

Open access • Posted Content • DOI:10.1101/2021.02.01.429069

Neutralization of SARS-CoV-2 VOC 501Y.V2 by human antisera elicited by both inactivated BBIBP-CorV and recombinant dimeric RBD ZF2001 vaccines — Source link

Baoying Huang, Lianpan Dai, Hui Wang, Zhongyu Hu ...+4 more authors

Institutions: Chinese Academy of Sciences, Chinese Center for Disease Control and Prevention

Published on: 02 Feb 2021 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Inactivated vaccine, Vaccine efficacy, Vaccination, Virus and Neutralization

Related papers:

- Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine.
- Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine.
- Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus.
- Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.
- mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants

1	Neutralization	of SARS-CoV-2	VOC 501Y.V2 by	v human antisera	elicited by both
---	----------------	---------------	----------------	------------------	------------------

2 inactivated BBIBP-CorV and recombinant dimeric RBD ZF2001 vaccines

1

```
4 Authors
```

- 5 Baoying Huang¹*, Lianpan Dai²*, Hui Wang³, Zhongyu Hu⁴, Xiaoming Yang³, Wenjie Tan¹†,
- 6 George F. $Gao^{1,2}$ †
- 7

```
8 Affiliations
```

- 9 ¹NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and
- 10 Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- 11 ²CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of
- 12 Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- ³Beijing Institute of Biological Products Company Limited, Beijing, China
- ⁴National Institute for Food and Drug Control, Beijing, 100050, China
- 15 *These authors contributed equally to this work
- 16 [†]Corresponding author. Email: gaof@im.ac.cn (G.F.G.); tanwj@ivdc.chinacdc.cn (W.T.)
- 17
- 18
- 19
- 20
- 21

I

24	Abstract
24	Abstract

25	Recently, the emerged and rapidly spreading SARS-CoV-2 variant of concern (VOC)
26	501Y.V2 with 10 amino acids in spike protein were found to escape host immunity induced
27	by infection or vaccination. Global concerns have been raised for its potential to affect
28	vaccine efficacy. Here, we evaluated the neutralization activities of two vaccines developed in
29	China against 501Y.V2. One is licensed inactivated vaccine BBIBP-CorV and the other one is
30	recombinant dimeric receptor-binding domain (RBD) vaccine ZF2001. Encouragingly, both
31	vaccines largely preserved neutralizing titres, with slightly reduction, against 501Y.V2
32	authentic virus compare to their titres against both original SARS-CoV-2 and the currently
33	circulating D614G virus. These data indicated that 501Y.V2 variant will not escape the
34	immunity induced by vaccines targeting whole virus or RBD.
35	
36	
37	
38	
39	
40	

1

- 43
- 44
- 45

46 Maintext

47 The rollout of vaccines is the hope to control the coronavirus disease 2019 (COVID-19) 48 pandemic and reboot economy and society(1). However, the recent emergence of severe acute 49 respiratory syndrome coronavirus-2 (SARS-CoV-2) variants raised global concerns because 50 of their enhanced transmission and potential viral escape of host immunity elicited by natural 51 infection or vaccination. Variants containing D614G mutation in spike (S) protein was first 52 reported from the middle of 2020, which significantly increased the transmission rate and 53 became dominant in circulating strains ever since(2). Evolved from D614G mutants, recent 54 circulating isolates from Republic of South Africa (501Y.V2 variant) introduced further 55 mutations that escape neutralization by COVID-19 convalescent plasma and sera from human 56 receiving licensed mRNA vaccines expressing SARS-CoV-2 S protein(3-5). It also 57 dramatically decreased the protective efficacy for trimeric S protein-based vaccine in phase 3 58 clinical trial in South Africa(6).

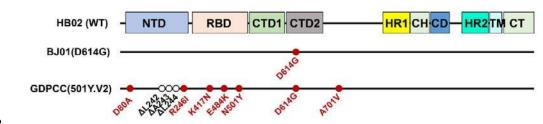
59 501Y.V2 variant emerged in more and more countries, and was first isolated in China on 60 January 6, 2021 from an airline pilot of South African nationality(7). This variant, GDPCC 61 strain, contains 10 amino acid mutations sites in S protein corresponded to the features of the 62 variant of concern (VOC) South African 501Y.V2, with 5 (D80A, Δ L242, Δ A243, Δ L244 and 63 R246I) located at N-terminal domain (NTD), 3 (K417N, E484K and N501Y) in receptor-binding domain (RBD), and the other two in CTD2 domain and S1/S2-S2' region(Fig.1).

