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1 Introduction

One of the outstanding mysteries of the Universe is the nature of dark matter (DM).

An attractive minimal option is provided by sterile neutrinos, whose existence is strongly

suggested by the observed neutrino masses. The smallness of the latter can elegantly
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be explained by the seesaw mechanism [1–6]. When the active-sterile neutrino mixing is

sufficiently small, the lightest sterile neutrino can be very long-lived and play the role of

DM. In the simplest scenario proposed by Dodelson and Widrow [7], such neutrinos can

be produced via mixing with the active neutrinos in a thermal bath of the Standard Model

(SM) particles, although the sterile neutrinos do not thermalize themselves. This minimal

option now appears to be in conflict with a number of observations [8–17] (see e.g. [18] for

a review).

Other production mechanisms have been explored in the literature. Primordial lep-

ton asymmetry could generate the active-sterile transitions via the Shi and Fuller mech-

anism [19, 20]. This option has been studied extensively in the context of the neutrino

Minimal Standard Model (νMSM) [21–25]. Alternatively, the relic population of sterile

neutrinos may be generated via decay of a heavier particle like the inflaton [26, 27], the

radion [28] or a general scalar singlet [29–34]. Other possibilities include sterile neutrino

production through pion decays [35], heavy pseudo-Dirac neutrinos [36], interactions of

light vector bosons [37, 38], via an axion-like field [39] and parametric resonance [40].

An interesting possibility, which we explore in detail, is to generate the observed relic

abundance of the sterile neutrino DM through the freeze-in mechanism [41, 42]. This

scenario requires a tiny coupling and a negligible initial DM abundance. The correct

relic density is then gradually built up via this feeble coupling along the evolution of the

Universe. A successful realization of this mechanism involves an extra scalar field, whose

decay produces sterile neutrinos [29, 30]. The vacuum expectation value (VEV) of such

a field can be responsible for the Majorana neutrino masses [43, 44]. For a small enough

coupling, the freeze-in mechanism is at work and the correct DM density can be produced.

In our work, we perform an in-depth analysis of the freeze-in production of sterile

neutrinos in the mass range up to 1GeV, taking into account different possible production

regimes, relativistic reaction rates with the Bose-Einstein distribution function, thermal

masses and main effects of the phase transitions. Previous studies have mainly focused

on the keV mass range [29, 30, 34, 45, 46], in which case the active-sterile mixing angle is

required to be below 10−5 or so. In our case, the requisite mixing must be much smaller

calling for a symmetry justification. The required symmetry can be identified with the

neutrino parity which acts on the lightest sterile neutrino only.

We find that the neutrino production often takes place in the relativistic regime, in

which case the Bose-Einstein distribution should be used for the initial state scalars. This

differs from many previous studies which have resorted to the non-relativistic Maxwell-

Boltzmann approximation. In order to take quantum statistics into account, we follow the

approach of [47, 48] and extend it to asymmetric reactions. The resulting rate enhancement

depends strongly on the thermal masses and ranges from O(1) to two orders of magnitude

in the vicinity of the 2d order phase transition.

We also take into account the most important effects of the phase transitions. First of

all, these affect the presence or absence of certain couplings which depend on scalar VEVs.

In addition, the mass change at the phase transition can facilitate particle production.

The DM production modes depend on whether or not the scalar is thermalized. It

couples to the SM via the Higgs portal [49–51]. Then, its thermalization depends on
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the Higgs portal coupling and the maximal temperature. To this end, we revisit the

scalar production through the Higgs portal couplings and the consequent thermalization

constraints. We find, in particular, that the 2 → 1 reaction (fusion) plays an important

role in this analysis.

In this work, we are mainly interested in reproducing the correct DM relic abundance.

To this end, we solve the Boltzmann equation for the number density rather than the

momentum distribution function (unlike e.g. [34]). We reserve the latter for future work.

The paper is organized as follows. In section 2, we introduce our model, discuss the

leading thermal corrections and compile the current constraints on sterile neutrino DM. In

section 3, we generalize the relativistic reaction rates of [47, 48] to asymmetric reactions.

Thermalization constraints are discussed in section 4. Our main results are presented in

sections 5 and 6. We conclude in section 7.

2 The model

In this work, we focus on a simple set-up: the SM is extended by a real singlet S and

some number of right-handed (sterile) neutrinos νRi
.1 The lightest of them is assumed to

constitute long-lived dark matter.

We assume that the Majorana masses are produced entirely by the singlet scalar

VEV. This can be implemented through a lepton-number discrete symmetry forbidding

the bare mass:

S → −S , νi → iνi . (2.1)

The relevant Lagrangian terms are then

−∆L =
1

4
λsS

4 +
1

2
µ2
sS

2 +
1

2
λhs|H|2S2 +

1

2
λijS νRi

νRj
+ yijH

c l̄iνRj
. (2.2)

The above symmetry results in 2 useful properties:

• no inflaton coupling to νRi
νRj

is allowed (assuming that the inflaton carries no lepton

charge). Otherwise, inflaton decay would normally dominate the neutrino production.

• diagonalizing the neutrino mass matrix diagonalizes the S coupling to neutrinos (ne-

glecting the Dirac contributions). As a result, there is no flavor change and a heavier

ν cannot produce a lighter ν via its decay with S-emission. Thus, we can focus on

direct freeze-in production of the lightest ν.

Let us denote the lightest mostly-sterile neutrino ν and its coupling to S λ:

−∆L =
1

2
λ S νν . (2.3)

Its mass is then M = λ〈S〉 neglecting the Dirac mass contribution. Throughout this paper

we assume that the relevant Yukawa couplings are very small such that the usual Higgs

decay does not produce a significant amount of dark matter. The resulting active-sterile

mixing angle Θ ∼ y〈H〉/λ〈S〉 ≪ 10−5 is also very small.

1Their number can be significantly larger than 3 as motivated by string theory [52]. Here, a sterile

neutrino is defined as a fermion that has a Yukawa coupling with the SM neutrinos as well as a Majorana

mass term.
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2.1 The scalar sector

The scalar sector of the model includes the Higgs field H and the real scalar S. The

potential invariant under the S → −S symmetry is given by

V (h, s) =
λh

4
h4 +

λhs

4
h2S2 +

λs

4
S4 +

1

2
µ2
h h

2 +
1

2
µ2
s S

2 . (2.4)

Here we use the unitary gauge H = (0, h/
√
2)T . Both H and S must develop non-zero

VEVs v and u, respectively. These are given by

v2 =
2λhsµ

2
s − 4λsµ

2
h

4λhλs − λ2
hs

(2.5a)

u2 =
2λhsµ

2
h − 4λhµ

2
s

4λhλs − λ2
hs

. (2.5b)

The mass matrix at this point is

M2 =

(

2λhv
2 λhsvu

λhsvu 2λsu
2

)

. (2.6)

Since the couplings are real and we require v2 > 0, u2 > 0, the mass matrix M2 is positive

definite if and only if

λh >
λ2
hs

4λs
, λs > 0 . (2.7)

M2 can be diagonalized by the orthogonal transformation

OTM2O = diag(m2
1,m

2
2) , (2.8)

where

O =

(

cos θ sin θ

− sin θ cos θ

)

(2.9)

and the angle θ satisfies

tan 2θ =
λhsvu

λsu2 − λhv2
. (2.10)

The mass squared eigenvalues are given by

m2
1,2 = λhv

2 + λsu
2 ∓ λsu

2 − λhv
2

cos 2θ
. (2.11)

The above equation implies sign(m2
2 − m2

1) = sign(cos 2θ) sign(λsu
2 − λhv

2). We will

primarily be interested in the small mixing case. (E.g., for a light singlet, the meson decay

and LEP constraints on the mixing angle are very strong [53].) Thus, it is convenient to

employ the small angle approximation sin θ ≪ 1 and neglect the θ2-terms. In this case, the

eigenvalues can be relabelled according to the state composition and satisfy

m2
h ≃ 2λhv

2 , m2
s ≃ 2λsu

2 . (2.12)
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The mixing angle can then be expressed as

θ ≃ λhs√
4λhλs

msmh

m2
s −m2

h

. (2.13)

This form is convenient since stability considerations bound the first factor by 1. Clearly,

for ms close to mh our approximation fails. When mh and ms are substantially different,

the mixing angle is bounded by |θ| < ms/mh ,mh/ms. In most of our parameter space,

the mixing angle is indeed very small.

In what follows, the sign of θ is unimportant, so will denote by θ the magnitude of the

mixing angle.

