-
ies in the substantia nigra.

 

Clinical trials with GDNF

 

Clinical trials with GDNF are so
far only in their early stages. In 1999 a report was made of
the 

 

post-mortem

 

 results from a patient given monthly
intraventricular GDNF injections for over 1 year [113]. No
restoration of  dopaminergic cells and no improvement in
symptoms were observed. However, side-effects, including
nausea and psychiatric symptoms, were reported. The
authors suggested that other forms of  delivery of  GDNF
should be explored, and it is possible that, as with adminis-
tration of  NGF in AD, the intraventricular route of  admin-
istration may not be of  most benefit. Recently GDNF was
administered directly into the parenchyma of  the dorsal
putamen via a pump and catheter, in five PD patients.
After 1 year of  treatment the patients are showing a
marked reduction of  symptoms with no notable side-
effects [70]. These exciting results pave the way for a larger
controlled trial of  GDNF.

 

Amyotrophic lateral sclerosis

 

Symptoms and pathology

 

The most common form of  adult onset motor neurone dis-
ease is amyotrophic lateral sclerosis (ALS, or Lou Gehrig’s
disease). ALS is a condition in which motor neurones in
the spinal cord, brain stem and motor cortex progressively
die. The symptoms, limb and bulbar muscle weakness,
usually begin in early to mid-50s and rapidly progress
towards paralysis and eventual death, usually within 3–
5 years of  diagnosis. About 30 000 people suffer from this
in the USA, and approximately 5–10% of  cases are famil-
ial. Of  the latter, around 20% are caused by dominant
mutations in the free-radical-scavenging enzyme, Cu/Zn
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superoxide dismutase gene, 

 

SOD1

 

 [166,171], and nearly
100 mutations have now been identified. 

 

SOD1

 

 knockouts
are essentially normal [162] but mutant 

 

SOD1

 

 transgenic
mice [215] develop adult-onset motor neurone disease
with similar neuropathology to human ALS. Riluzole, an
antiexcitotoxic agent, extends life by 2–3 months [16,141]
and is the major drug approved for treatment. Neuronal
loss is accompanied by astrocytosis and the presence
of  abnormal accumulation of  phosphorylated neu-
rofilaments in the cytoplasm [146]. There are many
theories as to the mechanism of  pathology including
oxidative stress, neurofilament abnormalities, aberrant
mitochondrial function and glutamate excitotoxicity
[41,105,173,174,188]. It is suggested that the neuronal
cell death may result from an apoptotic mechanism
[115,121,177]. Mitochondrial function is compromised
in ALS tissues [135,209] in hybrid cell lines containing
mitochondria from ALS patients [195], and in SOD1 mice
[78,100].

 

Neurotrophins and other trophic factors as 
therapeutics

 

Alterations in neurotrophins and their receptors have
been found in ALS. In one study in ALS muscle biopsies at

 

post-mortem

 

 [192], NGF concentrations were 140%
higher than normal. In another, mRNA and protein levels
of  NGF, BDNF, NT-3 and NT-4/5 were all found to be
increased [117]. BDNF was strongly up-regulated in the
early stage of  the disease, whereas levels of  NGF, NT-3 and
NT-4/5 gradually increased during the course of  the disor-
der. In a study of  ALS spinal cords TrkB mRNA was up-
regulated [147] but the receptor was found to be much less
phosphorylated on tyrosine residues than was that of  con-
trols. In an organotypic motor neurone culture model of
mitochondrial inhibition [204], NT-4/5 completely pre-
vented malonate-induced toxicity, whereas BDNF or NT-3
had no neuroprotective effect. It was suggested from this
that it may be better to explore the use of  NT-4/5, as a ther-
apeutic for ALS, than BDNF. Adenovirus-mediated intra-
muscular gene transfer of  NT-3 produced a 50% increase
in life span, reduced loss of  motor axons and improved
neuromuscular function in the mouse mutant pmn
(model of  progressive motor neuropathy) [79].

However, to date clinical trials have not been particu-
larly successful. In an initial phase I/II, trial BDNF
appeared to increase survival rate and retard loss of  pul-
monary function in ALS patients [28]. These findings were

not replicated, however, in a multicentre placebo-
controlled 9-month trial of  1135 ALS patients adminis-
tered 25 or 100

 

m

 

g/kg BDNF [196], although the 20% of
patients treated with the higher dose did show a nonsignif-
icant trend toward increased survival over a 9-month
period. In a later double-blind, sequential, dose-escalation
study, recombinant human methionyl BDNF was infused
intrathecally for 12 weeks, by means of  an implanted
pump, into 25 patients with ALS (25–1000

 

m

 

g/day). The
majority of  patients reported only mild sensory symptoms
usually confined to the lower limbs, which mostly declined
or disappeared over several weeks. However, the small
number of  patients did not allow conclusions to be drawn
about the efficacy of  the treatment [150], although from
the results it would seem that BDNF can be given safely by
this method.

