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We present a version of the twin Higgs mechanism with minimal symmetry structure and particle
content. The model is built upon a composite Higgs theory with global SOð6Þ/SOð5Þ symmetry breaking.
The leading contribution to the Higgs potential, from the top sector, is solely canceled via the introduction
of a standard model neutral top partner. We show that the inherent Z2 breaking of this construction is under
control and of the right size to achieve electroweak symmetry breaking, with a fine-tuning at the level of
5%–10%, compatibly with the observed Higgs mass. We briefly discuss the particular phenomenological
features of this scenario.
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I. INTRODUCTION

The LHC has made the electroweak (EW) hierarchy
problem a concrete issue. Supersymmetry (SUSY) or
compositeness, the long-term solutions to this naturalness
problem, require colored particles within LHC reach and,
therefore, seem increasingly disfavored by data. However,
clever modifications of the standard scenarios can still
provide rather natural solutions. This happens, for instance,
within the neutral-naturalness paradigm: the little fine-
tuning problem of SUSYor composite theories is cured via
the introduction of light standard model (SM) neutral
states, pushing the scale of the SUSYor composite partners
beyond LHC reach.
Twin Higgs (TH) models are an explicit realization of

this paradigm. The Higgs arises as a Nambu-Goldstone
boson (NGB) from the spontaneous breaking of a global
symmetry G to H, at a scale f ≈ TeV. As a consequence,
Higgs nonderivative interactions and, in particular, the
Higgs boson’s potential, are protected by symmetry. The
couplings of the Higgs to the SM fermions and gauge
bosons break explicitly such a Higgs shift-symmetry,
inducing a sensitivity of the radiatively generated Higgs
potential to the cutoff scale m� ∼ g�f ≳ TeV, i.e. the mass
of the SUSY or composite partners. However, in TH
models, this sensitivity can be weakened via the introduc-
tion of neutral copies, called twins, of the SM fields [1–26].
This allows us to realize a heavier spectrum of SM-
charged (in particular colored) partners without worsening

fine-tuning. Indeed, a discrete Z2 symmetry that relates the
Higgs as well as the SM matter and gauge particles to their
corresponding twins, ensures that the leading order (LO)
potential, proportional to m2�, is G-invariant and, therefore,
Higgs independent. In this article, we wish to identify the
essential features of this mechanism, by keeping only its
bare minimum ingredients, at least from a low-energy
perspective.
The key player in the radiative generation of the Higgs

potential is the top quark, while the EW gauge and scalar
contributions are not a severe concern: given the energies
accessible at the LHC, the latter do not lead to a significant
fine-tuning problem. Therefore, the indispensable element
in TH constructions is the SM-neutral partner of the top
quark (charged under a copy of QCD), together with a
parity that guarantees a vanishing LO contribution to the
Higgs potential from the top sector. Given the top Yukawa,
ytt̄RHqL þ H:c: ¼ ytt̄Rðh0tL − hþbLÞ þ H:c:, then all that
is needed is that the copy of the top, t̃L;R, couples to a
complex scalar h̃0, ỹt ¯̃tRh̃

0 t̃L þ H:c:, with strength ỹt ¼ yt.
This would suggest that the global symmetry that relates H
and h̃0 is G ¼ SUð3Þ ×Uð1Þ [27,28]; however, a NGB
Higgs cannot arise from its spontaneous breaking while
preserving a custodial SUð2ÞL × SUð2ÞR × PLR ⊃ H sym-
metry [29,30]. Since the smallest symmetry group G under
which this Higgs sector transforms should have at least
rank three, then the minimal custodially protected sym-
metry breaking pattern where the cancellation of the LO top
potential can be realized is SOð6Þ/SOð5Þ. In this paper we
focus on this case.
Importantly, by construction a Z2 symmetry that relates

tL;R ↔ t̃L;R and h0 ↔ h̃0 can only enforce ỹt ¼ yt up to
explicit breaking effects mediated by the bottom quark or
the gauge bosons. Despite these breakings seem to prevent
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a proper implementation of the parity, they can be regarded
as NLO effects, against which TH models do not provide a
protection of the Higgs potential anyway. Moreover, even if
one might conclude that the absence of a bona-fide discrete
symmetry precludes ỹt ≈ yt to start with, one can in fact
think of completions where an exact Z2 symmetry gets
broken at a high UV scale ΛZ2

> m�, delivering our model
at lower energies (we provide examples of such comple-
tions in Appendix B). We carefully study under which
conditions running effects down to the scalem�, which tend
to split the Yukawa of the top and the Yukawa of what we
call the brother top, t̃, can be kept under control.1 Provided
this is the case, the tuning in our scenario is approximately
given by twice ξ ¼ v2/f2 with v ≈ 246 GeV, as in standard
TH models.
The paper is organized as follows. In Sec. II, the structure

and symmetries of the sector giving rise to the Higgs are
presented. Sections III and IVare devoted to the gauge and
fermionic sectors, respectively, as well as to their contri-
butions to the Higgs potential. The breaking of the EW
symmetry and the generation of the Higgs mass are
discussed in detail in Sec. V. In Sec. VI, we outline the
phenomenological implications of our model, paying
special attention to the differences with respect to the usual
TH phenomenology. Conclusions are drawn in Sec. VII.

II. THE STRONG SECTOR

We base our discussion on a composite Higgs model,
with mass gap m� and typical coupling between the
composite states g�. The Higgs doublet emerges as a
NGB, along with an EW singlet η, from a strong sector’s
global SOð6Þ symmetry spontaneously broken to SOð5Þ
[31,32]. We chose to parametrize the SOð6Þ/SOð5Þ coset
with the nonlinear vector

Φ ¼ UðπÞΦ0 ¼ ð π1 π2 π3 π4 π5 σ ÞT;
π4 ≡ h; π5 ≡ η; σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − π2â

q
; ð1Þ

where â ¼ 1;…; 5. The NGBs transform as a 5 of SOð5Þ,
while Φ ∼ 6 of SOð6Þ. The matrix of Goldstones UðπÞ, as
well as the fifteen generators TA of SOð6Þ, can be found in
Appendix A. The scalar η, along with the putative radial
excitation of the symmetry breaking scale, identified with
σ, conform what we call the brother Higgs (referred to

as h̃0 in the introduction). The Higgs is given by
H ¼ ð hþh0 ÞT ¼ 1ffiffi

2
p ð π2 þ iπ1h − iπ3 ÞT .