2.1.1 Thermal corrections

At high temperature, the scalar potential gets modified by the thermal corrections. The

main effect is captured by the thermal masses which amount to the replacements

µ2
h → µ2

h + chT
2 , µ2

s → µ2
s + csT

2 , (2.14)

where

ch ≃ 3

16
g2 +

1

16
g′2 +

1

4
y2t +

1

2
λh ,

cs =
1

4
λs +

1

6
λhs . (2.15)

Here g, g′ are the SM gauge couplings and yt is the top-quark Yukawa coupling. At high T ,

the minimum of the potential is at v = u = 0. The transition to non-zero VEVs takes place

at the critical temperatures: v = 0 → v 6= 0 at T v
c and u = 0 → u 6= 0 at T u

c . The dynamics

of the transition is somewhat complicated and proceeds in steps: at the first stage, one

of the VEVs stays zero and the other becomes non-zero, while at the second stage both

of the fields attain non-zero VEVs. On the other hand, we find that the neutrino DM

production depends on the critical temperature rather weakly. Therefore, it suffices for our

purposes to approximate the critical temperature by that of the first stage, T 2
c = |µ2

i |/ci.
The critical temperatures can then be expressed in terms of the physical masses and the

couplings for sin θ ≪ 1:

T v
c =

|µh|√
ch

,

T u
c =

|µs|√
cs

,

−µ2
h =

λhs

4λs
m2

s +
1

2
m2

h ,

−µ2
s =

λhs

4λh
m2

h +
1

2
m2

s . (2.16)

It is important to include the thermal masses (2.14) in the calculation of the reaction

rates. This is dictated by their correct high temperature behaviour.

The neutrino thermal masses, on the other hand, can be neglected since these are

suppressed by λ2.
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2.2 Constraints on sterile neutrino dark matter

In figure 1, we collect the most stringent limits on the active-sterile mixing sin2Θ as a

function of the sterile neutrino mass M . We assume the abundance of sterile neutrinos

to be equal to the dark matter density measured by Planck [54, 55]. Since our dark

matter candidate decays into active neutrinos and other SM states, there are various strong

constraints on this scenario. The most relevant ν decay modes are [18, 56–58]:

Γνaγ =
9αEMG2

fM
5

256π4
sin2Θ , (2.17)

Γνae+e− = θ(M − 2me)
G2

fM
5

96π3
sin2Θ

(1 + 4sin2θw + 8sin4θw)

4
,

Γνaπ0 = θ(M −mπ0)
G2

fM
3f2

π0

32π
sin2Θ

(

1− m2
π0

M2

)2

,

Γνaνaν̄a =
G2

fM
5

96π3
sin2Θ ,

where νa indicates an active neutrino. For a heavier ν, further decay modes become

relevant, e.g. those involving muons. Here we are assuming that the mixing with the

electron neutrino dominates.

In the dark grey region, the sterile neutrino lifetime is shorter than the age of the

Universe. Sterile neutrinos are always produced in a thermal bath via the sterile-active

mixing. This leads to the “overproduction” constraint indicated by the dashed purple line,

above which the sterile neutrino abundance exceeds that of dark matter.

The sterile neutrino radiative decay is particularly relevant for X-ray and gamma-ray

line searches. For sterile neutrino masses M . 50 keV, searches of decaying dark matter

signals have been carried out using a wide range of X-ray telescopes like XMM-Newton [8,

59], Suzaku [60], HEAO-1 [8], INTEGRAL [13, 14], Swift [61] and CHANDRA [62, 63]. We

collect most of them in the dark blue shaded area.2 Among them, the CHANDRA satellite

provides the strongest limits [17]. Most recent bounds from the X-ray microcalorimeter

NuSTAR [65], looking at the Galactic Bulge, are displayed in dark cyan. The limits from

searches for sterile neutrino decay lines using the Gamma-ray Burst Monitor onboard the

Fermi Gamma-Ray Space Telescope (Fermi-GBM) [66] are shown in red. The green region

is further constrained by INTEGRAL [13] searching for spectral lines from dark matter

with a mass up to 14MeV, decaying in the Milky Way halo. Gamma-ray lines searches

further constrain our sterile neutrino dark matter parameter space at higher masses: we

show the bounds from COMPTEL [58, 67] (magenta), EGRET [58, 68] (orange) and Fermi

Large Area Telescope (Fermi-LAT) [16] (red).

Finally, measurements of the cosmic microwave background (CMB) allow us to con-

strain sterile neutrino decays leading to early energy injections [69–73]. The relevant decay

modes are νae
+e− and to νaγ. Using the bounds on the corresponding decay rates from

ref. [74] with appropriate photon flux rescaling, we obtain the CMB bounds shown by the

yellow dashed lines.

2This bound takes into account the uncertainty in the dark matter density, as in [64].
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Figure 1. Neutrino dark matter constraints on the active-sterile mixing angle Θ. The shaded areas

are excluded by: X-ray data (dark blue), NuSTAR (dark cyan), Fermi-GBM (red), INTEGRAL

(green), COMPTEL (magenta), EGRET (orange), Fermi-LAT (red). In the dark grey region, the

sterile neutrino lifetime is shorter than the age of the Universe. Above the purple dashed line the

sterile neutrino is overabundant (assuming production only via mixing with active neutrinos). The

CMB constraints are given by the yellow dashed lines.

We see that the resulting constraints on the mixing angle are very strong. For example,

forM close to 1GeV, the bound on Θ is of order 10−18. Such small values appear unnatural.

Within our simple model, the angles are input parameters, while in various extensions their

small values can be justified by flavor-dependent symmetry. Indeed, in addition to the

lepton number Z4, one may impose a Z2 symmetry which acts on the lightest Majorana

neutrino νR1
:

νR1
→ −νR1

⇒ Θ = 0 . (2.18)

This forbids the corresponding Yukawa couplings and sets Θ = 0. Assuming that this

Z2 is broken at some scale, the effective Yukawa couplings can be generated by higher

dimensional operators. As a result, very small mixing angles can be generated. Since in

the limit Θ → 0 the system becomes more symmetric, small mixing angles are natural

according to the t’Hooft criterion [75].

Since the lightest sterile neutrino effectively decouples from the Standard Model, the

active neutrino masses are generated by the heavier νRi
. The usual seesaw result for the

active neutrino mass matrix Mν still applies: Mν = (MD)
TM−1MD, where MD is the

Dirac mass matrix and M is the diagonal Majorana mass matrix. Since we leave the

total number of sterile neutrinos arbitrary, no relevant, model independent, constraints are

imposed by the low energy neutrino data [21].

Longevity of the lightest sterile neutrino can be achieved at small masses and/or small

mixings. While most research efforts have focused on the first option, here we are consider-

ing the second possibility in more detail. We also see that, given the vast (Θ,M) parameter

space, dark matter decay may be observed, e.g. via monochromatic X- or gamma rays.
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3 Relativistic rates for asymmetric reactions

Neutrino dark matter can be produced through a number of reactions. These include both

scattering and decay which take place in the relativistic regime, i.e. when the temperature

exceeds the particle masses. Since there are bosons in the initial state, relativistic Bose-

Einstein enhancement can be very significant and the reaction rates must take it into

account. The relevant results for symmetric reactions, that is, involving particles with the

same mass in the initial state, have been obtained in [47, 48]. In our case, some reactions

can be asymmetric, e.g. H + S → X, and these results must be generalized to particles of

different masses.

In this section, we generalize the relativistic reaction rates based on the Bose-Einstein

statistics [47, 48] to processes involving particles with different masses. The a → b reaction

rate per unit volume is given by the general expression

Γa→b =

∫

(

∏

i∈a

d3pi

(2π)32Ei
f(pi)

)(

∏

j∈b

d3pj

(2π)32Ej
(1 + f(pj))

)

|Ma→b|2 (2π)4δ4(pa − pb).

(3.1)

Here Ma→b is the QFT transition amplitude, in which we also absorb the initial and

final state symmetry factors, and f(p) is the momentum distribution function. For the

freeze-in scenario, the density of the final state particles is small so that the enhancement

factors 1 + f(pj) can be set to one. On the other hand, it is important to keep the full

Bose-Einstein distribution functions f(pi) for the initial state and their replacement by the

Maxwell-Boltzmann ones can lead to a rate underestimate by orders of magnitude.

We are particularly interested in the 2 → 2 reactions. The reaction rate can be

expressed in terms of the cross-section,

Γ22 = (2π)−6

∫

d3p1d
3p2 f(p1)f(p2) σ(p1, p2)vMøl (3.2)

with

vMøl =
F

E1E2
≡
√

(p1 · p2)2 −m2
1m

2
2

E1E2
, (3.3)

f(p) =
1

exp
u·p

T −1
, u = (1, 0, 0, 0)T . (3.4)

The cross section is defined by

σ(p1, p2) =
1

4F (p1, p2)

∫

|M|2(2π)4δ4
(

p1 + p2 −
∑

i

ki

)

∏

i

d3ki

(2π)32Eki

, (3.5)

where M is the QFT transition amplitude. Here we absorb the symmetry factors for the

initial state directly into σ(p1, p2).

