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1 Introduction

The Standard Model provides an elegant and successful explanation to the electroweak

and strong interactions in nature [1]. However, there are many open problems that require

physics beyond the Standard Model (SM) to take place such as an explanation for neutrino

mass, dark matter, matter-antimatter- asymmetry. A common particle in these models

beyond the SM is a neutral gauge boson, usually referred to as Z ′. Such gauge bosons arise

naturally in Abelian gauge groups or in gauge groups that embed an Abelian symmetry.

The mass of this boson can be generated in several ways, for instance via spontaneous

symmetry breaking of a scalar which is singlet or doublet under the SM group, each case

leading to a very different phenomenology as discussed in [2]. The mass and interaction

strength of Z ′ bosons with SM particles are very model dependent and entitled to a rich

phenomenology from low to high energy scales [3, 4]. Phenomenological studies have been

conducted, among others, in the context of colliders [5–18], electroweak precision [19, 20],

flavor physics [21–23] or neutrinoless double beta decay [24].

Another particle often present in a multitude of beyond the Standard Model frame-

works is the dark photon. Dark photons are typically defined as light vector bosons that

possess small kinetic mixing with the QED field strength tensor [25–28]. They are supposed

to be much lighter than 90 GeV, the mass of the Z boson. Such particles have also been

subject of intense searches at low energy colliders and accelerators [29–50]. We emphasize

that when we refer to the Z ′ mass in our work, we mean the gauge boson mass in a general
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way, because the Z ′ can take the form of a dark photon-like boson. The main difference

between these two bosons is the type of interactions they feature with the SM particles. If

the kinetic mixing with the QED field strength tensor was the only new term, then the dark

photon would only have vectorial interactions with quarks and charged leptons and none

whatsoever with the SM neutrinos. In complete dark photon-like models, however, there

should be an underlying new broken gauge symmetry, under which SM particles possibly

have non-zero charges. Therefore, there could be a mass mixing term in addition to the

kinetic mixing, and we arrive again at the classical notion of a Z ′ boson. For historical

reason, Z ′ models and dark photon models are usually described in different contexts but

they simply refer to a massive gauge boson coming from a new gauge symmetry. Therefore,

in what follows, we will use the terms Z ′ and dark photon interchangeably.

Phenomenological studies in the context of Z ′ or dark photon models in a general setup

should include the presence of both mass and kinetic mixing between the vector bosons

in the theory. In this work, we provide a general formalism to treat these models. In

what regards phenomenology, we will be focused primarily on neutrino-electron scattering

process [51–58] since both Z ′ as well as dark photon-like models give rise to sizable new

physics contributions, allowing us to place restrictive constraints.

The observation of neutrino-electron scattering has proven to be an amazing laboratory

to test the SM and probe new physics effects motivating a multitude of studies [59–66]. In

particular, precise measurements of the neutrino-electron scattering have furnished relevant

bounds on Z ′ bosons for specific models based on the baryon minus lepton number (B −
L) [67, 68], Lµ − Lτ symmetries [69–71] and dark photon-like models [72, 73]. In the

future, more measurements will be coming up, see e.g. refs. [74, 75]. Motivated by the

popularity of Z ′ and dark photon models in the literature and the relevance of neutrino-

electron scattering constraints for light dark species we build here up a general setting

where constraints using data from neutrino-electron scattering can be placed on Z ′ and

dark photon models in the presence of mass and kinetic mixing terms.

The paper is build up as follows: in section 2 we develop the general formalism to

describe kinetic and mass mixing with of a general Z ′ with the SM. Exact analytical

expressions are provided. Section 3 derives the interactions relevant for neutrino-electron

scattering and gives expressions for cross sections. The fitting procedure is described in

section 4, bounds on the masses and couplings from TEXONO, CHARM-II and GEMMA

data are discussed in section 5, before we conclude in section 6. Various technical details

and lengthy analytical expressions are delegated to appendices.

2 General U(1)X models

The formalism for Z − Z ′ mixing has been frequently discussed in the literature, see

e.g. [76].1 Here we develop the framework in our notation and give exact expressions

without any approximation.

