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ABSTRACT

Neutral stochastic differential delay equations (NSDDEs) have recently
been studied intensively (see Kolmanovskii, V.B. and Nosov, VR,
Stability and Periodic Modes of Control Systems with Aftereffect,
Nauka: Moscow, 1981 and Mao X., Stochastic Differential Equations
and Their Applications; Horwood Pub.: Chichester, 1997). Given that
many systems are often subject to component failures or repairs, changing
subsystem interconnections and abrupt environmental disturbances etc.,
the structure and parameters of underlying NSDDEs may change abruptly.
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840 Kolmanovskii et al.

One way to model such abrupt changes is to use the continuous-time
Markov chains. As a result, the underlying NSDDEs become NSDDEs
with Markovian switching which are hybrid systems. So far little is known
about the NSDDEs with Markovian switching and the aim of this paper is
to close this gap. In this paper we will not only establish a fundamental
theory for such systems but also discuss some important properties of the
solutions e.g. boundedness and stability.

Key Words:  Brownian motion; Generalized 1t6’s formula; Markov chain;
Hybrid system.

1. INTRODUCTION

Many dynamical systems not only depend on present and past states but
also involve derivatives with delays. Neutral differential delay equations
(NDDEs) are often used to describe such systems. For example, Brayton!!]
used a partial differential equation (PDE) to describe the problem of loseless
transmission and then transferred the PDE into the following NDDE

d
2 PO — Kx(t = O] =/ (x(0), x(1 — 7))

Another similar equation encountered by Rubanik!?) in his study of vibrating
masses attached to an elastic bar is

(1) + 0y °x(0) = efy (x(1), %(0), W0, 7(0) + 7,3 — 7)
1) + 03°x(1) = efy(x(t), X(1), W(2), J0) + 7,%(t — T)

In general, an NDDE has the form

d
a [x(1) = Dx(t — )] = f (x(1), x(t — 1), 1) (1.1)

For the theory of NDDEs please see Hale and Lunel®® and the references
therein. Taking the environmental disturbances into account, Kolmanovskii
and Nosovl*! and Mao!® discussed the neutral stochastic differential delay
equations (NSDDEs)

d[x(t) — D@x(t — 1))] = f(x(?), x(t — ), t) dt
~+ g(x(¢), x(t — 1), 1) dB(?) (1.2)
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Neutral Stochastic Differential Delay Equations 841

On the other hand, many practical systems may experience abrupt changes
in their structure and parameters caused by phenomena such as component
failures or repairs, changing subsystem interconnections, and abrupt environ-
mental disturbances. The hybrid systems driven by continuous-time Markov
chains have recently been developed to cope with such situation. The hybrid
systems combine a part of the state that takes values continuously and another
part of the state that takes discrete values. Such hybrid systems have been
considered for the modelling of electric power systems by Willsky & Levy!®
as well as for the control of a solar thermal central receiver by Sworder &
Rogers.!”! Athans'™ suggested that the hybrid systems would become a basic
framework in posing and solving control-related issues in Battle Management
Command, Control and Communications (BM/C?) systems. An important
class of hybrid systems is the jump linear systems

x(1) = A(r(0)x(?) (1.3)

where a part of the state x(f) takes values in R"” while another part of the state
r(f) is a Markov chain taking values in S ={1,2,..., N}. One of the
important issues in the study of hybrid systems is the automatic control,
with consequent emphasis being placed on the analysis of stability. For more
detailed account on hybrid systems please see Basak et al.,® Ji and
Chizeck,""”! Mao et al.,!'"'] Mariton,"*! Shaikhet,!'*! among the others.

Motivated by the hybrid systems, let us return to the NSDDE (1.2). If this
system experiences abrupt changes in their structure and parameters and we
use the continuous-time Markov chains to model these abrupt changes, we
then need to deal with NSDDE with Markovian switching

d[x(t) — D(x(t — 1), r(£))] = f(x(?), x(t — 1), t, ¥(t)) dt
+ g(x(t), x(t — 1), t, r(t)) dB(?) (1.4)

So far little is known about such systems and the aim of this paper is to close
this gap. We will establish a fundamental theory for the NSDDEs with
Markovian switching e.g., the definition of the solutions and conditions for
the existence and uniqueness of the solutions. We will also discuss some
important properties of the solutions e.g., asymptotic boundedness and
stability.

2. NSDDES WITH MARKOVIAN SWITCHING

Throughout this paper, unless otherwise specified, we use the following
notations. Let |-| be the Euclidean norm in R”. If A is a vector or matrix, its

Q1



127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

842 Kolmanovskii et al.

transpose is denoted by AT. If A is a matrix, its trace norm is denoted by
|A| = y/trace(ATA). If A is a symmetric matrix, denote by 1., (A) and
Amin(A) its largest and smallest eigenvalue, respectively. Let R, = [0, oo)
and 7 > 0. Let C([—7, 0]; R") denote the family of continuous functions ¢
from [—7, 0] to R" with the norm [|¢| = sup_,.yo |@(0)|.

