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Abstract

Recent work [28, 5] has demonstrated that volumetric

scene representations combined with differentiable volume

rendering can enable photo-realistic rendering for chal-

lenging scenes that mesh reconstruction fails on. How-

ever, these methods entangle geometry and appearance

in a “black-box” volume that cannot be edited. In-

stead, we present an approach that explicitly disentangles

geometry—represented as a continuous 3D volume—from

appearance—represented as a continuous 2D texture map.

We achieve this by introducing a 3D-to-2D texture mapping

(or surface parameterization) network into volumetric rep-

resentations. We constrain this texture mapping network us-

ing an additional 2D-to-3D inverse mapping network and

a novel cycle consistency loss to make 3D surface points

map to 2D texture points that map back to the original 3D

points. We demonstrate that this representation can be re-

constructed using only multi-view image supervision and

generates high-quality rendering results. More importantly,

by separating geometry and texture, we allow users to edit

appearance by simply editing 2D texture maps.

1. Introduction

Capturing and modeling real scenes from image inputs

is an extensively studied problem in vision and graphics.

One crucial goal of this task is to avoid the tedious process

of manual 3D modeling and directly build a renderable and

editable 3D model that can be used for realistic rendering

in applications like e-commerce, VR and AR. Traditional

3D reconstruction methods [39, 40, 20] usually reconstruct

objects as meshes. Meshes are widely used in rendering

pipelines; they are typically combined with mapped textures

for appearance editing in 3D modeling pipelines.

However, mesh-based reconstruction is particularly chal-

lenging and often cannot synthesize highly realistic images

for complex objects. Recently, various neural scene rep-

resentations have been presented to address this scene ac-

quisition task. Arguably the best visual quality is obtained
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Figure 1. NeuTex is a neural scene representation that represents

geometry as a 3D volume but appearance as a 2D neural texture in

an automatically discovered texture UV space, shown as a cube-

map in (e). NeuTex can synthesize highly realistic images (b) that

are very close to the ground-truth (a). Moreover, it enables intu-

itive surface appearance editing directly in the 2D texture space;

we show an example of this in (c), by using a new texture (f) to

modulate the reconstructed texture. Our discovered texture map-

ping covers the object surface uniformly, as illustrated in (d), by

rendering the object using a uniform checkerboard texture (g).

by approaches like NeRF [28] and Deep Reflectance Vol-

umes [5] that leverage differentiable volume rendering (ray

marching). However, these volume-based methods do not

(explicitly) reason about the object’s surface and entangle

both geometry and appearance in a volume-encoding neural

network. This does not allow for easy editing—as is possi-

ble with a texture mapped mesh—and significantly limits

the practicality of these neural rendering approaches.

Our goal is to make volumetric neural reconstruction

more practical by enabling both realistic image synthesis

and flexible surface appearance editing. To this end, we

present NeuTex—an approach that explicitly disentangles

scene geometry from appearance. NeuTex represents geom-

etry with a volumetric representation (similar to NeRF) but

represents surface appearance using 2D texture maps. This

allows us to leverage differentiable volume rendering to re-

construct the scene from multi-view images, while allowing

for conventional texture-editing operations (see Fig. 1).

As in NeRF [28], we march a ray through each pixel,

regress volume density and radiance (using fully connected

MLPs) at sampled 3D shading points on the ray, accumu-

late the per-point radiance values to compute the final pixel

color. NeRF uses a single MLP to regress both density and
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radiance in a 3D volume. While we retain this volumetric

density-based representation for geometry, NeuTex repre-

sents radiance in a 2D (UV) texture space. In particular, we

train a texture mapping MLP to regress a 2D UV coordi-

nate at every 3D point in the scene, and use another MLP

to regress radiance in the 2D texture space for any UV lo-

cation. Thus, given any 3D shading point in ray marching,

our network can obtain its radiance by sampling the recon-

structed neural texture at its mapped UV location.

