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ABSTRACT We introduce and analyze a general model of
a population evolving over a network of selectively neutral
genotypes. We show that the population’s limit distribution on
the neutral network is solely determined by the network
topology and given by the principal eigenvector of the net-
work’s adjacency matrix. Moreover, the average number of
neutral mutant neighbors per individual is given by the matrix
spectral radius. These results quantify the extent to which
populations evolve mutational robustness—the insensitivity
of the phenotype to mutations—and thus reduce genetic load.
Because the average neutrality is independent of evolutionary
parameters—such as mutation rate, population size, and
selective advantage—one can infer global statistics of neutral
network topology by using simple population data available
from in vitro or in vivo evolution. Populations evolving on
neutral networks of RNA secondary structures show excellent
agreement with our theoretical predictions.

Kimura’s (1) contention that a majority of genotypic change in
evolution is selectively neutral has gained renewed attention
with the recent analysis of evolutionary optimization methods
(2, 3) and the discovery of neutral networks in genotype-
phenotype models for RNA secondary structure (4–6) and
protein structure (7). It was found that collections of mutually
neutral genotypes, which are connected via single mutational
steps, form extended networks that permeate large regions of
genotype space. Intuitively, a large degeneracy in genotype-
phenotype maps, when combined with the high connectivity of
(high-dimensional) genotype spaces, readily leads to such
extended neutral networks. This intuition is now supported by
recent theoretical results (8, 9).

In evolution of ribozymes in vitro, mutations responsible for
an increase in fitness are only a small minority of the total
number of accepted mutations (10). This fact indicates that,
even in adaptive evolution, the majority of point mutations is
neutral. The fact that only a minority of loci is conserved in
sequences evolved from a single ancestor similarly indicates a
high degeneracy in ribozymal genotype-phenotype maps (11).
Neutrality is also implicated in experiments where RNA
sequences evolve a given structure starting from a range of
different initial genotypes (12). More generally, neutrality in
RNA and protein genotype-phenotype maps is indicated by
the observation that their structures are much better con-
served during evolution than their sequences (13, 14).

Given the presence of neutral networks that preserve struc-
ture or function in sequence space, one asks, how does an
evolving population distribute itself over a neutral network?
Can we detect and analyze structural properties of neutral
networks from data on biological or in vitro populations? To
what extent does a population evolve toward highly connected
parts of the network, resulting in sequences that are relatively
insensitive to mutations? Such mutational robustness has been

observed in biological RNA structures (15) and in simulations
of the evolution of RNA secondary structure (16). However,
an analytical understanding of the phenomenon, the underly-
ing mechanisms, and their dependence on evolutionary pa-
rameters—such as mutation rate, population size, selection
advantage, and the topology of the neutral network—has up
to now not been available.

Here, we develop a model for the evolution of populations
on neutral networks and show analytically that, for biologically
relevant population sizes and mutation rates, a population’s
distribution over a neutral network is determined solely by the
network’s topology. Consequently, one can infer important
structural information about neutral networks from data on
evolving populations, even without specific knowledge of the
evolutionary parameters. Simulations of the evolution of a
population of RNA sequences, evolving on a neutral network
defined with respect to secondary structure, confirm our
theoretical predictions and illustrate their application to in-
ferring network topology.

Modeling Neutrality

We assume that genotype space contains a neutral network of
high, but equal fitness, genotypes on which the majority of a
population is concentrated and that the neighboring parts of
genotype space consist of genotypes with markedly lower
fitness. The genotype space consists of all sequences of length
L over a finite alphabet ! of A symbols. The neutral network
on which the population moves can be most naturally regarded
as a graph G embedded in this genotype space. The vertex set
of G consists of all genotypes that are on the neutral network;
its size is denoted by uGu. Two vertices are connected by an edge
if and only if they differ by a single point mutation.

We will investigate the dynamics of a population evolving on
this neutral network and analyze the dependence of several
population statistics on the topology of the graph G. With
these results, we will then show how measuring various pop-
ulation statistics enables one to infer the structural properties
of G.