The kinetic term for the NGBs, in the absence of any
gauging of the SOð6Þ symmetries, is simply given by

f2

2
j∂μΦj2 ¼ f2

2
ð∂μπâÞ2 þ

f2

2

ðπâ∂μπâÞ2
1 − π2

b̂

; ð2Þ

where f ∼m�/g� is the σ-model decay constant.
Among the internal parities of SOð6Þ, we are particu-

larly interested in

P ¼

0
B@

12
12

12

1
CA; ð3Þ

which exchanges ð π3h Þ with ð ησ Þ. Notice that π3 is the
NGB eventually eaten by the Z boson, after gauging the
EW subgroup, while the W� eat π1;2.
The strong sector is also assumed to preserve global

SUð3ÞC ×Uð1ÞX and SUð3ÞC̃ ×Uð1ÞX̃ symmetries, as
well as an external parity Z2 exchanging C;X ↔ C̃; X̃.
The combined action of P × Z2 on the strong sector
realizes the Z2 symmetry required to implement the TH
mechanism on the top sector.
Beyond the conserved currents associated to its global

symmetries, J A
μ ∼ 15 of the SOð6Þ, J C;X

μ and J C̃;X̃
μ , the

strong sector also contains fermionic operators with
nontrivial quantum numbers under SOð6Þ × SUð3ÞC×
SUð3ÞC̃ ×Uð1ÞX × Uð1ÞX̃, in particular Ψs ∼ ð1; 3; 1Þ2/3;0
and Ψ̃s ∼ ð1; 1; 3Þ0;2/3, as well as Ψv ∼ ð6; 3; 1Þ2/3;0 and
Ψ̃v ∼ ð6; 1; 3Þ0;2/3 with Ψs;v ↔ Ψ̃s;v under Z2. The SOð6Þ
fermionic multiplets decompose under the unbroken SOð5Þ
as 6 ¼ 5 ⊕ 1, such that Ψv ¼ ðΨ5Ψ1 ÞT and likewise for
Ψ̃v. The SOð6Þ vector current decomposes as 15 ¼ 5 ⊕ 10.

III. THE GAUGE SECTOR

A subgroup of the global symmetries of the strong
sector is gauged by elementary vector fields. Within
SOð6Þ × Uð1ÞX, the subgroup SUð2ÞL ×Uð1ÞY is identi-
fied with the EW group, with Y ¼ T3

R þ X (T3
R the

unbroken generator of the Uð1Þ subgroup in SUð2ÞR).
Likewise, SUð3ÞC is identified with the QCD group.
Beyond the SM gauge content, we can introduce two extra
sets of elementary vectors that gauge SUð3ÞC̃ and Uð1ÞQ̃,
with Q̃ ¼ Tη/

ffiffiffi
2

p þ X̃ (Tη the broken generator associated
with the NGB η). We call these new gauge fields the brother
gauge bosons. Explicit matrices for the generators can be
found in Appendix A.
Weak gauging implies linear couplings between the

elementary gauge fields and the corresponding strong
sector currents, i.e. AμJ μ, that are reproduced by the
covariant derivatives ∂μ → Dμ ¼ ∂μ − iAA

μTA, where

1This is somewhat reminiscent of models of gauge coupling
unification (or Yukawa coupling unification): assuming the
existence of the brother top coupled to an SOð6Þ-symmetric
Higgs sector, the relation ỹt ≈ yt at the scale m� is inferred from
the fact that the Higgs potential is small, suggesting a common
origin of both couplings in the UV, even if an exact symmetry is
absent in the IR. By running the Yukawa couplings to high
energies, one can estimate the scale at which such a symmetry
should be recovered.
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AA
μTA ¼ Wα

μTα
L þ BμY þGa

μTa
C þ Z̃μQ̃þ G̃a

μTa
C̃

ð4Þ

identifies the embedding of the elementary gauge bosons
(α ¼ 1, 2, 3, a ¼ 1;…; 8).
The presence of kinetic terms independent of the

strong dynamics is what characterizes the elementary gauge
bosons,

−
1

4g22
Wα

μνW
μν
α −

1

4g21
BμνBμν −

1

4g̃2
Z̃μνZ̃μν; ð5Þ

and likewise for G and G̃ with gauge couplings g3 and g̃3,
respectively. Consistently with the Z2 symmetry of the
strong sector, a discrete Z2 symmetry Ga

μ ↔ G̃a
μ can be

imposed on the elementary sector, which enforces g3 ≈ g̃3.
However, we note that in our model there is no limit in
which a similar parity can be imposed between (any of) the
EW gauge bosons and the Z̃. For instance, the internal
parity P exchanges T3

A ≡ ðT3
L − T3

RÞ/
ffiffiffi
2

p
with Tη, but Tα

L

and T3
R are gauged with two different gauge couplings, g2

and g1, respectively, with no obvious connection to g̃, at
least from an IR perspective. In fact, due to the absence, by
construction, of an exact Z2 symmetry in the EW gauge
sector, other combinations Q̃ ¼ αTη þ βX̃ could be gauged
as well, or Q̃ could even not be gauged at all. In
Appendix B we expand on this discussion, providing
plausible relations between the gauge couplings from the
requirement that a complete Z2 symmetry in the gauge
sector is recovered at a high scale ΛZ2

> m�, as well as
discussing the consequences of not gauging Q̃, in which
case η remains uneaten. Regardless of these considerations,
we note that provided g̃ is not strong at m�, such that the
associated Higgs potential is under control (see Eq. (7)
below), the fact that g̃ is unrelated to the EW couplings does
not pose any serious issue.
According to the gauging in Eq. (4), the W�, Z and Z̃

become massive, with the required extra degrees of free-
dom, πα and η, provided by the strong sector, and the
required interactions following from Eq. (2). Canonically
normalizing the gauge bosons and moving to the unitary
gauge, where πα ¼ η ¼ 0, the complete kinetic term reads

f2

2
jDμΦj2 ¼ f2

2

ð∂μhÞ2
1 − h2

þ g22f
2

4
h2
�
Wþ

μ Wμ− þ 1

2cθ
ZμZμ

�

þ g̃2f2

8
ð1 − h2ÞZ̃μZ̃μ: ð6Þ

Obviously, EW symmetry breaking (EWSB) must take
place, i.e. hhi2 ¼ v2/f2 ¼ ξ, for the SM gauge bosons to
become massive.
The partial gauging of the strong sector’s SOð6Þ global

symmetry explicitly breaks the shift-symmetries associated
with the Higgs, giving rise to a potential for the then

pseudo-NGB h. The leading order (LO) contribution,
derived from symmetry considerations only, reads

VUV
g2

¼ cg
X
A

g2AΦTTATAΦ

¼ cg
1

4
½ðg21 þ 3g22Þh2 þ g̃2ð1 − h2Þ�; ð7Þ

where the coefficient cg is exactly the same for all the terms in
the sum, owing to the symmetries of the strong sector. Its
NDA estimate is cg ∼ 3m2

ρf2/32π2, where mρ ≲m� can be
interpreted as themass of a composite vector resonance (with
the quantum numbers of the strong sector current J A

μ )
regulating the size of the potential. Equation (7) is the only
purely gauge contribution to the Higgs potential relevant for
our discussion. Note that the EW piece is partially cancelled
by that of the brother Z. The remaining Z2-breaking terms
will be important in the following, since they provide aHiggs
mass term that is needed to achieve a phenomenologically
viable EW minimum, as discussed in Sec. V.