L

66	The effectiveness of current vaccines against this VOC is of high importance to guide the
67	ongoing vaccination program worldwide. To answer this question, we evaluated two
68	representative COVID-19 vaccines developed in China for their neutralizing activities against
69	501Y.V2 variant. One is BBIBP-CorV, a licensed COVID-19 inactivated vaccine(8, 9). The
70	other one is ZF2001, a protein subunit vaccine targeting S protein RBD currently in phase 3
71	clinical trials(10, 11). Both vaccines showed good immunogenic in their clinical trials(9, 11).
72	For instance, ZF2001 induced neutralizing GMTs two times greater than that from
73	convalescent samples(11). We chose 12 serum samples for each vaccine from clinical trial
74	participants covering a range of different neutralizing titers (Table 1). The neutralizing
75	activities of these serum samples against live SARS-CoV-2 strains GDPCC (501Y.V2) were
76	measured by microcytopathogenic effect assay. SARS-CoV-2 strains HB02 (WT) (12, 13) and
77	BJ01 (D614G) (14) were tested as the control. Impressively, all 12 serum samples from either
78	ZF2001 or BBIBP-CorV recipients largely preserved neutralization of 501Y.V2 variant, with
79	slightly reduced geometric mean titres (GMTs) compared with their titres against WT or
80	D614G strain (Fig. 2 and Table 1). For ZF2001, the GMTs declined for 1.6-fold from 106.1
81	(95% CI, 75.0-150.1) to 66.6 (95% CI, 51.0-86.9) (Fig.2A). While for BBIBP-CorV, the
82	decline is also 1.6-fold, GMTs from 110.9(95% CI, 76.7-160.2) to 70.9(95% CI, 50.8-98.8)
83	(Fig.2B). These reductions are significantly less than those reported previously for
84	convalescent plasma (more than 10-folds)(4) or antisera from mRNA vaccine recipients (more

1

85 than 6-folds) (*3*, *5*).


86	These results suggest that the 501Y.V2 variant does not escape the immunity induced by
87	vaccines targeting S protein RBD (ZF2001) or whole virus (BBIBP-CorV). The potential
88	1.6-fold reduction of neutralizing GMTs should be taken into account for its impact for the
89	clinical efficacy of these vaccines. For both vaccines, antisera neutralize both variant 501Y.V2
90	and D614G, the one currently circulating globally, without statistical significances. For
91	ZF2001, a slight significance (P=0.04) between variant 501Y.V2 and the HB02 may due to
92	the sample selection and size. For the neutralization-reduction discrepancy between our
93	protein-based vaccine and mRNA vaccine needs further investigation in the future.

94

95 Acknowledgements

96 This work was supported by the National Program on Key Research Project of China
97 (2020YFA0907101, 2016YFD0500301), the National Natural Science Foundation of China
98 (NSFC) (82041041, 82061138008), National Mega Projects of China for Major Infectious
99 Diseases (2016ZX10004001-003). Lianpan Dai is supported by Youth Innovation Promotion
100 Association of the CAS (2018113).

101

102

103 Fig.1. Schematic demonstration of the spike protein of SARS-CoV-2 HB02 (WT), BJ01

104 (D614G) and GDPCC (501Y.V2). The mutation sites were denoted and marked as cycles,

105 with the point mutation colored in red and the deletion colored in white.

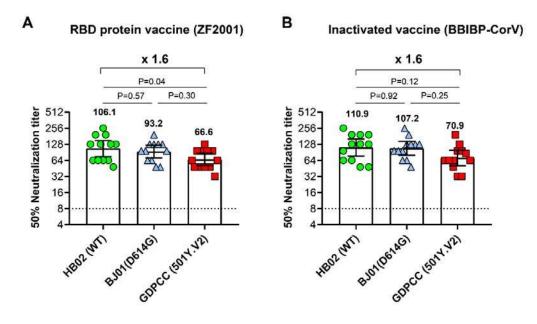


Fig.2. Neutralization titres of 24 antisera from vaccine BBIBP-CorV or ZF2001
recipients against authentic SARS-CoV-2 and its variants, D614G and 501Y.V2. (A-B)
N=12 representative antisera each from ZF2001 (A) and BBIBP-CorV (B) vaccine recipients
were tested for their neutralizing activity to authentic SARS-CoV-2 HB02 (WT), BJ01
(D614G) and GDPCC (501Y.V2) via microcytopathogenic effect assay. Shown are the
geometric mean with 95% CI. P values were analyzed with One-way ANOVA test.

