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Neutral currents and Glashow-Iliopoulos-Maiani mechanism
in SU(3)L, U(1)lv models for electroweak interactions
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We study the Glashow-Iliopoulos-Maiani mechanism for flavor-changing neutral-current suppres-
sion in both the gauge and Higgs sectors, for models with SU(3)z, Igt U(1)iv gauge symmetry. The
models di6'er from one another only with respect to the representation content. The main features
of these models are that in order to cancel the triangle anomalies the number of families must be di-
visible by three (the number of colors) and that the lepton number is violated by some lepton-gauge
bosons and lepton-scalar interactions.

PACS number(s): 12.15.Cc, 12.15.Mm

I. INTRODUCTION

It is a well known fact that flavor-changing neutral
currents (FCNC's) are very suppressed with respect to
the charged-current weak interactions. This follows from
experimental data on decays such as Kzo —+ p+p, Do ~
@+p, and Bo ~ p+p for transitions s ~ d, c ~ u, and
b ~ d respectively. Experimentally it is found that [1]

I (K p tt )/I"(K all) = (7.360.4) x 10

(1)

structure and representation content of the theory; that
is, the suppression of FCNC's is valid for all values of the
parameters of the theory. The necessary and sufhcient
conditions are that all quarks of fixed charge and helicity
must (i) transform according to the same irreducible rep-
resentation of the SU(2) group, (ii) have the same values
of weak Is, and (iii) gain mass from a single source.

As the main points are valid for a general kind of model
we revised them brieRy. The neutral currents have in
general the form [4]

J~ = QL l YL'VL + QR / +RQR)

I'(D p+p )/I (Do all) ( 1.1 x 10 s,

I'(B lj+lj, )/I'(B all) ( 1.2 x 10

(2)

(3)

where q denotes a column vector with all quark fields
(phenomenological states) and YI„Y~ are the matrices

Yi. oc IsI, —2 sin 6lgrQ,

The change of fiavor by two units as ~AS] = 2 and ~AB~ =
2 also is very suppressed. In the standard model this
occurs only in second-order weak interactions. The two
examples for which this has been measured are the Ko-
Ko and Bo Bo mass difFe-rences [1]:

m~s —m~~ = (3.522 + 0.016) x 10 MeV,

~m~o —mJ3o
~

= (3.6 + 0.7) x 10 MeV.

(4)

(5)

On the other hand, no evidence exists for Do Do mixing. -
Next, from the experimental data we infer that FCNC
effects in the s-d, c-u, and d bsystems -are smaller than
O(aG~), but we do not know if the same occurs in the
s bsector and in ot-her systems involving the as yet undis-
covered top quark.

In the standard model, which is based on the SU(2)1,
U(l) & gauge symmetry [2], the Glashow-Iliopoulos-
Maiani (GIM) mechanism accounts for the suppression
of neutral processes in which there is a change of fiavor
to order Gy or nGp [3].

The problem of how to implement such a suppression
of FCNC effects in SU(2)i, U(1)~ models in a natu
ral way was considered a long time ago by Glashow and
Weinberg [4]. The term natural means that the conserva-
tion of flavor in neutral currents follows from the group

&R ~IsR —2sin &g Q,
(7)

where e~ is the electroweak mixing angle, Isl, (Is~) are
the matrices corresponding to the third component of
the SU(2) group for the left-handed (right-handed) fields,
and Q is the charge operator. On the other hand, the
mass term of the Lagrangian has the form

—qI.MqR —qRMO~ qI„

where the mass matrix for the charge-Q sector, M&, is
in general neither Hermitian nor diagonal. It is possible
to redefine the quark fields as

QI. = &I, vi. ,
Q QR = &R v~)Q

with V&, VR unitary matrices in the flavor space. In the
Qi, R basis

M Q ~QMQ~Q

with M'~ diagonal. The physical states (Qr, ~ fields) are
defined as eigenstates of the quark mass matrix.

In order to have natural suppression of FCNC's it is
necessary that in Eq. (7) all quarks with the same charge
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IsR = fa(Q)
The conditions (11) imply the GIM mechanism in each
charge sector. In SU(2)r, U(l)~ gauge theories o.G neu-
tral couplings induced at the one-loop level are sup-
pressed if all quarks with the same charge have the same
value of I& and I&.

Later Georgi and Pais [5] have generalized the GIM
mechanism to systems of more than four quarks and lep-
tons in a diferent way. They have expanded the quark
and lepton systems in the "vertical" direction by enlarg-
ing the gauge group to SU(3)SU(1). They called "hori-
zontal mixings" the particle mixtures at equivalent posi-
tion within equivalent representation of the gauge group,
otherwise the particle mixtures are called "vertical mix-
ings. "

In this work we will consider the group
SU(3)~U(l)~ [6—8] as the gauge symmetry with sev-
eral representation contents. Some FCNC's are naturally
suppressed in the horizontal mixings in the gauge and
in the Higgs sectors, but vertical mixings are associated
with FCNC's. This happens in the Higgs sector because
quarks with the same charge but in nonequivalent repre-
sentations gain mass from different sources.

In all these models there are two real neutral bosons;
however, currents coupled to the lightest Z neutral bo-
son implement the GIM mechanism naturally. Notwith-
standing, FCNC are induced by the heaviest neutral
boson Z', but, as it gains mass from the Higgs field
which breaks the SU(3)gU(l)~ symmetry into the
SU(2)L, U(1)~ one, its mass is arbitrarily large.