Naively adding a texture mapping network to NeRF (and

supervising only with a rendering loss) leads to a degenerate

texture mapping that does not unwrap the surface and can-

not support texture editing (see Fig. 3). To ensure that the

estimated texture space reasonably represents the object’s

2D surface, we introduce a novel cycle consistency loss.

Specifically, we consider the shading points that contribute

predominantly to the pixel color along a given ray, and cor-

respond to the points either on or close to the surface. We

train an additional inverse mapping MLP to map the 2D

UV coordinates of these high-contribution points back to

their 3D locations. Introducing this inverse-mapping net-

work forces our model to learn a consistent mapping (sim-

ilar to a one-to-one correspondence) between the 2D UV

coordinates and the 3D points on the object surface. This

additionally regularizes the surface reasoning and texture

space discovery process. As can be seen in Fig. 1, our full

model recovers a reasonable texture space, that can support

realistic rendering similar to previous work while also al-

lowing for intuitive appearance editing.

Our technique can be incorporated into different volume

rendering frameworks. In addition to NeRF, we show that it

can be combined with Neural Reflectance Fields [4] to re-

construct BRDF parameters as 2D texture maps (see Fig. 6),

enabling both view synthesis and relighting.

Naturally, NeuTex is more constrained than a fully-

volumetric method; this leads to our final rendering quality

to be on par or slightly worse than NeRF [28]. Nonethe-

less, we demonstrate that our approach can still synthesize

photo-realistic images and significantly outperform both

traditional mesh-based reconstruction methods [40] and

previous neural rendering methods [43, 42]. Most impor-

tantly, our work is the first to recover a meaningful surface-

aware texture parameterization of a scene and enable sur-

face appearance editing applications (as in Fig. 1 and 5).

This, we believe, is an important step towards making neu-

ral rendering methods useful in 3D design workflows.

2. Related Work

Scene representations. Deep learning based methods have

explored various classical scene representations, includ-

ing volumes [18, 50, 36, 42], point clouds [35, 2, 48],

meshes [19, 49], depth maps [22, 17] and implicit func-

tions [9, 27, 29, 54]. However, most of them focus on ge-

ometry reconstruction and understanding and do not aim to

perform realistic image synthesis. We leverage volumetric

neural rendering [28, 4] for realistic rendering; our method

achieves higher rendering quality than other neural render-

ing methods [42, 43].

Mesh-based reconstruction and rendering. 3D polygo-

nal meshes are one of the most popular geometry repre-

sentations in 3D modeling and rendering pipelines. Nu-

merous traditional 3D reconstruction techniques have been

proposed to directly reconstruct a mesh from multiple cap-

tured images, including structure from motion [39], multi-

view stereo [12, 21, 40], and surface extraction [25, 20].

Recently, many deep learning based methods [47, 53, 44,

7, 10] have also been proposed, improving the reconstruc-

tion quality in many of these techniques. In spite of these

advances, it is still challenging to reconstruct a mesh that

can directly be used to synthesize photo-realistic images. In

fact, many image-based rendering techniques [6, 3, 15] have

been presented to fix the rendering artifacts from mesh re-

construction; these methods often leverage view-dependent

texture maps [11]. We instead leverage volumetric neural

rendering to achieve realistic image synthesis; our approach

explicitly extracts surface appearance as view-independent

textures, just like standard textures used with meshes, al-

lowing for broad texture editing applications in 3D model-

ing and content generation.

Neural rendering. Traditional volumetric models [41, 46,

32] have long been used to represent scenes for view syn-

thesis from images. Recently, deep learning-based meth-

ods have proposed to ameliorate or completely bypass

mesh reconstruction to achieve realistic neural renderings

of real scenes for view synthesis [55, 51, 43, 42], relighting

[52, 33, 8], and many other image synthesis tasks [24]. In

particular, NeRF [28], Deep Reflectance Volumes [5] and

other relevant works [4, 23] model a scene using neural vol-

umetric representations (that encode geometry and appear-

ance) and leverage differentiable volume rendering [26] to

synthesize highly photo-realistic images. However, these

volume representations are essentially “black-box” func-

tions that cannot be easily modified after reconstruction. In

contrast, we introduce a novel neural scene representation

that offers direct access to the 2D surface appearance. Our

representation has disentangled geometry and appearance

components, and models appearance as a 2D neural texture

in an auto-discovered texture space. This allows for easy

texture/appearance editing.