1An analysis for Z-Z′-Z′′ mixing was performed in [77].
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In the presence of the gauge groups SU(2)L × U(1)Y × U(1)X , the gauge bosons are

denoted as Ŵa (a = 1, 2, 3), B̂ and X̂, respectively. The Lagrangian can be written as

L = −1

4
ŴµνŴ

µν − 1

4
B̂µνB̂

µν − 1

4
X̂µνX̂

µν − ε

2
B̂µνX̂

µν

+
∑
f

fiγµDµf +
∑
φ

|Dµφ|2 (2.1)

+ scalar potential + Yukawa int.

Here f = (νL, eL)T , eR, νR, . . . stands for all chiral fermions in the model and φ stands

for all scalar bosons. In this paper, left(right)-handed neutrinos and charged leptons are

denoted by νL (νR) and eL (eR) respectively. Although the right-handed neutrinos are not

SM fermion contents, they should be introduced in many U(1)X models to cancel the chiral

anomaly. Since we are considering the most general case, the fermion and scalar contents

are not necessarily the same as in the SM. For example, f may include right-handed

neutrinos νR; the scalar sector may contain more than one Higgs doublet or singlets. The

covariant derivative is given by

Dµ = ∂µ + ig
3∑

a=1

taŴ a
µ + ig′

QY
2
B̂µ + igX

QX
2
X̂µ, (2.2)

where ta = σa/2 are the generators of SU(2), gX is the gauge coupling of the new U(1)X and

QX,Y are the operators projecting the charges of the particles under U(1)X and U(1)Y . The

two U(1) gauge bosons B̂ and X̂ couple to each other via the term ε
2B̂µνX̂

µν , which induces

kinetic mixing of X̂ with the other gauge bosons. This term is essentially guaranteed since

it is generated at the loop level even if zero at some scale [78], if there are particles charged

under hypercharge and U(1)X . At the tree level, the mass mixing requires that there is a

scalar which has a nonzero VEV and is charged under the SM and the U(1)X groups. At

the loop level, however, such mixing is introduced if the scalar particle carries either the

SM quantum numbers or the U(1)X charge.

If the U(1)X symmetry is broken, the mass terms involving the new gauge boson are

generated. Appendix A shows the structure of those terms for an arbitrary number of

singlet and doublet fields in the realistic scenario in which U(1)em remains unbroken, see

eqs. (A.11) and (2.9).

We would like to comment here that in the exact physical basis where all gauge bosons

have canonical kinetic terms and are mass eigenstates, the mixings mentioned above will

be absorbed by the Feynman rules in the canonical form. Next, we shall show this ex-

plicitly. The equations in this section are exact, without any approximation such as

ε� 1 or gX � 1.

We define three bases for the corresponding gauge bosons:

• Fundamental basis, which is defined as the basis we start with in eq. (2.1); gauge

bosons are denoted as

X̂ ≡ (Ŵ1, Ŵ2, Ŵ3, B̂, X̂)T ; (2.3)
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• Intermediate basis, where the gauge bosons have canonical kinetic terms but a non-

diagonal mass matrix, denoted as

X ≡ (W1, W2, W3, B, X)T ; (2.4)

• Physical basis, where gauge bosons are mass eigenstates with canonical kinetic terms,

denoted as2

Z ≡ (W1, W2, A, Z, Z
′)T . (2.5)

The three bases can be transformed to each other by

X = LTε X̂, Z = UTX, (2.6)

where Lε is a non-unitary linear transformation while U is a unitary transformation, which

will be derived below.

First, the kinetic terms in the first row of eq. (2.1) can be regarded as quadratic-

form functions of X̂ (here we can ignore the cubic and quartic terms of non-Abelian

gauge bosons),

X̂T

 I3×3 0 0

0 1 ε

0 ε 1

 X̂ = X̂TLε

 I3×3 0 0

0 1 0

0 0 1

LTε X̂ = XT

 I3×3 0 0

0 1 0

0 0 1

X. (2.7)

In the second step we have diagonalized the matrix by Lε, given as follows:3

Lε =

 I3×3 0 0

0 1 0

0 ε
√

1− ε2

 . (2.8)

Eq. (2.7) implies that after the transformation X̂→ X = LTε X̂, the kinetic terms become

canonical.