Let (Q, F, {F,},~¢. P) be a complete probability space with a filtration
{F,}=0 satisfying the usual conditions (i.e., it is increasing and right
continuous while F, contains all P-null sets). For p > 0, denote by
Lz ([, 0]; R") the family of all F-measurable and C([—t, 0]; R")-valued
random variables ¢ such that E|||P < oo. Denote by Cfob([—’[, 0]; R") the
family of all F,-measurable, bounded and C([—t, 0]; R")-valued random
variables. If x(f) is a continuous R"-valued stochastic process on
t € [—1, 00), we let x, = {x(t + 0): — t < 6 < 0} for t > 0 which is regarded
as a C([—t, 0]; R")-valued stochastic process. Let w(t) = (w,(?), ..., wm(t))T,
t > 0, be an m-dimensional Brownian motion defined on the probability space.
Let r(z), t > 0, be a right-continuous Markov chain on the probability space
taking values in a finite state space S = {1,2,..., N} with generator

I' = (j)vxn given by

P{r(t+A) = | (1) =i} = { f’f ;Z(ﬁ)o(g i 7iﬁfji =J

where A > 0. Here y;; > 0 is the transition rate from i to j if i # j while

Yii = _Z%j

J#L

We assume that the Markov chain r(-) is F,-adapted but independent of the
Brownian motion w(-). It is well-known (see Skorohod!'*)) that almost every
sample path of r(¢) is a right-continuous step function with a finite number
of simple jumps in any finite subinterval of R,. In other words, there
is a sequence of stopping times 0 =1y < 7; < --- < 7, — 00 almost surely
such that

o0

() =Y ), O

k=0

where 1, denotes the indicator function of set A.
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Neutral Stochastic Differential Delay Equations 843

In this paper we consider the n-dimensional NSDDE with Markovian
switching

d[x(t) — D(x(t — 1), r(1))] = f(x(?), x(t — 1), t, r(t)) dt
+ g(x(t), x(t — 1), t, r(t)) dB(¢) 2.1

on t > 0 with initial data x, = ¢ € Lfoz([—r, 0]; R") and r(0) = r,, where 7,
is an S-valued Fj-measurable random variable and

D:R"'xS—>R" fiR"xXR"xR, xS—>R",
gR'xR"xR,. xS —>R"

are all Borel-measurable functions. By the definition of It6’s stochastic
differential, Eq. (2.1) means that for every 7 > 0,

X(T) = DT — 1), (1)) = £(0) — D(x(—7), ry)

T
+| s 0.0 oy
0
T
+] soe—o a0 @2
0
holds with probability one. Let us first give the definition of the solution.

Definition 2.1
An R’-valued stochastic process {x(f)},_, is called a solution of
Eq. (2.1)if it has the following properties:

1. {x(f)} is continuous and F,-adapted (as usual we set F, = F, when
t€[—1,0]);
2. forevery T >0

T
J |f(x(0), x(t — 1), ¢, r(£))| dt < 00 a.s.
0
and
T
J lg(x(0), x(t — 1), t, r()|>dt < 00 a.s.
0

3. xy = ¢ and Eq. (2.2) holds with probability 1 for every T > 0.
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844 Kolmanovskii et al.

A solution {x(#)} is said to be unique if any other solution {x(#)} is
indistinguishable from {x(z)}.

To establish the existence-and-uniqueness theorem we need to impose the
following assumptions.

Assumption 2.2
Assume that there exists a positive constant K such that

£ G p, 8, DIF Vg, v, 1, )12V ID(p, F < K1+ x> + y?) (23)

for all (x, y, 1, i) € R" x R" x R, x S. Moreover, for every & > 0, there is a
positive constant K, such that

Gy, b)) =@ 2 6, DV lgCr, y, 1, ) — gy, 1, DIP < Kyl —
2.4)
forall (y, t, i) € R" x R, x S and those x, x € R" with |x| v |x| < h. We refer

to (2.3) as the linear growth condition and (2.4) the local Lipschitz condition
in x for f(x, y, t, i).

We can now state our theorem on the existence and uniqueness of the
solution.

Theorem 2.3
Under Assumption 2.2 Eq. (2.1) has a unique solution x(f) on ¢ > —t.
Moreover, the solution has the property

E||xkr||2:E< sup IX(t)|2>

(k—1)t<t<kt
Ck+l -1

< CFEIE)? Vk=1,2,... 2.5
=—e—1 TCEKI .2, 2.5)

where
C = C(K, t) = [10K + 11 v 5K7(t 4 5)]e' K7+
Proof.
Given the initial data £ on [—t, 0], we first show that Eq. (2.1) has a

unique solution x(#) on 7 € [0, 7] and it has the property

Ellx|I* < C(1 + E|IE)*) (2.6)
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where C = C(K, 1) has been defined in the statement of the theorem. In fact,
when ¢ € [0, 7], Eq. (2.1) can be written as

x(1) = &£(0) + D(E(t — 1), (1)) — D(E(—7), 1)
+ Lf(x(s), E(s — 1), 5, r(s))ds

4 L g(s), &5 — 1), 5, 1(s)) dB(s)

2.7)

This is a stochastic differential equation with Markovian switching and it is
known (see Mao'") that this equation has a unique solution x(r) on ¢ € [0, 7]
under Assumption 2.2. It now follows from (2.7) that

§|x(r)|2 = GO + IDEE = 0, @) + IDE=), 7o)

+

_I_

0

Lf(x(s), Es — 1), 5. H(s)) d

J 2(x(s), &(s — 1, 5. H(5)) dB(s)

Taking x = 0 in (2.3) we observe that

2

2

ID(y, )l < KA +1yP) V() eR" xS 2.8

So

IEO) + 1D — 1), re)I* + IDE(=0), ro)l* < 2K + 2K + DIE]?