IV. THE FERMIONIC SECTOR

The elementary sector includes fermionic fields with the
quantum numbers of the SM fermions. These interact with
the strong sector via partial compositeness [33], i.e. linear
couplings with composite fermionic operators ψ̄Ψ, at least
for what regards the third generation quarks. In particular,
qL couples to Ψv with yL strength, while tR couples to Ψs
with coupling yR. Note that when yR → g�, limit we are
interested in, tR can be directly identified with the right-
handed component of Ψs, taken in this case as a (chiral)
massless composite fermion. The low-energy interactions
of the left-handed top (and bottom) are parametrized by the
field

QL ¼ vbbL þ vttL ≡ 1ffiffiffi
2

p
�
ibL bL itL −tL 0 0

�
T
;

ð8Þ

where vt;b are the embeddings of the left-handed top and
bottom, respectively. Two extra elementary fermions, the
brother left- and right-handed tops, t̃L and t̃R, are introduced.
They are singlets under the SM elementary symmetries, but
carry charges under the extra gauged symmetries, specifi-
cally t̃L ∼ 37/6 and t̃R ∼ 32/3 of SUð3ÞC̃ ×Uð1ÞQ̃. They
couple to the Z2 counterparts of the composite fermions
mixing with qL and tR, i.e. Ψ̃v and Ψ̃s, with strengths ỹL and
ỹR, respectively. The interactions of t̃L are then parametrized
by the embedding

Q̃L ¼ vt̃t̃L ¼ 1ffiffiffi
2

p
�
0 0 0 0 it̃L −t̃L

�
T
: ð9Þ

Both the top and brother top acquire Yukawa couplings,
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ytfQ̄LΦtR þ ỹtf
¯̃QLΦt̃R þ H:c:

¼ −
ytffiffiffi
2

p ft̄LhtR −
ỹtffiffiffi
2

p f¯̃tL
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h2

p
t̃R þ H:c:; ð10Þ

where selection rules and NDA fix yt ∼ yLyR/g� while
ỹt ∼ ỹLỹR/g�.
Given that the couplings of qL and t̃L explicit break the

shift-symmetry of the Higgs, a potential is radiatively
generated. The LO contribution, from one-loop top or
brother top diagrams, can be derived based on their
spurionic quantum numbers

VUV
y2

¼ cyy2L
X
ψ¼t;b

ΦTvψv
†
ψΦþ cyỹ2LΦTvt̃v

†
t̃Φ

¼ cy
1

2
½y2Lh2 þ ỹ2Lð1 − h2Þ�; ð11Þ

where the same coefficient cy is present for all the terms in
the potential, owing to the symmetries of the strong sector:
in particular the parity P × Z2, which effectively
acts as tL;R ↔ t̃L;R. This coefficient is estimated as
cy ∼ 6m2

Ψf
2/32π2, where mΨ ≲m� can be interpreted as

the mass of a composite fermionic resonance at which this
term is saturated. Crucial in our construction is the fact that
when yL ≈ ỹL at the scale mΨ, the Higgs dependence of the
potential in Eq. (11) approximately cancels. Note that the
bL only plays the role of preserving the SUð2ÞL ×Uð1ÞY
invariance of the potential. As in standard TH models, the
twin bottom does not play any role in the aforementioned
cancellation. This is why there is no need to specify the
gauge quantum numbers of b̃L;R or their couplings to the
strong sector (as long as these are small), nor that any Z2

symmetry is respected in the bottom sector. Gauge anoma-
lies associated with SUð3ÞC̃ ×Uð1ÞQ̃ should vanish. There
are several ways to achieve this, even if no Z2 partners for
the leptons are present. For instance one can take b̃L ∼ 3−7/6
and b̃R ∼ 3−2/3 (from e.g. Tηðb̃LÞ ¼ −1/

ffiffiffi
2

p
, Tηðb̃RÞ ¼ 0).

Other options that do not require brother leptons are
possible and can give rise to vectorlike masses [17]. If
Q̃ were not gauged, a brother bottom would no longer be
necessary.
The equality between the couplings of qL and t̃L can be

consistently enforced provided NLO contributions associ-
ated with extra loops of qL or gauge bosons can be
neglected. Let us study these contributions in more detail.
Regarding the gauge couplings, the interactions of t and t̃
with the EW and Q̃ gauge bosons differ, since no exact
exchange symmetry applies to the latter. This explicit Z2

breaking feeds back into the top sector at one loop, as a
nonvanishing Δy2L ≡ y2L − ỹ2L, whose size at m� can be
estimated as

ðΔy2LÞg ¼ y2L
ðA1g21 þ 3A2g22 − Ãg̃2Þ

16π2
log

ΛZ2

m�
; ð12Þ

where A1, A2, Ã are Oð1Þ coefficients that we cannot
predict and ΛZ2

is the scale at which the differential running
of yL and ỹL due to the gauge couplings initially arise. For
simplicity we will take A1 ¼ A2 ¼ Ã in our numerical
analysis below.2 Note that the SUð3ÞC gauge coupling
could also be different from the SUð3ÞC̃ one if the colored
particle content below ΛZ2

differed, for instance if the
brothers of the light SM quarks were absent. This would
give rise to another term in ðΔy2LÞg, parametrized as
A3ðg23 − g̃23Þ/16π2 and generically large. In this work we
assume for simplicity that the spectrum above m� is such
that g3ðm�Þ ≈ g̃3ðm�Þ and this contribution is absent.
Another source of explicit Z2 breaking arises from the

fact that the SM bottom does not have a Z2 partner (or that
the presumed brother bottom does not couple to the strong
sector in a Z2-invariant way), as it is apparent from the
embeddings in Eqs. (8) and (9) and the action of the parity
P. This gives rise to another contribution to the differential
running of yL and ỹL that is proportional to yL itself,

ðΔy2LÞy ¼
3By4L
16π2

log
ΛZ2

m�
; ð13Þ

where B ¼ Oð1Þ and in this case ΛZ2
is the scale where the

differential running due to yL starts, which one might
expect to be similar to that in Eq. (12); see Appendix B for
illustrative examples.3

These Z2-breaking terms add to the gauge contribution
discussed in the previous section. The implications of these
effects will also be discussed in Sec. V.
There are further relevant contributions to the potential

which, even if Z2 symmetric, break explicitly SOð6Þ. The
first are generated at the scalem�, as in Eq. (11) but at order
Oðy4LÞ or Oðỹ4LÞ. We compute them also via a spurion
analysis,

VUV
y4

¼dyy4L

�X
ψ¼t;b

ΦTvψv
†
ψΦ

�
2

þdyỹ4LðΦTvt̃v
†
t̃ΦÞ2

þc0yy4L
X

ψ ;ψ 0¼t;b

jvψ j2ðΦTvψ 0v†ψ 0ΦÞþc0yỹ4Ljvt̃j2ðΦTvt̃v
†
t̃ΦÞ

¼dy
4
½y4Lh4þ ỹ4Lð1−h2Þ2�þc0y

2
½2y4Lh2þ ỹ4Lð1−h2Þ�:

ð14Þ

2This is a reasonable relation given the symmetries of the
strong sector: they enforce A1 ¼ A2 ¼ Ã exactly in the limit
where the elementary gauge fields do not couple to J X;X̃ .