121 Table 1: Information for serum samples tested in this study

l

RBD protein	n vaccine (ZF200	1)		
		50% 1	Neutralization titer	
Serum ID	Clinical trials	HB02 (WT)	BJ01 (D614G)	GDPCC (501Y.V2)
012-6-(5)	128	128	96	64
014-6-(5)	256	256	128	128
024-6-(5)	64	64	48	48
082-6-(5)	96	64	64	32
088-6-(5)	96	48	96	48
102-6-(5)	256	128	128	96
135-6-(5)	384	192	192	96
153-6-(5)	128	128	96	64
154-6-(5)	64	64	64	48
233-6-(5)	256	128	128	96
290-6-(5)	128	64	48	48
308-6-(5)	256	192	128	96
Inactivated	vaccine (BBIBP-	CorV)		
	50% Neutralization titer			
Serum ID	Clinical trials	HB02 (WT)	BJ01 (D614G)	GDPCC (501Y.V2)
B867-2	192	128	128	96
B850-2	256	192	192	128
B848-2	64	48	64	32
B875-2	96	96	64	48
B841-2	256	192	128	64
B843-2	256	192	128	64
B844-2	192	128	128	96
B856-2	96	64	96	86
B851-2	192	128	96	64
B890-2	64	48	48	32
B845-2	384	256	256	192
B869-2	96	64	96	64

128	References
129	
130	1. L. Dai, G. F. Gao, Viral targets for vaccines against COVID-19. Nature Reviews Immunology,
131	(2020). doi.org/10.1038/s41577-020-00480-0
132	2. B. Korber et al., Tracking changes in SARS-CoV-2 Spike: Evidence that D614G increases
133	infectivity of the COVID-19 Virus. Cell 182, 812-827 e819 (2020).
134	3. K. Wu et al., mRNA-1273 vaccine induces neutralizing antibodies against spike mutants
135	from global SARS-CoV-2 variants. bioRxiv, 2021.2001.2025.427948 (2021).
136	4. C. K. Wibmer et al., SARS-CoV-2 501Y.V2 escapes neutralization by South African
137	COVID-19 donor plasma. bioRxiv, 2021.2001.2018.427166 (2021).
138	5. P. Wang et al., Increased resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 to antibody
139	neutralization. bioRxiv, 2021.2001.2025.428137 (2021).
140	6.
141	https://ir.novavax.com/news-releases/news-release-details/novavax-covid-19-vaccine-demons
142	trates-893-efficacy-uk-phase-3.
143	7. F. Chen et al. A case of new variant COVID-19 first emerging in South Africa detected in
144	airplane pilot — Guangdong Province, China, January 6, 2021. China CDC Weekly 3: 28-29
145	(2021).
146	8. H. Wang et al., Development of an inactivated vaccine candidate, BBIBP-CorV, with potent
147	protection against SARS-CoV-2. Cell 182, 713-721 e719 (2020).
148	9. S. Xia et al., Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine,
149	BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis
150	21, 39-51 (2020).
151	10. L. Dai et al., A universal design of betacoronavirus vaccines against COVID-19, MERS, and
152	SARS. Cell 182, 722-733 e711 (2020).
153	11. S. Yang et al., Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD
154	protein vaccine against COVID-19 in adults: pooled analysis of two randomized, double-blind,
155	placebo-controlled, phase 1 and 2 trials. medRxiv, 2020.2012.2020.20248602 (2020).
156	12. N Zhu et al., A novel coronavirus from patients with pneumonia in China, 2019. N Engl J
157	Med 382, 727-733 (2020).
158	13. W Tan et al., A novel coronavirus genome identified in a cluster of pneumonia cases —
159	Wuhan, China 2019–2020. China CDC Weekly 2, 61-62 (2020).
160	14. W Tan et al., Reemergent cases of COVID-19 — Xinfadi wholesales Market, Beijing
161	municipality, China, June 11, 2020. China CDC Weekly 2, 502-504 (2020).