Next we shall diagonalize the mass matrix of gauge bosons. Although the mass ma-

trix depends on details of the scalar sector, such as the numbers or types of new scalars

introduced, we show in the appendix that as long as these scalars do not break the U(1)em
symmetry, the mass matrix in the fundamental basis is always block diagonal of the form

diag(m2
W , m

2
W , M̂3×3). Moreover, M̂3×3 can be further block-diagonalized into

M̂3×3 = UW

 0 0 0

0 z δ

0 δ x

UTW (2.9)

2Although (W1, W2) are mass eigenstates with the same mass m2
W , in the SM they are conventionally

converted to W± = 1√
2
(W1 ∓ iW2). In this paper, the (W1, W2) or W± sector is exactly the same as

in the SM. When discussing the bases, we still use (W1, W2) for simplicity; later in the charged-current

interactions we use W±. The conversion is the same as in the SM.

3Note that Lε is not unique, e.g. one can also use

(
I3×3 0 0

0
√

1−ε2 ε
0 0 1

)
to achieve the transformation from

X to X̂. Actually this transformation can be any matrix of the form LεO5 where O5 is a 5× 5 orthogonal

matrix.
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by the Weinberg rotation

UW =

 sW cW 0

cW −sW 0

0 0 1

 , (2.10)

where sW = sin θW , cW = cos θW . In the above expression for M̂3×3, the parameters

z, δ and x are related to mass mixing and exact formulas are given in appendix A. In the

intermediate basis, according to eq. (2.6), the mass matrix is

M3×3 = L−1ε M̂3×3(L
T
ε )−1. (2.11)

A useful result which can be verified by simple calculation is that the product

M3×3(sW , cW , 0)T is zero. It implies that (sW , cW , 0)T is one of the eigenvectors of M3×3,

which significantly simplifies the diagonalisation process of M3×3. The other two eigenvec-

tors should be orthogonal to this one and can be parametrized by an angle α. So all three

eigenvectors are given by the columns of the matrix

U =

 sW cW cα cW sα
cW −cαsW −sW sα
0 −sα cα

 , (2.12)

where sα = sinα and cα = cosα. One can use U to diagonalize M3×3:

M3×3 = Udiag(0, m2
Z , m

2
Z′)U

T . (2.13)

Here mZ and mZ′ are the masses of the physical gauge bosons with canonical kinetic and

mass terms, they are explicitly given in eqs. (A.15) and (A.16). The solution of α in terms

of δ, ε, m2
Z′ and m2

Z turns out to be

tanα =

√
(1−ε2)

(
m2
Z−m2

Z′
)2−4

(
δ+ εm2

ZsW
) (
δ+ εsWm2

Z′
)

+
√

1− ε2
(
m2
Z′ −m2

Z

)
2
(
δ + εsWm2

Z′
) ,

(2.14)

which has the following limit if ε→ 0 and δ → 0:

tanα =
δ + εm2

ZsW
m2
Z′ −m2

Z

+O(ε2, δ2). (2.15)

Eq. (2.13) implies that the transformation from the intermediate basis to the physical basis

is given by X→ Z = UTX.

In summary, the gauge bosons mass terms in the three bases are given by

Lmass =
1

2
X̂T

(
m2
W I2×2

M̂3×3

)
X̂ =

1

2
XT

(
m2
W I2×2

M3×3

)
X

=
1

2
ZT


m2
W I2×2

0

m2
Z

m2
Z′

Z. (2.16)
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Now that we have the transformations between the three bases, we are ready to derive the

gauge-fermion interactions in the physical basis.

Note that the transformations represented by Lε and U in eqs. (2.8) and (2.12) are only

limited to the lower 3×3 block. Therefore the charged current interaction mediated by the

W± bosons is the same as in the SM. We only need to consider the interactions of fermions

with the remaining three gauge bosons, namely Ŵ 3
µ , B̂µ, and X̂µ in the fundamental basis

or A, Z, and Z ′ in the physical basis. Using eq. (2.2) these interactions are obtained from

LfAZZ′ = fγµ
(
gt3Ŵ 3

µ + g′
QY
2
B̂µ + gX

QX
2
X̂µ

)
f.