3One should also presume that the boundary condition for Δy2L
at the scale ΛZ2

is nonvanishing, although the corresponding
threshold corrections will generically be smaller than the
logarithmically enhanced contributions we have presented [34].
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The term proportional to dy is Z2 symmetric but it gives rise
to both a Higgs mass and a quartic term; its NDA estimate
is 6f4/32π2. Instead the term proportional to c0y contains
only a Z2-breaking Higgs mass term; we expect it is
generated at two loops, with a further suppression
ðg�/4πÞ2, and we neglect it in the following.
The second type of effect is IR generated, and comes

from the renormalization group (RG) evolution of the
potential from the scale m� down to the scale at which
the Higgs mass is measured, that is, for instance, mt. The
largest contribution to this running comes at leading
logarithm (LL) from the light fermionic degrees of freedom
coupling more strongly to the Higgs, i.e. the top and its
brother. At next-to-LL (NLL) also QCD and the brother
QCD interactions should be taken into account, since they
significantly contribute to the running of yt and ỹt.
Moreover, at NLL one also has to consider the effect of
higher-dimensional operators (HDO) associated to the
NGB nature of the Higgs, which modify the running of
the brother top Yukawa. Notably, the effect of RG evolu-
tion, compared to the UV threshold contributions generated
at m�, is logarithmically enhanced and, as already noticed
in the literature [13,14,20,24], almost saturates the
observed value of the Higgs quartic (or equivalently the
Higgs mass, once the correct EW vacuum has been
achieved). Moreover, while the IR contribution is calcu-
lable solely in terms of low-energy degrees of freedom and
associated observables; thus, being rather model indepen-
dent (up to details discussed in Appendix C), the UV
contributions depend on the spectrum of composite states.
For these reasons, in the following, we will parametrize the
UVeffects with free parameters, whose size we will extract
(and compare with their NDA estimate) from the require-
ment of a phenomenologically viable Higgs potential, once
the IR effect has been computed. Examples of UV
completions where the threshold contributions are calcu-
lable are two-site models [13,14,24], extra-dimensional
constructions [9] and SUSY models [5,7,23].
Let us discuss the IR contribution in some more detail,

starting with some general remarks. There are two small
parameters on which the physical Higgs mass will even-
tually depend: one is the leading loop expansion parameter
ðgIR/4πÞ2 logðm2�/m2

IRÞ, with gIR ¼ fyt; ỹt; g3; g̃3g and
mIR ¼ fmt;mt̃g, and the other is ξ. For heavy composite
states with masses m� ∼ 5–10 TeV, outside direct LHC
reach, and given the constraints on ξ from EW precision
tests (EWPT) and Higgs couplings [24], these two param-
eters lie in the same ballpark of 5%–10%. It is, therefore,
advisable to consider a joint expansion in ðlog; ξÞ, where
log is a shorthand notation for the combination appearing
above [24]. From now on wewill use the notation LL, NLL,
etc. to refer to the log expansion only, while LO, NLO etc.
will refer to the aforementioned joint expansion. While the

log expansion comes from the running of the potential, the
ξ expansion arises because of the nonlinear properties of a
NGB Higgs, encoded in the HDO. Only operators that are
nonvanishing at the scale m� can contribute to the IR Higgs
mass up to NLO. These operators can be read off our
effective Lagrangian in Eqs. (2) and (10). In particular, on
top of the HDO generated by the brother top Yukawa
coupling in Eq. (10), there is a single operator coming from
the sigma model Lagrangian that affects the Higgs mass at
NLO, that is

OH ¼ ð∂μjHj2Þ2; ð15Þ

with coefficient cHf2/2, where in our basis cH ¼ 1, from
Eq. (2). All other HDO that can be written with low-energy
degrees of freedom have coefficients that either vanish at
the scale m�, or cannot be predicted solely in terms of low-
energy parameters. None of these operators contribute up to
NLO [20,24].
After these generic comments, let us present our results

for the IR contribution to the Higgs potential, up to NLO
accuracy. The LL term, induced by one-loop top and
brother top diagrams, is given by

VIR
LL ¼ 3f4

64π2
½y4t h4tt þ ỹ4t ð1 − h2Þ2tt̃�; ð16Þ

where we defined tψ ¼ logðm2�/m2
ψ Þ and the Yukawa

couplings are evaluated at the scale m�. This potential
includes the leading contribution to the Higgs quartic
coupling, as well as a logarithmically enhanced Higgs
mass term. Even though the latter is negative, the corre-
sponding minimum is at hhi2 ¼ ξ ≈ 1/2, which is phenom-
enologically excluded. This is the reason why Z2-breaking
contributions to the Higgs mass term, already introduced
above, are needed.
The potential in Eq. (16) gives rise to the LO contribu-

tion to the physical Higgs mass, but to NLO terms as well:
from including the OðξÞ correction of the Higgs kinetic
term due to (15), and from expressing ytðm�Þ and ỹtðm�Þ as
functions of the top Yukawa coupling defined at the top
mass scale ytðmtÞ. Besides, as it was shown in Refs. [20,24]
(and as it happens in the SM) the LL potential leads to an
overestimate of the physical Higgs mass compared to the
LL-resummed one. A better estimate (which, at least in the
SM, is an underestimate of the LL-resummed result) is
obtained after the RG-improvement of the Higgs effective
potential at NLL. Details on this calculation are given in
Appendix C and extensive discussions can be found in
Refs. [20,24]. Here we only quote the result,
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VIR
NLL ¼ 3f4h2

2048π4

��
−2ỹ6t

�
1 − h2

�
1þ 3cH

2

��
þ 4ỹ4t ð3ð1 − h2Þy2t − 4ð2 − h2Þg̃23Þ þ 2h2y4t ð16g23 − 15y2t Þ

�
t2t̃

− 2h2y4t ½16g23 − 15y2t �tttt̃ þ h2y4t ½16g23 − 15y2t �t2t
�
; ð17Þ

where we have retained only the terms relevant for the
physical Higgs mass at NLO. Indeed, this NLL potential
contributes to the physical Higgs mass at NLO, with all its
parameters evaluated at the scale mt.

4 Notice that the
operatorOH affects the running at NLL. This is manifested
by the appearance of the parameter cH. The presence of the
corresponding term is due to the fact that the brother top,
present in the IR effective Lagrangian, has a mass term that
is a relevant operator. This allows HDO-like OH to
renormalize lower-dimensional operators, like the brother
top Yukawa coupling. This also explains why the effect
enters proportional to ỹt (the same does not happen in the
SM since the top mass term is marginal).

