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Abstract

Recent research demonstrates that word em-

beddings, trained on the human-generated cor-

pus, have strong gender biases in embedding

spaces, and these biases can result in the

discriminative results from the various down-

stream tasks. Whereas the previous methods

project word embeddings into a linear sub-

space for debiasing, we introduce a Latent

Disentanglement method with a siamese auto-

encoder structure with an adapted gradient re-

versal layer. Our structure enables the sepa-

ration of the semantic latent information and

gender latent information of given word into

the disjoint latent dimensions. Afterwards, we

introduce a Counterfactual Generation to con-

vert the gender information of words, so the

original and the modified embeddings can pro-

duce a gender-neutralized word embedding af-

ter geometric alignment regularization, with-

out loss of semantic information. From the

various quantitative and qualitative debiasing

experiments, our method shows to be better

than existing debiasing methods in debiasing

word embeddings. In addition, Our method

shows the ability to preserve semantic infor-

mation during debiasing by minimizing the se-

mantic information losses for extrinsic NLP

downstream tasks.

1 Introduction

Recent researches have disclosed that word embed-

dings contain unexpected bias in their geometry on

the embedding space (Bolukbasi et al., 2016; Zhao

et al., 2019). The bias reflects unwanted stereo-

types such as the correlation between gender1 and

occupation words. Bolukbasi et al. (2016) enumer-

ated that the automatically generated analogies of

(she, he) in the Word2Vec (Mikolov et al., 2013b)

show the gender biases in significant level. An

1While we acknowledge a potential and expanded defini-
tion on gender as stated in Larson (2017), we only cover the
gender bias between the male and female in this paper.
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: Gender biased (purple) word embedding, gender-counterfactual (red) 
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Figure 1: The process view of our method. We can

improve the embedding space from (a) to (b) with a

better-aligned structure between gender word pairs by

the proposed latent disentanglement. Afterwards, (c)
we generate the gender-counterfactual embedding of

the gender-biased word while keeping a geometrically

aligned relationship with the gender word pairs to guar-

antee that the pair of word embeddings only differs

from gender information, not hurting semantic infor-

mation. (d) We obtain the gender-neutralized word em-

bedding by interpolating the embedding from the pair

of original-counterfactual word embeddings.

example of the analogies is the relatively closer dis-

tance of she to nurse; and he to doctor. Garg et al.

(2018) demonstrated that the embeddings, from

Word2Vec (Mikolov et al., 2013a) to Glove (Pen-

nington et al., 2014), have strong associations be-

tween value-neutral words and population-segment

words, i.e. a strong association between house-

keeper and Hispanic. This unwanted bias can cause

biased results in the downstream tasks (Caliskan

et al., 2017a; Kiritchenko and Mohammad, 2018;

Bhaskaran and Bhallamudi, 2019) and gender dis-

crimination in NLP systems.

From the various gender debiasing methods for

pre-trained word embeddings, the widely recog-

nized method is a post-processing method, which

projects word embeddings to the space that is or-
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thogonal to the gender direction vector defined by

a set of gender word pairs. However, if the gender

direction vector includes a component of semantic

information2, the semantic information will be lost

through the post-processing projections.

To balance between the gender debiasing and

the semantic information preserving, we propose

an encoder-decoder framework that disentangles a

latent space of a given word embedding into two

encoded latent spaces: the first part is the gender la-

tent space, and the second part is the semantic latent

space that is independent to the gender information.

To disentangle the latent space into two sub-spaces,

we use a gradient reversal layer by prohibiting the

inference on the gender latent information from the

semantic information. Then, we generate a counter-

factual word embedding by converting the encoded

gender latent into the opposite gender. Afterwards,

the original and the counterfactual word embed-

dings are geometrically interpreted to neutralize

the gender information of given word embeddings,

see Figure 1 for the illustration on our debiasing

method.

Our contributions are summarized as follows:

• We propose a method for disentangling the

latent information of the word embedding by

utilizing the siamese auto-encoder structure

with an adapted gradient reversal layer.

• We propose a new gender debiasing method,

which transforms the original word embed-

ding into gender-neutral embedding, with the

gender-counterfactual word embedding.

• We propose a generalized alignment with a

kernel function that enforces the embedding

shift, during the debiasing process, in a direc-

tion that does not damage the semantics of

word embedding.

We evaluated the proposed method and other

baseline methods with several quantitative and qual-

itative debiasing experiments, and we found that

the proposed method shows significant improve-

ments from the existing methods. Additionally, the

results from several NLP downstream tasks show

that our proposed method minimizes performance

degradation than the existing methods.

2Throughout this paper, we define the semantics of words
to be the meanings and functionality of words other than the
gender information by following Shoemark et al. (2019).

2 Gender Debiasing Mechanisms for

Word Embeddings

We can divide existing gender debiasing mecha-

nisms for word embeddings into two categories.

The first mechanism is neutralizing the gender as-

pect of word embeddings in the training procedure.

Zhao et al. (2018) proposed the learning scheme to

generate a gender-neutral version of Glove, called

GN-Glove, which forces preserving the gender in-

formation in pre-specified embedding dimensions

while other embedding dimensions are inferred to

be gender-neutral. However, learning new word

embeddings for large-scale corpus can be difficult

and expensive.

The second mechanism post-processes trained

word embeddings to debias them after the train-

ing. An example of such post-processings is a

linear projection of gender-neutral words toward

a subspace, which is orthogonal to the gender di-

rection vector defined by a set of gender-definition

words (Bolukbasi et al., 2016). Another way of

constructing the gender direction vector is using

common names, e.g. john, mary, etc (Dev and

Phillips, 2019), while the previous approach used

gender pronouns, such as he and she. In addition

to the linear projections, Dev and Phillips (2019)

utilizes other alternatives, such as flipping and sub-

traction, to reduce the gender bias more effectively.

Beyond simple projection methods, Kaneko and

Bollegala (2019) proposed a neural network based

encoder-decoder framework to add a regulariza-

tion on preserving the gender-related information

in feminine and masculine words.

