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Abstract

Detached plasmas on TFTR have been heated with neutral beam auxiliary power for the
first time. At beam powers above 2 MW the detached plasmas in TFTR expand and reattach to
the limiters. Deuterium and/or impurity gas puffing can be used to maintain plasmas in the
detached state at powers of over 5 MW, Transient events were observed in a number of these
plasmas, including a confinement-related delay in evolution of the edge emissivity and some
phenomena which appear similar to those seen in the H-mode.
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A new plasma rcgimel's called detached plasmas has been studied in TFTR. The main
feature of a detached plasma is that nearly ull of the input power is lost as radiation from the
plasma edgel and the plasma edge is itself separated from the tokamak walls and limiters. There
are three reasons for studying the neutral beam heating of detached plasmas: First, the detached
plasma has rather uniform thermal loading of interior machine components and this would be
advantageous in a fusion reactor. It is, therefore, interesting to determine the maximum heating
power that can be applied while maintaining the detached state. Second, the dominance of
radiation in the power balance of detached plasmas means that the response of the bolometer
signal provides a diagnostic for direct observation of the total power lost by these plasmas, and
of the global energy confinement, Tp. And third, enhanced confinement regimes such as the
H-mode6 and Z-mode’ provide evidence that Tg can be influenced by edge conditions. The
edge conditions for detached plasmas are unique, with nzither limiter contact nor a divertor.
Edge phenomena similar to those associated with divertor and limiter H-modesd have been
observed in several deiached (limiteriess) plasmas heated by neutral beam injeciion. Here we
discuss the first experimental observations of neutral-beam-heated detached plasmas and the
ransport-related effects in them.

The plasmas studied here were detached from the limiter in the ohmic phase by reducing the
plasma current in the manner described in Ref. 1 more than 1 s prior to beam heating. About 40
such plasmas which remained detached during beam heating are examined here. These
deuterium plasmas had currents, Ip = (.5 - 1.2 MA, toroidal magnetic fields, Byor = 3.5 - 3.0 T,
and line-averaged densities, ne = 2.5 - 7.0 x 1019/m3 . The plasra major radius was 2.45 10
2.65 m and plasma minor radius 0.45 1o 0.80 m, while the inner wall limiter radius was 0.83 m
for a major radius of 2.50 m. Beam powers of up to 8.5 MW with a pulse duration of 0.5 s
were used in these experiments.

The initial response of the plasma to the beam heating is to expand. This can be seen in
Fig.1 which is a time history of the total radiated power, Pryq, the power density in the radiating
layer, Qryg. and the minor radius, ap, of the radiating layer. ap is taken to be the width (from
the center of the plasma) at the half-maximum of the Qa4 profile provided by data from the
bolometer arrays. Data are included for two detuched plasmas, both of which were heated with
abour 1.2 MW of beam power. Figuresl(a2) and 1(c) tllustrate two characteristic dcla_i'ed
responses of Pry4 observed with beam heating of detached plasmas; a slow rise (for the initial
100 ms of beam heating), 1(a), and a delayed rise (At = 100 ms), 1(¢). The parameter ap is
used to monitor the plasma minor mdius expunsion. For beam powers less than about 2 MW,
the plasma does not expand out 1o the limiter and therefore remains detched. For powers greater
than 2 MW and without simuliancous gas puffing, the expansion was sufficient for the plasma w0



become reattached to the limiter. When plasmas reattach with significant plasma/limiter
interaction, the edge radiation pattern becomes localized (poloidally asymmetric) at the limiter and
the total radiative losses fall below the total input power. In some cases the plasma remains
detached, with a symmetric radiation profile, even though the minor radius of the radiating layer
is only slightly smatler than the limiter radius.

Volume emission profiles for detached plasmas with 1.75 MW of beam power and
simultaneous puffing of deuterium, and with 4.85 MW of beam power and simultaneous puffing
of neon are shown in Fig. 2 . Also shown is the profile for the ohmic target plasmas. It is
possible to keep plasmas detached at beamn powers of up to 3.5 MW by simultaneously puffing
in deuterium gas at flow rates of up to 50 Torr-liters/s. At higher beam powers, impurity gas
puffing is needed (o keep the plasma from reattaching. Plasmas could be kept detached for beamn
powers up to 8.5 MW by simultaneously puffing neon. Short, high flow rate deuterium or neon
gas puffs coincident with the start of beam heating were effective in keeping the plasma detached.
Gas puffing was more than sufficient in both instances in Fig. 2 10 make ap smaller than it was
during the ohmic phase. For the 1,75 MW beam-heated case, the plasma remained detached
before, during, and after the beam pulse. The profile for the 4.85 MW case was taken about 150
ms after bearn turn on and the plasma energy content had reached a platean. Apparently the neon
puff was 100 strong, causing the plasma to constrict and thus terminate at = 300 ms after beam
tumn on. Similar behavior was observed with up to 8.5 MW of beam power.