V. EWSB AND HIGGS MASS

EWSB and the physical Higgs mass are determined by
the set of contributions to the Higgs potential discussed in
the previous sections: the ultraviolet terms, both the Z2

preserving at Oðy4Þ in Eq. (14) and the Z2 breaking in
Eqs. (7), (12) and (13), and the infrared ones, at LL in
Eq. (16) and NLL in Eq. (17). Since the threshold
contributions are model dependent and determined by
parameters we do not have full control of, we find it
convenient to parametrize them as

VUV ¼ αf4h̄2 þ βf4h̄2ðh̄2 − 1Þ; ð18Þ

where α and β are coefficients which we can only estimate
based on NDA, and h̄2 ≡ h2/Zh ≈ h2ð1 − 3y2t tt/16π2Þ is the
normalized Higgs field after taking into account the Higgs
wave function renormalization. On the contrary, the IR
terms, VIR ¼ VIR

LL þ VIR
NLL, are model independent. We can

use this fact to extract the values of α, β required for the
complete Higgs potential, Vh ¼ VUV þ VIR, to yield
the correct Higgs VEV and mass. Trading the former for
α, the complete expression for the latter is

m2
h ¼ ðmUV

h Þ2 þ ðmIR
h Þ2 ¼ 16v2

�
1 − ξcH −

3y2t tt
16π2

�
β þ 3v2

8π2

	
ðtty4t þ tt̃y4t Þð1 − ξcHÞ

þ y4t
32π2

½ðð3cH − 40Þy2t þ 48g23Þt2t̃ þ 16ð3y2t − 4g23Þtttt̃ þ ð3y2t − 16g23Þt2t �


; ð19Þ

where we have set ỹtðm�Þ ¼ ytðm�Þ and expressed ytðm�Þ
in terms of yt ¼ ytðmtÞ via its SM β-function, retaining
only terms up to NLO order. We treated β as a small
parameter (it is loop generated) so that we have only
retained terms up to order βξ and β log. Equation (19) is
evaluated with yt ¼ yM̄S

t ðmtÞ ≈ 0.936 [24] and cH ¼ 1.
Finally, we have taken g̃3ðm�Þ ¼ g3ðm�Þ and extracted
g3ðm�Þ by running the strong coupling constant from the Z
mass, where g3ðmZÞ ≈ 1.22, to m� according to its β-
function in the SM. The IR contribution to the physical
Higgs mass, corresponding to β ¼ 0 in Eq. (19), computed
with NLO accuracy, is shown in the left panel of Fig. 1 as a
function of the cutoff of the IR effective theory, m�, where
ξ ¼ 0.1 has been assumed. In the figure, we also report the
NLO result in the SOð8Þ/SOð7Þ TH model. The difference

in the IR Higgs mass predicted in the two models is
numerically irrelevant. The right panel of Fig. 1 shows the
fraction of the Higgs mass (squared) generated by the top,
the brother top and their sum, at LO and NLO. Up to the
uncertainty due to the NNLO corrections (especially QCD),
one can conclude that for m� ≈ 5 TeV the top generates
almost half of m2

h ≈ ð125 GeVÞ2, while the brother top
accounts for ∼40%. This shows, as we already anticipated,
that the observed value of the Higgs mass is almost entirely
saturated by the IR contribution.
Since this IR contribution is, in general, not enough to

reproduce the observed Higgs mass, a nonzero UV con-
tribution is generically required, the size of which can be
read from Fig. 2 as a value of β. Regarding the Higgs VEV,
or in other words hhi2 ¼ ξ, we do not provide an analytic
expression here (this can be simply obtained minimizing
the full potential Vh). Instead, we also show in Fig. 2 the
required value of the UV Z2-breaking contribution α
needed to yield a minimum of the potential at ξ ¼ 0.2,
0.1, 0.05 for different values of g� ¼ m�/f, where m� is the
UV scale that cuts off the log’s.

4Now there is no need to run the couplings down to mt, since
this is a contribution of one order higher in the log expansion. In
particular, a different RG evolution of g3 and g̃3 below m�, due to
a different IR colored spectrum, would enter at NNLL.
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Figure 2 provides then simple theoretical guidance on
the required size of the UV coefficients α and β, only as a
function of ξ and g�. Let us discuss the expected size of
these parameters in our scenario.
From Eq. (14), we estimate

β ∼
3y4L
32π2

≈ 9 × 10−3
�
yL
1

�
4

; ð20Þ

in the right ballpark given the inherent Oð1Þ uncertainties
in this estimate. Note that, given ytðm�Þ ∼ yLyR/g�, a
light Higgs favors a fully composite right-handed top,

i.e. yR ∼ g�. Besides, one should keep in mind that the
running top Yukawa coupling decreases at high energies,
ytð5 TeVÞ ≈ 0.78, hence β in Eq. (20) could in fact be
smaller. For a discussion of the correlation between yL and
EWPT, see Ref. [24].
Regarding the explicit Z2-breaking terms, let us recall

that α ≠ 0 is needed to misalign the vacuum at ξ < 1/2.
From Eqs. (11), (12), and (13), we have

Δαy∼
3Δy2L
32π2

m2
Ψ

f2

≈ 10−3
��

geff
1

�
2

� 3

�
yL
1

�
2
��

yL
1

�
2
�
mΨ/f
4

�
2

log
ΛZ2

m�
;

ð21Þ

where we have taken A1 ¼ A2 ¼ Ã ¼ B ¼ 1 and defined
an effective coupling g2eff ≡ g21 þ 3g22 − g̃2. Given the theo-
retical uncertainty on the value of the Z̃ gauge coupling, for
our estimate we have set geff ¼ 1. Comparing with Fig. 2,
we note that ΛZ2

/m� ¼ 103−6 gives a value of α in the right
ballpark. This estimate is, however, very crude, given the
various uncertain Oð1Þ factors. From Eq. (7), we get
instead

Δαg ∼
3g2eff
128π2

m2
ρ

f2
≈ 3.8 × 10−2

�
geff
1

�
2
�
mρ/f

4

�
2

: ð22Þ

Therefore, the gauge contribution has a suitable magnitude
too, as long as mρ is not much larger than f.
Finally, note that while the size of Δαy is determined not

only by the separation between mΨ and f but also by that
between ΛZ2

and m�, the size of Δαg is a more direct
“constraint” on the ratio mρ/f, that is on the mass of the

FIG. 1. Left panel: IR contribution to the Higgs mass as a function of m�, at LO (dotted) and at NLO for the SOð8Þ/SOð7Þ TH model
(dashed) and for our brother Higgs (solid). Right panel: contributions to the Higgs mass squared normalized to its observed value: the
green (dashed), blue (dot-dashed), and black (solid) lines represent the fraction of observed Higgs mass generated, respectively, by the
top, the brother top, and both. For each color (dashing), the upper line represents the LO, while the lower line the NLO result.