Learning textures. Texture mapping is a standard tech-

nique widely used with meshes. Here, surface appearance

is represented by a 2D texture image and a 3D-to-2D map-

ping from every mesh vertex to the texture space. Recently,
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Figure 2. Overview. We present a disentangled neural representation consisting of multiple MLPs for neural volumetric rendering. As in

NeRF [28], for geometry we use an MLP (4) Fσ to regress volume density σ at any 3D point x = (x, y, z). In contrast, for appearance,

we use a texture mapping MLP (1) Fσ to map 3D points to 2D texture UVs, u = (u, v), and a texture network (3) Ftex to regress the 2D

view-dependent radiance in the UV space given a UV u and a viewing direction d = (θ, φ). One regressed texture (for a fixed viewing

direction) is shown in (5). We also train an inverse mapping MLP (2) F−1

uv that maps UVs back to 3D points. We leverage a cycle loss

(Eqn. 12) to ensure consistency between the 3D-to-2D mapping Fuv and the 2D-to-3D F−1

uv mapping at points on the object surface. This

enables meaningful surface reasoning and texture space discovery, as illustrated by (6, 7). We demonstrate the meaningfulness of the UV

space learned by Fuv (6) by rendering the object with a uniform checkerboard texture. We also show the result of the inverse mapping

network (7) by uniformly sampling UVs in the texture space and unprojecting them to 3D using F−1

uv , resulting in a reasonable mesh.

many deep learning based methods leverage texture-based

techniques to model geometry or appearance in a scene

[16, 14, 45]. Many works learn a 2D texture for a mesh by

assuming a known mesh template [19, 38, 13], focusing on

reconstruction problems for specific object categories. Our

approach works for arbitrary shapes, and we instead learn

a 2D texture in a volume rendering framework, discover-

ing a 2D surface in the 3D volume space. Thies et al. [45]

optimize neural textures to do rendering for a known fixed

mesh with given UV mapping. In contrast, our approach si-

multaneously reconstructs the scene geometry as a volume,

discovers a 2D texture UV space, and regresses a neural

texture in the self-discovered texture space. Other meth-

ods learn appearance by regressing colors directly from 3D

points [30, 31], which requires a known mesh and does not

provide a 2D UV space necessary for texture editing.

AtlasNet [14] and follow-up work [34] train neural net-

works to map 2D UV coordinates into 3D locations, mod-

eling an object 2D surface as an unwrapped atlas. These

works focus on learning generalized geometry representa-

tions, and cannot be directly applied to arbitrary shapes or

used for realistic rendering. Our network instead discovers

a cycle mapping between a 2D texture space and a 3D vol-

ume, learning both a texture mapping and an inverse map-

ping. We leverage differentiable volume rendering to model

scene appearance from captured images for realistic render-

ing. We also show that our neural texture mapping can dis-

cover a more uniform surface than a simple AtlasNet, su-

pervised by a noisy point cloud from COLMAP.

3. Neural Texture Mapping

3.1. Overview

We now present the NeuTex scene representation and

demonstrate how to use it in the context of volumetric neu-

ral rendering. While NeuTex can enable disentangled scene

modeling and texture mapping for different acquisition and

rendering tasks, in this section, we demonstrate its view

synthesis capabilities with NeRF [28]. An extension to re-

flectance fields (with [4]) is discussed in Sec. 5.4.

As shown in Fig. 2, our method is composed of four

learned components:Fσ, Ftex, Fuv and F−1

uv . Unlike NeRF,

which uses a single MLP, NeuTex uses a disentangled neu-

ral representation consisting of three sub-networks, which

encode scene geometry (Fσ), a texture mapping function

(Fuv), and a 2D texture (Ftex) respectively (Sec. 3.2). In ad-

dition, we use an inverse texture mapping network (F−1

uv ) to

ensure that the discovered texture space reasonably explains

the scene surfaces (Sec. 3.3). We introduce a cycle mapping

loss to regularize the texture mapping and inverse mapping

networks, and use a rendering loss to train our neural model

end-to-end to regress realistic images (Sec. 3.4).