For the evolutionary process, we assume a discrete-
generation selection-mutation dynamics with constant popu-
lation size M. Individuals on the neutral network G have a
fitness of s. Individuals outside the neutral network have
fitnesses that are considerably smaller than s. With the ap-
proximations we use, the exact fitness values for genotypes off
G turn out to be immaterial. Each generation, M individuals
are selected with replacement and with probability propor-
tional to fitness and then mutated with probability m. These
individuals form the next generation.

This dynamical system is a discrete-time version of Eigen’s
molecular-evolution model (17). Our analysis can be translated
directly to the continuous-time equations for the Eigen model.
The results remain essentially unchanged.

Although our analysis can be extended to more complicated
mutation schemes, we will assume that only single pointThe publication costs of this article were defrayed in part by page charge

payment. This article must therefore be hereby marked ‘‘advertisement’’ in
accordance with 18 U.S.C. §1734 solely to indicate this fact.

PNAS is available online at www.pnas.org.
‡To whom reprint requests should be addressed. E-mail: chaos@
santafe.edu.

9716



mutations can occur at each reproduction of an individual.
With probability m, one of the L symbols is chosen with
uniform probability and is mutated to one of the A 2 1 other
symbols. Thus, with a mutation, a genotype s moves with
uniform probability to one of the L(A 2 1) neighboring points
in genotype space.

For the results presented below to hold, it is not necessary
that all genotypes in G have exactly the same fitness. As in any
model of neutral evolution (1, 18), it is sufficient to assume that
the fitness differentials between distinct genotypes in G are
smaller than the reciprocal 1yM of the population size. Addi-
tionally, we assume that the fitness differentials between
genotypes in G and genotypes outside G are much larger than
1yM. These assumptions break down when there is a contin-
uum of fitness differentials between genotypes or in the case
of very small population size, which readily allows the spread-
ing of mildly deleterious mutations (19).

Infinite-Population Solution

The first step is to solve for the asymptotic distribution of the
population over the neutral network G in the limit of very large
population size.

Once the (infinite) population has come to equilibrium,
there will be a constant proportion P of the population located
on the network G and a constant average fitness ^f& in the
population. Under selection, the proportion of individuals on
the neutral network increases from P to sPy^f&. Under muta-
tion, a proportion ^n& of these individuals remains on the
network, whereas a proportion 12^n& falls off the neutral
network to lower fitness. At the same time, a proportion Q of
individuals located outside G mutate onto the network so that
an equal proportion P ends up on G in the next generation.
Thus, at equilibrium, we have a balance equation:

P 5
s

^f&
^n&P 1 Q. [1]

In general, the contribution of Q is negligible. As mentioned
above, we assume that the fitness s of the network genotypes
is substantially larger than the fitnesses of those off the neutral
network and that the mutation rate is small enough so that the
bulk of the population is located on the neutral network.
Moreover, because their fitnesses are smaller than the average
fitness ^ f&, only a fraction of the individuals outside the
network G produces offspring for the next generation. Of this
fraction, only a small fraction mutates onto the neutral net-
work G. Therefore, we neglect the term Q in Eq. 1 and obtain

s

^ f&
^n& 5 1. [2]

This equation expresses the balance between selection expand-
ing the population on the network and deleterious mutations
reducing it by moving individuals off.

Eq. 2 can also be phrased in terms of the genetic load +,
defined as the relative distance of the average fitness from the
optimum fitness in the population: + 5 (s 2^ f&)ys. +
measures the selection pressure that the population is expe-
riencing. According to Eq. 2, in the presence of neutrality, +
is simply equal to the proportion 1 2^n& of offspring that falls
off the network G. Thus, Eq. 2 states that + is equal to the
proportion of deleterious mutations per generation, in accor-
dance with Haldane’s original result (20).

