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Abstract
Free radical release due to oxidative stress is gaining importance in the field of viral pathogenesis. Recent studies suggest 
the involvement of oxidative stress and ROS levels in regulating disease virulence during RNA virus infection. Most of the 
RNA virus infections lead to vascular dysfunction and disease severity. However, the biology of free radicals in maintaining 
vascular endothelium integrity is not completely understood. In the present review, we discuss some of the common features 
in positive-strand RNA virus infections such as dengue and SARS-CoV-2 and suggest that anti-oxidant therapy could pave 
the way to develop therapeutic strategies in combating emerging and re-emerging RNA viruses.
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Abbreviations
ssRNA 	� Single strand RNA
ECs 	� Endothelial cells
ROS 	� Reactive oxygen species
ACE2 	� Angiotensin converting enzyme 2
DENV 	� Dengue virus
SARS-CoV-2 	� Severe acute respiratory syndrome coro-

navirus virus–2
Nrf 2 	� Nuclear factor erythroid 2-related factor 2
COVID-19 	� Coronavirus disease 2019
Nox2 	� NADPH oxidase 2

One-third of the virus genera are made up of positive sin-
gle-strand RNA (+ ssRNA) viruses. This includes clinically 
important and deadly pathogens like severe acute respiratory 

syndrome coronavirus–2 (SARS-CoV-2), dengue virus 
(DENV), and hepatovirus A. The viruses utilize host factors 
for initial access, cell invasion, and replication processes. 
Perhaps most importantly, studies have suggested that these 
RNA viruses, upon entry into the host, make use of oxidative 
stress–induced ambience for their genome capping and repli-
cation, thereby contributing towards disease severity (Reshi 
et al. 2014). In addition, + ssRNA can also alter the gene 
expression or reprogram the function of host-cell defense 
mechanisms by co-opting host factors (Nagy and Pogany 
2011). Thus, anti-oxidant therapy might be a potential thera-
peutic approach in combatting RNA viruses.

The endothelium is a continuous monolayer of endothe-
lial cells (ECs) aligned along the direction of blood flow 
and plays an important role in regulating vascular integrity 
within the blood vessel wall (Shin et al. 2017). Upon stimu-
lation, the endothelium undergoes a specific alteration in its 
phenotype referred to as “endothelial activation” which is 
characterized by enhanced expression of endothelial selec-
tins, increased endothelial-leukocyte interaction, and perme-
ability. Evidence suggests that ROS-mediated modulation 
of signal transduction pathways (activation of transcription 
factor AP-1 and activation of NFκB and p38 MAPK path-
ways) on ECs are key signaling mechanisms for endothelial 
activation (Alom-Ruiz et al. 2008). Oxidative stress–induced 
activation of ECs and platelets is presumed to contribute 
towards disease virulence during virus infection. The 
endothelium could dynamically elicit responses that may 
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contribute to the hyper-inflammation and altered vascular 
permeability during ssRNA viral infection, especially in the 
case of DENV infection (Dalrymple and Mackow 2012b, a). 
Thus, a proper understanding of the participation of ECs in 
stabilizing fluid barrier functions of the endothelium may 
lead to developing a therapeutic approach for reducing vas-
cular leakage in the severe form of the disease (Dalrym-
ple and Mackow 2012a). Though there are several factors 
like cellular interactions, cell–cell aggregation, and direct 
binding of the viral proteins that are presumed to be the 
causes for endothelial dysfunction, the actual mechanism 
remains obscure. Most importantly, the activation of ECs 
during the critical phase of infection when there is no virus 
in circulation makes us assume that there exist alternative 
means of host responsive factors that regulate endothelial 
permeability.

An imbalance in the production of reactive oxygen spe-
cies (ROS) and the inability of the host to detoxify ROS 
results in oxidative stress. The resulting oxidative stress is 
associated with pro-inflammatory cytokine release, as was 
reported for severe cases of dengue fever (Soundravally 
et al. 2014). Recently, we have reviewed the generation of 
ROS by endoplasmic reticulum (ER) and mitochondria that 
leads to the hyper-inflammatory response and disease sever-
ity in ssRNA viral infections like dengue, HIV, HBV, and 
HCV (Pillai et al. 2019). On one hand, some of the ssRNA 
infections alter the status of the mitochondrial chaperone 
prohibitin, resulting in dysregulation of the mitochondrial 
respiratory chain leading to the cause of ROS overproduc-
tion (Dang et al. 2011). On the other hand, virus replication 
is directly associated with protein oxidation in the ER and 
enhances ROS production and oxidative stress (Paracha et al. 
2013). This leads to oxidative stress–induced cellular dam-
age and disease severity (Reshi et al. 2014). A recent study 
has shown that the envelope (E) protein of SARS-CoV-2 
binds to the extracellular iron or haem. This E-protein-haem 
bounded complex in turn produces oxygen and water and 
then converts them to O2

−, H2O2, and hydroxyl radicals lead-
ing to ROS attack (Wenzhong and Hualan 2021). In addi-
tion, excessive production of ROS disrupts the lysosomal 
membrane and releases hydrolases. This results in autophagy 
in phagocytic cells and causes subsequent cell death fol-
lowed by a strong cytokine storm and organ failure (Wen-
zhong and Hualan 2021).