Moreover, by the Holder inequality and (2.3),

Jof(x(s), Es — ) 5. r(5)) ds

2

< zjo /() G5 — D), 5, rs) P dis

t
§IKJ
0

(1 + @) + |x(s — ) ds
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295 We therefore see that for any ¢, € [0, 7],
296

297

298 E( sup IX(t)IZ) <10K + 52K + DE||&|?
0<t<t,

299

300

301

15
+ STKEJI (1 + [x(s)* + |x(s — 7)*) ds
302 ’
303 + 5E ( sup
304 0=<r=t,
305
306 But, by the Doob martingale inequality and (2.3),

307
2)

308
309 E ( sup
< 4E J 180(s), &G — 1), 5, (5| ds
0

J gx(s), Es — 7, 5. H(s)) dB(s)

0

)

j g(xls), (5 — 1), 5, 1(s)) dB(s)

0

310 0=i=h

311
312
313 1

" 541<EJ (U + XEP + (s — 7)) ds
315 0

316
317
318
319 E( sup |x(t)|2) <10K + 52K + DE||¢|?
320 0<t<t,

321 f

322 ~|—5K(r+5)EJ (1 4 [x(s)1? + x(s — 1)|*) ds
323 0

324 <10K 4 52K + DE|||]* 4+ 5Kt(t + 5)

325 h 5
226 + 10K (1 + S)J E( sup |x(w)|”)ds
0

—1<u<s
327

328
329

330
331 E( sup |x(z)|2>sE(||é||2+ sup |x<t)|2>

332 —T=i=y 0=ty

333 < 10K + (10K + 1D)E|IE|)> + 5Kt(t + 5)
334

gl
335 + 10K (7 + S)J E< sup IX(M)IZ) ds
0

336 —1<u<s

1

Thus we have

Consequently
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The well-known Gronwall inequality implies

E( sup |x(t)|2) < [10K + 11 v 5K7(t + 5)|(1 + E||&]|*)e' K7+

—1<t<t

and (2.6) follows.

Once we obtain the unique solution on [0, t] we can regard them as the
initial data and consider Eq. (2.1) for ¢ € [t, 27]. In this case, Eq. (2.1) can be
written as

x(1) = &(z) + D(x(t — 1), (1)) — D(x(0), r(7))
+ J f(x(s), x(s — 1), 5, 1(s))ds

+ J g(x(s), x(s — 1), 5, r(s)) dB(s)

This is a stochastic differential equation with Markovian switching and it has a
unique solution x(f) on ¢ € [1, 27] under Assumption 2.2. Moreover, we can
show in the same way as (2.6) was proved that

Elxy|I* < C(1 + Ellx.|I*)

Repeating this procedure on intervals [27, 371], [37, 47] and so on we obtain the
unique solution x(¢) on ¢ > —t1. Moreover, we have, for any k =1, 2,...

Elxi > < C( + Ellxg_p)I1%)
< C+C*(1 + Elxg_z:I*)

<CH+C 4+ C 4 R+ Ellxg 1)

CcH -1
T CREIEN?
o1 TCEI

which is the required (2.5). The proof is complete.
Theorem 2.3 shows that if the initial data are in Z? then the solution will

be in L. The following theorem shows that if the initial data are in L7 (p > 2)
then the solution will be in Z”.
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Theorem 2.4
Under Assumption 2.2, if the initial data ¢ € L’}O([—r, 0]; R") for some
p > 2, then the unique solution x(¢) of Eq. (2.1) has the property that

-1
Ellxp P = ———

k+

1

Cc—-1

where C is a positive constant dependent of only K, 7 and p.

Proof.
When ¢ € [0, 7], it follows from (2.7) that

1

5p—1

+

+

Lf(x(s), &5 — ), 5. r(s)) d

L gx(s), E(s — ), 5. H(5)) dB(s)

Kolmanovskii

+ CrE| W Vhk=1,2,...

W) < 1EOF + [DEE = ), HO) + IDE=T), o)l

P

P

By (2.8), the Holder inequality and (2.3) we can show that

IEO) + [D(E(t — 1), H(E)IP + |D(E(=1), ro)l?
< QK)"* +[1+ QKPP

and

We therefore see that for any ¢, € [0, 7],

|

Lf(x(s), &s — ) 5, r(s)) d
<Ky J (

sup |x(t)l

0<t<t,

0

) sa(+E|

4l
sl 1
0

+5P—1E(

P

T<u<s

4[]

sup
0<t<t,

1+ sup |x(u)|”) ds

sup |x(u)P ) ds

—T<u<s

jo g(xls), (5 — 1), 5, 1(s)) dB(s)

et al.

2.9)

)
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where ¢, and the following c,, c; etc. are all positive constants dependent of
only K,7 and p. But, by the Burkholder-Davis-Gunday inequality (see
Mao!®)), the Holder inequality and (2.3), we have

12
E| sup
0<t<t,

pp+] r/2 1)
= [W} £ Jo lg(x(s), &(s — 1), 5, 7(s))I” ds

gl
fcz—i-czj E( sup |x(u)|p) ds

J 2(x(s), &5 — 1), 5, £(s)) dB(s)

0

0 —T<u<s

‘We hence have

E( sup |x(t)|2> <c;(1+ENEIP) + ¢ J l E< sup |x(u)|P> ds

0<t<t, 0 —T<u<s

Consequently

E( sup lx(t)l”) SE(I|§||p+ sup lx(l)|p>
—1<t<ty 0=t=t

< (s + D1+ EIEIP) + 5 L' E( sup |x(u)|ﬁ) ds

—T<u<s

The well-known Gronwall inequality implies

E( sup Ix(t)lz) < (¢ + De™*(1 + E[EIP)

—1<t<7
In particular,
Elx|” < C(1 +EEIP)
where C = (c; + 1) which is a positive constant dependent of only K,

and p.
In general, we can show in the same way that for any £k =1, 2,. ..