3.2. Disentangled neural scene representation

Volume rendering. Volume rendering requires volume

density σ and radiance c at all 3D locations in a scene. A

pixel’s radiance value (RGB color) I is computed by march-

ing a ray from the pixel and aggregating the radiance values

ci of multiple shading points on the ray, as expressed by:

I =
∑

i

Ti(1− exp(−σiδi))ci, (1)

Ti = exp(−

i−1∑

j=1

σjδj), (2)

where i = 1, ..., N denotes the index of a shading point

on the ray, δi represents the distance between two consec-

utive points, Ti is known as the transmittance, and σi and

ci are the volume density (extinction coefficient) and radi-

ance at shading point i respectively. The above ray march-
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ing process is derived as a discretization of a continuous

volume rendering integral; for more details, please see pre-

vious work [26].

Radiance field. In the context of view synthesis, a general

volume scene representation can be seen as a 5D function

(i.e. a radiance field, as referred to by [28]):

Fσ,c : (x,d) → (σ, c), (3)

which outputs volume density and radiance (σ, c) given a

3D location x = (x, y, z) and viewing direction d = (θ, φ).
NeRF [28] proposes to use a single MLP network to rep-

resent Fσ,c as a neural radiance field and achieves photo-

realistic rendering results. Their single network encapsu-

lates the entire scene geometry and appearance as a whole;

however, this “bakes” the scene content into the trained net-

work, and does not allow for any applications (e.g., appear-

ance editing) beyond pure view synthesis.

Disentangling Fσ,c. In contrast, we propose explicitly de-

composing the radiance field Fσ,c into two components, Fσ

and Fc, modeling geometry and appearance, respectively:

Fσ : x → σ, Fc : (x,d) → c. (4)

In particular, Fσ regresses volume density (i.e., scene ge-

ometry), and Fc regresses radiance (i.e., scene appearance).

We model them as two independent networks.

Texture mapping. We further propose to model scene ap-

pearance in a 2D texture space that explains the object’s

2D surface appearance. We explicitly map a 3D point x =
(x, y, z) in a volume onto a 2D UV coordinate u = (u, v) in

a texture, and regress the radiance in the texture space given

2D UV coordinates and a viewing direction (u,d). We de-

scribe the 3D-to-2D mapping as a texture mapping function

Fuv and the radiance regression as a texture function Ftex:

Fuv : x → u, Ftex : (u,d) → c. (5)

Our appearance function Fc is thus a composition of the

two functions:

Fc(x,d) = Ftex(Fuv(x),d). (6)

Neural representation. In summary, our full radiance field

is a composition of three functions: a geometry function

Fσ , a texture mapping function Fuv, and a texture function

Ftex, given by:

(σ, c) = Fσ,c(x,d) = (Fσ(x), Ftex(Fuv(x),d)). (7)

We use three separate MLP networks for Fσ , Fuv and Ftex.

Unlike the black-box NeRF network, our representation has

disentangled geometry and appearance modules, and mod-

els appearance in a 2D texture space.

3.3. Texture space and inverse texture mapping

As described in Eqn. 5, our texture space is parameter-

ized by a 2D UV coordinate u = (u, v). We use a 2D unit

sphere for our results, where u is interpreted as a point on

the unit sphere. It makes our method work best for objects

with genus 0; objects with holes may be addressed by al-

lowing multiple texture patches in future works.