In this kind of model the lepton number is a gauge
symmetry which is spontaneously broken in the interac-
tions of leptons with gauge and scalar bosons. This is so
because we have both particles and antiparticles in the
same multiplets [6—8].

The organization of this paper is as follows. In Sec. II
we consider three representation contents for the same
gauge symmetry. In Sec. III we give the Yukawa La-
grangian for the matter field representations given in the
previous section. The vector-boson sector for one of the
models is presented in detail in Sec. IV. The charged
and neutral currents are given in Sec. V. Section VI is
devoted to show explicitly that the GIM mechanism is
in fact implemented because quarks of the same charge
have the same coupling with the Z neutral boson. In
one of the models (model I) it is necessary to add some
discrete symmetries which ensure that the Higgs fields
give a quark mass matrix of the tensor product form.
Our conclusions are summarized in the last section. In
the Appendix we give the A's (A' s) matrices for the an-
titriplet (triplet) representation that we have used in this
work.

have the same values of the third component of Ir, and
IR, which implies that these components are functions of
the electric charge [4]:

I- = f.(Q),

interactions of quarks and leptons. We assume that
the strong interactions are described by the unbroken
color SU(3)~ but we have suppressed the color indices.
Notwithstanding, they are considered in order to cancel
anomalies. In fact, the sort of models we will consider
have the interesting feature that the number of fami-
lies must be divisible by the number of colors, three in
the present case, in order to make the model anomaly-
free. This happens only if we have an equal number of
triplets and antitriplets taking into account the color de-
gree of freedom and requiring the sum of all fermions
charges to vanish [6—8]. This means that one of the
quark multiplets transforms identically to the leptons un-
der SU(3)L,U(1)~ and the other two-quark multiplets
transform similarly to each other but differently from the
leptons. The phenomenology depends somewhat on the
choice of which quark multiplet transforms in the same
representation of the leptons but we will not investigate
this issue here.

This sort of model has become an interesting possi-
bility for an extension of the standard model since the
measurements [1,9] of the Z width at the CERN e+e
collider indicated that the number of sequential fami-
lies is three, and this feature has no explanation within
the standard model; otherwise these models are indis-
tinguishable from the standard model up to the current
energies achieved experimentally.

Q As 1 As—+¹
e 2 ~32 (12)

The left-handed leptons are assumed to belong to the
following antitriplets (3', —s) [10]:

(13)

where —
s denotes the U~(1) quantum number, and l =

e, p, , w.

In the quark sector, the first and second "generations"
are in triplets (3, 0), and the third one in an antitriplet
(3' +-')

( I
Qg= d, -(30), i=12,

&d') .

A. Model I
This is a model with leptons, v&', v~, t = e, p, , ~ and nine

quarks, four with charge 3 and five with charge —. Let
us start by defining the electric charge operator as

II. SU (3)g g U(l) ~ MODELS

As we have mentioned in the previous section, we will
consider an SU (3)L, U (1)~ gauge theory for the weak

All right-handed charged fermions are taken to be SU(3) L,

singlets. The representations above are symmetry eigen-
states and they are related to the mass eigenstates by
Cabibbo-like angles as we will discuss in Sec. III. In fact
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it does not matter which generation transforms similarly
to the leptons because the three generations are well de-
fined only after the symmetry breaking.

We will introduce the following Higgs multiplets:

In order to avoid additional FCNC effects we will also
assume that the vacuum expectation value (VEV) of the
p and o fields lie in the second and third component,
respectively:

( ') W 0 ( ') = o ( ') = o ( ') 8 0. (16)

p= ' pr

4 pl)

( '5l
(3~+s)

E lj

(15) Let us briefly comment about the question of whether the
choice of VEV's in Eq. (16) is a natural one. We can see
this by considering that the more general gauge-invariant
potential involving the Higgs triplets g, o., p is

V(rl, o, p) = Ai(rltil —v„) + A2(ptp —v ) + As(o. icr —v )

+ A4[(r, rl —v„) + (P P —vp)+ (o- cr —v )] + A5[(P P)(o o) —(p o)(o. p)]

+As(pig)(r]ip) + Ar(oirl)(rtto) + As(pto) + fe""rl,p, al, + H.c., (17)

where A, ) 0, i = 1, ..., 6, and e'&" is the totally antisym-
metric symbol. Notice that in Eq. (17) there are linear
terms in o.

z and pz. These terms and the Yukawa inter-
actions in Eqs. (24) and (25) will induce divergent loop
corrections and a counterterm will be necessary; hence,
it would be impossible to maintain (oi) = (p2) = 0.
However, the trilinear terms f are forbidden by the ap-
propriate discrete symmetries [see Eq. (59) below] and
the choice of the VEV's in (16) is in fact a natural one.

B. Model II

This model has already been studied in detail in
Refs. [6, 11]; hence, we will reexamine it briefly here. In
this model we define the charge operator as

1
As —v 3As) + N

6 2

The leptons are in triplets (3, 0):

are very massive and this is the case for the neutral boson
Zo.

In this model it is necessary to introduce three Higgs
triplets (3, 0), (3, —1), and (3, 1) in order to give mass
to all the quarks. Charged leptons obtain mass when we
introduce a sextet (6, 0) [11].

One of the Higgs, the one transforming as
(3, —1), is responsible for the first symmetry breaking
SU(3)i.U(l)lv ~SU(2)i, U(1)i . As the exotic quarks
and gauge bosons and Z' obtain a contribution to their
masses from this triplet, they must be very heavy. The
exotic quark masses are in fact arbitrary but the exotic
gauge bosons and Z' must have masses larger than 4
TeV and 40 TeV respectively [6].