3 Methodology

Our model introduces 1) the siamese network struc-

ture (Bromley et al., 1994; Weston et al., 2012)

with an adapted gradient reversal layer for latent

disentanglement and 2) the counterfactual data aug-

mentation with geometric regularization for gen-

der debiasing. We process the gender word pairs

through the siamese network with auxiliary classi-

fiers to reflect the inference of gender latent dimen-

sions. Afterwards, we debias the gender-neutral

words by locating it to be at the middle between

a reconstructed pair of original gender latent vari-

able and counterfactually generated gender latent

variable.

Same as previous researches (Kaneko and Bolle-

gala, 2019), we divide a whole set of vocabulary V

into three mutually exclusive categories : feminine
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Figure 2: The framework overview of our proposed model. We characterize specialized regularization and network

parameters with colored dotted lines and boxes with blue color, respectively.

word set Vf ; masculine word set Vm; and gender

neutral word set Vn, such that V = Vf ∪ Vm ∪ Vn .

In most cases, words in Vf and Vm exist in pairs, so

we denote Ω as the set of feminine and masculine

word pairs, such that (wf , wm) ∈ Ω.

3.1 Overall Model Structure

Figure 2 illustrates the overall structure of our pro-

posed method for pre-trained word embeddings,

which we named Counterfactual-Debiasing, or CF-

Debias. Eq. (1) specifies the entire loss function of

the whole network parameters in Figure 2. The en-

tire loss function is divided into two types of losses:

Lld to be a loss for disentanglement and Lcf to be

a loss for counterfactual generation. λ can be seen

as a balancing hyper-parameter between two-loss

terms.

L = λLld + (1− λ)Lcf , 0 ≤ λ ≤ 1 (1)

Here, we use pre-trained word embeddings

{wi}
V
i=1 ∈ R

d for the debiasing mechanism. In

the encoder-decoder framework, we denote the

latent variable of wi to be zi ∈ R
l, which is

mapped to the latent space by the encoding func-

tion, E : wi → zi; and the decoding function,

D : zi → ŵi. After the disentanglement of the

latent space, zi is divided into two parts, such that

zi= [zs
i , z

g
i ] : z

s
i ∈ R

l−k is the semantic latent

variable of wi; and z
g
i ∈ R

k is the gender latent

variable of wi, where k is the pre-defined value for

the gender latent dimension.3

3.2 Siamese Auto-Encoder for Latent

Disentanglement

This section provides the construction details of

Lld. Eq. (2) defines the objective function for

latent disentanglement as a linearly-weighted sum

of the losses.

Lld = λseLse + λgeLge + λdiLdi + λreLre (2)

For the disentanglement, our fundamental as-

sumption is maintaining the identical semantic

information in z
s for the gender word pairs,

(wf , wm) ∈ Ω. Under this assumption, we intro-

duce a latent disentangling method by utilizing the

siamese auto-encoder with gender word pairs. The

data structure of the gender word pairs provide

an opportunity to adapt the siamese auto-encoder

structure because the gender word pairs almost al-

ways have two words in pair4.

Semantic Latent Formulation First, we regular-

ize a pair of semantic latent variables (zs
f , z

s
m),

from a gender word pair, (wf , wm), to be same

by minimizing the squared ℓ2 distance as Eq. (3),

since the semantic information of a gender word

pair should be the same regardless of the gender.

Lse =
∑

(wf ,wm)∈Ω

‖zs
m − z

s
f‖

2
2

(3)

3For the simplicity in notations, we skip the word-index i

in the losses of our proposed method.
4This structure can be expanded as our gender coverage

changes.
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Figure 3: Gradient reversal layer utilized for the la-

tent disentanglement. We follow similar description in

Ganin et al. (2016)

Gender Latent Formulation To formulate the

gender-dependent latent dimensions, we introduce

an auxiliary gender classifier, Cr : zg → [0, 1],
given in Eq. (4), and Cr is asked to produce one in

masculine words, labeled as gm = 1, and to pro-

duce zero in feminine words, gf = 0, respectively.

After training, the output of Cr can be an indicator

of the gender information for each word.5

Lge = −
∑

wm∈Vm

gm logCr(z
g
m)

−
∑

wf∈Vf

(1− gf ) log(1− Cr(z
g
f )) (4)

Disentanglement of Semantic and Gender La-

tent The above two regularization terms do not

guarantee the independence between the seman-

tic and the gender latent dimensions. To enforce

the independence between two latent dimensions,

we introduce a Generator with Gradient Reversal

Layer (GRL), Ca : zs → z
g (Ganin et al., 2016),

which generates the gender latent dimension with

the semantic latent dimension. We modify the flip-

ping gradient idea of (Ganin et al., 2016) to the

latent disentanglement between the semantic and

the gender latent dimensions. The sufficient gen-

eration of zg from z
s means that zs has enough

information on z
g, so the generation should be pro-

hibited to make z
g and z

s independent. Hence,

our feedback of the gradient reversal layer is maxi-

mizing the loss of generating z
g from z

s, which is

represented as Ldi in Eq. (5).

Ldi =
∑

w∈V

‖Ca(z
s)− z

g‖22 (5)

In the learning stage, the gradient of the encoder

for zs, which is parameterized as θs, becomes the

5We report the test performances of the gender classifier
for gender-definition words, i.e., he, she, etc.; and gender-
stereotypical words, i.e., doctor, nurse, etc., in Appendix D.

summation of 1) ∂Ls

∂θs
, which is the gradient for the

loss Ls, the latent disentanglement losses of the

encoder for zs excluding Ldi ; and 2) −λa
∂Ldi

∂θs
,

which is the λa-weighted negative gradient of the

loss Ldi which is reversed after passing the GRL,

because we intend to train the encoder for zs by

preventing the generation of zg. Eq. (5) specifies

the loss function for the disentanglement by GRL,

and Eq. (6) specifies the reversed gradient, see

Figure 3.