Directly training the representation networks (Fσ , Fuv,

Ftex) with pure rendering supervision often leads to a highly

distorted texture space and degenerate cases where multiple

points map to the same UV coordinate, which is undesir-

able. The ideal goal is instead to uniformly map the 2D

surface onto the texture space and occupy the entire texture

space. To achieve this, we propose to jointly train an “in-

verse” texture mapping network F−1

uv that maps a 2D UV

coordinate u on the texture to a 3D point x in the volume:

F−1

uv : u → x. (8)

F−1

uv projects the 2D texture space onto a 2D manifold

(in 3D space). This inverse texture mapping allows us to

reason about the 2D surface of the scene (corresponding to

the inferred texture) and regularize the texture mapping pro-

cess. We leverage our texture mapping and inverse mapping

networks to build a cycle mapping (a one-to-one correspon-

dence) between the 2D object surface and the texture space,

leading to high-quality texture mapping.

3.4. Training neural texture mapping

We train our full network, consisting of Fσ , Ftex, Fuv,

and F−1

uv , from end to end, to simultaneously achieve sur-

face discovery, space mapping, and scene geometry and ap-

pearance inference.

Rendering loss. We directly use the ground truth pixel radi-

ance value Igt in the captured images to supervise our ren-

dered pixel radiance value I from ray marching (Eqn. 1).

The rendering loss for a pixel ray is given by:

Lrender = ‖Igt − I‖2
2
. (9)

This the main source of supervision in our system.

Cycle loss. Given any sampled shading point xi on a ray in

ray marching, our texture mapping network finds its UV ui

in texture space for radiance regression. We use the inverse

mapping network to map this UV ui back to the 3D space:

x
′

i = F−1

uv (Fuv(xi)). (10)

We propose to minimize the difference between x
′

i and xi

to enforce a cycle mapping between the texture and world

spaces (and force F−1

uv to learn the inverse of Fuv).

However, it is unnecessary and unreasonable to enforce

a cycle mapping at any 3D point. We only expect a cor-

respondence between the texture space and points on the
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Capture (a) Pointcloud Init +
Cycle Loss (b)

Trivial Init +
Cycle Loss (c)

No Inverse
Network (d)

Figure 3. A checkerboard texture applied to scenes (a). When

trained with or without initialization using coarse point cloud (b,c),

the learned texture space is relatively uniform compared to trained

without F−1

uv
and cycle loss (d).

2D surface of the scene; enforcing the cycle mapping in

the empty space away from the surface is meaningless. We

expect 3D points near the scene surface to have high contri-

butions to the radiance. Therefore, we leverage the radiance

contribution weights per shading point to weight our cycle

loss. Specifically, we consider the weight:

wi = Ti(1− exp(−σiδi)), (11)

which determines the contribution to the final pixel color for

each shading point i in the ray marching equation 1. Equa-

tion 1 can be simply written as I =
∑

i wici. This contri-

bution weight wi naturally expresses how close a point is to

the surface, and has been previously used for depth infer-

ence [28]. Our cycle loss for a single ray is given by:

Lcycle =
∑

i

wi‖F
−1

uv (Fuv(xi))− xi‖
2

2
. (12)

Mask loss. We also additionally provide a loss to super-

vise a foreground-background mask. Basically, the trans-

mittance (Eqn. 2) of the the last shading point TN on a pixel

ray indicates if the pixel is part of the background. We use

the ground truth mask Mgt per pixel to supervise this by

Lmask = ‖Mgt − (1− TN )‖2
2
. (13)

We found this mask loss is necessary when viewpoints do

not cover the object entirely. In such cases, the network can

use the volume density to darken (when the background is

black) renderings and fake some shading effects that should

be in the texture. When the view coverage is dense enough

around an object, this mask loss is often optional.

Full loss. Our full loss function L during training is:

L = Lrender + a1Lcycle + a2Lmask. (14)

We use a1 = 1 for all our scenes in our experiments. We

use a2 = 1 for most scenes, except for those that already

have good view coverage, where we remove the mask loss

by setting a2 = 0.