C. Model III

This model is analogous to the previous one, but the
leptons have heavy charged partners,

(21)

with t = e, p, , v. . The quarks belong to one triplet and
two antitriplets:

and now we have to introduce right-handed singlets for
e&, p&, v.

& and ER, M&, T&. Only the Higgs triplets of
model II are required. The quark sector is the same of
model II and the introduction of right-handed neutrinos
is also optional.

i = 2, 3. (20) III. YUKAWA LAGRANGIAN

All right-handed fields are in singlets and the introduc-
tion of right-handed neutrinos is optional. Notice that
we have to introduce exotic quarks of charge 3 and —3.
The model also has exotic gauge bosons Y+, U++ which

A. Model I

The Yukawa Lagrangian in terms of the symmetry
eigenstates [we have suppressed SU(3)i. indices] is
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—l:Y =G/mftLRmr/ + QgLG~~UaRg+ Q3L(Gs~p + G'3'~II )UaR+ QgL(G",pp+ G', /3CI)DpR+ Q3LGspDpRI/ + H.C. ,

(22)

where i = 12, o. = 1234, P = 12345,
and U1 2 3 4R = V1R, Q2R, Q3R, Q4R, D1,2 3,4,5R
d1R& d2Ry d&R d1R& d2R or the leptons Bm = eR, pR, 'TR.

Summation is assumed in the repeated indices.
From Eq. (22) we obtain the mass terms

tions for the quarks with charge 3 3 Exotic quarks of
charge —

3 will mix with one another but not with the
one with charge 3. Considering only the quarks with

charge 3 and —
3 the quark-Higgs interaction is

—U~I.M~~. U~I R —DpI. M&&.Dp~R + H.c.,U D (23) ~Y = Q1L(Gy U Rr/+ Gy D Rp)

where the indices (n, o.') and (P, P'), run over all quarks
with charge + 3 and —

3 respectively. Notice that the M
is a 4 x 4 matrix and M a 5 x 5 one. We will denote
the mass eigenstates obtained after the diagonalization
of the matrix in Eq. (23) u, c, t, t' and d, s, b, d', s' for the
charge 3 and —

3 sectors respectively. The primed quarks
are new heavy quarks.

Explicitly, we can write the Yukawa interactions for
the leptons in Eq. (22) as

+Q,~L(F,~U~Rp' + F,~D~Rr/*) + H.c., (28)

—U~II.M / U~R —D~ I.M I D~R+H c. (29)

where o, = 1, 2, 3, i = 2, 3, and U R ——u1R, u2R, u3R)
D~R = dqR, d2R, dsR. The mass terms from Eq. (28) are

~lY = Gl(vtLlR'gy + &tLlR'gg + lLLRr/ + H.c.).
We have also the Yukawa term

(24)
In Eq. (29) U I, = ugL) u3L„, u3L, D L = dgL, d3L, d3L.
M and M are arbitrary 3 x 3 matrices. For the quan-
tum numbers of the Higgs multiplet r/ and p see Ref. [6].

&'/L = ——) .~""h/m4'« '4g r//',

I,,m
(25)

IV. GAUGE BOSONS

with h~ = —h /. Equation (25) implies an antisym-
metric 3 x 3 mass matrix for the neutrinos, and it is
well known that for this kind of matrix one of the eigen-
values is zero and the other two are degenerated. One
way to obtain an arbitrary mass matrix for the neutrinos
is to introduce a symmetric sextet S: (6, +3) or other
Higgs multiplets with the same quantum number of g in
order to give a mass to the neutrinos by radiative cor-
rections [12, 13]. However, Eq. (25) can be forbidden by
introducing an appropriate discrete symmetry.

The sextet has the charge assignment

(soso s;)s=i s,'s,' s,
S;S;S—)

(26)

Zis = ) G/, mQ;tQ, S" + H.c.
I,m

(27)

In Eq. (27) i, j denote SU(3) indices and l, m = e, p, ~ and
G/m = Gmt. As we have not assigned a lepton number to
either the g or to the sextet S Higgs multiplets, we have
lepton-number violations in Eqs. (24) and (27).

The (S2O) g 0 gives a Dirac mass term for neutrinos. In
order to avoid a Majorana mass term we have to choose
(S~ 3) = 0. The Yukawa Lagrangian of the leptons with
the sextet is

In this section, we will only consider the model I. For
models II and III which are similar in the gauge sector,
see Ref. [6].

The gauge bosons of this theory consist of an octet W„
associated with SU(3)L and a singlet B„associated with
U(l)/v. Considering only the triplets of Higgs bosons,
the covariant derivatives are

/ A)" .g'
17~(pq ——B~&pq + xg

~

W'~ —
~

&pA, + g N~B~&pq, —
2

(30)

where N~ denotes the N charge for the p Higgs multiplet,
V' = '9) Ps &

We will denote v~ = (p~z), v = (o30), and v„= (r/0) the
vacuum expectation values of the corresponding Higgs
multiplet. Using them in Eq. (30) we obtain the symme-
try breaking pattern

SU(3)L U(l)/v
& (~)

SU(2)L U(1)Y

U(1)

H. Models II and III

As both models have the same quark content and they
dier only in the leptonic sector we will consider them
together. We also will write down the Yukawa interac-

where (2:) = (g), (p) and the SU(3), of color remaining
unbroken.

The non-Hermitian gauge bosons ~2W+ = W~ —iW3,
~2V+:—W —iW and v 2Ã—:W —iWV have the
following masses:



2922 J. C. MONTERO, F. PISANO, AND V. PLEITEZ 47

M~ = —g (v~+vp), Mv ——g (v +v )

Mx2 = -g' (v,'+ v') .