FIG. 2. Size of the threshold contributions to the Higgs
potential at m�, parametrized by α and β in Eq. (18), required
to reproduce the Higgs VEV (given in terms of ξ ¼ v2/f2) and
physical Higgs mass. For m� ¼ g�f, the dots in the curves
correspond, from top to bottom, to g� from 2 to 8.
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composite vector resonances, given a value of ξ. Ifmρ ≫ f,
the gauge contribution to the Higgs potential would over-
shoot the required value of α to yield a minimum at ξ,
slightly increasing the tuning beyond the minimal one,
given by 2ξ. Nevertheless, a large ratiom�/f (and, thus, also
mρ/f) is not expected based on perturbativity arguments.
Indeed, one expectsmρ ≲m� ∼ 4πf/

ffiffiffiffi
N

p
, for instance from

ππ elastic scattering in SOðN þ 1Þ/SOðNÞ [24]. In sum-
mary, we find that the explicit breaking of the Z2 symmetry
introduced by construction in our model can potentially be
of the required size.
A comment on the nonmonotonic behavior of α with ξ in

Fig. 2 is in order. We first recall that α, which encodes the
Z2-breaking UV contribution to the Higgs mass term, is
needed to achieve a small ξ. Indeed ξ ∼ jαIRj − α, where αIR

is the IR contribution to the Higgs mass term, always
negative and large. The naive expectation is then that in
order to make ξ smaller, α needs to increase, as shown in
Fig. 2 for large ξ up to ξ ≈ 0.1. However, jαIRj itself
depends, via the logarithm tt̃ ¼ logðm2�/m2

t̃ Þ, on ξ: as ξ
decreases so does tt̃ and jαIRj ∼ tt̃; t2t̃ , leading to a decrease
of α accordingly. The fact that this latter behavior takes
place for ξ≲ 0.1 is just a numerical accident.

VI. PHENOMENOLOGY

Given the presence of light SM-neutral states in the
infrared and a relatively high cutoff scale m�, our scenario
gives rise to a set of phenomenological implications typical
of TH or neutral-naturalness models: deviations in Higgs
couplings [10], with the corresponding (IR) contribution to
EWPT [35] (while UV contributions, suppressed by m�,
are typically small), and possibly nonstandard Higgs
decays [12].
However, by construction there is no massless Z2 partner

of the photon, nor massive Z2 partners of the W�, below
m�. Since there is no conserved twin electric charge, all our
brother states can a priori decay to SM states. Indeed, any
global symmetry associated to the brother fermions could
in principle be broken, either by interactions in the
elementary sector or via the strong sector. However, several
remarks in this regard are important. First, since the Z2

partners of theW� are absent, there could be one conserved
global symmetry for each type of brother fermion, i.e.
Uð1ÞŨ andUð1ÞD̃, alluding to the number of brother up and
down quarks, respectively, and Uð1ÞL̃ and Uð1ÞÑ , for the
brother leptons, if they are in the spectrum.5 Second, if the
strong sector preserves a given Uð1Þ brother number, its
breaking by elementary interactions could be of high
dimensionality and, thus, be suppressed by a potentially
large UV scale (similar to baryon and lepton number in the
SM). Long-lived states could, therefore, be generic in our

scenario, as in standard TH models [12]. Third, selection
rules on the strong sector interactions, for instance asso-
ciated with X̃-charge if not explicitly broken, could forbid
Ũ, D̃, L̃ or Ñ violation. Last but not least, if unstable, the
lightest brother fermion should decay to a fermion of the
SM, with possible implications for baryon and lepton
number violation. Further details on these issues heavily
depend on the spectrum of brother states. If any of the
brother fermions is a good dark matter candidate [36],
including t̃, is a question that we believe deserves further
study.
Finally, we can extract several phenomenological con-

sequences from our study of the Higgs potential, that is
from the Higgs mass and from the requisite of ξ≲ 10%
with minimal tuning. The former indicates, according to
Eq. (20), that a significant degree of compositeness of the
right-handed top is to be expected. Given tR couples to the
strong sector as a singlet of SOð6Þ, the best way to test its
compositeness is via four-top scattering [37–39]. The latter
instead suggests, from Eq. (22), that EW composite vectors
are not necessarily out of LHC reach [40].
We do not enter here into the issues of flavor or

corrections to EWPT; these matters have been discussed
in Refs. [16,24], respectively, and we do not expect
substantial changes in our scenario.

VII. CONCLUSIONS

The TH mechanism protects the pseudo-NGB Higgs
potential against contributions proportional to the cutoff
m�, i.e. the mass of the heavy SM-charged states intrinsic of
the dynamics giving rise to the Higgs. One of the goals of
this work was to explore how versatile this mechanism can
really be. Since the largest contribution to the Higgs
potential, associated with the top Yukawa coupling, is
sensitive to the mass of heavy SM-colored states, for which
the LHC reach is maximal, in this paper we presented an
implementation of the TH protection that is only active in
the top sector.
Our realization has been based on a composite Higgs

model with global SOð6Þ symmetry spontaneously broken
to SOð5Þ. The strong sector has also been endowed with an
exchange Z2 symmetry such that the composite states
charged under SUð3ÞC color behave the same as the states
charged under an additional SUð3ÞC̃ brother color. This
paved the way to the cancellation of the leading top
contribution to the Higgs potential: while the SM top
couples to the strong sector via a composite operator Ψ, an
extra elementary state, the brother top (t̃L), couples to the
strong sector via the Z2-symmetric counterpart Ψ̃. Their
contributions to the Higgs mass cancel each other out, as
long as their couplings, yL and ỹL, respectively, are the
same at the relevant scale m�. The cancellation follows
from the symmetry structure of SOð6Þ, which contains a
discrete symmetry that controls how the couplings yL and

5Recall that anomaly cancellation in the brother sector does not
require such states.
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ỹL break the Higgs shift-symmetries. This is regardless of
the fact that qL is a doublet while t̃L is not, i.e. the brother
bottom is irrelevant for the TH mechanism applied only to
the top sector.
This is one of the reasons we consider our model

minimal. Another related reason is that the strong sector
has a smaller symmetry breaking pattern than bona-fide TH
models.6 In this regard, our setup is similar to those
presented in Refs. [27,28], but with the important addition
of custodial symmetry, crucial in order to avoid strong
experimental bounds from EWPT. The only extra NGB
besides the Higgs could be eaten by gauging the associated
Uð1Þ, giving rise to a partial cancellation of the gauge
sector contribution to the Higgs potential. Nevertheless this
is not required.
By construction our scenario breaks explicitly the Z2

symmetry responsible for the TH mechanism, but in a way
that still allows the cancellation of the LO Higgs potential
to be at work. We explicitly showed that NLO UV effects
are under control and can give rise to the amount of SOð6Þ
and Z2 breaking required for successful EWSB with
minimal fine-tuning and a correct value of the physical
Higgs mass. One of the important consequences that
follows from our analysis is that composite vector reso-
nances should certainly be within reach of a future 100 TeV
collider, for fixed ðv/fÞ2 ∼ 5%–10%.
Other phenomenological differences with respect to

other TH models are that there is no massless twin photon
and that the Z2-partners of the leptons are not required by
anomaly cancellation. An additional consequence is that
there are no super-selection rules associated with the
conservation of twin electric charge; thus, in principle,
all Z2-partners could decay, although they could also well
be (very) long-lived.
Finally, one of the interesting features of our construc-

tion is that, contrary to other SOðNÞ/SOðN − 1Þ models
with N ≠ 6, it can admit a fermionic UV completion [41–
43]. This could allow us to explicitly study the dynamics
giving rise to the Higgs and its interplay with the (approxi-
mate) Z2 symmetry, in the spirit of Ref. [6].
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APPENDIX A: SOð6Þ ALGEBRA