4. Implementation Details

4.1. Network details

All four sub-networks, Fσ , Ftex, Fuv, and F−1

uv , are de-

signed as MLP networks. We use unit vectors to repre-

sent viewing direction d and UV coordinate u (for spherical

UV). As proposed by NeRF, we use positional encoding to

infer high-frequency geometry and appearance details. In

particular, we apply positional encoding for our geometry

network Fσ and texture network Ftex on all their input com-

ponents including x, u and d. On the other hand, since the

texture mapping is expected to be smooth and uniform, we

do not apply positional encoding on the two mapping net-

works. Please refer to the supplemental materials for the

detailed architecture of our networks.

4.2. Training details

Before training, we normalize the scene space to the unit

box. When generating rays, we sample shading points on

each pixel ray inside the box. For all our experiments, we

use stratified sampling (uniform sampling with local jitter-

ing) to sample 256 point on each ray for ray marching. For

each iteration, we randomly select a batch size of 600 to

800 pixels (depending on GPU memory usage) from an in-

put image; we take 2/3 pixels from the foreground and 1/3

pixels from the background.

Our inverse mapping network F−1

uv maps the 2D UV

space to a 3D surface, which is functionally similar to Atlas-

Net [14] and can be trained as such, if geometry is available.

We thus initialize F−1

uv with a point cloud from COLMAP

[40] using a Chamfer loss. However, since the MVS point

cloud is often very noisy, this Chamfer loss is only used dur-

ing this initialization phase. We find this initialization facil-

itates training, though our network still works without it for

most cases (see Fig. 3). Usually, this AtlasNet-style initial-

ization is very sensitive to the MVS reconstruction noise

and leads to a highly non-uniform mapping surface. How-

ever, we find that our final inverse mapping network can

output a much smoother surface as shown in Fig. 7, after

jointly training with our rendering and cycle losses.

Specifically, we initially train our method using a Cham-

fer loss together with a rendering loss for 50,000 iterations.

Then, we remove the Chamfer loss and train with our full

loss (Eqn. 14) until convergence, after around 500,000 it-

erations. Finally, we fine-tune our texture network Ftex un-

til convergence, freezing the other networks (Fσ , Fuv and

F−1

uv ), which is useful to get better texture details. The

whole process takes 2-3 days on a single RTX 2080Ti GPU.
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GT Ours NeRF SRN DeepVoxels Colmap
Figure 4. Comparisons on DTU scenes. Note how visually close our method is to the state-of-the-art, while enabling editing.

Method PSNR SSIM

SRN [43] 26.05 0.837

DeepVoxels [42] 20.85 0.702

Colmap [40] 24.63 0.865

NeRF[28] 30.73 0.938

Ours 28.23 0.894
Table 1. Average PSNR/SSIM for novel view synthesis on 4 held-

out views on 5 DTU scenes. See supplementary for full table.

5. Results

We now show experimental results of our method and

comparisons against previous methods on real scenes.

5.1. Configuration

We demonstrate our method on real scenes from differ-

ent sources, including five scenes from the DTU dataset [1]

(Fig. 1, 4, 5), two scenes from Neural Reflectance Fields

[4] obtained from the authors (Fig. 6), and three scenes cap-

tured by ourselves (Fig. 5). Each DTU scene contains either

49 or 64 input images from multiple viewpoints. Each scene

from [4] contains about 300 images. Our own scenes each

contain about 100 images. For our own data, we capture the

images using a hand-held cellphone and use the structure

from motion implementation in COLMAP [39] for cam-

era calibration. For other scenes, we directly use the pro-

vided camera calibration in the dataset. Since our method

focuses on the capture and surface discovery of objects, we

require the input images to have a clean, easily segmentable

background. We use U2Net [37] to automatically compute

masks for our own scenes. For the DTU scenes, we use

the background masks provided by [54]. The images from

[4] are captured under a single flash light, which already

have very dark background; thus we do not apply additional

masks for these images.

5.2. View synthesis results on DTU scenes

We now evaluate and compare our view synthesis re-

sults on five DTU scenes. In particular, we compare with

NeRF [28], two previous neural rendering methods, SRN

[43] and DeepVoxels [42], and one classical mesh recon-

struction method COLMAP [40]. We use the released code

from their authors to generate the results for all the com-

parison methods. For COLMAP, we skip the structure from

motion, since we already have the provided camera cali-

bration from the dataset. We hold-out view 6,13,30,35 as

testing views from the original 49 or 64 input views and run

all methods on the remaining images for reconstruction.