Under mutation, an individual located at genotype s of G
with vertex degree ds (the number of neutral-mutant neigh-
bors) has probability

ns 5 1 2 mS1 2
ds

~A 2 1!LD [3]

to remain on the neutral network G. If asymptotically a
fraction Ps of the population is located at genotype s, then ^n&
is simply the average of ns over the asymptotic distribution on
the network ^n& 5 Ss[GnsPsyP. As Eq. 3 shows, the average ^n&
is simply related to the population neutrality ^d& 5 Ss[GdsPsyP.
Moreover, using Eq. 2, we can directly relate the population
neutrality ^d& to the average fitness ^ f&:

^d& 5 L~A 2 1!F1 2
s 2 ^ f&

ms
G . [4]

Despite the fact that neither the details of the topology of G
nor the fitness values of the genotypes lying off the neutral
network are given, one can relate the population neutrality ^d&
of the individuals on the neutral network directly to the
average fitness ^ f& in the population. It may seem surprising
that such a simple relation is possible at all. Because the
population consists partly of sequences off the neutral net-
work, one expects that the average fitness is determined in part
by the fitnesses of these sequences. However, under the
assumption that back mutations from low-fitness genotypes off
the neutral network onto G are negligible, the fitnesses of
sequences outside G influence only the total proportion P of
individuals on the network but not the average fitness in the
population.

Eq. 4 shows that the population neutrality ^d& can be
inferred from the average fitness and other parameters—such
as mutation rate. However, as we will now show, the popula-
tion neutrality ^d& can also be obtained independently from
knowledge of the topology of G alone.

The asymptotic equilibrium proportions {Ps} of the popu-
lation at network nodes s are the solutions of the simultaneous
equations:

Ps 5 ~1 2 m!
s

^ f&
Ps 1

m

L~A 2 1!
O

te@s#G

s

^ f&
Pt, [5]

where [s]G is the set of neighbors of s that are also on the
network G. By using Eq. 4, Eq. 5 can be rewritten as an
eigenvector equation:

^d&Ps 5 ~G z P
B

!s, [6]

where G is the adjacency matrix of the graph G:

Gst 5 H1, t e @s#G,
0, otherwise. [7]

Because G is nonnegative and the neutral network G is
connected, the adjacency matrix is irreducible. Therefore, the
theorems of Frobenius–Perron for nonnegative irreducible
matrices apply (21). These imply that the proportions Ps of the
limit distribution on the network are given by the principal
eigenvector of the graph adjacency matrix G. Moreover, the
population neutrality is equal to G’s spectral radius r: ^d& 5 r.
In this way, one concludes that, asymptotically, the population
neutrality ^d& is independent of evolutionary parameters (m, L,
s) and of the fitness values of the genotypes outside the neutral
network. It is a function only of the neutral network topology
as determined by the adjacency matrix G.

In genetic load terminology, our results imply that

+ 5 mS1 2
r

L~A 2 1!
D . [8]

We see that Haldane’s result (+ 5 m; ref. 20) is recovered in
the absence of neutrality (r 5 0). In the presence of neutrality,
the genetic load is reduced by a factor that depends only on the
spectral radius r of the network’s adjacency matrix.
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The fortunate circumstance that the population neutrality
depends only on the topology of G allows us to consider several
practical consequences. Note that knowledge of m, s, and ^ f&
allows one to infer a dominant feature of the topology of G,
namely, the spectral radius r of its adjacency matrix. In
evolution experiments in vitro in which biomolecules have
evolved, say, to bind a particular ligand (22), by measuring the
proportion ^n& of molecules that remain functional after mu-
tation, we can now infer the spectral radius r of their neutral
network. In other situations, such as in the bacterial evolution
experiments described in ref. 23, it might be more natural to
measure the average fitness ^ f& of an evolving population and
then use Eq. 4 to infer the population neutrality ^d& of viable
genotypes in sequence space.

Blind and Myopic Random Neutral Walks

Above, we solved for the asymptotic average neutrality ^d& of
an infinite population under selection and mutation dynamics
and showed that it was uniquely determined by the topology of
the neutral network G. To put this result in perspective, we now
compare the population neutrality ^d& with the effective
neutralities observed under two different kinds of random
walks over G. The results illustrate informative extremes of
how network topology determines the population dynamics on
neutral networks and affects the evolution of robustness.