Here t3, QY and QX depend on the representation of f in the gauge groups. To proceed

with the analysis, we change somewhat the notation and disassemble the SU(2) doublets of

fermions and regard t3 as a quantum number rather than a Pauli matrix. For example, when

f is νL or eL, t3 takes the values 1/2 or −1/2, respectively. In this sense, (gt3, g′QY2 , gX
QX
2 )

can be treated as a vector of numbers rather than 2×2 matrices. Therefore, the interactions

in the basis of A, Z, and Z ′ can be derived by

LfAZZ′ = fγµ
(
Ŵ 3
µ , B̂µ, X̂µ

) gt3

g′QY /2

gXQX/2

f= fγµ
(
A, Z, Z ′

)
UTL−1ε

 gt3

g′QY /2

gXQX/2

 f,

where UTL−1ε is obtained according to eq. (2.6). Taking the expressions of Lε and U in

eqs. (2.8), (2.12), we get4

LfAZZ′ = − JµemAµ − J
µ
ZZµ − J

µ
Z′Z

′
µ, (2.17)

JµZ = gcαJ
µ
NC − sαJ

µ
X , (2.18)

JµZ′ = gsαJ
µ
NC + cαJ

µ
X , (2.19)

where Jµem and JµNC are the electromagnetic and neutral currents in the SM respectively,

and JµX is a new current which we will refer to as the X-current. Note that JNC and JX
should not be interpreted as the interaction forms of the gauge bosons in the physical basis

(Z and Z ′) with the fermions. The gauge bosons Z and Z ′ which are mass eigenstates

couple to fermions via JZ and JZ′ respectively, which are related to JNC and JX by a small

rotation. For the convenience of later use, we write down the explicit forms of Jem, JNC

and JX :

Jµem = gsW
∑
f

fγµQfemf

= gsW [eLγ
µ(−1)eL + eRγ

µ(−1)eR + · · · ] , (2.20)

JµNC = g
∑
f

fγµ
[
cWQ

f
em −

QY
2cW

]
f

=
g

cW

[
νLγ

µ 1

2
νL + eLγ

µ 2s2W − 1

2
eL + eRγ

µs2W eR + · · ·
]
, (2.21)

4These expressions are consistent, up to simple redefinitions of the mixing angles, with the ones of eq.

(D5) in ref. [79].
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JµX =
∑
f

fγµ
cW gXQ

f
X − gεQ

f
Y sW

2
√

1− ε2cW
f

=
1

2cW
√

1− ε2
[
νLγ

µ
(
cW gXQ

νL
X + gεsW

)
νL + νRγ

µ
(
cW gXQ

νR
X

)
νR

+eLγ
µ
(
cW gXQ

eL
X + gεsW

)
eL + eRγ

µ
(
cW gXQ

eR
X + 2gεsW

)
eR + · · ·

]
. (2.22)

With these currents at hand, some comments are in order:

• In the limit α→ 0, the SM is recovered.

• α contains not only the kinetic mixing ε but also the mass mixing δ in eq. (2.9).

• The charged current and electromagnetic interactions are the same as in the SM.

The currents allow one to calculate physical processes, which is what will be done in the

next section.

3 Neutrino-electron scattering in U(1)X models

As we discussed in the previous section, neither the kinetic mixing nor the mass mixing

of the gauge bosons change the charged current and electromagnetic interactions. There-

fore, neutrinos still have the SM charged current with electrons and are not involved in

electromagnetic interactions [67, 72]. In addition to the charged current, neutrinos can

interact with electrons via Zµ and Z ′µ. We re-emphasize that generally we refer to dark

photon-like and Z ′ gauge bosons as simply Z ′ gauge bosons. The relevant interactions for

neutrino-electron scattering can be written as follows:

L ⊃ −
(
W+
µ νΓµW `+ h.c

)
− Zµ

(
νΓµνZν + `Γµ`Z`

)
− Z ′µ

(
νΓµνZ′ν + `Γµ`Z′`

)
, (3.1)

where

ΓµW = γµ
g√
2
PL, (3.2)