We show qualitative visual comparisons on zoomed-in

crops of testing images of two DTU scenes in Fig. 4 (the

other scenes are shown in supplementary materials), and

quantitative comparison results of the averaged PSNRs and

SSIMs on the testing images across five scenes in Tab. 1.

Our method achieves high-quality view synthesis results as

reflected by our rendered images being close to the ground

truth and also our high PSNRs and SSIMs. Note that

NeuTex enables automatic texture mapping that none of

the other comparison methods can do. Even a traditional

mesh-based method like COLMAP [40] needs additional

techniques or tools to unwrap its surface for texture map-

ping, whereas our method unwraps the surface into a tex-

ture while doing reconstruction in a unsupervised way. To

achieve this challenging task, NeuTex is designed in a more

constrained way than NeRF. As a result, our rendering qual-

ity is quantitatively slightly worse than NeRF. Nonetheless,

as shown in Fig. 4, our rendered results are realistic, re-

produce many high-frequency details and qualitatively look

very close to NeRF’s results.

In fact, our results are significantly better than all other

comparison methods, including both mesh-based recon-

struction [40] and previous neural rendering methods [42,
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Input (a) NeuTex Render (b) Checkerboard (c) Cubemap (d) Texture Edit View 1 (e) Texture Edit View 2 (f) Edited Cubemap (g)

Figure 5. Texture editing on DTU (rows 1-2) and our (rows 3-5) scenes. Since our neural texture (Ftex) depends on a view direction, we

show the cubemap texture (d) with pixelwise maximum values across views. Each texture is edited by multiplying a new specified texture;

the resulting texture is shown in (g). The images rendered with the edited textures are shown from two different views in (e) and (f).

43] in both qualitative and quantitative comparisons. In par-

ticular, COLMAP [39] can reconstruct reasonable shapes,

but it cannot recover accurate texture details and intrinsi-

cally lacks view-dependent appearance effects (due to the

Lambertian materials assumption). DeepVoxels [42] lever-

ages a non-physically-based module for geometry and oc-

clusion inference. While this works well on scenes that

have hundreds of input images, it does not work well on

DTU scenes that have only about 40 to 60 images, lead-

ing to incorrect shapes and serious artifacts in their re-

sults. SRN [43], on the other hand, can reproduce rea-

sonable shape in the rendering; however it cannot gener-

ate high-frequency appearance details like our method. Our

approach is based on physically-based volume rendering,

which models scene geometry and appearance accurately,

leading to photo-realistic rendering results. More impor-

tantly, our approach achieves texture mapping and enables

surface appearance editing in a 2D texture space that it au-

tomatically discovered, which cannot be done by NeRF nor

any other previous neural rendering approaches.

5.3. Texture mapping and appearance editing

We now demonstrate our unique results on texture map-

ping and texture-space appearance editing that previous

neural rendering approaches cannot achieve. Figure 5

shows such results on diverse real objects of DTU scenes

and our own captured scenes. Our method can synthe-

size realistic view synthesis results (Fig. 5.b) that are very

close to the ground truth. In addition, our method success-

fully unwraps the object surface into a reasonable texture

(Fig. 5.d); the discovered texture space meaningfully ex-

presses the 2D surface and distributes uniformly, as illus-

trated by the checkerboard rendering shown in Fig. 5.c.

Texture editing. Our high-quality texture mapping en-

ables flexible appearance editing applications as shown in

Fig. 5.e-g. In these examples, we show that we can use a

specified full texture map to modulate the original texture,

which entirely changes the object appearance. For exam-

ple, the object in the 1st row is interestingly changed from a

stone-like object to a wooden one. We also demonstrate that

we can locally modify the texture to add certain patterns on

the object surface, such as the CVPR logo, the numbers, and

the star in the last three rows. Note that, all our appearance

editing is directly done in the texture space, which changes

the essential surface appearance and naturally appears con-

sistent across multiple view points, as shown in the rendered

images from two different views in Fig. 5.e and f. Our Neu-

Tex successfully disentangles the geometry and appearance

of real objects and model the surface appearance in a mean-

ingful texture space that explains the surface.