(32)

Notice that there are two gauge bosons forming an

SU(2)L, doublet,

XO

Notice that even if v„= v~ = vj~2, where v is the
usual vacuum expectation value for the Higgs boson in
the standard model, the VEV v must be large enough
in order to leave the new gauge bosons sufFiciently heavy
to keep consistency with low energy phenomenology.

consisting of a charged gauge boson V+ and a neutral
one Xo.

On the other hand, the neutral (Hermitian) gauge
bosons have the mass matrix 4g M in the (Ws, Ws, B)
basis, where M~ is given by

—s2t(2v2 + v2)

(34)

with t = g'/g. Since detM2 = 0 we must have a pho-
ton after the symmetry breaking [14]. The introduction
of the sextet S spoils the fact that the determinant of
Eq. (34) vanishes. However this can be achieved by im-
posing fine-tuning of the VEV of the sextet (S20) with the
VEV's of the triplets. In fact, this implies that (S2O) is of
the same order of magnitude of v which is the highest
VEV in the model. This is not phenomenologically inter-
esting nor natural since (S2) will give mass to the neu-
trinos. For this reason we will not introduce the sextet
and, since the interaction in Eq. (25) will be forbidden by
a discrete symmetry (see Sec. IV), in the present model
the neutrinos remain massless at the tree level. Lepton-
number-violating mass terms can arise from calculable
radiative corrections mediated by gauge or scalar bosons
but here we will not consider this issue [7, 12, 13]. We
must stress that in model II the introduction of a sextet
(6, 0) does not spoil the fact that detM = 0 without
any restriction on the VEV's [11].

The eigenvalues of the matrix in Eq. (34) are

M~ =O, , (v„+v,),
g' 3+«'
4 3+t2

2

Mg, = —(1+ st )v,3

(35)

In order to obtain the usual relation cos O~Mz ——M~,
we must have

2
2 SW

41 —3S~
(37)

where s2~ = sin 8~. Hence, we can identify Zo as the
neutral gauge boson of the standard model.

The neutral physical states in the (W, W, B) basis
are

where we have used v && vz z for the case of Mz and
Mz . Then, we have in this approximation

M~ 3+ 4t

M~ 3+t

A„=,(vent, t, &3),
(3+ 4t~) ~

Z„=, ,i, , -3t(3+ t ) i,
—1 (9 —3t~ —2t4 27+ 27t + 6t

(3+ t ) ~ (3+ 4t ) ~ ( 2 2V 3

1 3 3
Z

(3+ t')-' 2' 2v3

V. CHARGED AND NEUTRAL CURRENTS

The interactions among the gauge bosons and fermions
are read off from

Z~ = Rip" 0„+ B„NR ~
RZg

2 " )
+Lips'(0 + B Nr. + —A W )L, (39)

ig' ig
iI )
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~e] = g»n 8w. (40)

Concerning the interactions with the charged vector fields
we have

Zt = — ( v~'~p"—ll, V„+ + vli, 'y LI, W„+) + H.c., (41)
2

where l = e, p, 7. There are also currents coupled to the
non-Hermitian neutral boson, PI'I, p @~1.X„

For the first two quark "generations" we have

where R represents any right-handed singlet and L any
left-handed triplets or antitriplets and NR(NI. ) is the
U(1)~ charge of the right-handed (left-handed) fermions.
Here also we will consider only the model I.

A. Charged currents

Concerning the charged leptons, we obtain the electro-
magnetic interaction by identifying the electric charge e

As D,' and us are SU(2)L, singlets the interaction with V+
violates the lepton number [see Eq. (41)j and the weak
isospin (see Eq. (42)). In this case the interactions with
the neutral boson X are proportional to

(D—,r,p"D,'r —.u» p"u«) X„.
Notice that the interactions with the Xo boson also vio-
late the lepton number and weak isospin. Recall that we
have not attributed lepton number to the gauge bosons;
however, as can be seen from Eq. (32) the masses of the
vector bosons V+, Xo are proportional to the VEV of the
cr, and therefore should be heavier than W+, Zo.

B. Neutral currents

Similarly, we have the neutral currents coupled to both
Z and Z' massive vector bosons. For neutrinos,

INC
V

gq, , = — (U;I,p"D,L, W+ —U, l,p"D,'I.V+) + H.c.,
(42)

where i = 1, 2, U; = uq, u2, D; (D,') = dq, d2 (dz, d2). For
the third quark "generation" we have

( u»~ d»-V„'+u«~ d.,W„+)+Hc.
2

(43)

2(1 —s2w)
, v)L, p"v)I, Z' . (44)

(3 —4s~w) &

Using vLpI"vL ———PRpI'vR, we see that, in this model,
the magnitude of the neutral couplings of the right-
handed neutrinos coincide with that of the left-handed
neutrinos in the standard model. In the last equation
neutrinos are still symmetry eigenstates.