I

164	
165	
166	
167	
168	
169	
170	
171	
172	
173	Supplementary Materials for
174	
175	Neutralization of SARS-CoV-2 VOC 501Y.V2 by human antisera
176	elicited by both inactivated BBIBP-CorV and recombinant dimeric
177	RBD ZF2001 vaccines
178	Baoying Huang*, Lianpan Dai*, Hui Wang, Zhongyu Hu, Wenjie Tan†, George F. Gao†
179	
180	*These authors contributed equally to this work
181	[†] Corresponding author. Email: gaof@im.ac.cn (G.F.G.); tanwj@ivdc.chinacdc.cn (W.T.)
182	
183	This PDF file includes:

I

184 Materials and Methods
185 Supplemental references
186
187
188
189

190 Material and methods

191 Viruses and titration

- 192 The SARS-CoV-2 virus 19nCoV-CDC-Tan-HB02 (short as HB02), 19nCoV-CDC-Tan-BJ01
- 193 (short as BJ01) and 19nCoV-CDC-Tan-GDPCC (short as GDPCC) were used in our
- 194 experiments(1-4). Virus titer was determined by a micro-cytopathogenic efficiency (CPE)
- assay on Vero cells as described previously(5).

1

196 Neutralization assay

197 The serum were inactivated in a $56\square$ water bath for 30 min, then successively diluted 1:4 to

198 the required concentration by a 2-fold series. An equal volume of challenge virus solution

- 199 containing 100 CCID₅₀ virus was added. After neutralization in a $37\Box$ incubator for 2 h, a
- 200 $1.0 \sim 2.5 \times 10^5$ /ml cell suspension was added to the wells and cultured in a CO₂ incubator at 37 \Box
- 201 for 4 days. Titers expressed as the reciprocal of the highest dilution protecting 50% cell from
- 202 virus challenge. A neutralization antibody potency < 1:4 is negative, while that \geq 1:4 is
- 203 positive.
- 204 Serum samples from clinical trial participants
- For the 12 Serum samples from BBIBP-CorV vaccination(6, 7), vaccine recipients received
- 206 BBIBP-CorV containing 4 µg total protein on days 0 and 21, blood samples were taken from
- 207 participants for serology tests 28 days after second vaccination, covering a range of different
- 208 neutralizing titers, the ClinicalTrials.gov Identifier is NCT04510207.
- 209 For the 12 Serum samples from ZF2001 vaccination (8), vaccine recipients received ZF2001
- 210 containing 25 µg vaccine dose on days 0, 30, 60. Blood samples were taken from participants

211 for serology tests 14 days after third vaccination, covering a range of different neutralizing

titers, the ClinicalTrials.gov Identifier is NCT04466085.

T

213 Supplemental references

- N Zhu et al., A novel coronavirus from patients with pneumonia in China, 2019. N Engl J
 Med 382,727-733 (2020).
- 216 2. W Tan et al., A novel coronavirus genome identified in a cluster of pneumonia cases —
 217 Wuhan, China 2019–2020. China CDC Weekly 2, 61-62 (2020).
- 3. W Tan et al., Reemergent cases of COVID-19 Xinfadi wholesales Market, Beijing municipality, China, June 11, 2020. China CDC Weekly 2: 502-504 (2020).
- 4. F. Chen et al., A case of new variant COVID-19 first emerging in South Africa detected in airplane pilot Guangdong province, China, January 6, 2021. China CDC Weekly 3, 28-29 (2021).
- 5. MA. Ramakrishnan. Determination of 50% endpoint titer using a simple formula. World J
 Virol 5, 85-86 (2021).
- 4. H. Wang et al., Development of an inactivated vaccine candidate, BBIBP-CorV, with potent
 protection against SARS-CoV-2. Cell 182, 713-721 e719 (2020).
- 227 7. S. Xia et al., Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine,
 228 BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect
 229 Dis, 21, 39-51 (2020).
- 8. S. Yang et al., Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD
 protein vaccine against COVID-19 in adults: pooled analysis of two randomized, double-blind,
 placebo-controlled, phase 1 and 2 trials. medRxiv, 2020.2012.2020.20248602 (2020).
- 233

2

234