∂Lld

∂θs
=

∂Ls

∂θs
− λa

∂Ldi

∂θs
(6)

Reconstruction We add the reconstruction loss

given in Eq. (7) for this encoder-decoder frame-

work.

Lre =
∑

w∈V

‖w − ŵ‖22 (7)

3.3 Gender-Counterfactual Generation

This section provides the construction details of

Lcf . Same as Lld, We define the objective function

for the counterfactual generation as the linearly-

weighted sum of the losses, introduced in this sec-

tion, as in Eq. (8).

Lcf = λmoLmo + λmiLmi (8)

Unlike the gender word pairs, a word in the gen-

der neutral word set wn ∈ Vn utilizes a counterfac-

tual generator, Cg : zg
n → ¬zg

n, which converts the

original gender latent, z
g
n, to the opposite gender,

¬zg
n. It should be noted that Cg is only activated

for optimizing the losses in Lcf , which assumes

that other parameters learned for the latent disen-

tanglement are freezed.

To switch z
g
n, we utilize a prediction from the

gender classifier, Cr, which is trained through the

disentanglement loss. The modification loss, Lmo,

originates from indicating the opposite gender with

z
g
n by Cr, see Eq. (9). For instance, if Cr returns

0.8 for the original gender latent, z
g
n, then we reg-

ularize the virtually generated gender latent, ¬zg
n,

to lead Cr to return 0.2.

Lmo =
∑

wn∈Vn

‖Cr (¬z
g
n)− (1− Cr(z

g
n))‖

2
2 (9)

While Eq. (9) focuses on the gender latent

switch, Eq. (10) emphasizes the minimal change of

the gender latent, z
g
n. The combination of these two

losses guides to the switched gender latent variable
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that is close to the original gender latent variable

for regularizing the counterfactural generation.

Lmi =
∑

wn∈Vn

‖¬zg
n − z

g
n‖

2
2 (10)

Though we keep the semantic latent variable, zs,

and switch the gender latent variable, zg, to gen-

erate the gender-counterfactual word embedding,

their concatenation during decoding can be vulner-

able to the semantic information changes because

of variances in the individual latent variables. Con-

sequently, we constrain that the reconstructed word

embedding with the counterfactual gender latent,

ŵcf , differs only in the gender information from

ŵn, which is the reconstructed word embedding

with the original gender latent.

Linear Alignment For this purpose, we introduce

the linear alignment, which regularizes ŵn − ŵcf

by measuring the alignment to the gender direction

vector vg in Eq. (11), which is an averaged gender

difference vector from the gender word pairs.

vg =
1

|Ω|

∑

(wi
f
,wi

m)∈Ω

(

ŵ
i
m − ŵ

i
f

)

(11)

This regularization suggests that we constrain the

embedding shift of the gender-neutral word to be

the direction of vg. This alignment can be accom-

plished by maximizing the absolute inner product

between ŵn−ŵcf and vg as given in Eq. (12). We

introduce CF -Debias-LA, which adds the below

linear alignment regularization, λlaLla, to Lcf .

Lla =
∑

wn∈Vn

−|vg · (ŵn − ŵcf )| (12)

Kernelized Alignment While the linear alignment

computes the gender direction vector vg as a simple

average, the gender information of word embed-

ding can have a nonlinear structure. Therefore, we

introduce the kernelized alignment, which enables

the nonlinear alignment between 1) ŵi
m − ŵ

i
f of

each gender word pair (wi
f , w

i
m) and 2) ŵn − ŵcf

of gender-neutral words wn.

We hypothesize a nonlinear mapping function

f , which projects a word embedding wi ∈ R
d into

a newly introduced feature space, f(wi) ∈ R
m.

We can utilize the kernel trick (Schölkopf et al.,

1998) for computing pairwise operation on the non-

linear space introduced by f . Let k(w,w′) =
f(w) · f(w′) be a kernel representing an inner-

product of two vectors in the feature space. Also,

we set φk to be k-th eigenvector for the projected

outputs of the given embeddings {f(wi)}
N
i=1. By

following Appendix A, PCk is the k-th principal

component of new word embedding w′ on the intro-

duced feature space: PCk = f(w′) ·φk. Then, we

find the k-th principal component for embedding

w
′ as given in Eq. (15), when aik is i-th component

of k-th eigenvector of K, which is a N ×N kernel

matrix of given data.

PCk = f(w′) · φk =ΣN
i=1a

i
kf(wi) · f(w

′)

=ΣN
i=1a

i
k k(wi,w

′) (13)

Substituting the inner product in Eq. (12) with

Eq. (14), we design the nonlinear alignment be-

tween the gender difference vector, ŵm − ŵf , and

the gender neutral vector, ŵn − ŵcf , by maximiz-

ing the Top-K kernel principal components as Eq.

(14). We introduce CF -Debias-KA, which adds

the kernelized alignment regularization, λkaLka, to

Lcf . We use Radial Basis Function kernel for our

experiment.

Lka = −
K
∑

k=1

∑

wn∈Vn

∑

(wi
f
,wi

m)∈Ω

aik k
(

ŵ
i
m − ŵ

i
f , ŵn − ŵcf

)

(14)

3.4 Post-Processing by the Word’s Category

After learning the network parameters, we post-

process words by its categories of Vf , Vm, and

Vn. We gender-neutralize the embedding vector

of wn ∈ Vn by relocating the vector to the middle

point of the reconstructed original-counterfactual

pair embeddings, such that w :=
ŵcf+ŵn

2 = ŵneu.

We utilize a reconstructed word embedding which

preserves the gender information in embedding

space, w := ŵf for wf ∈ Vf and w := ŵm for

wm ∈ Vm. For each w ∈ Vf ∪ Vm, we can safely

preserve gender information of given word by us-

ing reconstructed embedding such that w := ŵ.