The calculation is most easily performed in the center-of-mass (CM) frame, so let us

convert the integral into that frame. The CM frame for each pair p1, p2 is the frame where

– 8 –
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p1 + p2 has only zero spacial components. Let us consider how the integration measure

transforms as we go to the CM frame. The Lorentz invariant measure is

d3p1

2E1

d3p2

2E2
= d4p1d

4p2 δ(p21 −m2
1)δ(p

2
2 −m2

2) . (3.6)

Introduce

p =
p1 + p2

2
, k =

p1 − p2
2

, (3.7)

such that

d4p1d
4p2 δ(p21 −m2

1)δ(p
2
2 −m2

2) = 24d4p d4k δ((p+ k)2 −m2
1)δ((p− k)2 −m2

2) . (3.8)

Any time-like vector p can be Lorentz-transformed to the form

p = Λ(p)











E

0

0

0











, (3.9)

with the explicit parametrization in terms of rapidity η and angular coordinates θ, φ being

p0 = E cosh η,

p1 = E sinh η sin θ sinφ,

p2 = E sinh η sin θ cosφ,

p3 = E sinh η cos θ. (3.10)

In other words, in the convention p = (p0, p3, p2, p1)T , we have

Λ(p) =











1 0 0 0

0 1 0 0

0 0 cosφ − sinφ

0 0 sinφ cosφ





















1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1





















cosh η sinh η 0 0

sinh η cosh η 0 0

0 0 1 0

0 0 0 1











,

Λ(p)−1 =











cosh η − sinh η 0 0

− sinh η cosh η 0 0

0 0 1 0

0 0 0 1





















1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1





















1 0 0 0

0 1 0 0

0 0 cosφ sinφ

0 0 − sinφ cosφ











.

The p-vector in the form (E, 0, 0, 0)T corresponds to the CM frame and E > 0 is half

the CM energy. The p-integration measure becomes

d4p = sinh2 ηE3dE dη dΩp , (3.11)

where Ωp is the solid angle in p-space. Now apply the same Lorentz transformation Λ(p)

to the vector k,

k = Λ(p) k′
drop the prime−−−−−−−−−→ k,

d4k = d4k′
drop the prime−−−−−−−−−→ d4k ≡ dk0|k|2d|k|dΩk , (3.12)

– 9 –



J
H
E
P
1
0
(
2
0
2
0
)
1
3
7

where we have used the fact that Λ(p) is a constant Lorentz transform with respect to

the variable k so that the measure remains invariant. We drop the prime for convenience,

remembering that k now is in the CM frame. Ωk denotes the corresponding solid angle in

that frame.

Let us now integrate the delta functions. We can explicitly integrate over k0 and |k|.
In the CM frame, the delta functions become

δ(E2 + 2Ek0 + k20 − k2 −m2
1) δ(E

2 − 2Ek0 + k20 − k2 −m2
2) . (3.13)

This enforces

k0 =
m2

1 −m2
2

4E
,

k2 = E2 − m2
1 +m2

2

2
+

(m2
1 −m2

2)
2

16E2
. (3.14)

We then have
∫

dk0d|k||k|2 δ(E2 + 2Ek0 + k20 − k2 −m2
1) δ(E

2 − 2Ek0 + k20 − k2 −m2
2) =

|k|
8E

,

which allows us to rewrite the integration measure as
∫

d3p1

2E1

d3p2

2E2
. . . =

1

2

∫ ∞

m1+m2
2

dE E
√

(4E2 −m2
1 −m2

2)
2 − 4m2

1m
2
2

×
∫ ∞

0
dη sinh2 η

∫

dΩp dΩk . . . , (3.15)

where in the integrand one must set k0 and |k| to their values given by eq. (3.14). Note

that E is half the CM energy.

Since the cross section in the CM frame is a function of E only, the angular dependence

comes entirely from the distribution functions. We have

u · p1 = (Λ−1u) · (p+ k) = (E + k0) cosh η + |k| sinh η cos θk ,

u · p2 = (Λ−1u) · (p− k) = (E − k0) cosh η − |k| sinh η cos θk . (3.16)

Here we have used k3 = |k| cos θk.
Integration over Ωp gives 4π and the integral over φk is 2π. Let us now integrate over

θk. The integral can be reduced to

Iθ =

∫ 1

−1
dx

1

ea+bx − 1

1

ec−bx − 1
=

1

b(ea+c − 1)
ln

[

sinh a+b
2

sinh a−b
2

sinh c+b
2

sinh c−b
2

]

(3.17)

for a, c > b. Here a = (E+k0) cosh η
T , c = (E−k0) cosh η

T and b = |k| sinh η
T . (This result can most

easily be obtained by the change of variables to y = ebx.)

We thus get

Γ22 = (2π)−6

∫

d3p1

2E1

d3p2

2E2
f(p1)f(p2) 4F (p1, p2) σ(p1, p2)

=
T

4π4

∫ ∞

m1+m2
2

dE E2

∫ ∞

0
dη

sinh η

e
2E
T

cosh η − 1
(3.18)

× ln

[

sinh (E+k0) cosh η+|k| sinh η
2T

sinh (E+k0) cosh η−|k| sinh η
2T

sinh (E−k0) cosh η+|k| sinh η
2T

sinh (E−k0) cosh η−|k| sinh η
2T

]

4FσCM(E) ,
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with k0 and |k| given by (3.14). This expression reduces to that of [47, 48] for equal

masses, m1 = m2.

It is important to note that the masses here must include thermal corrections (2.14).

This is necessary for the correct high temperature behaviour:

Γ22 ∝ T 4 ln
T

m
→ const T 4 (3.19)

only when a thermal correction to m has been included. The latter also regularizes the

infrared divergence in the massless limit.

4 Thermalization constraints

In this work, we focus on freeze-in production of sterile neutrinos. Freeze-in calculations

are reliable only if the produced particles do not thermalize. This requires the coupling

between the thermal bath and the frozen-in particles as well as self-interaction of the latter

to be sufficiently small. In this section, we delineate parameter space consistent with these

conditions. We use relativistic formulas for the reaction rates, taking into account quantum

statistics for the initial state.

Let us consider the regime where H and S develop VEVs v and u, respectively. We

can parametrize them in the unitary gauge as

H → 1√
2
(h+ v) ,

S → s+ u . (4.1)

In terms of the 4-component Majorana neutrino ν, the relevant to our calculation terms in

the Lagrangian are

−∆L1 =
1

2
λ s ν̄ν +

1

2
M ν̄ν , (4.2)

−∆L2 =
1

2
m2

hh
2 +

1

2
m2

ss
2 +

v

2
λhshs

2 +
u

2
λhssh

2 + uλss
3 +

1

4
λhsh

2s2 +
1

4
λss

4 ,

where M = λu and we have neglected the scalar mixing. The Majorana notation has the

advantage that the νν final state includes all combinations of 2-component neutrinos and

anti-neutrinos.

4.1 Sterile neutrino thermalization

We show in section 5 that the main production channel for sterile neutrinos is the decay s →
νν. Here we assume that s is in thermal equilibrium and ms ≫ M . For a sufficiently large

λ, the decay is efficient and the neutrino number density nν(T ) approaches its equilibrium

value at a given temperature, neq
ν (T ). In this case, the reverse process νν → s becomes

important and the neutrinos tend to equilibrate with the thermal bath of s. Thus, we use

the non-thermalization criterion

nν(T ) < neq
ν (T ) (4.3)

for any T down to temperatures around M/3. (At lower T , neq
ν (T ) is exponentially sup-

pressed.)
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Figure 2. Sterile neutrino non-thermalization bound. The neutrinos are produced via s → νν

with s in thermal equilibrium and ms ≫ M . In the shaded region, nν & neq
ν

such that the reverse

process νν → s is important.

The number density nν is calculated via the Boltzmann equation

ṅν + 3nνH = 2Γ12(s → νν) , (4.4)

where H is the Hubble rate,

H =

√

π2g∗
90

T 2

MPl
, (4.5)

with g∗ being the number of active SM degrees of freedom. Γ12(s → νν) is the reaction

rate per unit volume (see section 5 for an explicit expression). It is calculated with the

Bose-Einstein distribution for s, while neglecting the final state Pauli blocking due to the

low density of ν, as is usual in freeze-in computations. Since the issue of bona fide thermal-

ization is quite complicated in any case, this approximation is adequate for our purposes.

The solution to the Boltzmann equation for fixed λ,ms and zero initial nν is then

compared to the equilibrium neutrino density at a given T . If inequality (4.3) is satisfied

for any T above M/3, the freeze-in approximation is adequate. Our numerical results for

ms ≫ M are presented in figure 2. In the shaded region, the neutrino density equals or

exceeds its equilibrium value. The kink at roughly 1GeV appears due to the significant

change in g∗ at the QCD phase transition. We see that only quite small couplings, e.g.

below 10−8 at ms ∼ 1GeV, are consistent with the freeze-in approximation. The bound

can be approximated by

λ < 5× 10−9

√

ms

GeV
. (4.6)

The qualitative behaviour of λ(ms) can be understood from λ2-dependence of the rate and

the fact that the main contribution to nν comes from temperatures of order ms. We discuss

this in more detail in section 5.2.
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In the vicinity of the shaded region, the neutrino density is significant such that the

final state quantum statistics (Pauli blocking) can have a tangible impact on the reaction

rate. This effect would reduce the rate, hence our bound is somewhat more restrictive than

the true one and can be viewed as conservative.

Let us note that other possible “thermalization” conditions appear in the literature.

For example, one can compare the neutrino production rate to the Universe expansion

rate. If the former dominates, one expects the neutrino sector to be quickly populated.