The first kind of random walk that we consider is generally
referred to as a ‘‘blind ant’’ random walk. An ant starts out on
a randomly chosen node of G. At each time step, it chooses one
of its L(A 2 1) neighbors at random. If the chosen neighbor
is on G, the ant steps to this node; otherwise, it remains at the
current node for another time step. It is easy to show that this
random walk asymptotically spends equal amounts of time at
all of the nodes of G (24). Therefore, the network neutrality
#d of the nodes visited under this type of random walk is simply
given by

#d 5 O
s[G

ds

uGu. [9]

It is instructive to compare this result with the effective
neutrality observed under another random walk, called the
‘‘myopic ant’’. An ant again starts at a random node s[G. At
each time step, the ant determines the set [s]G of network
neighbors of s and then steps to one at random. Under this
random walk, the asymptotic proportion Ps of time spent at
node s is proportional to the node degree ds (24). It turns out
that the myopic neutrality d̂ seen by this ant can be expressed
in terms of the mean #d and variance Var(d) of node degrees
over G:

d̂ 5 #d 1
Var~d!

#d
. [10]

The network and myopic neutralities #d and d̂ are thus directly
given in terms of local statistics of the distribution of vertex
degrees, whereas the population neutrality ^d& is given by r, the
spectral radius of the adjacency matrix of G. The latter is an
essentially global property of G.

Mutational Robustness

With these cases in mind, we now consider how different
network topologies are reflected by these neutralities. In
prototype models of populations evolving on neutral networks,
the networks are often assumed to be or are approximated as
regular graphs (3, 9, 25–27). If the graph G is, in fact, regular,
each node has the same degree d and, obviously, one has ^d&
5 #d 5 d̂ 5 d.

In more realistic neutral networks, one expects the neutral-
ities of G to vary over the network. When this occurs, the
population neutrality is typically larger than the network
neutrality: ^d& 5 r . #d. Their difference precisely quantifies
the extent to which a population seeks out the most connected
areas of the neutral network. Thus, a population will evolve a
mutational robustness that is larger than if the population were
to spread uniformly over the neutral network. Additionally,
the mutational robustness tends to increase during the tran-
sient phase in which the population relaxes toward its asymp-
totic distribution.

Assume, for instance, that initially the population is located
entirely off the neutral network G at lower-fitness sequences.
At some time, a genotype s[G is discovered by the population.
To a rough approximation, one can assume that the probability
of genotype s being discovered first is proportional to the
number of neighbors, L(A 2 1) 2 ds, that s has outside the
neutral network. Therefore, the population neutrality ^d0&
when the population first enters the neutral network G is
approximately given by

^d0& 5 #d 2
Var~d!

L~A 2 1! 2 #d
. [11]

We define the excess robustness r to be the relative increase in
neutrality between this initial neutrality and the (asymptotic)
population neutrality

r 5
^d& 2 ^d0&

^d0&
. [12]

For networks that are sparse, i.e., #d ,, L(A 2 1), Eq. 12 is well
approximated by r ' (^d& 2 #d)y #d. Note that, although r is
defined in terms of population statistics, the preceding results
have shown that this robustness is only a function of the
topology of G and should thus be considered a property of the
network.

Finite-Population Effects

Our analysis of the population distribution on the neutral
network G assumed an infinite population. For finite popu-
lations, it is well known that sampling fluctuations cause a
population to converge, which raises a question: to what extent
does the asymptotic distribution Ps still describe the distribu-
tion over the network for small populations? As a finite
population diffuses over a neutral network (28), one might
hope that the time average of the distribution over G is still
given by Ps. Indeed, the simulation results shown below
indicate that for moderately large population sizes, this ap-
proximation is the case. However, a simple argument shows
that it cannot be true for arbitrarily small populations.