ΓµνZ = γµ
[
PL

2cW
gcα −

gεPLsW sα

2cW
√

1− ε2
− gXsα

Pν

4
√

1− ε2

]
, (3.3)

Γµ`Z = γµ

[
2s2W − PL

2cW
gcα −

g
(
3 + γ5

)
εsW sα

4
√

1− ε2cW
− gXsα

P`

4
√

1− ε2

]
, (3.4)

ΓµνZ′ = γµ
[
PL

2cW
gsα +

gεPLsW cα

2cW
√

1− ε2
+ gXcα

Pν

4
√

1− ε2

]
, (3.5)

Γµ`Z′ = γµ

[
2s2W − PL

2cW
gsα +

g
(
3 + γ5

)
εsW cα

4
√

1− ε2cW
+ gXcα

P`

4
√

1− ε2

]
, (3.6)

Pν ≡ QR+L
Xν +QR−LXν γ5, (3.7)

P` ≡ QR+L
X` +QR−LX` γ5. (3.8)

Here we have used QR±LX ≡ QRX ±QLX for short.
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U(1)X charges U(1)C U(1)D U(1)E U(1)F U(1)G U(1)B−L

`L =
( νL
eL

)
3/4 −3/2 −3/2 −3 −1/2 −1

eR 0 −2 −1 −4 0 −1

Table 1. Anomaly free charge assignments in U(1)X models [79]. Those were designed to explain

neutrino masses via the seesaw mechanism and address the flavor problem in two Higgs doublet

models.

We note that even though QRXν appears in the above interactions, it will disappear

in the cross sections of neutrino-electron scattering because for realistic neutrino sources,

neutrinos are always produced via the charged current, which means the sources only emit

left-handed neutrinos (or right-handed antineutrinos). From eq. (3.1), one can see that left-

handed neutrinos can not be converted to right-handed neutrinos in any of the vertices.

Therefore right-handed neutrinos are irrelevant to neutrino-electron scattering.

So far the discussion was general. In explicit UV-complete and self-consistent models

the U(1)X charges should take specific values to guarantee anomaly cancellation. In this

work, we will adopt the anomaly free charge assignments as listed in table 1. The models

are adopted from ref. [79], where they were studied in the context of two Higgs doublet

models without tree-level flavor changing neutral currents. They are characteristic for

many of the available U(1)X models in the literature, and can serve as benchmark models

for out study.

We compute the cross sections of neutrino-electron scattering in the appendix. The

results are:

dσ

dT
(ν + e− → ν + e−) =

meG
2
F

4π

[
g21 + g22

(
1− T

Eν

)2

− g1g2
meT

E2
ν

]
, (3.9)

dσ

dT
(ν + e− → ν + e−) =

meG
2
F

4π

[
g22 + g21

(
1− T

Eν

)2

− g1g2
meT

E2
ν

]
, (3.10)

where Eν and T are the neutrino energy and electron recoil energy respectively, and g1, 2 are

two dimensionless quantities with quite complicated expressions. They can be decomposed

into several parts, to be discussed below. Eq. (3.9) or eq. (3.10) assume that the initial

neutrinos are left-handed neutrinos or right-handed antineutrinos, respectively. As one

may notice, the difference between the two cross sections is simply an interchange between

g1 and g2,

(ν ↔ ν) ⇐⇒ (g1 ↔ g2). (3.11)

Eqs. (3.9) and (3.10) can be used for both electron neutrinos and muon neutrinos. For

electron neutrinos, additional charged current contributions should be taken into account,

which changes the SM part of g1 and g2.