Concerning the charged leptons we have

) ti,y"tl, (1——2sw)Z„+, Z~ +2swtRP"tR —Z~+, Z'
2cw (45)

Next, let us consider the quark sector. The electro-
magnetic current for quarks is the usual one

Qq egg QA@ ) (46)

The interactions with the Z' neutral boson are via the
currents

where q is any of the quarks with Q~ = +s, —
s and e

was defined in Eq. (40).
The neutral currents coupled to the Z boson are

e 1
(3 —4sw) U'I V U~l- + —«an 8wUiRp" U,R,6 cwsw 3

e e——tan 8w D,Lp"D&L ——tan 8W D.Rp"D,R,

(3 —»w)D, l,p"D,L,
—-e tan 8wD, Rp"D,R,

e 1 2 I p /

6 cwsw 3
(47)

e 1 2 — 2
(3 —4sw)usl. p"usl. + —e tan 8wusRp"usR,6 cwsw W

2 2

3
—e tan 8wa4Lp"u4L + —e tan 8wu4Rp"u4R3
e 1 2 p, 1

(3 —2sw)d»p dsl, ——etan8wd3RQ6 cwsw 3

e (3 —4sw) ~ — „2 tan 8w

e (3 —4s2w) ~ — „e tan 8w

e (3 —4s2w) ~ —, „, e tan 8w

e (3 —2s2w)
y u3LQ u3L

6cWsw (3 —48W) ~

2 tan 8w
u3R'Y u3R

(3 —4s2w) ~

e (3 —5@,)
y u4LQ u4L3cwsw (3 —4sw) r

an 8w——e ~ u4RQ u4R,
(3 —4s2w)&

e (3 —2s2w) „-
3LQ 3L6cwsw (3 —4sw) 5

1 tan 8w+ e z d3RP Gf3R
(3 —4s2w) &

Here U = uy, u2, D = dy, d2, and D' = ds, d2.

(48)
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VI. GIM MECHANISM

In this section we will study the GIM mechanism in the
models we have considered before. In the gauge sector,
the neutral currents have the form shown in Eq. (6) or

I«(f)fv" (1 —»)f + aR(f)fw" (I + W )f]&„'
2c~

(49)

for the Zo, and

(a'L(f)f&" (1 »)—f + a'R(f)fv"(1+»)flz„"
2cgr

/ / 1
aL(u1) = aL(u2) = 6—g(x),

f / 2 x
aR(u1) = aR(u. ) =—

3 g(x)
'

aL(d1) = aL(d2) = 3g(x),

f / 1 x
aR("1) = aR("2) =

3 g(x)
'

aL (d', ) = aL (d2) = ——g(x),6
/ / 1 x.R(d, ) =.R(d, ) =--

3 g(x)
'

(56)

for the Z'0, where f denotes any fermion.

(50)

A. Madel I

For leptons, the neutral currents appear in Eqs. (44)
and (45):

aL(vi) = 0, aR(vi) = 1. (51)

aL(l) = —(1 —2x), aR(l) = 2x,

and those with the Z',
(53)

In. the standard mode»ne has ar. (vi) = 1, aR(vi) = 0
For the couplings of neutrinos with Z' we have

1 —x
a'L(v&) = 0 aR(v&) = 2

g(x)

with l = e, p, , w. The couplings of the charged leptons
with the Z are

13 —2x
aL(u3) =—

6 g(x)
13 —5x

aL(u4) =--
3 g(x)

13 —2xar(d)=3

2 x
aR(u, ) 3 g(x)

'

f 2 x
aR(u4) =

3 ( )
1 x

aR(d3) = ——
3 g(x)

'

Notice that as quarks of the same charge gain mass from
different sources, in Eq. (22) we have FCNC at the tree
level. In fact, the quark mass matrices in Eq. (23) arising
from (22) are 4 x 4 and 5 x 5 for the charge 3 and —

31 re-
spectively. After diagonalizing these matrices we obtain
mixing among all quarks of the same charge. Since the
coupling, appearing in Eqs. (55) do not satisfy the condi-
tion (11) the GIM mechanism does not work. One way,
but probably not the only one, to overcome this trouble
is the introduction of appropriate discrete symmetries.
We can see from (55) that if the quarks u1, u2, us do not
couple to the quark u4, and the quarks dz, d2, d3 do not
couple to the quarks d~, d2 the mass matrix will have the
form

1 2x / 1
a'r. (~) = a'R(~) = 2x

g(x)
' g(x)' (54) &M1 0

for the charge —
3 sector,1

2
(57)

where we have deFined x = sin 8~ and g(x) = (3—
4x) ~. Even if neutrinos were massive we can see from
Eqs. (44) and (45) [or (51) and (53)] that there is no
FCNC at the tree level in the leptonic sector since all
lepton representations transform similarly. This is the
case also in models II and III if we had introduced right-
handed neutrinos.

For quarks, recall that the fields are still symmetry
eigenstates, we have

for the charge 3 sector,
(M, o

l
2 (58)

where Mq, M3 are 3 x 3 matrices and M2 a 2 x 2 ma-
trix. To constrain the quark mass matrix to have the
form given in Eqs. (57) and (58) we impose the following
discrete syrnrnetries on the Yukawa Lagrangian of Eq.
(22):

12
aL (u1) —aL (u2) —aL (u3) — g (x)6

2
aR(u1) = aR(u2) = aR(u3) = ——x,

3
1 1

aL(dl) —aL(d2) — xi aR(dl) —aR(d2)3 3

ar. (d1) = ar. (d2) = ar. (d3) = --(3 —»),

«(d'1) = aR(d') = aR(d3) = -x
3

2 2
aL(u4) = —-x, aR(u4) = ——x

3 3

Similarly for the case of the Z' we have

(55)

(~ a) ~ (~ ~)
P~ P~

(QiL, R) (AL, &i),
(u1R& u2R~ u3R) ~ (u1R) u2R~ u3R))

&4R ~ &4R)

( 1R& d2Ri 3R) ( 1Ri 2Ri d3R)~
(d1R, d2R) ~ (d1R, d2R). —

(59)

Taking into account these symmetries we can rewrite the
quark sector of Eq. (22) as

—&q~ = Q~LG,"~&nRq + Q3LG3~D~Rrlb

+ Q,L (G," D Rcr + G',"D~Rp).
+ Q3L (Gq'~U~Rcr*+ u4Rp") + H.c., (60)
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where i = 1, 2, n = 1, 2, 3, a = 4, 5, and U~R
uiR& u2R& usR~ Da'R diR& d2R d3R& and DaR
d1~, d2~. The mass matrices have the tensor product
form in (57) and (58) next, they can be diagona1ized with
unitary matrices which are themselves tensor product of
unitary matrices.