ElxellP < €+ Ellx gy IP)

and, by induction, the required (2.9) follows. The proof is complete.



463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

850 Kolmanovskii et al.
3. THE GENERALIZED IT6 FORMULA

To investigate the properties of the solutions in more detail we need to
introduce the generalized It6 formula. Given any solution x(¢), if we set

X(t) = x(t) — D(x(t — 1), r(1))

F(t) =1 (x(@), x(t — 1), 1, (1))

G(t) = G(x(2), x(t — 1), t, (1))
then Eq. (2.1) becomes

dX(t) = F(t)dt + G(t) dB(t)

In other words, X(7) is an Itd process. Denote by C>!(R" x R, x S; R) the
family of real-valued functions V(x, t,7) which are continuously twice
differentiable in x and once in . If V € C>(R" x R, x S; R), the generalized
1t6 formula (see Mao!'® and Skorohod!'* states that for any bounded stopping
times 0 < p; < p, < 00 as.

EV(X(p,), pp» 1(p2)) — EV(X(py), py> 7(01))

=E rz (Vt(X (), 5, 7(5)) + V(X(5), 5, 7(s))F (s)

P
+ %trace[GT(s) V(X (), 5, 7(5))G(s)]
N
+ 2 VXG5, j)) ds
j=1

holds provided that V(X(¢), t, r(¢)), V(X (?), t, r(¢)) etc. are bounded on
t € [p,, p,] with probability 1, where

. oV(x, t, i
1= kD
. oVix,t,i) oV(x, t,1i)
Vx(xa t: l): < ax PRI ax
1 n
. PVix, t, i
VX, t,0) = (ﬁ)
! J nxn

Substituting X (), F(f) and G(¢) into the formula above we obtain the following
very useful lemma.
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Lemma 3.1
Let V € C>/(R" x R, x S; R) and x(¢) be a solution of Eq. (2.1). Then
for any stopping times 0 < p;, < p, < 00 ass.

EV(x(py) — D(x(py — 1), 1(p2)), P2> 7(P2))
= EV(x(p,) — D(x(py — 1), 7(p1))s P15 1(P1))

+E Jpz LV (x(s), x(s — 1), s, (s)) ds 3.1
P1

holds provided that V' (x(¢) — D(x(¢), (¢)), t, r(¢)) and LV (x(t), x(t — 7), t, r(?))
are bounded on € ([p,, p,] with probability 1, where the operator
LV:R" x R" x R, x § — R is defined by

LV(X,)’, f, l) = Vt(x_D(ya l)’ 5 l)+ Vx(x_D(y’ l), Z, i)f(x>y> 5 l)

1
+ Etrace[gT(x, Vs b, DV (6 = D(, D), 1, D, y, 1, )]

N
+ Y 9V —D(y, i), 1, )
Jj=1

We shall also refer to (3.1) as the generalized 1t6 formula.

This formula will play a key role in the remaining of this paper.

4. ASYMPTOTIC BOUNDEDNESS

In what follows we will impose Assumption 2.2 as a standing hypothesis
without mentioning it explicitly. Moreover, we will let the initial data
e Cfﬂb([—v:, 0]; R™), and denote by x(z; &) the solution of Eq. (2.1). Tt is
easy to observe from Theorem 2.4 that for any p > 0,

E( sup |x(z; £)|”> <oo, VI >0

—t<t<T

That is, any pth moment of the solution is finite. But this does not mean that
the pth moment will not tend to infinity as ¢ — oo. In practice it is useful to
know whether the pth moment of the solution will be bounded in long term. In
the literature this is known as the property of asymptotic boundedness. To be
precise, let us give the definition.
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Definition 4.1
Equation (2.1) is said to be asymptotically bounded in pth moment if there
is a constant H > 0 such that

limsup E|x(t; &) < H

— 00

for all ¢ e Cfob([—r, 0]; R"). When p =2, it said to be asymptotically
bounded in mean square.

The following theorem gives a criterion on the asymptotic boundedness in
terms of a Lyapunov function.

Theorem 4.2
Assume that there is a function ¥ € C*!(R" x R, x S; R) and positive
constants p, 4, 4, o, &, f such that p > 1, 4, > 4,,

axlP < V(x, t,0) < oplxlP, VY, 1,i)) e R" xR xS 4.1)
and

LV(x,p,t,0) < =4 IxPP + LxPP + B, V(x,t,))eR" xR, xS (42)
Assume also that there is a constant x € (0, 1) such that

ID(y, Dl < xlyl, Y(y,)eR" xS (4.3)
Then Eq. (2.1) is asymptotically bounded in pth moment.

The proof of this theorem consists of the following four lemmas.