The beam-heated detached plasmas of Fig. 2 were characterized by an annulus of impurity
radiation, as are ohmic detached plasmas, and by negligible values of Qpyq within the inner = 35
cm radius core. Thus the power deposited in the core of the plasma, for these virtually idealized
cases, must be transported to the edge plasma before it can then be lost as impurity radiation by
the low Z impurities at the edge. Both ohmic and beam-heated TFTR detached plasmas are
nearly devoid of metallic impurities and often had Zgff < 2 (the impurity was predominantly
carbon from the graphite limiters). Since the detached plasma is not coupled to the limiters and
walls, all of the input power is accounted for in the radiated power. The bolometric measurement
can, therefore, serve as a diagnostic for both the magnitude and time behavior of the power that
reaches the edge. Hence, the delay in the rise of the total radiated power evident in Figs. la and
lc, is a manifestation of Tg . In contrast to the slow rate of tise of Praqg, the plasma energy
content, Eq, from diamagnetic measurements increases rapidly from the instant the beams are
turned on. The beam particles are deposited in the plasma core where they slow down by
transferring their energy to the bulk plasma which then transports this energy to the edge in a
time Tg . The bolometric measurement together with a kinetic analysis {obtained using the
SNAP? code) show that the neutral-beam-heated detached plasmas of Figs, 1 and 2 are well
approximated by a model of a heated core surrounded by a thin radiating edge. The heating
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profile obtained from the kinetic analysis shows that almost 80% of the input power is deposited
within the inner 45 cm minor radius. The bolometrically determined Qgyd, on the other hand,
shows that more than 30% of the radiation (and thus of the total input power) is emitted outside
this radius. These profiles are appealing for reactor considerations since the radiating shell
would deposit the power losses fairly uniformly on the walls of the reactor.

The delay in response, At, of Py for the two cases is not very different from the value of
TE obtained from the kinetic analysis, thus supporting the argument that at low beam power At
is a measure of TE. The change in the time behavior of Ppyq for both plasmas occurs at At =
100 ms after beam tum on, while SNAP calculations give Tg = 140 ms for the discharge of
Fig. 1aand Tg = 110 ms for Fig. Ic. The two spikes on Pryd in Fig. Ic, between 2.8 and
3.0 s, are due to short bursts of MARFE!Q:11 activity. In fact, for both cases the change in
Prad time behavior at At = 100 ms is accompinied by appearance of MARFE activity. This is
consistent with the idea of additional energy (transported from the core) becoming available at the
edge to heat the plasma there and change its radiation characteristics. At high power, the delayed
rise of Prgq4 is not quite as distinct since multiple beams and strong gas puffing both lead to
broader and more complicated heating and radiation profiles.

Two types of events were observed for a few of the discharges reported here. Sudden
changes in D light and edge Te and ne values characterize these events and this activity is
similar to that observed during transitions from the L- 1o the H-mode. Figures 3-5 show data for
several such discharges. The first type, Fig. 3, showed several rapid cycles of such phenomena.
Beam power was 1.75 MW and the radiated power profile for this discharge is included in
Fig. 2. Figure 3a shows several drops in the Dy signal which are followed by more gradual
increases. Cormrelated with the D activity are sudden increases (also quickly followed by
gradual decreases) in edge ne and Te and a decrease in Ppqg (Figs. 3b-d). These events,
followed by relaxation within 10 to 20 ms (with no net improvement in Tg), have been observed
in a number of the beam-heated detached plasmas. It has been pointed out!? thar this cyclic
behavior is suggestive of locked modes (non-rotating MHD modes).13  However, close
examination of the ﬁe signa! for Fig. 3 did not show evidence that this is the case.

In the second type of behavior, a single event occurs which is preceded by a period of
poor confinement, followed by a 130 ms period of recovery or improved (and possibly
enhanced) confinement. This is indicated in Fig. 4 which includes the time variation of the total
electron energy content, Ee, and time-resolved contour plots of T, for 2 plasma heated with 3.5
MW of counter-injected beam power. This event leads to the drop in Eg at 4.295 s which
appears 1o be accompanied (or possibly triggered) by a sawtooth falll# in Te(0), a sudden
change in Dgy light, reduced MHD activity and the appearance of a detached MARFE on the
upper outer major radius side of the plasma. Except for the MARFE, similar changes are
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observed during L- to H-mode transitions in other tokamaks,6:8