4 Experiments

4.1 Datasets and Experimental Settings

We used the set of gender word pairs created by

Zhao et al. (2018) as Vf and Vm, respectively. All

models utilize GloVe on 2017 January dump of En-

glish Wikipedia with 300-dimension embeddings

for 322,636 unique words. Additionally, to investi-

gate the debiasing effect on languages other than
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English (GloVe) Spanish (Fasttext) Korean (Fasttext)

Sembias Sembias subset Sembias Sembias subset Sembias Sembias subset

Embeddings Def ↑ Stereo↓ None ↓ Def ↑ Stereo ↓ None ↓ Def ↑ Stereo↓ None ↓ Def ↑ Stereo ↓ None ↓ Def ↑ Stereo ↓ None ↓ Def ↑ Stereo ↓ None ↓

Original 80.22 10.91 8.86 57.5 20.0 22.5 70.98† 17.38† 11.63† 84.61† 11.86† 3.52† 80.38† 7.48† 12.14† 76.26 8.87 14.88

Hard-Debias 87.95∗ 8.41 3.64∗ 50.0 32.5 17.5 41.76 27.55 30.68 21.12 38.54 40.33 41.39 15.31 43.30 89.23∗ 2.62∗ 8.15∗

GN-Debias 97.73†∗ 1.36†∗ 0.91†∗ 75.0† 15.0 10.0 —- —- —- —- —- —- —- —- —- —- —- —-

ATT-Debias 80.22 10.68 9.09 60.0 17.5 22.5 75.23∗† 13.02∗† 11.74† 83.44† 9.80†∗ 6.76† 82.98†∗ 7.70† 9.33†∗ 79.59∗ 8.87 11.55∗

CPT-Debias 73.63 5.68 20.68 45.0 12.5 42.5 69.62† 18.26† 12.11† 84.62† 11.86† 3.52† 61.31† 10.57† 28.12† 38.52 15.76 45.72

AE-Debias 84.09 7.95 7.95 65.0† 15.0 20.0 73.19∗† 15.56∗† 11.26† 86.38†∗ 10.10†∗ 3.52† 57.66† 11.91† 30.44† 55.72 10.76 33.53

AE-GN-Debias 98.18†∗ 1.14†∗ 0.68†∗ 80.0†∗ 12.5† 7.5 —- —- —- —- —- —- —- —- —- —- —- —-

GP-Debias 84.09 8.18 7.73 65.0† 15.0 20.0 72.93†∗ 15.87†∗ 11.19†∗ 86.37†∗ 10.09†∗ 3.52† 55.85† 15.62 28.53† 68.00 16.19 15.81

GP-GN-Debias 98.41†∗ 1.14†∗ 0.45†∗ 82.5†∗ 12.5† 5.0∗ —- —- —- —- —- —- —- —- —- —- —- —-

CF-Debias 98.18†∗ 0.68†∗ 1.13†∗ 80.0†∗ 7.5† 12.5 78.93†∗ 3.83†∗ 17.23† 96.15†∗ 0.0†∗ 3.85† 83.02†∗ 2.44†∗ 14.53† 80.98∗ 0.0†∗ 19.02

CF-Debias-LA 100.00†∗ 0.00†∗ 0.00†∗ 100.0†∗ 0.0†∗ 0.0†∗ 69.33† 9.05†∗ 21.61† 100.0†∗ 0.0†∗ 0.0†∗ 85.07†∗ 2.37†∗ 12.5† 88.04∗ 0.0†∗ 11.95∗

CF-Debias-KA 92.04†∗ 3.41†∗ 4.55∗ 62.5 17.5 20.0 80.35∗† 6.73∗† 12.91† 100.0†∗ 0.0†∗ 0.0†∗ 84.28†∗ 2.09†∗ 13.62† 82.27∗ 2.38∗ 15.35

Table 1: Percentage of predictions of each category on sembias analogy task, for each language. † and ∗ denote

the statistically significant differences for Hard-Debias and Original embedding, respectively. The best model is

indicated as boldface. We denote ”—” for the skipped cases, whose methods are closely tied to GloVe embedding.

English; we conducted one of the debiasing ex-

periments for Spanish, which is the Subject-Verb-

Object language as English; and Korean, one of

the Subject-Object-Verb language. We used Fast-

text (Bojanowski et al., 2016) for experiments of

Spanish and Korean. Accordingly, we excluded the

baselines, whose methods are closely tied to GloVe,

for the experiments of other languages. We specify

the dimensions of z, l, as 300, which is divided into

295 semantic latent dimensions and 5 gender latent

dimensions. Also, we utilize the sequential hyper-

parameter schedule, which updates the weight for

Lld more at the initial step and gradually increases

updating the weight for the Lcf , by changing λ

in Eq. (1) from 1 to 0. Further information on

experimental settings can be found in Appendix G.

4.2 Baselines

We compare our proposed model with below base-

line models, and we utilize the authors’ imple-

mentations.6 Hard-Debias (Bolukbasi et al., 2016)

utilizes linear projection technique for gender-

debiasing. GN-Debias (Zhao et al., 2018) trains

the word embedding from scratch by preserving

the gender information into the specific dimension

and regularizing the other dimensions to be gender-

neutral. CPT-Debias (Karve et al., 2019) introduces

a debiasing mechanism by utilizing the conceptor

matrix. ATT-Debias (Dev and Phillips, 2019) de-

fines gender subspace with common names and pro-

poses the subtraction and the linear projection meth-

ods based on gender subspace.7 AE-Debias and

AE-GN-Debias (Kaneko and Bollegala, 2019) uti-

lize the autoencoder structure for debiasing, and uti-

lize the original word embedding and GN-Debias,

6We provided link of the authors’ implementations in Ap-
pendix H.

7We use the subtraction method as an ATT-Debias.

respectively. Besides, GP-Debias and GP-GN-

Debias adopt additional losses to neutralize gender

bias and preserve gender information for gender-

definition words.