Lemma 4.3
Let p > 1 and (4.3) hold. Then

x —D(y, )P < (1 + )P (Ixf + klyP), Y(x,y,) eR"xR" xS

Proof.
The required inequality follows from (4.3) directly when p = 1 so we only
need to prove the lemma for p > 1. By the Holder inequality we derive

. iy D D
_ P — |y _ 4 (p—D/p 3T 7
D )P
<1 41)""! (|x|P+ ',(C,,y_f)')s (14 )7 (Ixl” + &yl

as required.
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Lemma 4.4
Let the assumptions of Theorem 4.2 hold. Let y > 0 be the unique root to
the equation

(14 1P~ + €7 (g + Jopr(1 + 1P~ = 4 (4.4)
If y € (0, 7], then for ¢ € Cx "([—1, 0]; R"),

&EN(t; &) — DGx(t — 7 &), FO) < CEICI + %e*ﬂ, Vi=0  (@45)
1

where

1 ” _
Cy = [l + ) + 7" + youre(l + 1) )]
1

Proof.
Fix any ¢ € Cfob([—r, 0]; R™) and write x(¢; £) = x(¢). Using the generali-
zed It6 formula, the assumptions and Lemma 4.3, we derive

e EV (x(t) — D(x(t — 1), 7(1)), t, r(£))

= EV(&(0) — D(&(—7), 1), 0, 1)

+E J e“ YV (x(s) — D(x(s — 1), 5), 5, 7(5))
0

+ LV (x(s), x(s — 1), 5, r(s))] ds

< %E|£(0) — D(E(—1), ro)l”

VE L P [y E|E(s) — DEGs — 1), Fs)P

— M x($)P + Aaolx(s — ) + lds

p

Ly
v

< a(1 + KYEIEIP +
!

Gy = (1 + K)‘H)EJ PEIE(s) ds
0

t
+ (A + yopre(l + K)p_l)EJ e |x(s — 7)|* ds (4.6)
0
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But

t 1—T
E J e |x(s — 7)* ds = &°E J & |x(s)|* ds
0

—T

t
< e E||E|” + e”EJ ¢”*|x(s)| ds
0

Substituting this into (4.6) and noting from (4.4) that

Ay = (14 k)77 = €7y + yopr(l + 1))
we obtain
&"EV(x(t) — D(x(t — 1), (1)), 1, K(£))
SWﬂl+Ky+4@%@+w%xa+xﬁ”nmmw+§é”

This, together with (4.1), yields the required assertion (4.5).

Lemma 4.5
Let p > 1 and (4.3) hold. Then,

b — D(, i)l
(1—xy™" "~

[xI? < xlyl? + V(x,y,)) e R" x R" x §

Proof.
When p = 1, we have

Il < [D(y, DI + x = D(y, DI < ly| + |x = D(y, 1)

so the required inequality holds. When p > 1, by the Hdolder inequality we
derive

Il = 1D(y, i) +x — D(y, i)’
B L [a =" x—D(y, i)
_F@”+[ x] (1 =)/

x = D(y, i)’

[(1 —1)/x]?!

1
Kp1

lx — D(y, DI’
(1 -y

< (ID(y, P + ) <xlyf +

as required.
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Lemma 4.6
Let the assumptions of Theorem 4.2 hold. Let y > 0 be the unique root to
Eq. (4.4) and set

_ 1 1
Y=FA 2110g<1<) 4.7)
Then, for ¢ € Cx *([—1, 0]; R"),

1
1 -k

(ﬁ +1_C—"’ﬁ>Euénp

pe
Py -

e"Elx(t; O <

where C, is the same as defined in Lemma 4.4.

Proof.
Fix any ¢ € Cﬂ”([—‘c, 0]; R™) and write x(¢; £) = x(¢). It is easy to see
from (4.7) that

7€(0,7] and €'k <.k

Now, by Lemma 4.5,

X(OP < klx(t — D + ﬁ (1) — DAt — 1), FO)P?

We then compute, by Lemma 4.4, that

e"Elx(H)f < xe"Elx(t — 1)’ + ﬁe”
x Elx(t) — D(x(t — 1), r(0))I

CEIEI + ﬁe"}
Y%y

IA

1
ke TOEX({E — D + ———— [
\/— | ( )l (1 —K)P_l
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Hence, for any 7' > 0,

sup ["EIXOF] </ sup [VE (1 — )]
T

0<t<T 0=t=<

1 )
+— [C«Ellill” + ie*r}
(1—xy L7 70

5«/E<Elléll”+ sup [e“/‘”E|x(t)|f’])
0

<t<T

CLENI + ﬁe”}
! Yo

1
A [

This implies

. JK 1
) P
Oi]_tlgT[e Elx(®)F] < 1 — \/E (1— \/E)(l _ K)pfl

x [QEH&HP + ﬁeﬂ]
7o

E|EI” +

In particular,

. K
STENTIP = — _E1gp +

1
11— (1= —xy!
x [CyElléll” + ie"”]
Yo

1

This is the required assertion since 7 > 0 is arbitrary.
Now the assertion of Theorem 4.2 follows from Lemma 4.6 directly,
because (4.8) implies

p
yor (1= /)L =y~

lim sup E|x(t; &)IF <
11— 00

for any &€ C;Ob([—r, 0]; R"). The proof of Theorem 4.2 is therefore
complete.

In many practical situations the Lyapunov functions take the quadratic
form, namely

Vix,i,t)= xTQl-x
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where Q;s are symmetric positive-definite matrices. Clearly, in this case,
. 2 . 2
) . . < < .
0 Ain (@)™ < V6, 4, 1) < maX Ay (O]
It is also easy to verify

LV(X’ Y, t’ l) = 2(X - D(ya i))TQif‘(x’ Y, t:v l)
+ trace[g" (x, y, £, )0;g(x, , 1, i)]

N
+ ) 96— D(y, )" Qy(x — D(y, 1))
j=1

Consequently, the following useful corollary follows from Theorem 4.2
directly.

Corollary 4.7

Assume that there are symmetric positive-definite matrices O,
(1 <i < N) and positive constants 4, > 4, > 0 and f# > 0 such that

200 = D(y, D) Qif (v, v, 1, i) + trace[g " (x, y, 1, DO,g(x, y, 1, D]
N
+ Y 6= D(y, i)' Qi — D(, 1))

j=1

< — P+ AP+ B, Yt i) eR xR, xS 4.9)

Assume also that (4.3) holds. Then Eq. (2.1) is asymptotically bounded in
mean square.