In our case, this corresponds to n−1
s Γ12(s → νν) & 3H. While such a condition often

leads to similar results, there are notable exceptions. In particular, the above inequality

is always satisfied at low enough temperatures regardless of the coupling. This, however,

does not mean that the neutrino sector gets populated. Indeed, when s is non-relativistic,

n−1
s Γ12(s → νν) is approximately constant, while H decreases as T 2. As a result, all the

s-quanta available at the corresponding temperature get converted into ν pairs. Yet, since

for relativistic neutrinos neq
s (T ) ≪ neq

ν (T ), the neutrino density increase is negligible and

ν’s do not thermalize. Another exception is the situation in which the production is intense

but short in duration, e.g. around a phase transition. In this case, the accumulated density

can still be small.

4.2 Thermalization of s

In this work, we assume that the dominant source of s-quanta is the Higgs thermal bath.

It is important to understand under what circumstances the processes h ↔ ss, hh ↔ ss

and hh ↔ s lead to thermalization of s. As in the previous section, we use the criterion

ns(T ) < neq
s (T ) (4.7)

for any T >∼ ms to ensure non-thermalization of s.3 The number density ns is calculated

numerically via the Boltzmann equation

ṅs + 3nsH =
∑

i

aiΓi , (4.8)

where Γi are the reaction rates Γ12(h → ss), Γ22(hh → ss), Γ21(hh → s) and ai take into

account the number of s-particles in the final state as well as the number of Higgs d.o.f.

The explicit expressions for the rates are given in section 6.2.

The resulting bounds on λhs are shown in figure 3. For a light s, the decay mode

h → ss dominates, while for a heavy scalar the production is typically dominated by the

fusion mode hh → s. The latter is sensitive to the s-VEV u = ms/
√
2λs, so additional

input such as the coupling λs is required. This VEV grows very large at small λs which

results in a large reaction rate. Note that in the vicinity of the shaded region, the final state

Bose-Einstein enhancement factor can be non-negligible, so our procedure overestimates

somewhat the upper bound on the coupling.

The bound on λhs at ms ≪ mh is independent of ms,

λhs(h → ss) < 4× 10−8 . (4.9)

3In practice, we check this condition down to temperatures T ∼ ms/3, where s becomes non-relativistic.
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Figure 3. Upper bounds on λhs from non-thermalization of s. In the shaded regions, ns(T ) ≥
neq
s
(T ) due to the h → ss, hh → ss and hh → s processes. Here the scalar mixing and the

electroweak (EW) transition effects have been neglected. The fusion mode hh → s is sensitive to

λs, for which two benchmark values 10−5 and 10−10 have been chosen.

This is because Γ12(h → ss) is independent of ms in this regime and the production stops

around T ∼ mh/5. At larger ms, the scattering reaction hh → ss becomes significant. The

rate Γ22(hh → ss) scales as T 4 in the relativistic regime and the resulting ns(T ) ∝ T 2.

The yield is dominated by low temperatures consistent with the relativistic scaling, that

is, T ∼ ms. We thus obtain

λhs(hh → ss) < 6× 10−8

√

ms

GeV
. (4.10)

The fusion channel hh → s is more complicated. For ms ≫ 2mh, it becomes active at

temperatures below T ∼ ms, that is, when the Higgses still have enough energy to produce

s and the Higgs thermal mass is not too large for the process to be kinematically allowed.

The fusion becomes inefficient below T ∼ ms/6. In this regime, the reaction rate does not

follow any simple scaling law and numerically we obtain

λhs(hh → s) < 6× 10−9

√

λsms

GeV
. (4.11)

The appearance of λs can be understood from the reaction rate scaling as λ2
hs/λs for a

fixed ms.

4.2.1 Self-thermalization due to λs

Even if λhs is small, the s-sector can thermalize due to self-interaction λss
4. This happens

when the number changing processes ss ↔ ssss become efficient and the density ns starts

being sensitive to λs. The specifics of self-thermalization are computationally involved.
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Figure 4. Estimates of the upper bound on λs from non-thermalization of s. In the shaded

regions, the ss → ssss process is efficient. The bound depends on ns and thus is sensitive to λhs

and the s-production mode. The displayed constraints correspond to two benchmark values of λhs:

10−12 and 10−9. Here the scalar mixing and the EW transition effects have been neglected.

In the symmetric phase u = 0 at large s-densities close to equilibrium, the (necessary)

thermalization condition on λs has been derived in [47]. Here we are interested in the

broken phase u 6= 0 at low s-densities and thus have to resort to simple estimates. We

assume that the initial ns is created via the Higgs thermal bath and study which values of

λs do not affect its evolution.

The 2 → 4 reaction rate at low s-density can be written as

Γ24 = n2
s〈σ24vrel〉 , (4.12)

where σ24 is the corresponding QFT cross section and vrel is the relative (Møller) ve-

locity. We are interested mostly in the relativistic regime, in which case σ24(ŝ) ∼
10−4λ4

s ln
2(ŝ/2m2

s)/ŝ, where ŝ ≫ 4m2
s is the Mandelstam variable. This result can be

verified with CalcHEP [76]. For fixed λhs and λs, the density ns(T ) ≪ neq
s (T ) is calculated

via the Boltzmann equation in the previous subsection.

Although the momentum distribution of s is non-thermal, the characteristic energy of

the s-quanta can be approximated by T . This is because ns(T ) is dominated by the late

time production in the Higgs thermal bath at temperature T . In the relativistic regime, we

may take ŝ ∼ 4T 2 to calculate the average cross section and vrel ∼ 2. The number changing

interactions are efficient if 2Γ24 > 3nsH, so to ensure non-thermalization we require

ns〈σ24vrel〉
H

∣

∣

∣

∣

∣

T∼ms

. 1 , (4.13)

where we have taken into account the fact that this ratio is maximized at the lowest

temperature consistent with the relativistic scaling.

– 15 –



J
H
E
P
1
0
(
2
0
2
0
)
1
3
7

χ

s

h

h

ν

ν

s

s

h

ν

ν

χ

s

s

s

ν

ν

ν

s

s

ν

ν

ν

s

s

ν

ν

χ

s

ν

ν

(a)

(b)

(c)

Figure 5. Neutrino dark matter production in a thermal bath: (a) hh and hs annihilation; (b) ss

annihilation; (c) s decay. (An analogous Higgs mode h → νν not shown.)

Our numerical results are shown in figure 4. Equation (4.13) makes it clear that the

bound on λs increases with ms. Other qualitative features can be understood from the

discussion in the previous subsection. We see that the upper bounds on λs are significantly

above those in [47] (cf. figure 2). This is expected since the number density in our case is

significantly below its equilibrium value.

Let us emphasise that the above bounds have been obtained under a number of sim-

plifying assumptions. First of all, we have neglected the small scalar mixing, which is not

expected to affect the results significantly. We have also assumed that the density of pro-

duced particles is low enough such that the final state quantum statistics is unimportant.

Finally, we have ignored EW phase transition effects. These can have a non-trivial impact

on the bounds. In particular, as we discuss in section 6.2, the hh → s mode can be active

even at light ms due to the Higgs mass reduction close to the critical temperature. In this

sense, the presented constraints can be viewed as conservative.

5 Sterile neutrino production I: thermalized s

5.1 Reaction rates

In the thermal bath of h and s, there are a few channels for ν production, see figure 5.

The reactions s → νν and ss → νν take place at both high and low temperatures, while

hh → νν and hs → νν require the presence of scalar trilinear vertices which only appear

below the corresponding critical temperatures.

The relevant interactions are given by eq. (4.2). Note that the field VEVs and the

degrees of freedom depend on the temperature. At high temperatures, the VEVs vanish,
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u, v = 0, and the single Higgs d.o.f. is replaced by 4 massive Higgs scalars hi. In this

work, we neglect the gauge boson contributions suppressed by an extra power of the gauge

coupling (see e.g. [77]). We also neglect the scalar mixing θ ≪ 1 apart from the reaction

h → νν, which is absent at leading order in θ.

In what follows, we neglect the SM-like Yukawa coupling of the lightest sterile neutrino.

As mentioned before, its tiny value can be justified by the neutrino parity.

Below we summarize our results for the reaction cross sections which are to be inserted

into eq. (3.18) or its equal-mass analog. The masses that appear in the rates are meant to

be the thermally corrected masses.

5.1.1 hh → νν

The calculation is easiest performed in the CM frame. The amplitude for the νν final

state is

|M| =
∣

∣

∣

∣

uλhsλ

ŝ−m2
s

ū(p)v(p′)

∣

∣

∣

∣

. (5.1)

Here the combinatorial factor 2 × 2 coming from two identical particles in the initial and

final states is included; ŝ = 4E2 is the Mandelstam variable. The neutrino 4-momenta are

denoted by p, p′ and u, v are 4-spinors.

The spin sum and phase space integration yield

4FσCM(hh → νν) =
λ2λ2

hsu
2

16π

(ŝ− 4M2)3/2√
ŝ(ŝ−m2

s)
2
. (5.2)

where in our convention we include both the initial and final state phase space symmetry

factors of 1/2 in the cross section.