4.3 Quantitative Evaluation for Debiasing

4.3.1 Sembias Analogy Test

We perform the Sembias gender analogy test (Zhao

et al., 2018; Jurgens et al., 2012) to evaluate the

degree of gender bias in embeddings. The Sembias

dataset in English contains 440 instances, and each

instance consists of four-word pairs : 1) a gender-

definition word pair (Def), 2) a gender-stereotype

word pair (Stereo), and 3,4) two none-type word

pairs (None). We test models by calculating the

linear alignment between each word pair difference

vector, −→a −
−→
b ; and

−→
he−

−→
she, which we refer to

as Gender Direction. This test regards an embed-

ding model to be better debiased if the alignment

is larger for the word pair of Def compared to the

word pairs of None and Stereo. By following the

past practices, we test models with 40 instances

from a subset of Sembias, whose gender word pairs

are not used for training. To investigate the result

of Sembias analogy test in Spanish and Korean,

we translated the words in Sembias into the other

languages with human corrections.

Table 1 shows the percentages of the largest

alignment with Gender Direction for all instances.

For English, CF-Debias-LA selects all the pairs

of Def, which shows the sufficient maintenance

of the gender information for those words. Also,

CF-Debias-LA selects neither stereotype nor none-

type words, so the difference vectors of Stereo and

None always have less alignment to Gender Direc-

tion than the difference vectors of Def. We further

refer to the experimental settings of Spanish and

Korean in Appendix J.
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career vs family math vs art science vs art intellect vs appear strong vs weak

Embeddings p-value d p-value d p-value d p-value d p-value d

Original 0.000 1.605 0.276 0.494 0.014 1.260 0.009 0.706 0.067 0.640

Hard-Debias 0.100 0.842 0.090 -1.043 0.003 -0.747 0.693 -0.121 0.255 0.400

GN-Debias 0.000 1.635 0.726 -0.169 0.081 1.007 0.037 0.595 0.083 0.620

ATT-Debias 0.612 0.255 0.007 -0.519 0.000 0.843 0.129 0.440 0.211 0.455

CPT-Debias 0.004 1.334 0.058 1.029 0.000 1.417 0.001 0.906 0.654 -0.172

AE-Debias 0.000 1.569 0.019 0.967 0.024 1.267 0.007 0.729 0.027 0.763

AE-GN-Debias 0.001 1.581 0.716 0.317 0.139 0.639 0.006 0.770 0.028 0.585

GP-Debias 0.000 1.567 0.019 0.966 0.027 1.253 0.006 0.733 0.028 0.758

GP-GN-Debias 0.000 1.599 0.932 0.109 0.251 0.591 0.004 0.791 0.098 0.610

CF-Debias 0.210 0.653 0.759 0.261 0.725 −0.363 0.256 -0.328 0.305 0.371

CF-Debias-LA 0.874 -0.089 0.669 -0.125 0.360 0.480 0.678 -0.124 0.970 0.013

CF-Debias-KA 0.196 0.673 0.887 0.083 0.919 -0.235 0.893 -0.039 0.373 0.338

Table 2: WEAT hypothesis test results for five gender-stereotypical word categories. The best and second-best

models are indicated as boldface and underline, respectively. The absolute value of the effect size denotes the

degree of bias. A value of d closer to 0 means that there is no gender bias.

4.3.2 WEAT

We apply the Word Embedding Association Test

(WEAT) (Caliskan et al., 2017b) for debiasing test.

WEAT uses permutation test to compute the ef-

fect size (d) and p-value in Table 2, as a measure-

ment of the bias in word embeddings. The effect

size computes differential association of the sets

of stereotypical target words, i.e. career vs family,

and the gender word pair sets from Chaloner and

Maldonado (2019a). A higher value of effect size

indicates a higher gender bias between the two sets

of target words. The p-value is used to check the

significant level of bias. We provide the detailed

description of WEAT in Appendix C. The varia-

tions of our method show the best performances

for whole categories except math vs art, see Table

2.

Embeddings no gender bias semantic validity

Original 0.447±0.179 0.875±0.132

Hard-Debias 0.491±0.142 0.652±0.123

ATT-Debias 0.610±0.136 0.761±0.131

CPT-Debias 0.552±0.128 0.827±0.138

GP-GN-Debias 0.328±0.241 0.421±0.149

CF-Debias-LA 0.644±0.124 0.683±0.152

CF-Debias-KA 0.615±0.107 0.744±0.142

Table 3: Human-based evaluation for the gender bias

and semantics of generated analogy, with standard de-

viation. The best model is indicated as boldface.

4.3.3 Analogy Test with Human based

Validation

We conducted a human experiment on the analogy

generated by the debiased embeddings to evaluate

the debiasing efficacy of each embedding. each

embeddings generate a word based on the ques-

tion ”a is to b as c is to what?”, when words a, b

are selected from the gender word pairs of Sem-

bias dataset; and c is given as a gender stereo-

typical word, i.e. homemaker, housekeeper, from

Bolukbasi et al. (2016). The answer word from

each question is generated by argmaxd∈V (
−→
d ·

(−→c −−→a +
−→
b )). 18 Human subjects were asked to

evaluate the generated analogies from two perspec-

tives; 1) existence of gender bias in the analogy, 2)

semantic validity of the analogy.8 Table 3 shows

that our method indicates the least gender bias

while competitively maintaining the semantic va-

lidity.

4.4 Debiasing Qualitative Analysis

To demonstrate the indirect gender bias in the word

embedding, we perform two qualitative analyses

from Gonen and Goldberg (2019). We take the

top 500 male-biased words and the top 500 female-

biased words, which becomes a word collection

of the top 500 and the bottom 500 inner product

between the word embeddings and
−→
he−

−→
she. From

the debiasing perspective, these 1,000 word vec-

tors should not be clustered distinctly. Therefore,

we create two clusters with K-means and check

the heterogeneity of the clusters through the clus-

ter majority classification. The left side on Figure

4 shows that CF-Debias-KA generates a gender-

invariant embedding for gender-biased wordsets by

showing the lowest cluster classification accuracy.