5. EXPONENTIAL STABILITY
After the discussion of asymptotic boundedness we shall show that the
techniques developed in the previous section can be adopted to deal with

exponential stability. Let us first give the definition.

Definition 5.1
Equation (2.1) is said to be exponentially stable in pth moment if

1
lim sup = log(E|x(t; )IF) < 0

t—oo



799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

858 Kolmanovskii et al.

forall £ € C fob([—r, 0]; R™). When p = 2, it said to be exponentially stable in
mean square. Moreover, the equation is said to be almost surely exponentially
stable if

1
lim sup;log(|x(t; H) <0 as.

t—00

for all ¢ € Cfob([—r, 0]; R™).

For the general theory on stochastic exponential stability we refer the
reader to Arnold,"®" Has’minskii,!'”) Ladde & Lakshmikantham!'®! and
Mao,!'*?% to name a few. The following theorem gives a criterion on the
exponential stability in mean square in terms of a Lyapunov function.

Theorem 5.2
Assume that there is a function V € C>(R" x R, x S; R) and positive
constants p, 4;, 4y, 0y, o, such that p > 1, 4, > 4,,

o xlP < V(x, t,0) < oplxfP, VY, 1,i) e R" xR xS 5.1)
and

LV(x,p,t,0) < =2 xPP + AxlPP, V(x,t,i) e R" x R, xS (5.2)
Assume also that there is a constant k € (0, 1) such that

ID(y, DI < klyl, V() eR" xS (5.3)

Let y > 0 be the unique root to Eq. (4.4) and set

1 1
y=9pV —log(—) 5.4
27 K
Then, for any ¢ € Cfob([—r, 0]; R™),
. 1
lim sup - log(Ex(; o)y < —y (5.5)
—00

In other words, Eq. (2.1) is exponentially stable in pth moment.

Proof.
If we compare the assumptions between Theorems 4.2 and 5.2 we observe
that the only difference is the paremeter 5. More precisely, if we set f = 0 then
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the assumptions of Theorem 4.2 become those of Theorem 5.2. We also note
that the proofs of Lemmas 4.4 and 4.6 work for = 0 as well. Hence Lemma
4.6 shows that for any & € Cg *([—7, 0]; R"),

C,
- E|EIP, Vi=0 (5.6)

Elx(t; O < ——= (ﬁ + NG

1
1 -k
This implies the required assertion (5.5) immediately.

With some additional conditions we can now show the almost sure
exponential stability.

Theorem 5.3
In addition to the assumptions of Theorem 5.2, assume that p > 2 and
there is a positive constant K such that

[/ G, v, 8, DIV g(x, p, t, D] < K(Ix[ + [v])
Vo, p,t,) e R" x R" xR x § (5.7)

Then, for any ¢ € Cfoh([—r, 0]; R™),

lim sup%log(pc(t; Hh < 7 a.s. (5.8)

—00 p

where y > 0 is the same as defined in Theorem 5.2. In other words, Eq. (2.1) is
almost surely exponentially stable.

Proof.

Fix any ¢ € Cﬂb([—‘c, 0]; R") and write x(¢; &) = x(¢). For k=1,2,...,
by the Holder inequality, the Burkholder-Davis-Gundy inequality and condi-
tion (5.7), it is not difficult to show that

E( sup |x(kt + 0) — D(x((k — 1)t + 0), r(kt + 0))|P)

0<0<t

< CElx(kt) — D(x((k — D), r(k))l”

(k+ 1)t
+C J (EIxS)I + Elx(s — 1)) ds (5.9

kt
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where C, is a positive constant dependent of only K, t and p. Using (5.6) and
Lemma 4.3, we obtain

0<0<t

E( sup |x(kt + 0) — D(x((k — 1)t + 0), r(kt + 9))|p> < Ce 7k
where C, is a positive constant independent of k. Thus, for any ¢ € (0, ),

P{ sup |x(kt + 0) — D(x((k — 1)t + 0), r(kt + O)IF > e—“’—”kf}
0<f<t

< Cbe—yh

for all £ > 1. The well-known Borel-Cantelli lemma shows that for almost all
w € Q,

sup |x(kt 4+ 0) — D(x((k — 1)t + 0), r(kt + 0)))P < e 09k

0<f<t

holds for all but finitely many k. Hence for almost all w € Q there exists an
integer k, = ky() such that

sup [x(kt + 0) — D(x((k — 1)t 4 0), r(kt + 0)P < e 09k

0<f<t

whenever k > k
This yields that for almost all w € Q,
[x(£) — D(x(t — 1), r(t))| <e? T \whenever £ > kot

Noting that |x(f) — D(x(t — t), r(£))| is finite on ¢ € [0, kyt], we observe that
there is a finite random variable { = {(w) such that, with probability 1,

Ix(f) — D(x(t — 1), 7(1)] < Le? 0 forall £ >0
Hence, with probability 1,

e TV x(h)] < {4 ke? T x(r — 1), V>0
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which implies

sup [epfl(”*”g)s |x(s)|] <{+ sup [;cepfl(}”s)s [x(s — r)|]

0<s<t 0<s<t

< {4 re? 07 <|Ié|l + sup [er 070 (s - r)|]>

T<s<t

< §+xep‘“y‘6>f<||é|| + sup [xef’"<”*"£’~‘|x(s)|]>, Vi =0

0<s<t

Since ke? 0797 < | by (5.4), it follows that

{+ we?” 07T ¢l

pl(y—e)s <
sup [e |x(s)|] = 1 — ger 'G-or

0<s<t

, YVt>0

with probability 1. This yields immediately that

Y—8&

1
lim sup —log (|x(?)|) < — a.s.

t—>o0 1

Letting ¢ — 0 we obtain the required assertion (5.8). The proof is complete.
We should point out that the condition p > 2 in Theorem 5.3 can be
replaced by the weaker one p > 1 but the proof will become rather technical.
Due to the page limit here we shall report this case elsewhere.
The following useful corollary follows directly from Theorems 5.2 and
5.3 if the quadratic function is used as the Lyapunov function.