Assume that the population size M is so small that the
product of mutation rate and population size is much smaller
than one; i.e., Mm ,, 1. In this limit, the population, at any
point in time, is converged completely onto a single genotype
s on the neutral network G. With probability Mm, a single
mutant will be produced at each generation. Such a mutant is
equally likely to be one of the L(A 2 1) neighbors of s. If this
mutant is not on G, it will quickly disappear because of
selection. However, if the mutant is on the neutral network,
there is a probability 1yM that it will take over the population.
When this happens, the population effectively will have taken
a random-walk step on the network, of exactly the kind
followed by the blind ant. Therefore, for Mm ,, 1, the
population neutrality will be equal to the network neutrality:
^n& 5 #d. In this regime, r ' 0, and excess mutational robustness
will not emerge through evolution.

The extent to which the population neutrality ^d& ap-
proaches its infinite population value r is determined by the
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extent to which the population is not converged by sampling
fluctuations. In neutral evolution, population convergence is
generally only a function of the product Mm (29–31). Thus, as
the product Mm ranges from values much smaller than one to
values much larger than one, we predict that the population
neutrality ^d& shifts from the network neutrality #d to the
infinite-population neutrality, given by G’s spectral radius r.

RNA Evolution on Structurally Neutral Networks

The evolution of RNA molecules in a simulated flow reactor
provides an excellent arena in which to test the theoretical
predictions of evolved mutational robustness. The replication
rates (fitnesses) were chosen to be a function only of the
secondary structures of the RNA molecules. The secondary
structure of RNA is an essential aspect of its phenotype, as
documented by its conservation in evolution (13) and the
convergent in vitro evolution toward a similar secondary
structure when selecting for a specific function (12). RNA
secondary structure prediction based on free-energy minimi-
zation is a standard tool in experimental biology and has been
shown to be reliable, especially when the minimum free-energy
structure is thermodynamically well defined (32). RNA sec-
ondary structures were determined with the VIENNA PACKAGE
(33), which uses the free energies described in ref. 34. Free
energies of dangling ends were set to zero.

The neutral network G on which the population evolves
consists of all RNA molecules of length L 5 18 that fold into

a particular target structure. A target structure (Fig. 1) was
selected that contains sufficient variation in its neutrality to
test the theory, but is not so large as to preclude an exhaustive
analysis of its neutral network topology.

By using only single point mutations per replication, purine–
pyrimidine base pairs (G–C, G–U, A–U) can mutate into each
other, but not into pyrimidine–purine (C–G, U–G, U–A) base
pairs. The target structure contains 6 base pairs that can each
be taken from one or the other of these two sets. Thus, the
approximately 2 3 108 sequences that are consistent with the
target’s base pairs separate into 26 5 64 disjoint sets. Of these,
we analyzed the set in which all base pairs were of the
purine–pyrimidine type and found that the set contains two
neutral networks of 51,028 and 5,169 sequences that fold into
the target structure. Simulations were performed on the
largest of the two. The exhaustive enumeration of this network
showed that it has a network neutrality of #d ' 12.0 with a
standard deviation of =Var(d) ' 3.4, a maximum neutrality
of ds 5 24, and a minimum of ds 5 1. The spectral radius of
the network’s 51,028 3 51,028 adjacency matrix is r ' 15.7.
The theory predicts that, when Mm .. 1, the population
neutrality should converge to this value.

The simulated flow reactor contains a population of repli-
cating and mutating RNA sequences (17, 35). The replication
rate of a molecule depends on whether its calculated minimum
free-energy structure equals that of the target: sequences that
fold into the target structure replicate on average once per
time unit, whereas all other sequences replicate once per 104

time units on average. During replication, the progeny of a
sequence has probability m of a single point mutation. Selec-
tion pressure in the flow reactor is induced by an adaptive
dilution flux that keeps the total RNA population fluctuating
around a constant capacity M.

Evolution was seeded from various starting sequences with
either a relatively high or a relatively low neutrality. Indepen-
dent of the starting point, the population neutrality converged
to the predicted value, as shown in Fig. 2.