Gonen and Goldberg (2019) demonstrates that

the original bias9 has a high correlation with

8We enumerate the embeddings utilized in an experiment
and detailed description of the human experiment in Appendix
I.

9the dot-product between the original word embedding

from GloVe and
−→

he−
−→

she
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POS Tagging POS Chunking Named Entity Recognition

Embeddings ∆ F1 ∆ Recall ∆ F1 ∆ Recall ∆ F1 ∆ Recall

Hard-Debias -0.657±0.437 -1.220±0.938 -0.007±0.001 -0.025±0.003 -0.004±0.001 -0.015±0.005

GN-Debias -0.594±0.367 -1.115±0.821 -0.003±0.001 -0.010±0.003 -0.002± 0.001 -0.008±0.002

ATT-Debias -0.689±0.474 -1.279±1.000 -0.024±0.005 -0.091±0.019 -0.013±0.003 -0.046±0.011

CPT-Debias -0.501±0.277 -0.959±0.674 -0.004±0.001 -0.016±0.005 -0.002±0.000 -0.008±0.001

AE-Debias -2.862±1.632 -8.647±5.072 -2.108±0.558 -7.753±1.996 -1.669±0.547 -5.895±1.893

AE-GN-Debias -3.505±1.498 -10.766±4.525 -4.765±0.402 -16.760±1.299 -4.460±0.485 -5.097±1.524

GP-Debias -2.911±1.664 -8.810±5.156 -2.058±0.555 -7.573±1.988 -1.611±0.542 -5.696±1.877

GP-GN-Debias -3.560±1.506 -10.943±4.557 -4.791±0.391 -16.843±1.262 -4.485±0.468 -5.176±1.471

CF-Debias -0.327±0.248 -0.621±0.564 0.000±0.000 −0.001±0.001 0.000±0.000 −0.001±0.001

CF-Debias-LA -0.287±0.118 -0.506±0.260 -0.002±0.001 -0.006±0.004 -0.002±0.001 -0.007±0.005

CF-Debias-KA −0.123±0.135 −0.186±0.208 0.000±0.000 −0.001±0.001 0.000±0.000 −0.001±0.001

Table 4: Performance degradation percentage with standard deviation for downstream tasks of POS Tagging, POS

Chunking, and NER. The best model is indicated as boldface.

Hard-Debias (89.4%)

GP-GN-Debias (100.0%)

CF-Debias-KA (76.8%)

Hard-Debias (0.4607)

GP-GN-Debias (0.8867)

CF-Debias-KA (0.1866)

Figure 4: The t-SNE views for 500 male, female-

biased word embeddings from original embedding,

with the cluster-based classification accuracy in paren-

theses. (left) The percentage of male neighbors for

each profession as a function of original bias, with the

Pearson correlation coefficient in parentheses. (right)

the male/female ratio of the gender-biased words

among the nearest neighbors of the word embed-

ding. The right side of Figure 410 shows each pro-

fession word at (the dot-product, the male/female

ratio). CF-Debias-KA shows the minimal Pearson

correlation coefficient between the two axes.

10Full plots of other baselines for two qualitative analyses
are available in Appendix E and F, respectively.

4.5 Downstream Task of Debiased Word

Embeddings

We compared multiple downstream task perfor-

mances of the original and the debiased word

embeddings, to check the ability to preserve se-

mantic information in debiasing procedures. Fol-

lowing CoNLL 2003 shared task (Sang and Erik,

2002), we selected Part-Of-Speech tagging, Part-

Of-Speech chunking, and Named Entity Resolution

as our tasks. Table 4 shows that there are constant

performance degradation effects for all debiasing

methods from the original embedding. However,

our methods minimized the degradation of perfor-

mances across the baseline models. Especially,

CF-Debias-KA shows the minimal performance

degradations by utilizing the nonlinear alignment

regularization.

Figure 5: The proportion (Left) and Gini-index (Right)

from the variance vector for top 30 PCs of difference

vectors for gender word pairs

4.6 Analyses on Alignment Regularization

If the difference vectors of gender word pairs are

not linearly aligned, the gender direction vector vg

in Eq. (11) cannot be a pure direction of the gender

information. Hence, we compared the variances ex-

plained by the top 30 principal components (PC)

of difference vectors for gender word pairs, as a

measurement for the linear alignment. The left plot
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in Figure 5 shows the proportion of variances from

each PC. Our method shows the largest concentra-

tion of the variances on a few components, other

than Hard-Debias and Original embedding. The

right plot in Figure 5 shows Gini-index (Gini, 1912)

for the variance proportion vector from PCs. Our

method shows minimal Gini-index, which indicates

the monopolized proportion of variances.

Also, Figure 6 shows two example plots of a

selected gender word pairs in the original embed-

ding space (Upper) and the CF-Debias-LA embed-

ding space (Lower), by Locally Linear Embedding

(LLE), (Roweis and Saul, 2000). The lower plot

in Figure 6 shows the consistency of the gender

direction, and the plot visually describes the neu-

tralization of housekeeper, statistician by utilizing

the counterfactually augmented word embeddings.

Figure 6: LLE projection view of selected gender word

pairs and biased word for original embedding space

(left) and debiased embedding space (right)

5 Conclusions

This work contributes to natural language process-

ing society in two folds. For gender debiasing

application, our model produces the debiased em-

beddings that has the most neutral gender latent

information as well as the efficiently maintained

semantics for the various NLP downstream tasks.

For methodological modeling, CF-Debias suggests

a new method of disentangling the latent informa-

tion of word embeddings with the gradient reversal

layer and creating the counterfactual embeddings

by exploiting the geometry of the embedding space.

It should be noted that these types of latent model-

ing can be applied to diverse natural language tasks

to control expressions on emotions, prejudices, ide-

ologies, etc.
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A The Derivation of Principal

Component on Kernelized Alignment

Let’s assume that we want to align a word embed-

ding w
′ to the set of the word embeddings {wi}

N
i=1.

Then, we introduce nonlinear mapping function f ,

which projects a word embedding wi ∈ R
d into

a newly introduced feature space, f(wi) ∈ R
m.