Next we discuss the two dimensionless quantities g1, 2. They can be decomposed into

three parts, referred to as the SM part gSM1, 2 , the new Zµ-mediated part a1, 2 (see below),

and the Z ′µ-mediated part b1, 2 r:

g1, 2 = gSM1, 2 + a1, 2 + b1, 2 r. (3.12)
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The explicit expressions of gSM1, 2 depend on whether the charged current contributions should

be taken into account:

gSM1 = −2
√

2s2W c
2
α, g

SM
2

=
√

2c2α
(
1− 2s2W

)
+

{
−2
√

2 (neutral current + charged current)

0 (NC only)
. (3.13)

The Z ′µ-mediated part b1, 2r can change drastically for very light Z ′µ, this is quantified by

the parameter r defined as

r ≡ 1(
2meT +m2

Z′
)
GF

. (3.14)

For example, if mZ′ is below 2 MeV, then in reactor neutrino scattering experiments such as

TEXONO, r reaches O(1010) — see table 2. Since the mZ′ dependence of the cross section

enters only via eq. (3.14), we can thus conclude that if 2meT � m2
Z′ , the experiment

is insensitive to the mass of the Z ′µ. In other words, any neutrino-electron scattering

experiment with a recoil energy detection threshold Tmin should have a threshold of mass

sensitivity approximately at

mmin
Z′ ≡

√
2meTmin. (3.15)

Hence, if we observe a potential Z ′ signal much below mmin
Z′ , the overall effect will be

independent of its mass.

We shall now turn our attention to the quantities a1, 2 and b1, 2. They are small if the

gauge coupling gX , the kinetic mixing ε and the mass mixing sα are small as well, i.e.

(a1, a2, b1, b2) ∼ O(sα, gX , ε)
2. (3.16)

Without assuming any of them to be small, the exact expressions are computed in the

appendix and summarized below:

a1 = s2α

(
g2X

√
2c2WQ

L
νQ

R
`

g2 (ε2 − 1)
+ εgX

√
2sW cW (2QLν +QR` )

g (ε2 − 1)
+ ε2

2
√

2s2W
ε2 − 1

)

+cαsα

(
−gX

√
2
√

1− ε2cW (2s2WQ
L
ν +QR` )

g (ε2 − 1)
− ε

2
√

2
√

1− ε2sW (s2W + 1)

ε2 − 1

)
, (3.17)

a2 = s2α

(
g2X

√
2c2WQ

L
νQ

L
`

g2 (ε2 − 1)
+ εgX

√
2cW sW (QL` +QLν )

g (ε2 − 1)
+ ε2
√

2s2W
ε2 − 1

)

+cαsα

(
−gX

√
2
√

1− ε2cW
[
(2s2W − 1)QLν +QL`

]
g (ε2 − 1)

− ε
2
√

2
√

1− ε2s3W
ε2 − 1

)
, (3.18)

b1 = c2α

(
g2ε2s2W

2 (ε2 − 1) c2W
+

gεgXsWQ
L
ν

2 (ε2 − 1) cW
+

gεgXsWQ
R
`

4 (ε2 − 1) cW
+
g2XQ

L
νQ

R
`

4 (ε2 − 1)

)
+cαsα

(
ε
g2
√

1− ε2sW (s2W + 1)

2 (ε2 − 1) c2W
+ gX

g
√

1− ε2
(
2s2WQ

L
ν +QR`

)
4 (ε2 − 1) cW

)

+s2α

(
−
g2s2W
2c2W

)
, (3.19)
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b2 = c2α

(
ε2

g2s2W
4 (ε2 − 1) c2W

+ gXε
gsW

(
QL` +QLν

)
4 (ε2 − 1) cW

+ g2X
QLνQ

L
`

4 (ε2 − 1)

)

+cαsα

(
−ε

g2s3W
2
√

1− ε2c2W
− gX

g
[
(2s2W − 1)QLν +QL`

]
4
√

1− ε2cW

)

+s2α

(
g2(1− 2s2W )

4c2W

)
. (3.20)

The interpretation of those terms is straightforward. The terms a1,2 contain contributions

proportional to sin2 α and sinα cosα. Those take into account the mixing of the SM Z

with the new Z ′, and would disappear of the mass and kinetic mixing terms would both

vanish, ε = δ = 0, see eq. (2.14). The would-be SM Z boson has an admixture of the

new gauge bosons and its coupling with neutrinos and electrons is modified accordingly. In

analogy the terms b1,2 contain contributions proportional to cos2 α, sinα cosα and sin2 α.