5.1.2 hs → νν

The corresponding amplitude is

|M| =
∣

∣

∣

∣

vλhsλ

ŝ−m2
s

ū(p)v(p′)

∣

∣

∣

∣

. (5.3)

The resulting cross section is

4FσCM(hs → νν) =
λ2λ2

hsv
2

8π

(ŝ− 4M2)3/2√
ŝ(ŝ−m2

s)
2
. (5.4)

As before, ŝ ≡ 4E2, although h and s have different energies in the CM frame.

5.1.3 ss → νν

The process ss → νν can proceed both through the s-channel and the t, u-channels at 2d

order in λ. The amplitude is

|M| =
∣

∣

∣

∣

∣

6uλsλ

ŝ−m2
s

ū(p)v(p′)+λ2 ū(p)
6p− 6p1 +M

t̂−M2
v(p′)+λ2 ū(p)

6p− 6p2 +M

û−M2
v(p′)

∣

∣

∣

∣

∣

, (5.5)
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where t̂, û are the Mandelstam variables. The 4-momenta of the initial state particles are

denoted by p1 and p2.

The resulting cross section is

σCM
ss→νν =

λ2

16πŝ

√
ŝ− 4M2

√

ŝ− 4m2
s

[

18λ2
su

2(ŝ− 4M2)

(ŝ−m2
s)

2
− 24λλsuM

ŝ−m2
s

− λ2
(

2ŝM2 + 16M4 − 16M2m2
s + 3m4

s

)

ŝM2 − 4M2m2
s +m4

s

+ λ

{

λ
(

ŝ2 + 16ŝM2 − 32M4 + 6m4
s − 4ŝm2

s − 16M2m2
s

)

(ŝ− 2m2
s)
√

ŝ− 4m2
s

√
ŝ− 4M2

− 12λsuM
(

ŝ− 8M2 + 2m2
s

)

(ŝ−m2
s)
√

ŝ− 4m2
s

√
ŝ− 4M2

}

× log

(

ŝ− 2m2
s +

√

ŝ− 4m2
s

√
ŝ− 4M2

ŝ− 2m2
s −

√

ŝ− 4m2
s

√
ŝ− 4M2

)]

, (5.6)

where the symmetry factors of 1/2 for the initial and final states have been included

directly in the cross section. To get 4FσCM
ss→νν , one uses

F =
1

2

√
ŝ
√

ŝ− 4m2
s , (5.7)

which holds for ss → X processes.

We find good numerical agreement with the corresponding CalcHEP [76] result.

5.1.4 s → νν

This process is allowed when ms > 2M . The calculation of the decay rate s → νν is

straightforward with the result

Γ(s → νν) =
λ2ms

16π

(

1− 4M2

m2
s

)3/2

. (5.8)

The consequent reaction rate is

Γ12(s → νν) =
Γ(s → νν) m3

s

2π2

∫ ∞

1
dx

√
x2 − 1

e
ms
T

x − 1
. (5.9)

We note that, in the reaction hh → s → νν, the intermediate s can be on-shell

at temperatures below a certain threshold. This reaction corresponds to production and

decay of real s included in Γ12(s → νν). To avoid double counting [78], we cut out this

resonant region in the Γ22 rate integral, although the result is barely affected.

5.2 Dark matter abundance: ms > 2M

In this subsection, we solve the Boltzmann equation for the neutrino number density and

find parameter regions consistent with the observed DM abundance. Here we assume that

ms > 2M such that the decay mode s → νν is available. Note that the thermal correction

to M is suppressed by λ2 and can therefore be neglected.
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5.2.1 Qualitative behaviour of the Boltzmann equation solution

Consider freeze-in production of N particles in the reaction i → N . In the relativistic

regime, the reaction rate scales as T l, where l depends on the interaction type. Using

entropy conservation g∗sa
3T 3 = const with a being the scale factor, one can trade the time

variable for T . The resulting Boltzmann equation can be written as

T
dn

dT
− 3n+ cT l−2 = 0 , (5.10)

where

c ≡ N Γ(i → N)

HT l−2
(5.11)

and we have taken the number of d.o.f. to be constant in the range of interest. Assuming

that the initial density is zero at temperature T0, the solution reads

n(T ) =
c

5− l
T 3
(

T l−5 − T l−5
0

)

, (5.12)

while for l = 5 it is n(T ) = cT 3 ln T0

T . For renormalizable interactions, l ≤ 4 and the result

at late times is insensitive to T0:

n(T ) ≃ c

5− l
T l−2 . (5.13)

On the contrary, non-renormalizable interactions lead to the “UV freeze-in”, i.e. the density

dominated by the early time production at T0,

n(T ) ≃ c

l − 5
T 3 T l−5

0 , (5.14)

while for l = 5 n(T ) = cT 3 ln T0

T .

In our work, the relevant reactions are of the type 1 → 2, 2 → 2 and 2 → 1. Their

temperature scaling will be discussed later.

5.2.2 Results

The Boltzmann equation describing evolution of the ν number density reads

ṅν + 3nνH = 2Γ̂12(s → νν) + 2Γ̂12(h → νν)

+2Γ̂22(ss → νν) + 2Γ̂22(hh → νν) + 2Γ̂22(hs → νν) . (5.15)

Here

Γ̂12(s → νν) = θ(T − T u
c ) Γ12(s → νν)

∣

∣

∣

u=0
+ θ(T u

c − T ) Γ12(s → νν) , (5.16)

Γ̂12(h → νν) = θ(T u
c − T ) θ(T v

c − T ) Γ12(h → νν) , (5.17)

Γ̂22(ss → νν) = θ(T − T u
c ) Γ22(ss → νν)

∣

∣

∣

u=0
+ θ(T u

c − T ) Γ22(ss → νν) , (5.18)

Γ̂22(hh → νν) = θ(T u
c − T ) (4− 3θ(T v

c − T )) Γ22(hh → νν) , (5.19)

Γ̂22(hs → νν) = θ(T v
c − T ) Γ22(hs → νν) . (5.20)
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The theta-functions make sure that the processes involving scalar trilinear vertices are

switched off above the critical temperatures. Further, they take care of the different number

of Higgs d.o.f. before and after electroweak phase transition. The rates Γ22 and Γ12 are

calculated according to (3.18) and (5.9) using the results of the previous subsections with

non-zero v and u. The Higgs decay rate Γ12(h → νν) is given by sin2 θ Γ12(s → νν).

The Boltzmann equation in the relativistic regime has a simple solution. We find that

the most important contribution comes from Γ12. Since λhs and λs are small, we may

neglect the s-thermal mass at late times, in which case eq. (5.9) yields

Γ12 ∝ m2
sT

2 , (5.21)

while at very high temperatures it scales as m4
s(T ) ∝ T 4. In this regime,

nν(T ) ≃ const , (5.22)

where the constant is proportional to m2
s. The dark matter yield is conveniently expressed

in terms of Y ,

Y =
nν

sSM
, sSM =

2π2g∗s
45

T 3 , (5.23)

where g∗s is the number of d.o.f. contributing to the entropy. It is proportional to the total

number of the DM quanta. The observed DM density requires

Y∞ = 4.4× 10−10

(

GeV

M

)

. (5.24)

The solution (5.22) is valid in the relativistic regime, that is, down to temperatures of order

ms. Thus, the resulting Y ∝ 1/ms.

Our numerical results for the total DM relic abundance and the full reaction rates

are shown in figure 6. We find that the DM yield is dominated by the decay s → νν at

temperatures T ∼ ms and the required coupling is

λ ≃ 1.7× 10−12

√

ms

M
. (5.25)

This applies to the regime ms ≫ M . In this case, the DM yield Y due to the s → νν

decay is independent of M and proportional to λ2. Thus, in order to get the right relic

abundance, the relation λ ∝ 1/
√
M is enforced (while smaller M for the same λ lead

to under-abundance). We find that these conclusions apply quite generally, beyond the

parameter choices of figure 6.

Given the correct relic abundance, small and large values of M are excluded by pertur-

bativity and the Higgs mixing or the presence of a tachyonic scalar. Indeed, since λu = M

and m2
s = 2λsu

2,

λs =
λ2m2

s

2M2
. (5.26)

For a fixed relic density and other parameters, λs ∝ 1/M3 so that at low M it blows up

while for large M it violates 4λhλs > λ2
hs.
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Figure 6. Upper panels: λ vs M producing the correct DM relic density (“PLANCK”). The

dominant DM production mode is s → νν. Lower panels: Reaction rates. The kinks appear due

to phase transitions which bring in new modes as well as due to T -dependent propagators.

Since our focus is on freeze-in production of neutrino DM, we exclude significant values

of λ. These lead to efficient ν production such that nν is close to its equilibrium value. In

this case, the reverse process νν → s becomes important and the system tends to equili-

brate. Although such a possibility is not excluded by observations, it does not correspond

to freeze-in neutrino production.

The approximation θ ≪ 1 applies in all of the allowed parameter space: θ ranges from

10−1 in the lower right corner to 10−5 in the upper left corner of the plots. Close to the

tachyonic region however, θ ∼ mh/ms or ms/mh such that the relations (2.12) receive

non-negligible corrections. Therefore the tachyonic region border is only approximate.