Subsequently, we tested the finite-population effects on
the population’s average neutrality at several different mu-

FIG. 1. The target RNA secondary structure.

FIG. 2. The evolution of RNA mutational robustness: convergence
of the population’s average neutrality to the theoretical value, ^d& 5
r ' 15.7, predicted by the spectral radius of G (upper dashed line).
The network’s average neutrality #d is represented by the lower dashed
line. Simulations used a population size of M 5 104 and mutation rates
of m 5 0.5 and m 5 0.1 per sequence. Simulations were started at
sequences with either a relatively large number of neutral neighbors (ds
5 24) (upper curves for each mutation rate) or a small number (ds 5
5) (lower curves).

FIG. 3. Dependence of the population neutrality on mutation
rate m and population size M. Simulations used three mutation rates,
m[ {0.5, 0.1, 0.01}, and a range of population sizes, M[ {10,000,
5,000, 1,000, 500, 250, 100, 50, 20}. The results show that the evolved
neutrality in the population depends on the product Mm of popu-
lation size and mutation rate. Neutrality increases with increasing
Mm and saturates when Mm . 500. When Mm , 1 population
neutrality approximates G’s average neutrality #d ' 12.0. When Mm .
500, population neutrality converges to the spectral radius of the
network’s adjacency matrix, r ' 15.7.
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tation rates. Fig. 3 shows the dependence of the asymptotic
average population neutrality on population size M and
mutation rate m. As expected, the population neutrality
depends on only the product Mm of population size and
mutation rate. For small Mm, the population neutrality
increases with increasing Mm, until Mm ' 500, where it
saturates at the predicted value of ^d& ' 15.7. Because small
populations do not form a stationary distribution over the
neutral net but diffuse over it (28), the average population
neutrality at each generation may f luctuate considerably for
small populations. Theoretically, sampling f luctuations in
the proportions of individuals at different nodes of the
network scale inversely with the square root of the popula-
tion size. We therefore expect the f luctuations in population
neutrality to scale as the inverse square root of the popula-
tion size as well. This prediction was indeed observed in our
simulations.

Finally, the fact that r ' 0.31 for this neutral network shows
that, under selection and mutation, a population will evolve a
mutational robustness that is 31% higher than if it were to
spread randomly over the network.

Conclusions

We have shown that, under neutral evolution, a population
does not move over a neutral network in an entirely random
fashion but tends to concentrate at highly connected parts of
the network, resulting in phenotypes that are relatively robust
against mutations. Moreover, the average number of point
mutations that leave the phenotype unaltered is given by the
spectral radius of the neutral network’s adjacency matrix.
Thus, our theory provides an analytical foundation for the
intuitive notion that evolution selects genotypes that are
mutationally robust and that reduce genetic load.

Perhaps surprisingly, the tendency to evolve toward highly
connected parts of the network is independent of evolutionary
parameters—such as mutation rate, selection advantage, and
population size (as long as Mm .. 1)—and is solely determined
by the network’s topology. One consequence is that one can
infer properties of the neutral network’s topology from simple
population statistics.

Simulations with neutral networks of RNA secondary struc-
tures confirm the theoretical results and show that, even for
moderate population sizes, the population neutrality con-
verges to the infinite-population prediction. Typical sizes of in
vitro populations are such that the data obtained from exper-
iments are expected to accord with the infinite-population
results derived here. It seems possible then to devise in vitro
experiments that, by using the results outlined above, would
allow one to obtain information about the topological struc-
ture of neutral networks of biomolecules with similar func-
tionality.

Finally, we focused only on the asymptotic distribution of the
population on the neutral network, but how did the population
attain this equilibrium? The transient relaxation dynamics,
such as those shown in Fig. 2, can be analyzed in terms of the
nonprincipal eigenvectors and eigenvalues of the adjacency
matrix G. Because the topology of a graph is almost entirely
determined by the eigensystem of its adjacency matrix, one
should, in principle, be able to infer the complete structure of
the neutral network from accurate measurements of the
transient population dynamics.
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