Interestingly, ROS is identified as an essential compo-
nent of the host response to viral infections. For instance, 
recent experimental findings have suggested that DENV 
infection induces intracellular ROS levels that regulate the 
activation of innate antiviral immune responses and stimu-
late apoptosis. Thus, a further understanding of the molecu-
lar details underlying the biological targets of ROS during 
DENV infection may facilitate the identification of novel 
treatment strategies for dengue-associated diseases. Parallel 

activation of antioxidant pathways regulated by Nrf2 also 
contributes to the regulatory control of antiviral and apop-
totic responses by maintaining redox homeostasis. However, 
excess ROS can hamper this equilibrium and thus ROS was 
identified as an essential component of the host response to 
DENV infection (Olagnier et al. 2014; Pillai et al. 2019). 
Another important downstream pathway of ROS is the 
MAPK signaling pathway (Son et al. 2011). Recently, it has 
been demonstrated that the NS1 protein of DENV activates 
the p38 MAPK pathway, thereby contributing to the hyper-
permeability of ECs in vitro (Barbachano-Guerrero et al. 
2020). Similarly, the p38 MAPK pathway was reported to 
be upregulated in SARS-CoV-2 (Ma et al. 2020), SARS-
CoV (Kopecky-Bromberg et al. 2006), and other respiratory 
viral infections (Börgeling et al. 2014). In this view, Grimes 
and Grimes et al. suggested MAPK inhibitors could be an 
effective therapeutic and promising approach for the man-
agement of coronavirus disease 2019 (COVID-19) (Grimes 
and Grimes 2020). An overview of the role of ROS, various 
associated signaling pathways, and disease severity during 
RNA virus infection is depicted in Fig. 1. Potentially useful 
inhibitors targeting some of the signaling pathways during 
ssRNA virus infection are listed in Table S1.

Endothelial dysfunction and SARS‑CoV‑2

In the case of SARS-CoV-2 infection, the participation 
of EC and EC injury in the disease pathogenesis has been 
described by Varga et al. (2020). In this line, biopsy of 
SARS-CoV-2-infected lungs exhibited mononuclear and 
polymorphonuclear aggregation accompanied by apoptotic 
ECs (Varga et al. 2020). Pulmonary endothelium serves as 
a selective barrier between the plasma and interstitium. Any 
drastic change in the endothelium will have an effect on the 
barrier function that leads to lung injury and pulmonary 
edema. In the case of COVID-19 pathogenesis, the molecu-
lar mechanism of endothelial dysfunction/dysregulation is 
not completely understood.

From the available literature on the disease mechanism 
exhibited by SARS-CoV-2, it shares some of the below-
mentioned properties with dengue viral infection in terms 
of disease pathogenesis.

	 (i)	 Activation of ECs and vascular dysfunction in 
severe COVID-19 cases — the vascular tone which 
is regulated by the endothelium is affected by the 
infection of the ECs by the virus and the presence of 
viral inclusion structures in ECs (Varga et al. 2020); 
expression of ACE2 receptors by ECs favors the 
virus to infect ECs and leads to cell death (Beyerstedt 
et al. 2021).
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	 (ii)	 Activation of the coagulation pathway with dissemi-
nated intravascular coagulation in severe cases (Zhou 
et al. 2021).

	 (iii)	 Patients with severe disease had thrombocytopenia 
(low platelet count) as compared to those of non-
severe cases (Lippi et al. 2020).

	 (iv)	 Cellular interactions and adhesions of platelet-leu-
kocyte and ECs during the infection (Canzano et al. 
2021; Mariappan et al. 2021; Balakrishna Pillai et al. 
2022).

	 (v)	 The coagulopathy observed in severe cases may be 
due to the results of inflammatory responses and 
endothelial activation or damage (Zhou et al. 2021).

	 (vi)	 Elevated fibrin degradation products (D-dimer) and 
fibrinogen in severe cases (Poudel et al. 2021).