 

Peripheral neuropathy

 

Causes, symptoms and current therapy

 

Peripheral neuropathy encompasses a range of  neurologi-
cal disorders resulting from damage to the peripheral
nerves. The most common cause is diabetes, in which
symptoms are predominantly related to the degeneration
of  sensory fibres and include numbness, paresthesiae and
limb pain, as well as weakness because of  motor fibre
involvement. In general, drugs are of  limited benefit.

 

NGF implicated in neuropathy and replacement in 
animal models

 

NGF is trophic for small fibre sensory and sympathetic
neurones, which are known to be affected at an early stage
in diabetes. Over two decades ago, changes in retrograde
transport of  NGF were reported in streptozotocin (STZ)-
induced diabetes in rats [101], a model of  diabetic neurop-
athy. In the early 1990s, evidence began to accumulate of
an involvement of  NGF in diabetic neuropathy. Serum lev-
els of  NGF in patients with diabetic neuropathy were found
to be lower than in controls, the reduction in NGF levels
correlating with the decrease of  motor nerve conduction
velocity [62]. In rats with STZ-induced sensory neuropa-
thy, NGF levels were doubled in most peripheral targets,
perhaps reflecting impaired removal, whereas levels were
decreased to roughly half  in sympathetic ganglia [89].
Experiments showed that in young diabetics there was an
early dysfunction of  small-diameter sensory fibres, with
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depletion of  skin NGF and the sensory neuropeptide, sub-
stance P [8]. In rodent models of  diabetes, deficits in NGF
and TrkA were reported, presumably resulting in
decreased support of  NGF-dependent sensory neurones
[199]. Treatment with exogenous NGF normalized these
deficits [200]. In a rat model of  hypoinsulinaemic diabetes,
sensory and motor conduction velocities are significantly
reduced at 7 months, indicative of  a polyneuropathy. How-
ever administration of  NGF (subcutaneous 1 mg/kg, 3 ¥
week) was able to restore the diabetes-related deficit in sen-
sory C-fibre function [58].

In cancer patients, NGF plasma levels were shown to
decrease dramatically during chemotherapy. The decrease
in NGF levels seemed to correlate with the severity of  neu-
rotoxicity and suggested that NGF might prevent antineo-
plastic drug-induced neuropathies [54]. Gene transfer of
herpes simplex virus vector, expressing NGF, into the DRG
of  mice with STZ-induced sensory neuropathy [74] pro-
tected against visible measurements of  neuropathy.

Studies in animal models have suggested that NT-3 may
also be useful therapeutically in several neuropathies. NT-
3 mRNA was found to be deficient in leg muscle of  diabetic
rats [199] and administration of  rhNT-3 was able to
restore conduction velocity [200]. Furthermore, intra-
muscular injection of  a recombinant adenovirus encoding
NT-3 to deliver sustained low doses of  NT-3 [159] pre-
vented or partially prevented the slowing of  motor and
sensory nerve conduction velocities in STZ-induced diabe-
tes and acrylamide experimental neuropathy.

More recently, with the new interest in pro-NGF, the lev-
els of  NGF in diabetes have been re-examined. In a study of
human and rat skin and nerve extracts [216], using West-
ern blotting, prepro-NGF was seen to be markedly reduced
in skin extracts from patients with subclinical diabetic
neuropathy. The overall results of  the study suggested that
prepro-NGF may be preferentially taken up and trans-
ported by p75NTR.

Neurotrophin trials

In the mid-1990s the large-scale production of  NGF and
other trophic factors made therapeutic trials feasible for
various neurodegenerative disorders [170]. Initial Phase I
clinical studies in humans indicated that rhNGF produced
mild to moderate myalgias shortly following single intra-
venous or subcutaneous doses of  1 mg/kg; in general,
these effects were not observed at lower doses. Following
multiple dosing, some patients with peripheral neuropa-

thies reported an improvement in clinical symptoms,
which in some cases correlated with improvement on
neurological examinations [10]. Overall, rhNGF was
given to 250 patients with diabetic polyneuropathy for
6 months with significant improvement in sensory tests.
The impression of  most subjects was that their neuropa-
thy had improved. The treatment was well tolerated, with
injection site discomfort reported as the most frequent
adverse event.