We see that, by imposing the symmetries (59), we have
the GIM mechanism in the neutral currents coupled to
the Z, separately, in the following sectors: (ui, u2, u3),
(di, d2), and (di, d2, ds). The u4 quark does not mix at
all. Notice that it is the sector (ui, u2, us) which has the
same neutral couplings as the u, c, t quarks of the stan-
dard model. The same occurs for the (di, d2, ds) which
has the same neutral couplings as the d, s, 6 of the stan-
dard model. Notice also that di, d2 have only vector cur-
rents coupled to Z .

On the other hand, there are FCNC's in the scalar
sector since quarks with the same charge still gain mass
from different Higgs fields. The Yukawa couplings of the
charge 3 quarks (ui, u2, u3) to the neutral Higgs il and
o , defined as

il' = v„+(—= v„+(1+i(2

tor there are also interactions such as those in Eq. (63).
In addition, these interactions do not imply strong con-
straints on the masses of the neutral scalars if conditions
such as V,1 —~V,.~ 0 are valid.$1

The quarks d1, dq have the GIM mechanism in the cou-
pling with Z, Z' and also in the scalar sector. The
respective mass eigenstate are denoted by d, s.

B. Models II and III

With respect to model II the respective couplings are
given in Ref. [6]. In this case we have the same couplings
for each charge sector; that is, we have the relation in
Eq. (7) valid and when we redefine the quark fields as in
Eq. (9) FCNC's appear with the coupling to the Z'0 but
not with those to the Z . The same is true for the case of
model III. Here we will rewrite the coeKcients calculated
in Ref. [6]. Couplings with Z0:

aL(v) = 1, aR(v) = 0,

aL(l) = —1+2x, aR(l) = 2x,

aL(ui) = aL(u2) = aL(u3) = —g (x),=12

and

0 + ql + ql + ql

can be written as

I
1+—

I

&~M" U ~ +
~

4' ——( I
u3LG'3' & R (61)(, v

vn) 4 v„)
We recall that all fields in Eq. (61) are still phenomeno-
logical states, that is, linear combinations of the mass
eigenstates. We will denote mass eigenstates u, c, t' in
the ui, u2, u3 sector. Then, from Eq. (61) we see that we
will have u ~ c transitions.

This situation also occurs in the charge —
&

sector com-
posed of di, d2, d3 (with the respective mass eigenstates
denoted d', s', b):

I
1+—

I
DnM ~ D~ +

I C
——"('

I dsL&3
t' ('&, ( v~ & —

b

2
aR(ui) = aR(u2) = aR(u3) = ——x,

3
1

ar. (d1) aL(d2) —aL(d3) — (3 —2x),

1
aR(d) = aR(s) = aR(b) = —x.

3

Couplings with Z':
1

2 3
h(x), a'R(vi) = 0,

h(x) , 1
23' 3

aR(l) = — h(x)

'L( i) =—

ar. (l) =—

2~3h(x) ~3h(x)
'

aL(ui) = —
~h( )

aR(ui) = -~„( )

(64)

(65)

V, i ——V.i l
Vbd bLdRpi + H.c.,

( v

v
(63)

with i fixed. In the last equation all fields are already
mass eigenstates, the matrix Vpp is a typical set of mixing
angles among the charge —

3 sector (d', s', b).
We see that interactions in Eq. (63) produce FCNC's

in the (d', s', b) system, but not one of them produces the
transition appearing in Eqs. (1)—(5). In the charge 3 sec-

(62)

We see that there are flavor changes in both charge sec-
tors induced by the physical scalars.

However, we must notice that as the fields (12 and
(1 2 are linear combinations of mass eigenstates, say (; =
V~/~ and similarly with the (,' fields. Next, suppose we
choose one of the mass eigenstates $1. From Eq. (62) we
will obtain terms such as

aL(u2) = aL(u3) = h(*),
4 3

a'R(u2) = aR(us) =
3h(x)

1 —2x
a'L(d2) = aL(ds) =

3h(x)

aR(d2) = aR(d3) =
3h(x)

where h(x) = (1 —4x) &.
We see from Eqs. (64) and (65) that there is a GIM

mechanism in the couplings with Z but not in the cou-
plings with Z'0 as was stressed in Ref. [6]. It is also
necessary in model II to introduce discrete symmetries if
we want to prevent neutrinos from gaining mass but this
will not be considered in this paper [15].

As in the case of model I [see Eq. (61)], we can ver-
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ify that there are scalars coupled to u~Gi~U ~ im-
plying mixing among u, c, t and also scalars coupled to
dl. G& D ~ producing mixing among d, 8, b; but, as it will
also appear in factors such as V, i —~V,'i, this does not
impose necessarily a strong lower bound on the neutral
scalar masses.

VII. CONCLUSIONS

TABLE I. FCNC effects in model I. Z and Z' are the
lightest and the heaviest neutral boson and H is a typical
neutral scalar. The "yes" and "no" in the entries denote
whether or not the FCNC exists.