	(vii)	 Excessive production of ferritin, macrophage acti-
vation, and ROS production leads to the release of 
free radicals, which convert Fe (II) to Fe (III) result-
ing in cellular apoptosis and coagulation. Elevated 
oxidative stress is associated with pro-inflammatory 
cytokines and cytokine storms (Perricone et  al. 
2020).

	(viii)	 ROS is also capable of activating calcium and NF-κB 
signaling to induce adhesion molecules and pro-

inflammatory cytokines, which can increase vascu-
lar permeability and promote leukocyte adhesion. 
A recent study suggests that oxidative stress caused 
by Nox2 activation contributes to COVID-19 patho-
genesis and is associated with thrombotic events in 
COVID-19 patients (Violi et al. 2020). Therefore, the 
beneficial effect of antioxidant drugs on endothelial 
function should be considered for the treatment of 
COVID-19 in the future.

Could neutralizing free radicals stop 
cytokine storm and disease severity 
in COVID?

Though there are many studies on the association of oxida-
tive stress response and viral infection, it is currently not 
known how the free radicals released by mitochondria and 
ER could trigger the hyper-inflammatory response. To the 
same degree, how the excess production or decreased scav-
enging of ROS and the inflammatory signal could activate 
macrophages, mast cells, leukocytes, platelets, and ECs 
and dysfunction is not clear. For instance, during inflam-
mation, chemical substances released by macrophages and 

Fig. 1   Schematic representation of ROS production and its role in virus disease pathogenesis
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subsequently by mast cells activate EC signaling pathways, 
which target structural elements such as actin and myosin 
that regulate vascular permeability. Evidence indicates 
that SARS-CoV-2 infection could affect capillary endothe-
lium by inducing endothelial inflammation and contribute 
to COVID-19 severity (Jin et  al. 2020). When vascular 
endothelium is exposed to various blood-borne pathogens 
or agents, the activated neutrophils could release a large 
amount of ROS into the circulation via membrane-bound 
NADPH oxidase during the neutrophil respiratory burst, 
causing host tissue injury and endothelial barrier dysfunc-
tion. In addition to this, vascular endothelium is the pri-
mary target for oxidants released by the activated blood 
cells at the site of injury or inflammation. These cellular 
events lead to reduced nitric oxide bioavailability, impair-
ment of vascular tone, and alteration in endothelial pheno-
type (upregulation of adhesion molecules, MMP activity, 
formation of intercellular gaps, hyper-permeability, and 
leukocyte transmigration) (Alom-Ruiz et al. 2008; Incalza 
et al. 2018). Thus, in excess conditions, ROS might play a 
crucial role in the activation of ECs, resulting in vascular 
leakage as observed in dengue and COVID-19 patients. In 
this context, serotonin inhibitors, a class of anti-depressants 
with potential anti-viral, immune-modulatory, and anti-
oxidant properties, are proposed to alleviate SARS-CoV-2 
disease virulence (Hamed and Hagag 2020). In addition, 
treatment and/or supplementation with antioxidant drugs or 
compounds has shown to reduce the expression of various 
endothelial cell proteins (MMP-9, VEGF, PECAM-1, ET-1, 
and Syndecan-1) thereby protecting the vascular endothelial 
membrane (Reiter et al. 2010; Fang et al. 2013; Lee et al. 
2014; Almatroodi et al. 2020). More research should be done 
on the antioxidant-oxidant status that is specifically altered 
in their expression during the course of viral infection, for 
developing modalities based on anti-oxidant-based COVID-
19 and dengue management. Some of the potential antioxi-
dants like curcumin, N-acetyl-L-cysteine, zinc, resveratrol, 
catechin, vitamin C, and vitamin D are currently under vari-
ous phases of clinical trials in controlling respiratory virus 
severity (Delić 2021; Sherkawy 2021; Lai-Becker 2022). 
Most importantly, a patient suffering from a severe form of 
COVID-19 along with pneumonia cannot be amenable to 
any anti-oxidant therapy. Anti-oxidants should be admin-
istered in the early course of infection, before the develop-
ment of pneumonia, which helps to prevent excessive ROS 
release (Lapenna 2021) and hyper-inflammatory responses, 
thus alleviating the disease severity caused by RNA viruses 
(Soto et al. 2020). In the above context, a list of antioxidant 
drugs and herbal extracts undergoing pre-clinical evaluation 
against RNA viral disease is mentioned in Table S2.

Thus, anti-oxidant therapy could help the supportive 
strategies, thereby improving the outcomes in patients with 
COVID-19 and other diseases caused by RNA viruses. 

Developing strategies for supplementing antioxidant therapy 
may augment the current disease management of debilitating 
positive-strand RNA virus diseases.
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