Subsequently, rhNGF was tested in a phase II trial of  270
patients with HIV-associated sensory neuropathy within a
multicentre, placebo-controlled, randomized trial [125].
Subcutaneous injection of  1 mg/kg, or 0.3 mg/kg rhNGF
twice weekly was given for 18 weeks. Both doses produced
significant relief  of  pain. Long-term evaluation (48 weeks)
[179] in an open-label study of  200 subjects with HIV-
associated neuropathy gave similar results, confirming
that NGF was safe, well-tolerated and significantly reduced
pain, although no improvement was reported in sensory
function or epidermal nerve fibre density. This led to a
phase III trial lasting 48 weeks, in which 1019 patients
received rhNGF or placebo. Unfortunately the earlier sug-
gestion of  efficacy was not replicated. This was blamed on
a variety of  differences between the phase II and III trials.
However, the end result was that Genentech, the producer
of  the rhNGF, decided not to proceed further with clinical
trials [9].

Neurotrophin agonists/antagonists as 

therapeutic agents

The pharmacokinetic properties of  the neurotrophins are
probably the key factor in the therapeutic success or failure
of  these proteins. The production of  small molecule ago-
nists would help to circumvent this problem. Until now the
production of  such drugs has required the mass screening
of  large libraries of  synthetic chemicals. However, recently
small molecule mimetics have been designed which are
able to act at the erythropoietin receptor [73]. This has
been achieved largely through a detailed knowledge of  the
interactions between erythropoietin with its receptor. Like
NGF, erythropoietin dimerizes two receptors to induce sig-
nal transduction. The general principle used was to iden-
tify a compound that would bind to one receptor, thereby
acting as an antagonist, and to then synthesize that mole-
cule in an oligomeric form such that it was able to bind to
two receptors, induce dimerization and initiate signal
transduction [160]. Similarly, a small molecule has been
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shown as able to mimic the actions of  the protein granulo-
cyte colony stimulating factor [198].

Examinations of  the structures of  the NGF-TrkAIg2 and
NT-4/5- and BDNF-TrkBIg2 complexes (Figures 3 and 6)
show that the Ig2 domains consist of  two b-sheets with
one exposed disulphide bond. Two contact regions
between each receptor domain and the neurotrophin have
been identified. One of  these comprises residues from the
central b-sheet of  NGF in contact with the loops at the car-
boxy-terminal pole of  the TrkAIg2 monomer. As many of
the amino acids forming these surfaces are conserved
between each of  the neurotrophins and their Trk recep-
tors, interactions in this region can be termed the ‘con-
served’ patch, with similar contacts for each
neurotrophin:Trk receptor pair. The second contact region
comprises the N-terminal residues of  NGF and the face of
one b-sheet of  TrkAIg2. This can be termed the ‘specific’
contact patch, as amino acids forming these areas vary
between both neurotrophins and the Trk receptors. This
region will therefore contribute most of  the specificity of
binding of  the neurotrophins with their receptors. If  we
examine the interactions formed between NGF and
TrkAIg2 (Figure 6A) and NT-4/5 with TrkBIg2
(Figure 6B), we can see that in the former case there are
key residues which contribute to a hydrophobic environ-
ment compared with the NT-4/5:TrkBIg2 interaction,
which is more ionic, in particular, the salt bridge between
Arg-11 (NT-4/5) and Asp-298 (TrkBIg2). This is some-
what of  an oversimplification but serves to illustrate how
the X-ray crystal structures of  the Trk-binding domains, in
combination with state-of-the-art computing power, will
allow the in silico screening of  very large virtual libraries
(of  the order of  1011 molecules), hopefully to produce use-
ful therapeutic compounds.

Summary

Neurotrophic proteins have been used in clinical trials for
neurodegenerative disorders such as AD, PD, Hunting-
ton’s disease, ALS and peripheral neuropathy. In general,
the results of  experiments with animal models and many
phase I trials looked promising. However, because of  poor
pharmacokinetic profiles and difficulties in the delivery of
proteins into the brain, the initial promise has not been
upheld in larger, placebo-controlled trials. Recent break-
throughs from X-ray crystallography of  the neurotrophins
and their receptors should allow the development of  small
molecule agonists which will hopefully fulfil the clinical

potential of  the neurotrophin approach to the treatment of
several neurodegenerative diseases.
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