The generators of SOð6Þ in the vector representation can
be written as

½TKL�IJ ¼ −
iffiffiffi
2

p ðδIKδJL − δJKδILÞ; ðA1Þ

with I; J; K; L ¼ 1;…; 6. The five broken SOð6Þ/SOð5Þ
generators have been identified in Eq. (2) as Tâ ¼ Tâ6, with
â ¼ 1;…; 5. Note we have defined T5 ≡ Tη in the main
text. Within the ten unbroken SOð5Þ generators, the
custodial SUð2ÞL × SUð2ÞR subgroup is generated by
the combinations

Tα
L;R ¼ 1ffiffiffi

2
p

�
ϵαβγ

2
Tβγ � Tα4

�
; ðA2Þ

with α, β, γ ¼ 1, 2, 3.
The matrix of Goldstones is customarily given by

Uðπ̂Þ ¼ exp ði ffiffiffi
2

p
π̂âTâÞ. In writing Eq. (2), we performed

the field redefinitions πâ ¼ π̂â sin Π̂, with Π̂ ¼ ffiffiffiffiffiffiffiffiffiffi
π̂b̂π̂b̂

p
. In

this way the Goldstone matrix can be written in a compact
from as ½UðπÞ�â b̂ ¼ δâ b̂−πâπb̂/ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−π2â

p
Þ, ½UðπÞ�â6 ¼

−½UðπÞ�6â ¼ πâ and ½UðπÞ�66 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − π2â

p
.

APPENDIX B: COMPLETIONS

In this appendix, we discuss how the approximate Z2-
symmetric relation between the couplings of the left-
handed top and brother top, that is ỹL ≈ yL, can arise from
more symmetric dynamics. We present two different proof-
of-principle examples, the first based on a gauged SOð6Þ
symmetry while the second on a strong sector with a global
SOð8Þ symmetry.
Example (1) This can be regarded as the holographic

version of the scenario described in the main text.
Therefore, it is based on an extra-dimensional construction,
in particular a slice of AdS with UV and IR boundaries.7

The gauge symmetry in the bulk is G ¼ SOð6Þ×
SUð3ÞC × SUð3ÞC̃ ×Uð1ÞX ×Uð1ÞX̃ × Z2. The unbroken
subgroups of G at the UV and IR boundaries are HUV ¼
SUð2ÞL×Uð1ÞY ×Uð1ÞQ̃×SUð3ÞC×SUð3ÞC̃ and HIR ¼
SOð5Þ × SUð3ÞC × SUð3ÞC̃ × Uð1ÞX ×Uð1ÞX̃ × Z2, with
Y ¼ T3

R þ X and Q̃ ¼ Tη/
ffiffiffi
2

p þ X̃. This pattern can be
accomplished by assigning the proper boundary conditions
to the 4D components of the bulk gauge fields: Aa

μðþþÞ
for Ta ∈ H ¼ HUV ∩ HIR, Aā

μðþ−Þ for Tā ∈ HUV/H,6These are based on cosets that all are 7-spheres,
SOð8Þ/SOð7Þ, SUð4Þ/SUð3Þ or SOð5Þ/SOð3Þ. The only such
missing type of coset, SOð7Þ/G2, is being investigated by the
present authors.

7The models of Refs. [27,28] are also placed on a fifth
dimension.
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Aȧ
μð−þÞ for Tȧ ∈ HIR/H and Aâ

μð−−Þ for Tâ ∈ G/HUV ∩
G/HIR. It follows that the respective five-dimensional
components have opposite boundary conditions. In par-
ticular, the Aâ

5 have ðþþÞ boundary conditions, signalling
the presence of scalar zero modes, the uneaten NGBs. We
define the bulk gauge couplings of SOð6Þ, SUð3ÞC ×
SUð3ÞC̃ and Uð1ÞX ×Uð1ÞX̃ as g5, g5C and g5X , respec-
tively. Then the four-dimensional gauge couplings of the
unbroken UV gauge fields are given by

1

g22
≈

L
g25

;
1

g21
≈

L
g25

þ L
g25X

;

1

g̃2
≈

L
2g25

þ L
g25X

;
1

g23
≈

1

g̃23
≈

L
g25C

; ðB1Þ

where L ¼ R logðR0/RÞ, with z ¼ R the position of the UV
boundary and z ¼ R0 that of the IR boundary. Importantly,
these relations neglect UV boundary localized kinetic terms
(aka threshold corrections), allowed by the UV gauge
symmetry. Therefore, the relation between g1 and g̃ is an
accident of the five-dimensional construction, which holds
as long as different, i.e. non-SOð6Þ symmetric, boundary
kinetic terms for Y and Q̃ are small; indeed, if the four-
dimensional gauge couplings are weak, we can expect the
corrections to these relations to be small (of order-one weak
loop) [44].
Fermionic fields also propagate in the bulk, in particular

the left-handed top (and bottom) qL and the brother top t̃L,
which are embedded in a bulk multiplet Q with the gauge
quantum numbers ð6; ð3; 1Þ2/3;0 ⊕ ð1; 3Þ0;2/3Þ, that is those
of Ψv and Ψ̃v in Sec. II. Boundary conditions for the left-
handed part of Q are chosen such that only qL and t̃L have
zero modes, that is ðþ;þÞ, while the rest of the components
are assigned ð−;þÞ boundary conditions. The right-handed
components of Q have opposite boundary conditions. The
right-handed top tR and brother top t̃R are assumed to be
purely IR localized, with IR quantum numbers
T R ∼ ð1; ð3; 1Þ2/3;0 ⊕ ð1; 3Þ0;2/3Þ. Since Q decomposes
on the IR brane as QL ¼ Q1

L þQ5
L (only the left-handed

components have (þ) IR boundary condition), a mass term
is allowed on the IR brane, m1Q̄1

LT R þ H:c:, giving rise to
equal Yukawa couplings for the top and brother top,

yt ≈ ỹt ≈
g5ffiffiffiffi
L

p m1

f
; ðB2Þ

where we have assumed a Q bulk mass mQ ¼ 1/ð2RÞ for
simplicity. As for the gauge fields, also for fermions the
approximate relation between the couplings of the fermion
zero modes holds as long no UV boundary kinetic terms for
qL and t̃L, specifically non-SOð6Þ symmetric (and Z2

breaking) ones allowed by the UV gauge symmetry, are

present. However, once again such threshold corrections
are expected to be perturbatively small.
Finally, the decoupling of the unwanted UV (elemen-

tary) states by boundary conditions could be replaced by
explicit 4D dynamics on the UV brane. When trying to do
such an exercise, it becomes clear that the complicated
dynamics will certainly give rise to threshold effects upon
integrating out the heavy scalars, fermions and vectors,
which will affect the relations in Eqs. (B1) and (B2).
Nevertheless, such corrections are induced only at one
loop, so that they can be treated as a perturbation. Besides,
larger effects will be generated by RG evolution, see
Eqs. (12) and (13). In the extra dimension, such running
effects correspond to subleading corrections in the
ðg25/RÞ/ð16π2Þ expansion.
Example (2) We consider a composite TH model based

on a global SOð8Þ symmetry [13]. The strong sector is also
invariant under SUð3ÞC × SUð3ÞC̃ × Uð1ÞX ×Uð1ÞX̃ × Z2

and an additional SUð2ÞTC. The subgroup SUð2ÞL×
Uð1ÞY ×SUð3ÞC×SUð3ÞC̃×SUð2ÞTC, with Y ¼ T3