The electron energy content {(and probably ETqy) begins to rise immediately as the beams
and gas puff come on simultancously, and saturates about 110 ms later. Global energy
confinernent times are difficult to measure for these plasmas due to difficulty in interpreting the
effect of minor and major radius variations on the diamagnetic signal. The minor radius in the
OH phase was about 0.57 m and gas puffing restricted Aap to an increase of only = 10 cm by
4.1 s. The plasma then began to shrink (as is clear from the T, contour plot of Fig. 4 beginning
at 4.1 s) and continued to do so until the event at 4.295 s, at which time ap = 0.50 m. Since
aljm = 0.85 m, the plasma was well separated from the limiter at the time of the event (and the
appearance of the detached MARFE). The apparent deterioration in confinement from 4.12 to
4.29 s correlated with the increased MHD activity. At 4.16 s, Mirnov loop data showed a turn
on of low frequency, = 160 Hz, oscillatious (probably m = 5 ). Oscillations of the same
frequency were found in the edge density as measured by the multichannel far-infrared laser
interferometer (MIRI).‘5 Just before the event at 4.29 s, a burst of m:n = 3:1 ( = 2 kHz ) MHD
activity occurred. After this event, no coherent MHD activity was measurable for the remainder
of the beam pulse. For the OH detached plasma gegge = 5.0 just before beam turn on at 4.0's.
It increased to 7.0 by 4.1 s, decreased to 3.8 by the time of the event and then increased for the
remainder of the beamn pulse (q)jm = constant = 11). The density profile is broad with a central
value of 9 x 1019/m3 at the time of maximum E, (at 4.45 s) and this is rather dense for a 600
kA, 4.6 T plasma heated with a modest 3.5 MW of beam power. The improvement in
confinement after 4.3 5 is reflected mostly in the ne profile which is broad and relatively steep at
the edges. T, increases very little at the ceater and somewhat more at the edge. The most
extreme development of ng and Ta profiles occurred in a similar discharge (Fig. 5) with siilar
dynamics and beam power. These profiles, from Thomson scattering and MIRI, show that ne(:)
is flat with ng(0) = 8 x 101%/m3,

In summary, we have described preliminary results of neutral beam heating of detached
plasmas in TFTR. It was found that the plasmas tend to expand and attach to the limiter for P, >
2 MW. The plasmas can, however, be kept in the detached staie by puffing of deuterium and/or
impurity gases. However, the necessary conirol at high power has yet to be attained. These
experiments demonstrate that it is possible to increase the edge emissivity significantly and
maintain uniform power loading at the walls. This will be especially important as reactor level
neutral beam heating powers are approuched. If the edge emissivity could be increased to the
level observed in MARFES,16 then plasmas in TFTR could remain detached with i-.put powers
of up to 35 MW and reactor scenarios involving detached plasmas might be possible. In such
experiments, the edge emissivity would have to be carefully conrrolled in order to zvoid plasma
contraction and disruptions which seem to occur when q{edge) = 2.1 Interesting transients were



observed in the radiating layer including a confinement-related delay in the edge emissivity and

some phenomena which have similarities with the H-mode.
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Figure Captions

Figure 1. Response of a detached plasma to two low power (1.2 MW) beam heating cases
showing; 1(a,b) a slow initial rise in Pryq and 1(c,d) a delay, At = 100 ms, in rise of Pryq. Also
shown are 2, plasma minor radius (ajjm = 83 ¢m), and Qyyg, the peak plasma emissiviry as
functions of time. nel{center) and Te(0) for the OH target plasmas were significantly ditferent for
the two cases; (a,b) 2.4 x 1019/m? and 3.3 keV and (c,d) 4.0 x 1019/m2 and 1.35 keV,
Tespectively.

Figure 2. Volume emission profiles, Qp,a(r), for three levels of heating of detached plasmas;
OH, Pp = 1.75 MW and Py, = 4.85 MW .

Figure 3. Beam-heated detached plasma showing a series of H-mede-like transiticn events,
Shown are time variation of Dy, edge T, and ng, and Pryg. P was 1.75 MW and the beam and
gas puff (50 Torr liters/s) were turned on att=4.0s.

Figure 4. Neutral-beam-heated detached plasma showing improved confinement afier a single
eventati = 4.295s. The time variation of Ee, nal(center), and contours of Te are shown. Beam
and gas puff (50 Torr liters/s) on at t = 4.0 5. Py = 3.5 MW and ajjm = 85 cm.

Figure 5. T, and ne profiles for u plasma, heated with 3.15 MW of beam power, which
exhibited a single event similar to that of Fig.4. The profiles were taken at 4.4 s, near the end of

the beam pulse.
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