Quark sector
u, c, t'

t
d) 8

d/ I

Zo

No
No
No
No

Z"
Yes
No
No
Yes

IIO

Yes
No
No
Yes

Following the generalization of the GIM mechanism of
Ref. [5], we have considered three different representa-
tion contents in a theory of electroweak interactions with
SU(3)1,U(1)iv gauge symmetry and we have studied in
detail the neutral currents. However, it should be no-
ticed that, in all these models we have considered, fields
of the same charge belong to diferent representations and
for this reason the mixings are neither pure "horizontal"
nor pure "vertical" in the sense of Ref. [5]. For example
there are mixings in the system d', s', b and these mass
eigenstates are linear combinations of two SU(2) singlets,
di, d2 and one member of an SU(2) doublet ds. We must
recall that this choice of the representation content was
necessary in order to avoid anomalies in the theory.

Here we will revise and comment on the FCNC ef-
fects and GIM mechanism in this kind of model. As
in the standard model, all neutral couplings depend on
the weak angle 6[~, which can be determined from sev-
eral neutral currents processes, the W+ and Z masses
and also from Z-pole observables such as the width and
some asymmetries. It is well known that these experi-
ments have such a level of precision that complete O(n)
radiative corrections are mandatory. In particular some
radiative corrections modify the tree-level expressions for
neutral currents processes.

Let us start with model I. Table I summarizes the sit-
uation.

Notice that the mass eigenstates u, c, t' and d', 8', b

have the same neutral current couplings as the u, c, t and
d, s, 6, respectively, in the electroweak standard model.
However, one quark with charge 3, say t', and two quarks
with charge —

3 say d', 8', can be chosen to have their
masses depending mainly on the v which is the VEV
that it is responsible of the first symmetry breakdown;
hence these quarks may be heavier than the others, as
demanded by experimental data.

However in the charged currents the mixing is not the
usual one. For example, in terms of the mass eigen-
states, we have the interactions with the W+ vector bo-
son (which coincide with the charged vector boson of the

and U' is an arbitrary 3 x 3 unitary matrix.
In this model the expression for the couplings aI. and

a~ of quarks u, c, t' and d', 8', b coincide with the respec-
tive al. and aR of the standard model but the quarks d
and s have pure (at the tree level) vector neutral currents.

We can verify that this model is not inconsistent with
present day experiments.

As an example, let us consider the deep inelastic neu-
trino scattering from approximately isoscalar targets.
Experimentally the ratio R—:o+$/o~g was measured
where NC and CC denote neutral and charged current
respectively. In the simplest approximation,

R~ = gL + g~r.2 2

Assuming that there is a contribution from the d' quark
other than those of the u, d and using the constants aL, ~
defined in Eq. (55), at the zeroth-order approximation,
one has [16—18]

g~ —= ai(u)+ a~(d')+ ai(d) = - —*+-*' = 0304,
2 3

(69)

2 2
gz = a&(u) + az(d') + aR(d) = —z 0.036,

3
(70)

where we have used x = sin eiv —0.232. In (68) r =
a.og/ac/ is the ratio of P and v charged current cross
section. Assuming the value of the parton model, r
0.440 we obtain that, in model I, R 0.320 which lies
in the range of the measured values from several isoscalar
targets [16].

Similarly, it is easy to see that, if only the quark d gives
an additional contribution to the Z width, the partial
width for the Z to decay into massless fermions is

CG M3
I'(Z ~ C,C, ) = z(V,'+ A,').

6v 2~

For leptons C = 1 while for quarks C = 3 without @CD
corrections, and V' = al + a&, A' = aL, —a& with al.
and aR defined in Eqs. (55). Considering contributions
of leptons and of the quarks u, c, d, d', s, and b we ob-
tain I'z 2.600 GeV (which is not too different from
the value in the standard model without radiative cor-
rections). The experimental value is I'z 2.487 + 0.010
GeV [1]. The small discrepancy could be explained by
taking into account radiative corrections and uncertain-
ties coming from @CD. The forward-backward asymme-

standard model):

(d)
(uct) 0 1

p" s W„+H.c.,
k")

where U is a, 2 x 2 Cabibbo-like mixing matrix and bg =
cid' + c2s'+ -sb, c, being appropriate combinations of
mixing angles in the d', 8', b sector. In the present model,
we have also the charged vector boson U+,

(d')
(uct )U'p" ' s' V++ H.c., (67)



47 NEUTRAL CURRENTS AND GLASHOW-ILIOPOULOS-MAIANI. . . 2927

try of quark pairs measured in e+e processes also is
sensitive to the weak angle, but in this case (as in the
case of the width) it is necessary for use in the calcula-
tions of the effective weak angle at the Z mass. Hence,
radiative corrections in this model must be calculated.

Summarizing, we have shown that in model I, by im-
posing the discrete symmetry given in Eq. (59), we have
separated the quark sector in two charge 3, u, , c, t', and t,,
and two charge —

3 ones, d', 8', 6 and d, s. In this situa-
tion the GIM mechanism works in each separate sector in
the neutral currents coupled to the lightest neutral gauge
bosons Z . This means that the new quark d' must not
be too heavy since its contributions to the B and I'z
are necessary to Bt experimental data.

Another possibility is that the symmetry breaking of
the SU(3)13U(l) symmetry occurs at an energy scale
which is not too different from the Fermi scale. In this
case all exotic gauge bosons are heavier but not much
more than the TV+, Z gauge bosons of the standard
model implying a rich phenomenology. However, our ex-
pressions are not valid in this situation.