If we assume that the mapped outputs from the

word embeddings {f(wi)}
N
i=1 are zero-centered,

the covariance matrix can be estimated as follows:

Σf =
1

N

N
∑

i=1

f(wi)f(wi)
T

Same as the main paper, we set φk and λk to be

k-th eigenvector and eigenvalue for the projected

outputs of the given embeddings {f(wi)}
N
i=1, re-

spectively. Then, we can get following equation,

which describes the eigen-decomposition of the

covariance matrix.

Σfφk =
1

N

N
∑

i=1

f(wi)f(wi)
Tφk

=
1

N

N
∑

i=1

(f(wi) · φk)f(wi) = λkφk

From above function, φk can be represented as

a linearly-weighted combination of the N mapped

outputs of word embeddings as follows:

φk =
1

Nλk

N
∑

i=1

(f(wi) · φk)f(wi)

Then, we multiply f(wj) for j = 1, ..., N to

both sides of the equation.

f(wj) · φk =
1

Nλk

f(wj)

N
∑

i=1

(f(wi) · φk)f(wi)

=
N
∑

i=1

1

Nλk

(f(wi) · φk)(f(wi) · f(wj))

We can replace an inner-product of the two

mapped outputs, (f(wi) · f(wj)), into kernel

k(wi,wj), which represents an inner product of

two vectors in the projected space, for the case

when computing mapped results of given data is

complex or impossible.

f(wj) · φk =

N
∑

i=1

1

Nλk

(f(wi) · φk) k(wi,wj)

By letting aik = 1
Nλk

(f(wi) · φk), we get

f(wj) · φk = λkNa
j
k =

N
∑

i=1

a
j
k k(wi,wj)

The above equation can be represented as the j-th

component of the k-th eigenvector-decomposition

problem of K, which is a matrix of N × N ker-

nel elements k(wi,wj) for i, j = 1, ..., N . See

the below equation, which is k-th eigenvector-

decomposition problem of K, when ak =

[a1k, ..., a
N
k ]

T
.

λkNak = Kak

This implication means that a
j
k is j-th component

of k-th eigenvector of K and we can compute a
j
k

by solving eigen-decomposition problem of K.

Substituting f(wj) on above equation into

f(w′), which is mapped result of the target word

embedding w
′, we get PCk, k-th principal compo-

nent of new word embedding w
′ on the projected

space as follows:

PCk = f(w′) · φk =ΣN
i=1a

i
kf(wi) · f(w

′)

=ΣN
i=1a

i
k K(wi,w

′) (15)

It should be noted that above derivation is based

on Schölkopf et al. (1998). The proposed Kernel-

ized alignment can be seen as an example which

applies an nonlinear alignment to the word embed-

dings, by utilizing the kernel trick provided from

Schölkopf et al. (1998).
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B Notation table

Notation Description

wf The embedding of feminine word

wm The embedding of masculine word

wn The embedding of gender neutral word

Vf The feminine word set

Vm The masculine word set

Vn The gender neutral word set

z
s
f The semantic latent variable of wf

z
s
m The semantic latent variable of wm

z
s
n The semantic latent variable of wn

z
g
f The gender latent variable of wf

z
g
m The gender latent variable of wm

z
g
n The gender latent variable of wn

¬zg
n The counterfactual-gender latent variable

ŵf The reconstructed word embedding of wf

ŵm The reconstructed word embedding of wm

ŵn The reconstructed word embedding of wn

ŵcf The counterfactually reconstructed word embedding

ŵneu The gender neutralized word embedding

gf The output of gender classifier for z
g
f

gm The output of gender classifier for z
g
m

vg The gender direction vector

Ω The gender word pairs set

E The encoder of our method

D The decoder of our method

Cr The auxilary gender classifier

Ca The gender latent generator

Table 5: The description of the notations in this paper.

C WEAT Hypothesis test

WEAT hypothesis (Caliskan et al., 2017b) test

quantifies the bias with effect size and p-value. We

can compute the effect size of the two target words

set against two attribute words set. To quantify

the gender bias, we use (Chaloner and Maldon-

ado, 2019b) subset of masculine (A1) and feminine

words(A2) as an attribute words, and use career

(T1) and family (T2) related words for target words

set. We compare the effect size and p-value for

different experiment environment by changing the

attribute words, as shown in Table 2 in the paper.

We can compute the association measure s, be-

tween target word t and the attribute word set as

follows:

s(t) =
1

|A1|

∑

a1∈A1

cos(t, a1)−
1

|A2|

∑

a2∈A2

cos(t, a2)

We compute the effect size, the degree of bias,

based on the difference between mean of associa-

tion value as follows:

Meant1∈T1
s(t1)− Meant2∈T2

s(t2)

stdt∈T1∪T2
s(t)

To check the significant level of bias, we need

to compute the test statistics, s(T1, T2), and one-

sided p-value. We compute the p-value based on

{T
(i)
1 , T

(i)
2 }, the all partition of T1 ∪ T2 as follows:

s(T1, T2) =
∑

t1∈T1

s(t1)−
∑

t2∈T2

s(t2)

p-value = P{|s(T
(i)
1 ,T

(i)
2 )| > |s(T1, T2)|}

If the word embedding has a conventional gender

bias, effective size can have a positive value, and

negative value, otherwise. To measure the gender

bias properly, we need to consider both of conven-

tional gender bias, and anti-conventional gender

bias. We compute the p-value based on the absolu-

tion value of test statistics to measure gender bias

properly.

D Performance Test Result for Gender

Classifier Cr

To test gender indicating the ability of the gender

classifier Cr : zg → [0, 1], we tested indicating

accuracy of the gender-definition words, i.e., he,

she, etc.; and gender-stereotypical words, i.e.,

doctor, nurse, etc. We utilized 53 gender word

pairs as test word pairs from entire gender word

pairs, utilizing the remaining words for training.