The stability condition 4λsλh > λ2
hs combined with the right DM yield Y impose a

lower bound on ms,

ms > 108 λ
2/3
hs M > 1 MeV . (5.27)

To get the limit of 1MeV, we have used λhs > 4×10−8 required for thermalization and the

warm DM boundM > 1 keV (taking the number of SM degrees of freedom at ms to be 10).
4

The main DM production channel is s → νν. We find that the relativistic effects

in this reaction are tangible. figure 7 shows that replacing the Bose-Einstein distribution

4The exact lower bound on warm dark matter mass from free streaming [79] depends on its momentum

distribution. See, e.g. [80, 81] for recent analyses.
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Figure 7. Bose-Einstein vs Maxwell-Boltzmann s → νν reaction rates.

with the Maxwell-Boltzmann one can lead to up to a 65% error in the reaction rate. The

Bose-Einstein enhancement is sensitive to the thermal mass: for lower couplings the effect

is more pronounced. This is natural since the distribution peaks at low energies while the

thermal mass provides a lower bound on how low the energy can be.

5.3 Light s: ms < 2M

In this case, the main production channel s → νν becomes less significant. The process is

kinematically allowed at very high temperatures, when u = 0 and the Majorana neutrino

mass vanishes. It stops after the phase transition to u 6= 0. The produced number density

is diluted by the subsequent Universe expansion. As a result, the processes like ss → νν

and h → νν become equally important or even take over the leading role.

In case of a very light s, there are a number of non-trivial constraints to be observed.

In particular, one must make sure that s decays before BBN. Since s cannot decay into

neutrinos, the decay proceeds through the mixing with the Higgs. The decay modes and

widths are discussed in appendix B. We impose the constraint τ < 1sec, which ensures that

s does not contribute to the relativistic degrees of freedom at BBN and does not destroy

light nuclei. Furthermore, for ms < 2mµ, there is a strong constraint on the mixing angle

with the Higgs. Rare Kaon decays require θ . 10−4 [82]. For heavier s, the bound relaxes

to 10−3 or so [83]. Finally, since we are assuming a thermal abundance for s, the Higgs

portal coupling must be large enough to ensure thermalization via h ↔ ss, λhs > 4×10−8.

Although the available parameter space is quite limited, we find that it is still possible

to obtain the right DM relic density. Two examples are shown in figure 8. In this case, the

strongest constraints are imposed by τs < 1 sec and the absence of tachyons, 4λhλs > λ2
hs.

The latter is significant since a light s requires a small λs. In the allowed parameter space,

the bound θ . 10−4 is then satisfied.

As seen in the plots, different reactions dominate at different times. At high tempera-

tures, s → νν dominates but the resulting DM density gets diluted. At later times, h → νν

and ss → νν become important. The plateau regions producing the correct DM relic den-

sity (figure 8, upper row) are associated with ss → νν as the leading (or next-to-leading)
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Figure 8. Upper row: λ vs M producing the correct DM relic density (“PLANCK”) for ms < 2M .

Middle row: Reaction rates for representative parameter sets. Lower row: DM yield for the above

parameter sets. Left: ss → νν and s → νν dominate. Right: h → νν dominates.

production mode. The corresponding rate scales as T 4 down to temperatures of order M .

Thus, the resulting yield satisfies

Y ∝ 1

M
. (5.28)

Since the required Y∞ also scales as 1/M , the PLANCK line corresponds to a plateau in the

(M,λ) plane. The DM yield associated with the different reactions is shown in the lower

row of figure 8. The left panel confirms that more than 50% of the yield in the plateau

region is indeed provided by ss → νν. We also observe that s → νν makes a significant

contribution and tilts the PLANCK line in analogy with figure 6.
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At somewhat larger masses, the Higgs decay h → νν becomes more important. The

amplitude for this process is proportional to λ θ which is approximately constant for a

fixed M :

λ θ ≃ λhsvM

m2
h

. (5.29)

Thus, the resulting PLANCK region is almost vertical in the (M,λ) plane. The lower

right panel of figure 8 shows that the dominant DM yield is produced at electroweak

temperatures via h → νν. To the left of the PLANCK curve, our DM is under-abundant.

The neutrino thermalization constraint of figure 2 is not directly applicable here since

the channel s → νν is not available. We find that, in the allowed parameter region, nν is

below its equilibrium value so the neutrinos can be treated as non-thermal.

6 Sterile neutrino production II: non-thermal s

It is possible that s never reaches thermal equilibrium either due to its large mass or due to

its small couplings. In general, there is a variety of non-thermal s-production mechanisms

in the Early Universe. Its direct coupling to an inflaton would lead to perturbative and/or

non-perturbative production, e.g. via parametric resonance [84]. Furthermore, light scalar

field fluctuations during inflation generate an s-condensate which then decays into s-quanta.

However, these mechanisms are sensitive to further details of the complete UV model, for

instance, to the Hubble rate during inflation [85]. In particular, for small Hubble rates such

contributions are suppressed. In what follows, we focus on s-production from a Standard

Model thermal bath and assume that the other sources are subdominant.

6.1 Heavy s

If s is very heavy while the temperature is not high enough, the singlet does not thermalize

and can be integrated out. DM production proceeds through Higgs annihilation hh → νν

and decay h → νν due to the Higgs-singlet mixing. We find that the decay mode dominates

for the parameter values of interest.

It is instructive to consider the channel hh → νν separately. When this mode domi-

nates, one recovers the so-called “UV freeze-in” scenario. In this case, the DM abundance

is sensitive to the maximal temperature T0 < T u
c . The Boltzmann equation at high T reads

T
dn

dT
− 3n+

8Γ22(hh → νν)

H
= 0 , (6.1)

where the factor of 8 takes into account 4 Higgs d.o.f. above the EW transition scale. Since

Γ22 ∝ T 6 at high T ,

n(T ) ∝ T0T
3 . (6.2)

As a result, the DM yield Y = n/sSM ∝ T0 is determined by the UV end of the evolution.

This is unlike the usual freeze-in scenario where the IR behaviour is more important.

Although the decay channel h → νν opens up only below the EW breaking scale,

numerically it turns out to be more important and the sensitivity of the DM abundance to

T0 is weak. Our numerical results are presented in figure 9 which shows the regions with the

right relic abundance. The DM production amplitude is proportional to the combination
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Figure 9. λ vs M producing the correct relic DM relic density (“PLANCK”) for a heavy s. The

dominant DM production mode is h → νν. The maximal temperature is chosen to be T0 = 1TeV.

λθ which is fixed for a fixed M . This makes the production rate independent of λ and the

PLANCK region vertical in the (M,λ) plane. As before, our DM is under-abundant to the

left of the PLANCK line.

The Higgs portal coupling required for the correct DM relic abundance can be approx-

imated by (ignoring the phase transition complications):

λhs ≃
m2

s

M3/2

4× 10−14

√
GeV

(6.3)

for g∗ ≃ 107. We have verified that the neutrino thermalization constraint is insignificant

and nν is below its equilibrium value.

In the allowed parameter space, the mixing angle ranges from 10−2 to 10−6. As before,

the θ2 corrections become significant close to the tachyonic region border.

6.2 Small couplings: freeze-in production of s

Here we consider the possibility that the λhs and λs couplings are so small that s never

reaches thermal equilibrium (see, e.g. [86] for early work). Assuming that the initial abun-

dance of s is zero or negligibly small, the s quanta are produced by the Higgs thermal

bath via the usual freeze-in mechanism. Subsequently, they decay into sterile neutrinos

leading to the required DM abundance. Due to the s − h mixing, s decays also produce

SM particles, yet this gives only a small correction to the entropy since the density of s is

far below its equilibrium value.

There are a few s-production channels: hh → ss, h → ss and hh → s, where the

last two reactions are possible only below the corresponding critical temperatures. hh → s

is a new reaction type, not considered before. Hence, it is instructive to consider it in

more detail.

6.2.1 hh → s rate

The general expression for the reaction rate reads

Γ21 =

∫

(

∏

i∈a

d3pi

(2π)32Ei
f(pi)

)

d3pf

(2π)32Ef
|M2→1|2 (2π)4δ4(p1 + p2 − pf ). (6.4)

Here |M2→1|2 includes 1/2 from the phase space symmetry of the initial state.
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Performing the angular integrals as before and using

∫

d3pf

(2π)32Ef
(2π)4δ(p1 + p2 − pf ) =

π

2ms
δ(E −ms/2) (6.5)

as well as |M2→1|2 = 1/2× λ2
hsu

2, we find

Γ21 =
λ2
hsu

2msT

32π3
θ(ms − 2mh)

∫ ∞

0
dη

sinh η

e
ms cosh η

T − 1
ln

sinh
ms cosh η+

√
m2

s−4m2
h
sinh η

4T

sinh
ms cosh η−

√
m2

s−4m2
h
sinh η

4T

. (6.6)

This expression is valid for a single Higgs d.o.f.