Next, in models II and III, the FCNC in the gauge sec-
tor are restricted mainly to the Z' exchange. See Eqs.
(64) and (65). This boson also gains mass from the VEV
which induce the erst symmetry breaking. In this case,
however, constraints on the FCNC coming from the K~-
Ko system imply that this energy scale is greater than 8
TeV; that is, Mz ) 40 TeV [6]. In these models since
there are only new quarks with charge 3 3 the phe-
nomenology of the usual charge sectors, i.e. , 3, —3, de-
couples from that of the exotic sector and it is automati-
cally consistent with the present observation if the VEV
which is in control of the breaking of the SU(3) L,U(1)~
symmetry are fixed by the FCNC contributions of the
Z' neutral boson.

In the three models, FCNC's also appear in the Yukawa
interactions; however, these involve some of the new
quarks; therefore there are no strong constraints com-
ing from experimental data. In addition, the suppression
factors as in Eq. (63) imply that the masses of the neu-
tral Higgs scalars are not necessarily very high in order
to have the appropriate suppression of the FCNC.

The new gauge bosons, such as V+, X in model I,
only couple one of the light (u, c, t, 5) to one of the heavy
(d', s', t') quarks; they cannot be produced in current ex-
periments. FCNC's induced by box diagrams by the V+
boson involve also the heavy quarks, and for this reason
it does not imply strong constraints on its masss. Inter-
family lepton number violations provide weaker bounds
on these masses (and on that of the Xo boson) also. The
same happens with Z'o and exotic gauge bosons in mod-
els II and III [6]. Even the neutrino counting experiment
e+e —+ v'v'p is not so restrictive, and since the GIM
mechanism works in the leptonic sector, even if the neu-
trinos become massive, processes such as p, ~ ev,'v„' will
be very suppressed. In fact, these processes imply masses
of all the new gauge bosons of the order of two or three
times the mass of the charged gauge boson in the stan-
dard electroweak model.

We think that these models, being consistent with low
energy data and because of the color degree of freedom

and the number of families that are related in order to
be anomaly-free models, could imply unforeseen options
in model building. New physics can arise at not too high
energies.
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APPENDIX

As we have used A matrices, for the 3* antitriplet rep-
resentation of the SU(3) group, which are not usually
found in the literature, we will consider them explicitly
in this Appendix [19].

The up and down operators in the triplet representa-
tion are given by

t
0101 (0001 (001

E& ——,000 ~, E~ —— 001, E3 —— 000
(000) (000) (000)

(A1)

(0 o o ) ('0 o o )
E i —— 100, Eg ——

i 000
(000) (010)

(0o0)
E 3 —— 000

(I o o)
(A2)

The Cartan subalgebra generators are represented by

H, = diag(1, —1, 0), H2 = diag(0, 1, —1). (A4)

The SU(3) algebra is generated by a real linear combi-
nation of the matrices Hl„(E~ + E ~), and i(Et —E t);
k = 1, 2; t = 1, 2, 3. Then the so-called Gell-Mann matri-
ces A are

with the commutation relations

[+1 @3] —[+1 +—2] —[@2 +3] —0

( 3)
[+1i +—s] +—2) [El~ +2] —+3~ [@2~@—3] @—1 ~
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cr1 0&A1=E1+E 1= A3 As =02'2 (A9)

A2 = —i(E1 —E 1) = o2 0&
0 Op'

and A123 are a representation of the subgroup SU(2)
algebra.

The other fundamental representation of SU(3) of di-
mension 3, i.e. , the antitriplet representation A can be
obtained by the substitution

q0 0)'

(00 1)
A4 = 3+ —3

(10 0) and

: Ey2

: —E~3,
(A10)

$00 —i)
A5 =——i(E3 —E 3)= 00 0

(io 0)
LQ 0A6=E2+E 2=

~ 00 oy

L'0 0~
A7 = —i(E2 —E-2) =

I

Hq ——H2, H~ ——H~ .

We have explicitly

(A11)

Al E2 + E—2 = A61 A2 &(E2 E—2) A7i

A3 —H1 ——diag(0, 1., —I.), A4 = —(E3 + E-3) = —A4,

A5 =i(E3 E 3) — A—5)l As = E1 + E 1 = A1, (A12)
A7

———i(E1 —E 1) = A2,

A8 (~1 + 2~2 ) = d1ag
I3 3 3 3$

A8 = (~1 + 2~2 ) = d1ag
1 ~ ~ . 1 1 2 l
3 3 3 3)

where cr, are the usual 2 x 2 Pauli matrices. The A, a =
1, 2, ..., 8 have the normalization

Using Eqs. (A12) in Eq. (12) we can verify that the lep-
tons are in antitriplets and that the Higgs antitriplets
are

(n1"l
7L = '92 (3 ~3)~ P =

~ P1

tr(A~Ah) = 2b~b~

and the closed algebra

A Ab . A,
22 ='-2'

(A6)

(A7)

(A13)

with the following nonvanishing values for the totally an-
tisymmetric structure constant f b,

f123 = 1,
1

f147 = f156 = f246 = f257 f345 f367 ~ (AS)2'

It is well known that the anomaly is proportional to [20j

A(3) oc Tr((A„Abj, A, )

for the triplet, and

A(3') oc Tr((A, Ab), A, )

f458 f678 =
2

' for the antitriplet representation. Using the A's and A' s
given above it is straightforward to verify that

As the SU(3) is a rank-2 group, the diagonal matrices A3

and A8 are such that A(3) = —A(3'). (A14)
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