Corallary 5.4
Assume that there are symmetric positive-definite matrices Q;(1 <i < N)
and positive constants 4; > 4, > 0 such that

2(x — D(y, )" Q,; f(x, y, 1, i) + trace[ g (x, y, 1, DQ;&(x, ¥, 1, i)]
N
+ Zl 750 = D(y, i)' Qx — D(, 1))
o
< =P+ LA, Yt i) eR" xR, x S (5.10)
Assume also that (5.3) holds. Then Eq. (2.1) is exponentially stable in mean

square. If, moreover, (5.7) holds, then Eq. (2.1) is almost surely exponentially
stable as well.
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6. EXAMPLES
Let us now discuss a number of examples. In these examples we let the

space S = {1, 2} in order to make the calculation become simple while the
theory is illustrated clearly.

Example 6.1
Let B(f) be a scalar Brownian motion. Let () be a right-continuous
Markov chain taking values in § = {1, 2} with generator

—-10 10
F=(V,'j)2><2=< . —v)

where y > 0. Assume that B(¢) and r(¢) are independent. Consider the one-
dimensional linear NSDDE with Markovian switching

d[x(t) — 0.1x(1 — 1)] = [a(r(O)x(®) + bO)x(t — T) + ¢;]dt + c,dB(D)
(6.1)

where ¢; and ¢, are constants,
a(l)=0.5, a2)=-3, b(1)=0.5, b2)=1

To find out whether Eq. (6.1) is asymptotic bounded in mean square, we use
the Lyapunov function

V(.X, t? Z) = qix2

with ¢y =1 and ¢,=05. It is easy to see that the operator
LV: R xR xR, xS — R has the form

LV(x, p,t, 1) = 2(x — 0.1y)(0.5x + 0.5y + ¢;) + ¢,> — 5(x — O.Iy)2
and

LV(x,y,1,2) = (x — 0.1y)(=3x 4+ y + ¢;) + 0.5¢,% + 0.5y(x — 0.1y)
It is straightforward to show

LV(x,y,t, 1) < =3.05x* + 0.8y + 2¢,(x — 0.1y) + ¢,>
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and

LV(x,y, 1,2) < —(2.35 — 0.55y)% + (0.55 + 0.055y))?
+ci(x —0.1y) + ¢,°

We require

(2.35 - 0.55y) > 0.8 v (0.55 + 0.055y)
namely 0 < y < 2.81. In this case,

LV(x, y, t, i) < —(2.35 — 0.55))x* 4+ 0.8)* + 2¢,(Jx| + 0.1]y]) + ¢,>
Now, choose ¢ € (0, (1.55 — 0.55y)/2) and note

1.01c,>

2¢,(Jx] +0.1)y]) < ex® + &7 +

Consequently

2

1.01
LV(x, y, 1, i) < —(2.35 — 0.55) — e)® + (0.8 + £)y? + gcl tey?

By Corollary 4.7 we can therefore conclude that Eq. (6.1) is asymptotically
bounded in mean square as long as 0 < y < 2.81.

Example 6.2
If ¢, = ¢, =0, then Eq. (6.1) reduces to

%[x(t) — 0.1x(t — 7)] = a(r())x(t) + b(r())x(t — 1) (6.2)

which is a linear NDDE with Markovian switching.
Moreover, the above calculations show

LV (x, y, t, i) < —(2.35 — 0.557)x* + 0.8)?
By Corollary 5.4 we can therefore conclude that if 0 <y < 2.81, then

Eq. (6.2) is exponentially stable in mean square and it is also almost surely
exponentially stable.
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It is interesting to regard system (6.2) as the result of two NDDEs

% [x(f) — 0.1x(t — )] = x(£) + 2x(¢ — 7) (6.3)

and

%[x(t) —0.1x(t — 7)] = —3x(t) + x(t — 1) (6.4)

switching from one to the other according to the law of the Markov chain. It is
known (see Hale and Lunel'®) that Eq. (6.3) is not exponentially stable
although Eq. (6.4) is. However, due to the Markovian switching the overall
system (6.2) is exponentially stable. This clearly shows the important role of
Markovian switching.