R þ X,
is gauged. For the sake of simplicity, we assume that none
of the twin subgroups are gauged except for twin color. The
elementary left-handed doublet qL and its twin q̃L are
coupled to the strong sector in a Z2-symmetric fashion,
according to the usual embedding qL ∈ ð8; 3Þ2/3 of
SOð8Þ × SUð3ÞC ×Uð1ÞX and q̃L accordingly [13,14].
Differently than in the standard scenario, we consider the

case in which the strong sector’s global SOð8Þ is sponta-
neously broken to SOð6Þ ×Uð1Þ0 by the VEV f0 of an
adjoint Σ ¼ 28. The adjoint of SOð8Þ decomposes as 28 ¼
10 þ 6�1/

ffiffi
2

p þ 150 under SOð6Þ ×Uð1Þ0; therefore, the
NGBs form a complex 6-plet. The unbroken Uð1Þ0 is
given by T 0 ¼ ðT3

L̃
þ T3

R̃
Þ/ ffiffiffi

2
p

, while the Uð1Þη within

SOð6Þ by the orthogonal combination Tη ¼ðT3
L̃
−T3

R̃
Þ/ ffiffiffi

2
p

.
Out of the twelve NGBs, there is a complex 4-plet of

SOð4Þ ≅ SUð2ÞL × SUð2ÞR (a THDM charged under
Uð1Þ0), and two complex SOð4Þ singlets (charged under
Uð1Þ0 and Uð1Þη). The former gets mass radiatively from
their coupling to the SM gauge bosons. We assume that a
suitable symmetry breaking spurion lifts the latter.
The SOð8Þ vector decomposes as 8 ¼ 1�1/

ffiffi
2

p þ 60 under
SOð6Þ × Uð1Þ0. Upon SOð8Þ/SOð6Þ ×Uð1Þ0 breaking, the
SM qL remains in the vector 60, while q̃L gets split: t̃L
becomes a component of the vector 60, while b̃L turns into
one of charged singlets 1−1/

ffiffi
2

p . The fact that Uð1Þ0 is
unbroken prevents the twins from acquiring a mass, thus t̃L,
b̃L and t̃R remain massless. Furthermore, the breaking is
such that t̃L remains coupled to the SOð6Þ × Uð1Þ0 low-
energy fields with the same strength as qL. This realizes the
exchange symmetry t̃L;R ↔ tL;R.
Without a mechanism to further break, at a lower scale

m� ≪ ΛZ2
∼ 4πf0, SOð6Þ to SOð5Þ, the dynamics above
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does not give rise to the scenario described in the main text.
To achieve this nontrivial last step, we shall imagine that the
strong sector generates below ΛZ2

a composite chiral
fermion Ψ transforming as ð4; 2Þ0 under SOð6Þ×
SUð2ÞTC × Uð1Þ0, along with a set of 2n SOð6Þ ×Uð1Þ0
singlets χ also in the fundamental of SUð2ÞTC,
χ ∼ 2n × ð1; 2Þ0. This is then a realization of the model
of Ref. [41], which breaks SOð6Þ/SOð5Þ at the scale of the
mass of the singlet fermionsMχχχ. Therefore, m� ∼Mχ ≪
ΛZ2

represents a technically natural hierarchy. Since in this
model Uð1Þη, within SOð6Þ, is not gauged, the associated
NGB η would remain massless. However, a mass term
MΨΨTΨ, allowed by the gauge symmetries, lifts it (leading
to m2

η ≲m2
h/ξ). In this case, it is natural to take MΨ ≪ Mχ ,

again because of chiral symmetry.
Finally, the Yukawa couplings for qL and t̃L are already

generated at the scale ΛZ2
,

∼
yLyR
Λd−1
Z2

½Q̄LðΨΨTÞtR þ ¯̃QLðΨΨTÞt̃R� þ H:c:; ðB3Þ

where d is the scaling dimension of ðΨΨTÞ, to be identified
with Φ in Eq. (2). The Yukawa couplings of the top and the
brother top are then approximately the same because of the
original SOð8Þ × Z2 symmetry, while the IR theory
reduces to the one we considered in this article.

APPENDIX C: HIGGS POTENTIAL AT NLL

The detailed calculation of the IR Higgs potential at NLL
for the composite TH based on the SOð8Þ/SOð7Þ coset,
using the background field method, has been presented in
Ref. [20]. This procedure, discussed in Sec. III of this Ref.
[20], can be applied to our construction based on the
SOð6Þ/SOð5Þ coset, with a slight modification. While in
the larger coset the running of the twin top mass is affected
only by the physical Higgs, now it is also affected by the
brother NGB η. In the SOð8Þ/SOð7Þ THmodel, the running
of the twin top mass has the same form as the running of the
top mass in the SM, where the contribution of the full

custodial triplet of NGBs ðπ0; π�Þ cancels out.8 In our
model, however, since the twin NGBs π̃�, charged under
the custodial twin SUð2Þ, are not present, the contribution
of the neutral one does not cancel. This amounts to a
modification of the running of the brother top Yukawa
coupling. The β function of ỹt in Eq. (3.11) of Ref. [20] gets
modified to

βỹt ¼
ỹtðhc; tÞ
64π2

�
16g̃23 − ỹ2t ðhc; tÞ

�
3

Zĥðhc; tÞ
− 1

�
h2c

f2 − h2c

�
;

ðC1Þ

where h ¼ hc þ ĥ is the expansion of the Higgs field in
fluctuations ĥ around a background hc [20]. The difference
with the SOð8Þ/SOð7Þ case corresponds to the ð−1Þ term in
Eq. (C1), that is the brother NGB contribution. Following
the procedure of Ref. [20] with only this modification, one
gets the IR correction to the Higgs mass at NLL

ðδm2
hÞNLLIR ¼ 3v2t2

256π2
½16ðg23y4t þ g̃23ỹ

4
t Þ − 15y6t

þ ð2þ 3cHÞỹ6t − 12ytỹ4t �; ðC2Þ

where all parameters are evaluated at the scale m�. This
expression should be compared to Eq. (3.17) of Ref. [20]
where the NNLO ξt2 contribution has been neglected. We
see that the only difference is in the ỹ6t contribution not
proportional to cH (our 2 was a 3 in Ref. [20]). This in fact
turns out to be a numerically irrelevant difference, as shown
in Fig. 1. After including the LL IR correction to the
physical Higgs mass up to order ξ, matching the expression
at the scale mt̃, including the UV contribution, and
expressing all parameters as functions of the observable
quantities in the IR, one gets the expression for the physical
Higgs mass given in Eq. (19).
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