Inverse mapping. We further demonstrate the role of our
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Input (a) NeuTex Render (b) Checkerboard (c) Cubemap (d) Texture Edit View 1 (e) Texture Edit View 2 (f) Edited Cubemap (g)

Figure 6. NeuTex in reflectance fields setting. We edit captured diffuse albedo (d) as shown in (g) to produce results shown in (e,f).

Figure 7. Our parametric surface (F−1

uv
) is strongly affected by

noise in the COLMAP point cloud when trained with a Chamfer

loss (center). Finetuning with our cycle and rendering losses with-

out point cloud supervision (right) gives a smoother surface.

inverse mapping network F−1

uv in discovering this reason-

able texture space. When we remove F−1

uv from our network

and train the system with only the rendering loss, the result

always leads to a degenerate texture mapping, where large

regions of 3D points are mapped to the same UV coordi-

nates, as illustrated by the checkerboard-texture rendering

shown in Fig. 3. In contrast, our full network with the cy-

cle loss generally discovers a uniform space. As described

in Sec. 4.2, we initialize our inverse network using a point

cloud with a Chamfer loss; this is done mainly to help the

network converges quickly to a reasonable stage. In Fig. 3,

we also show that our inverse network can still function well

even without the point cloud initialization, using only the

cycle loss. Note that, our initial point clouds come from

an MVS reconstruction [40], which contains a lot of noise,

leading to a noisy surface out of F−1

uv as shown in Fig. 7.

To prevent a degradation in the surface texture quality, we

remove the supervision on this initial point cloud after ini-

tialization. Instead, our cycle loss can continue improving

the noisy initialization and let the inverse mapping network

F−1

uv discover a smooth surface as shown in Fig. 7.

5.4. Extension to reflectance fields

NeuTex can be incorporated into different volume ren-

dering pipelines. We now discuss combining it with the

recent Neural Reflectance Fields [5, 4] that reconstructs

BRDFs in volume rendering from flash images.

Instead of directly outputting radiance c, [4] regresses

normal n and reflectance parameters r at each shading

point, and introduces a reflectance-aware volume rendering

that computes radiance from these shading properties under

given viewing and lighting condition. We correspondingly

modify our geometry network Fσ to jointly regress volume

density and normal, and change the texture regression net-

work Ftex to regress the reflectance parameters in the texture

space. Our central texture mapping and inverse mapping

networks remain the same for this case. The modified net-

work naturally provides the required volume properties in

the reflectance-aware volume rendering process.

We show that our neural texture mapping can enable

high-quality BRDF texture extraction in this setting in Fig. 6

on the two scenes from [4]. Our approach achieves realistic

rendering (Fig. 6.b) that reproduces the original appearance,

discovers a reasonably uniform texture space (Fig. 6.c), suc-

cessfully unwraps the surface BRDFs into this space (as

shown by the albedo maps in Fig. 6.d), and enables realistic

rendering with BRDF editing in the texture space (Fig. 6.e-

g). These results demonstrate the generality of our neural

texture mapping framework and inspire potential future ap-

plications of our technique on other neural rendering tasks.

6. Conclusion

We have presented a novel approach that enables texture

mapping in neural volumetric rendering. We introduce a

novel disentangled neural scene representation that models

geometry as a 3D volume and models appearance as a 2D

texture in a automatically discovered texture space. We pro-

pose to jointly train a 3D-to-2D texture mapping network

and a 2D-to-3D inverse mapping network to achieve sur-

face reasoning and texture space discovery, using a surface-

aware cycle consistency loss. As demonstrated, our ap-

proach can discover a reasonable texture space that mean-

ingfully explains the object surface. Our method enables

flexible surface appearance editing applications for neural

volumetric rendering.
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