6.2.2 h → ss and hh → ss rates

These reaction rates have been computed in [48]. For a single Higgs d.o.f., the results read

Γ12 =
λ2
hsv

2m2
h

64π3

√

1− 4m2
s

m2
h

∫ ∞

1
dx

√
x2 − 1

e
mh
T

x − 1
,

Γ22 =
1

2!2!

λ2
hsT

16π5
(6.7)

×
∫ ∞

mh

dE E
√

E2 −m2
s

∫ ∞

0
dη

sinh η

e
2E
T

cosh η − 1
ln

sinh
E cosh η+

√
E2−m2

h
sinh η

2T

sinh
E cosh η−

√
E2−m2

h
sinh η

2T

,

where E is half the CM energy and we have factored out the symmetry factor 1/2!2!

stemming from 2 identical particles in the initial and final states.

6.2.3 Results

The number density of the s-quanta is calculated according to

ṅs + 3nsH = 2Γ̂12(h → ss) + 2Γ̂22(hh → ss) + Γ̂21(hh → s) , (6.8)

where

Γ̂12(h → ss) = θ(T v
c − T ) Γ12(h → ss) , (6.9)

Γ̂22(hh → ss) = (4− 3θ(T v
c − T )) Γ22(hh → ss) , (6.10)

Γ̂21(hh → s) = (4− 3θ(T v
c − T )) Γ21(hh → s) . (6.11)

Here the θ-functions account for the EW phase transition and the change in the number

of the Higgs d.o.f. We neglect the dependence on T u
c since s is not thermalized and λhs is

very small.

Since there is no significant back reaction of the produced s quanta on the thermal bath

nor substantial entropy production via s-decay, the total DM yield can then be computed

as the s-yield times the branching ration for the s decay into dark matter,

Yν = 2 Ys BR(s → νν) . (6.12)

The s decay width into the SM particles is given in appendix B.
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Figure 10. λ vs M generating the correct relic DM relic density (“PLANCK”) for a non-thermal

s. Here s is produced by the freeze-in mechanism via the Higgs thermal bath. In the excluded

regions, the freeze-in calculations become unreliable due to efficient hh ↔ s or ss → ssss processes

leading to thermalization.

We compute the number density of s via freeze-in calculations. Thus, it is important

to observe the non-thermalization constraints. For a given λ, an increase in M implies

an increase in u, which makes s production via hh → s more efficient and can lead to

thermalization. A competitive constraint, which becomes stronger for light s, is imposed by

vacuum stability, 4λsλh > λ2
hs. Furthermore, in regions with a substantial λs, the process

ss → ssss becomes efficient and can lead to self-thermalization. We exclude these as well.

An additional Kaon physics constraint θ < 10−4 applies for a very light s, ms < 200MeV.

We find, however, that it is satisfied automatically.

Our numerical results are presented in figure 10. The behaviour of the PLANCK curve

can be understood as follows. The factors that determine the neutrino abundance are Ys
and the decay branching fraction for s → νν. Consider first the regime ms ≫ mh. In

this case, Ys is determined by the fusion process hh → s, whose rate is proportional to

u2 = M2/λ2. It terminates at temperatures of order ms ≫ M , so the s-yield scales simply

as M2/λ2 with M and λ. Now there are two options: s-decay can be dominated either

by the sterile neutrino mode or by the SM channels. For Γ(s → νν) ≫ Γ(s → SM), the

branching ratio BR(s → νν) can be approximated by 1. Since Y∞ ∝ 1/M , the PLANCK

line then satisfies λ ∝ M3/2. In the opposite case Γ(s → νν) ≪ Γ(s → SM), the branching

ratio scales with λ and M as Γ(s→νν)
Γ(s→SM) ∝ λ2/θ2 ∝ λ4/M2 at ms ≫ M . This results in

λ ∝ M−1/2. Thus, we have:

ms ≫ mh : λ ∝ M3/2 for larger λ

λ ∝ M−1/2 for smaller λ (6.13)

This scaling is observed in the left panel of figure 10.

For ms ≪ mh, the s-abundance is dominated by h → ss. If s decays predominantly

into neutrinos, the DM yield is independent of λ. Otherwise, it is proportional to λ4/M2.

Thus, we get

ms ≪ mh : M = const for larger λ

λ ∝ M1/4 for smaller λ (6.14)
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This behaviour is seen in the right panel of the figure. In both panels, DM is under-

abundant to the left of (or below) the PLANCK curve.

We see that quite large values of λ up to 10−3 are consistent with all of the constraints.

One may worry that the neutrinos would thermalize via s ↔ νν at such a large coupling.

However, the density of s is much lower than its equilibrium value and this reaction does not

increase the number of s-quanta, while ν → νs is not allowed kinematically and νν → ss

is suppressed. Thus, the system is not expected to thermalize.

For a very light s, the BBN constraint on the lifetime of s becomes significant: at

small λ, it decays mostly into the photons and electrons which affect the abundance of

light elements unless τs < 1 sec.

Finally, we find that the mixing angle is very small in all the cases considered and its

effects can be neglected.

6.2.4 On electroweak phase transition effects

The EW phase transition can have an important impact on the DM abundance. The Higgs

mass reduction close to the transition opens up the fusion channel

hh → s

even if this process is forbidden kinematically at other temperatures. It is operative if

2mh(T ≃ T v
c ) < ms, while its efficiency depends on the nature of the transition. (An

analogous effect in a different setting was considered in [87].)

In this work, we are interested in small couplings. Then, the electroweak phase tran-

sition corresponds either to a second order phase transition or a crossover. In the former

case, the Higgs becomes massless at the critical temperature, while at the crossover it re-

mains massive. Perturbative analysis is insufficient to distinguish the two: what appears

as a second order transition typically corresponds to a crossover, as established by lattice

simulations. The full analysis of the singlet scalar extension is not yet available, although

for a heavy singlet or EW triplet, the nature of the transition has been determined in [88–

90]. The second order transition is found to occur in special cases, while a crossover is very

common at weak coupling. This is to be contrasted with perturbative calculations (see

e.g. [91]). Similar results are expected to apply in the light singlet or triplet case.5

Although the Higgs does not turn massless at the crossover, its mass gets significantly

reduced. In the SM, this reduction reaches an order of magnitude at the (pseudo-)critical

temperature [92] (see also earlier work [93, 94]). Since we are mostly interested in very

small Higgs portal couplings, the presence of the singlet is not expected to change the

nature of the transition. Thus, we may assume mh(T
v
c ) ∼ 10GeV as in the SM.

To estimate the efficiency of the fusion mode, let us consider a simplified case of zero

s− h mixing and employ a simple parametrization6

m2
h(T ) = c(T 2 − T 2

c ) +m2
h(Tc) for T > Tc ,

m2
h(T ) = 2c(T 2

c − T 2) +m2
h(Tc) for T < Tc , (6.15)

5We thank Lauri Niemi for sharing some of his results.
6This parametrization is inspired by the perturbative description of the 2d order phase transition, while

it does not quite hold non-perturbatively. Nevertheless, it is acceptable for our estimate since the production

is dominated by T ≃ Tc where the Higgs mass is almost constant.
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Figure 11. Left: estimate of the hh → s reaction rate at the EW crossover with mh(Tc) = 10GeV.

The s − h mixing is set to zero. Right: Bose-Einstein enhancement factor for hh → s at the 2d

order EW phase transition.

where Tc ≡ T v
c is the EW critical temperature and c is a constant fixed by requiring

mh(0) = 125GeV. Taking a simple perturbative estimate for Tc, one can then calculate

the fusion rate. The resulting hh → s rate for a representative parameter set is shown in

figure 11, left panel.

We find that this effect alone can account for all of the observed dark matter. Although

short, the fusion is intense enough to produce numerous s-quanta which subsequently decay

into sterile neutrinos. As one gets closer to the 2d order transition (at larger λhs), the Bose-

Einstein enhancement becomes more pronounced. This is illustrated in figure 11, right

panel. When both mh(Tc) and ms are far smaller than the temperature, the Bose-Einstein

enhancement factor can reach orders of magnitude.

The fusion mode can be more efficient than the decay h → ss. Indeed, the fusion rate

grows as u2 which can be very large, while the decay rate remains constant for a fixed

ms. Thus, the thermalization constraints in figures 3, 4 due to the fusion mode extend to

ms < 2mh as well and can be more stringent then those due the decay, depending on u.

However, in view of the uncertainties, we have not included these to be conservative.

We note that our approximation breaks down at ms ∼ mh, i.e. when the mixing angle

becomes significant. As pointed out in [77], the resonantly enhanced s− h mixing leads to

additional scalar production. With present tools, it is however difficult to estimate its effi-

ciency and we leave it for future work. We stress that the fusion mechanism considered here

is intrinsically different and operative for small (and zero) mixing as long as 2mh(T ) < ms.

7 Conclusion

The lightest sterile neutrino is an attractive dark matter candidate. Although it is not

stable, its longevity is guaranteed by its small mass and a small sterile-active mixing angle.

In this work, we explore the mass range up to 1GeV. In this case, tiny mixing angles are

necessary which one can justify by a flavor-dependent (neutrino parity) symmetry.