Example 6.3

Let us finally discuss a nonlinear NSDDE with Markovian switching
dlx(t) — 0.1x(t — )] =f(x(9), t, r(t)) dt + g(x(¢t — 1), t, r(t))dB(t)  (6.5)
Here r(¢) is a right-continuous Markov chain taking values in S = {1, 2} with
generator
—10 10
= (V{/)ZXZ = < 1 _1)
Assume that f: R" x R, x § — R" and g: R" x R, x § — R" satisfy
Tt ) < 0.1x> ifi=1,
x f(x, t,0) <
—51x> ifi=2;
et )] < 0.1x] ifi=1, 6.6)
X, t, 1) < . .
5|x| if i =2;

lg(y, £, D] < 0.5]y

Let p € [3, 4] and define the Lyapunov function

Vix, t, i) = gilxl?
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with ¢; = 1 and ¢, = 0.4. It is not difficult to show the operator

LV(x,y,t,0) < qpplx — O.1y|p_2(x - O.Iy)Tf(x, t, i)

1 _ .
+5ap(P — Dix = 0.1y 2lg(y, t, D)

+

2

Jj=1

By (6.6) we then estimate

759;1x — 0.1y”

LV(x,y, t, 1) <4|x — 0.1y[P72[0.1]x|*> 4+ 0.01|x||[¥|]
+ 1.5x — 0.1y/P 2 |y)* — 6]x — 0.1y}"
<|x — 0.1y[P72[0.42|x|* + 1.52|y*] — 6]x — 0.1y}

But, by Lemmas 4.3 and 4.5,

[x —0.1y)P~2

IA

and

—|x—=0.1y|?

IA

LIP3 (™2 4 0.1y 7%) < L™ 4 0. 11y

865

—0.977Mx|? 4+ 0.1 x 0.977'[y|? < —0.7|x|” 4+ 0.1[y|”

Moreover, by the elementary inequality a*b'* < aa + (1 — o)b for a, b > 0

and o € (0, 1), we have

P=2p

_ 2
MVMPZSEMW+—;—y

It is therefore straightforward to show

LV(x,y,t,1) < —<

3.2516
24818 + ——
p

>|x|P + <0.8134 +

3.2516

> I
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1135 Similarly, we derive
1136

1137 LV(x, p, 1,2) <0.4plx — 0.1y *[=5|x|* + 0.5|x]y]

iijz 4 0.60x — 0.1y 2 |y + 0.6[x — 0.1y
1140 <6x*(—0.97[x2 + 0.1 x 0.9y’ ?)
141 + (L2 + 0.1 1P )(0.41x1% + )
1142
143 +0.6 x 11771 (xPP 4+ 0.1y1)
1144 < —3.029]x[P+ 0.644 x| [P =2+ 1.1|x[P 2 |y|*+ 0.2031 |y}’
1145 0.912 0.912
P P
1147
1148 . . . .
1149 Combining the above two inequalities we obtain
o 0.912 3.2516
1151 LV(x,y, t,i) < — (1.929 + —) Ixf? + <0.8134 + —> [y
1152 p p
1153
1154 Since
1 0.912 3.2516
1156 1.929 + —= > 0.8134 + = when p € [3, 4]
1157 p
1158

1159 We can, by Corollary 5.4, conclude that Eq. (6.2) is exponentially stable in pth
1160 Mmoment if p € [3, 4], and it is also almost surely exponentially stable.

1161

1162

1163 ACKNOWLEDGMENTS

1164

1165 The author would like to thank the Royal Society (UK) for the financial
1166 Support.

1167

1168

1169 REFERENCES

1170

1171 1. Brayton, R. Nonlinear oscillations in a distributed network. Quat. Appl.
1172 Math. 1976, 24, 289-301.

1173 2. Rubanik, V.P. Oscillations of Quasilinear Systems with Retardation;
1174 Nauka: Moscow, 1969.

1175 3. Hale, JK.; Lunel, S.M.V. Introduction to Functional Differential
1176 Equations; Springer, 1993.



1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218

Neutral Stochastic Differential Delay Equations 867

4.

19.

20.

Kolmanovskii, V.B.; Nosov, V.R. Stability and Periodic Modes of Control
Systems with Aftereffect; Nauka: Moscow, 1981.

. Mao X. Stochastic Differential Equations and Their Applications;

Horwood Pub.: Chichester, 1997.

. Athans, M. Command and control (C2) theory: A challenge to control

science. IEEE Trans. Automat. Contr. 1987, 32, 286-293.

. Basak, G.K.; Bisi, A.; Ghosh, M.K. Stability of a random diffusion with

linear drift. J. Math. Anal. Appl. 1996, 202, 604-622.

. Ji, Y,; Chizeck, H.J. Controllability, stabilizability and continuous-time

Markovian jump linear quadratic control. IEEE Trans. Automat. Control
1990, 35, 777-788.

. Mao, X. Stability of stochastic differential equations with Markovian

switching. Sto. Proc. Their Appl. 1999, 79, 45-67.

. Mao, X.; Matasov, A.; Piunovskiy, A.B. Stochastic differential delay

equations with Markovian switching. Bernoulli 2000, 6 (1), 73-90.

. Mariton, M. Jump Linear Systems in Automatic Control, Marcel Dekker,

1990.

. Shaikhet, L. Stability of stochastic hereditary systems with Markov

switching. Theory of Stochastic Processes 1996, 2 (18) 180-184.

. Skorohod, A.V. Asymptotic Methods in the Theory of Stochastic Differ-

ential Equations; American Mathematical Society: Providence, 1989.

. Arnold, L. Stochastic Differential Equations: Theory and Applications;

John Wiley Sons, 1972.

. Has’minskii, R.Z. Stochastic Stability of Differential Equations; Sijthoff

and Noordhoff, 1981.

. Ladde, G.S.; Lakshmikantham, V. Random Differential Inequalities;

Academic Press, 1980.

Mao, X. Expomnential Stability of Stochastic Differential Equations;
Marcel Dekker, 1994.

Mao, X. Stability of Stochastic Differential Equations with Respect to
Semimartingales; Longman Scientific and Technical, 1991.

Q1
Q1