We selected well known gender-biased occupation

words for examples of gender-stereotypical words,

10 for each gender case as follows:

[doctor, programmer, boss,maestro, warrior

, john, politician, statistician, athlete, nurse,

homemaker, cook, cosmetics, dancer,mary,

violinist, housekeeper, secretary].
The test accuracy for gender-definition words

are 0.8490, 0.8867 for masculine and feminine

words, respectively. For gender-stereotypical

words, Cr indicates correct gender biases for all

male-biased words except the word athlete and all

female-biased words. Figure 7 shows the visual

separation of gender latent variables for masculine

words and feminine words.

Figure 7: The t-SNE projection view of gender latent

variables of the test gender word pairs
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E Full Plots for the Clustering Analysis

(a) Original (99.9%) (b) Hard-Debias (89.4%)

(c) GN-Debias (97.3%) (d) ATT-Debias (99.1%)

(e) CPT-Debias (100.0%) (f) AE-Debias (92.6%)

(g) AE-GN-Debias (100.0%) (h) GP-Debias (92.5%)

(i) GP-GN-Debias (100.0%) (j) CF-Debias (78.1%)

(k) CF-Debias-LA (63.1%) (l) CF-Debias-KA (76.8%)

Figure 8: The t-SNE projection views for embeddings of 500 male-biased words and 500 female-biased words

according to the original Glove, the cluster majority based classification accuracy is added in parenthesis.
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F Full Plots for Correlation Analysis between Original Bias and Nearest Neighbors

(a) Original (0.8196) (b) Hard-Debias (0.4607)

(c) GN-Debias (0.7366) (d) ATT-Debias (0.7189)

(e) CPT-Debias (0.7268) (f) AE-Debias (0.5977)

(g) AE-GN-Debias (0.8950) (h) GP-Debias (0.5954)

(i) GP-GN-Debias (0.8867) (j) CF-Debias (0.3943)

(k) CF-Debias-LA (0.3801) (l) CF-Debias-KA (0.1865)

Figure 9: The percentage of male neighbors for each profession as a function of original bias for whole embeddings,

we show only a limited number of professions on the plot to make it readable. The pearson correlation coefficient

is added in parenthesis.
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G Experimental Setup for Our Method

We implement the encoder E and the decoder D

with one hidden layer and hyperbolic tangent func-

tion as an activation function. The generators Ca

and Cg are implemented as feed-forward neural

network with one hidden layer, followed by the hy-

perbolic tangent function as an activation function.

The gender classifier Cr is similarly implemented

as the feed-forward neural network with one hidden

layer, followed by sigmoid activation function for

the output layer. The whole training was performed

using the Adam optimizer with learning rate 10−5.

We trained our model using a single Titan-RTX

GPU. Each run takes approximately 2 hours includ-

ing the time for saving the post-processed word

embeddings.

As described in Appendix D, to test classification

accuracy of the gender classifier Cr : z
g → [0, 1]

for gender-definition words and gender stereotyp-

ical words, we only used 143 gender word pairs

from entire gender word pairs on the training pro-

cedure. The remaining 53 gender word pairs were

utilized for gender classification test in Appendix

D.

H The Link of Implementation for Each

Baseline

Hard-GloVe : https://github.com/tolga-b/

debiaswe.

GN-GloVe : https://github.com/uclanlp/gn_

glove.

CPT-GloVe : https://github.com/jsedoc/

ConceptorDebias.

ATT-GloVe : https://github.com/sunipa/

Attenuating-Bias-in-Word-Vec.

AE-GloVe, AE-GN, GP-GloVe and GP-GN :

https://github.com/kanekomasahiro/gp_

debias.

I The Experimental Setting of Human

Experiment

We conducted an human validation test on

the linear analogies generated by the debiased

embeddings to evaluate debiasing efficacy of each

embedding. For the question ”a is to b as c is to

?”, words a, b were selected from gender word

pairs of Sembias dataset and c was sampled from

gender stereotypical words, i.e. homemaker, given

by Bolukbasi et al. (2016).

The question word is chosen from

argmaxd∈V (
−→
d · (−→c −−→a +

−→
b )). In order to

enable human subjects to efficiently compare

generated words of each debiased word embedding,

We compared only 5 baseline methods; Original

GloVe embedding, Hard-Debias, ATT-Debias,

CPT-Debias, GP-GN-Debias with our methods;

CF-Debias-LA and CF-Debias-KA. As stated in

section 4.4 of main paper, 18 Human subjects were

asked to evaluate the 84 generated analogies from

two perspectives; 1) the existence of gender bias

on generated analogy, 2) the semantic validity of

analogy. The semantic validity in our experiment

equals to the question, ”Is it possible to infer

semantic relationship from generated analogy?”.

The representative examples of the analogy

questions are given as follows: ”man is to woman

as boss is to ?” , ”female is to male as weak is

to ?”.

J The Experimental Settings for Other

Languages; Spanish and Korean

We used Fasttext (Bojanowski et al., 2016) pre-

trained on CommonCrawl and Wikipedia, with

300 dimensional embeddings for 2,000,000 unique

words for the experiments of Spanish. Also, we

used Fasttext (Bojanowski et al., 2016) pre-trained

on Wikipedia, with 300 dimensional embeddings

for 879,125 unique words for the experiments of

Korean. For the gender word pairs required for gen-

der debiasing, the query words used in the English

version were translated into Spanish and Korean. In

this procedure, some words, which are not present

in the given corpus, were excluded.

https://github.com/tolga-b/debiaswe
https://github.com/tolga-b/debiaswe
https://github.com/uclanlp/gn_glove
https://github.com/uclanlp/gn_glove
https://github.com/jsedoc/ConceptorDebias
https://github.com/jsedoc/ConceptorDebias
https://github.com/sunipa/Attenuating-Bias-in-Word-Vec
https://github.com/sunipa/Attenuating-Bias-in-Word-Vec
https://github.com/kanekomasahiro/gp_debias
https://github.com/kanekomasahiro/gp_debias