We have focused on the scenario where the Majorana masses are entirely due to a VEV

of a real scalar. This is enforced by a discrete lepton number symmetry, which is broken
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spontaneously by the scalar VEV. The scalar is then only allowed to couple to the SM

quadratically through the Higgs portal.

Since the neutrinos can be very weakly coupled, the natural (but generally not unique)

dark matter production mechanism is the freeze-in. We have analyzed freeze-in production

of sterile neutrinos (ν) from the Higgs and singlet scalar (s) thermal bath in different

regimes. These are summarized in the following table:

regime dominant modes

thermal s

ms > 2M s → νν

ms < 2M ss → νν, h → νν, s → νν

non-thermal s

heavy s h → νν

feebly coupled s s → νν

In all of these cases, the observed DM relic density can be obtained. For the sterile

neutrino mass range (1 keV, 1GeV), we find that the requisite scalar-neutrino coupling

varies between 10−10 and 10−3. Our analysis takes into account the relativistic reaction

rates with the Bose-Einstein distribution function, thermal masses and main effects of the

phase transitions. All of these factors make an important impact on the final results. As

byproducts, we have derived relativistic rates for asymmetric reactions as well as non-

thermalization constraints on sterile neutrinos and the Higgs portal scalar.

We find a number of interesting effects which deserve further study. In particular, a

light scalar can be copiously produced close to the EW phase transition/crossover through

the fusion mode hh → s. Subsequent decay of the scalar into sterile neutrinos can account

for all of the dark matter. However, the specifics of this mechanism require understanding

non-perturbative dynamics close to the critical temperature.

The dark matter candidate studied here is long-lived. Its production mechanism is

independent of the sterile-active mixing Θ, hence there is vast parameter space (Θ,M)

where dark matter decay can lead to an observable signal, e.g. in the form of monochromatic

X- or gamma rays. The intensity of the signal is correlated with the dark matter density.
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A Leading thermal corrections

In this appendix, we summarize the most important thermal corrections to the effective

potential in our model.

The tree-level effective scalar potential, written in terms of the vevs v, u reads

V 0 =
λh

4
v4 +

λhs

4
v2u2 +

λs

4
u4 +

1

2
µ2
h v

2 +
1

2
µ2
s u

2 . (A.1)

The zero-temperature one-loop correction to effective potential is given by the Coleman-

Weinberg correction [95], which in the MS renormalisation scheme is

V 1 =
∑

α

nα

64π2
m4

α(v, u)

(

log
m2

α(v, u)

Q2
− Cα

)

. (A.2)

Here α runs over all dominant degrees of freedom: t, W, Z, G±,0 and χ1,2 (the mass

eigenstates of the scalar fields h and s). The number of d.o.f. nα are given by nt =

−12, nW = 6, nZ = 3, nG = 3, nχ1,2
= 1 (it includes a minus sign for fermions). m2

α(v, u)

are the field-dependent masses-squared, Cα = 3/2 (5/6) for scalars (gauge bosons) and Q

is the renormalisation scale. In our calculations, we take Q to be the particle masses in the

vacuum at zero T . The field-dependent masses are:

m2
t (v, u) = y2t

v2

2
, (A.3)

m2
W (v, u) = g2

v2

4
, (A.4)

m2
Z(v, u) = (g2 + g′2)

v2

4
, (A.5)

m2
G0(v, u) = m2

G±(v, u) = v2λh +
λhsu

2

2
+ µ2

h , (A.6)

m2
χ1,2

(v, u) = v2λh + λsu
2 ±

√

v4λ2
h + v2u2(λ2

hs − 2λhλs) + λ2
su

4. (A.7)

The temperature effects are conveniently split into a one-loop temperature-dependent

part V 1,T and the ring corrections V T
ring [96, 97]. The former is given by the one-loop

thermal integral

V 1,T (T ) =
∑

α

nαT
4

2π2
Ib,f

(

m2
α(v, u)

T 2

)

, (A.8)

where

Ib,f
(

m2
α(v, u)

T 2

)

=

∫ ∞

0
dx x2 log

[

1± e−
√

x2+y2
]

, y2 = m2
α(v, u)/T

2 , (A.9)

with the plus (minus) sign for fermions (bosons), respectively. The ring contribution is

present only for bosons (gauge bosons, scalars and Goldstones):

V T
ring

= − T

12π

{

Tr
[

(m2
gb +Πgb)

3/2 − (m2
gb)

3/2
]

+Tr
[

(m2
χ +Πχ)

3/2 − (m2
χ)

3/2
]

+nG

[

(m2
G +ΠG)

3/2 − (m2
G)

3/2
]

}

, (A.10)
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where mχ is the tree level scalar mass mixing matrix whose eigenstates are χ1,2. The

squared mass mixing matrix for the electroweak gauge bosons is:

m2
gb =













g2

4 v
2 0 0 0

0 g2

4 v
2 0 0

0 0 g2

4 v
2 −gg′

4 v2

0 0 −gg′

4 v2 g′2

4 v2













. (A.11)

The Πi are the thermally corrected contributions to the masses [97–99]:

Πgb =
11

6
T 2diag

(

g2, g2, g2, g′2
)

,

Πχ =
1

4
T 2diag

[(

3

4
g2 +

1

4
g′2 + 2λh + y2t +

4λhs

3

)

, λs +
1

3
λhs

]

,

ΠG =
1

4
T 2

(

3

4
g2 +

1

4
g′2 + 2λh + y2t +

4λhs

3

)

. (A.12)

The effective potential is then given by the sum of all of the above contributions:

V T
eff = V 0 + V 1 + V 1,T + V T

ring
. (A.13)

In our analysis, we keep only the most important terms. We assume V 1 to be negligible

at high temperatures and use a 1/T expansion of the integrals in eq. (A.9) [96]:

Ib
(

m

T

)

≈ −π4

45
+

π2

12

m2

T 2
,

If
(

m2

T 2

)

≈ 7π4

360
− π2

24

m2

T 2
. (A.14)

It further proves convenient to use the expansion of the trace:

[

(m2
i +Πi)

3/2 − (m2
i )

3/2
]

≈ Π
3/2
i +

3

2
Tr
[

m2
i

√

Πi

]

. (A.15)

Ignoring all field-independent terms, which shift the potential by a temperature dependent

constant, we find that the ring corrections are of higher order in the couplings (∼ g3) and

can be neglected. The effective potential takes the form:

V T
eff =

λh

4
v4 +

λhs

4
v2u2 +

λs

4
u4 +

1

2

[

(chT
2 + µ2

h)v
2 + (csT

2 + µ2
s)u

2
]

, (A.16)

with ch = 1
4

(

2g2

4 + g2+g′2

4 + y2t + 2λh +
λhs

6

)

and cs =
1
4

(

λs +
2
3λhs

)

.

B s decay partial widths

The real scalar s interacts with the SM particles via its mixing with the Higgs. Its de-

cay rates can be obtained from the Higgs ones [100] by including the factor sin2 θ. For

0.1 GeV < ms . 90GeV, we use the Higgs total decay width given in refs. [101, 102]. For
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Figure 12. The total SM decay width of s and Γ(s → νν) for λ = 10−5, λhs = 10−8 and

M = 1GeV.

masses 90 GeV < ms < 1000GeV, we use the results of ref. [103]. Finally, for ms > 1TeV,

we scale the width up according to m3
s.

If ms < 2M and M is in the keV range, s will decay only to photons. In the calculation

of the partial decay width into photons, we follow [104]:

Γ(s → γγ) =
GFα

2m3
s sin

2 θ

128
√
2π3

∣

∣

∣

∣

∣

∑

f

Nf
c Q

2
fAf (τf ) +NW

c Q2
WAW (τW )

∣

∣

∣

∣

∣

2

, (B.1)

where the sum runs over fermions and W inside the loop. In this expression, N
f(W )
c = 3(1),

Qi is the charge and GF is the Fermi coupling constant. We define the following mass ratio

τx =
m2

s

4m2
x

(B.2)

and the loop functions

Af (τ) = 2(τ + (τ − 1)f(τ))/τ2, (B.3)

AW (τ) = −(2τ2 + 3τ + 3(2τ − 1)f(τ))/τ2, (B.4)

with

f(τ) =



















arcsin2
√
τ for τ ≤ 1,

−1

4

(

log
1 +

√
1− τ−1

1−
√
1− τ−1

− iπ

)2

for τ > 1.
(B.5)

Note that sin θ depends on ms:

sin 2θ =
M

λ

2λhsv

m2
s −m2

h

. (B.6)
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For heavier ms, the scalar will also decay into other SM particles. Besides the SM chan-

nels, s has another important decay mode s → νν. The corresponding decay width reads

Γ(s → νν) = λ2 ms

16π

(

1− 4
M2

m2
s

)3/2

. (B.7)

Figure 12 shows the total SM decay width and Γ(s → νν) as a function of ms with

other parameters fixed at some representative values. While the neutrino width grows with

ms, the SM decays get suppressed due to the decrease in the mixing angle θ ∝ 1/m2
s. The

spike in Γs around mh ≃ ms is due to the sharp increase in sin θ. In this region, our

approximations are unreliable.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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