Those correspond to the coupling of the original X̂ boson with neutrinos and electrons,

modified by its mixing with the SM Z-boson. In the limit of no mixing (ε = δ = 0),

they would be given by g2XQ
L
νQ

R
` /4 and g2XQ

L
νQ

L
` /4, respectively. Notice that the relevant

parameters a1, a2, b1, b2 have terms proportional to ε2g2, gXε, g
2
X , εg2, gXg etc. They have

sometimes opposite signs, inducing interference effects which might be relevant depending

on the values adopted for the parameters in a model [72]. The expressions above are exact

and general. Thus the reader can easily reproduce our results and cast limits on any U(1)X
model of interest.

4 Data fitting

In this section, we use neutrino-electron scattering data to constrain U(1)X models and

discuss the relevance of the Z ′ mass to our reasoning. It turns out that the best limits can

be obtained from reactor experiments TEXONO and GEMMA, and from the high energy

beam experiment CHARM-II.5

• Heavy Z ′: for Z ′s masses larger than 1.5 GeV, the effect of the Z ′ is negligible for

all considered neutrino-electron scattering experiments. Thus, the constraints can

be described in terms of dimension-6 Fermi interactions. That said, the strongest

constraint in this case should come from the experiment with the best measurement

of electroweak parameters (e.g. sin2 θW ), which happens to be the CHARM-II exper-

iment [82, 83].

• Light Z ′: for Z ′s lighter than 400 keV, the energy threshold of the detector dictates

its sensitivity. The GEMMA experiment has a very low threshold for measuring the

electron recoil energy and for this reason is expected to impose the best constraints

on very light gauge bosons [84, 85].

5In the foreseeable future, limits from neutrino-electron scattering will be the leading ones. In case

reactor experiments measuring coherent elastic neutrino-nucleus can improve the threshold of their detectors

to currently unrealistic values (10 eV instead of present state-of-the-art 1 keV), limits obtainable by those

experiments (see [80, 81]) would be of the same order of magnitude as the ones presented here.
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Source Eν T ∆σ/σSM mmin
Z′ r (@mZ′ = 0)

TEXONO (reactor νe) 3–8 MeV 3–8 MeV 20% ∼ 2 MeV ∼ 1010

CHARM-II (accel. νµ+νµ) ∼ 20 GeV 3–24 GeV 3% ∼ 50 MeV ∼ 107

GEMMA (reactor νe) 0–8 MeV 3–25 keV —∗ ∼ 0.05 MeV ∼ 1013

∗ The SM signal has not been observed in GEMMA.

Table 2. Configurations of neutrino-electron scattering experiments. The last two columns for

mmin
Z′ and r shows the threshold of the mZ′ sensitivity [cf. eqs. (3.15)] and the enhancement factor

for a light Z ′ [cf. eq. (3.14)].

• Intermediate mass Z ′: for gauge bosons masses between 400 keV and 1.5 GeV the

interplay between precision and energy threshold takes place, encompassing experi-

ments such as TEXONO, LSND, and Borexino, etc. In this paper, we select three sets

of data: GEMMA, TEXONO and CHARM-II, which should be quite representative

of all neutrino-electron scattering data at various energy scales. Actually a previ-

ous study [72] shows that for the U(1)B−L model, the strongest constraint on the

gauge coupling mainly comes indeed from these three experiments. Including other

experiments such as LSND and Borexino has little effect on the combined constraint.

The details of the data relevant to our analyses are given next.

• CHARM-II. The CHARM-II experiment [82, 83] used a horn focused νµ (and νµ)

beam produced by the Super Proton Synchrotron (SPS) at CERN. The mean neutrino

energy 〈Eν〉 is 23.7 GeV for νµ and 19.1 GeV for νµ. From 1987 to 1991, 2677±82

νµe
− and 2752±88 νµe

− scattering events were detected, producing a very accurate

measurement of the Weinberg angle sin2 θW = 0.2324 ± 0.0083. We take the data

from [82] which published the measurement of the differential cross sections (in its

table 2). We thus directly use the cross section data to evaluate the χ2-values

χ2
CHARM−II =

∑
i

(
Si − Si0

∆Si

)2

, (4.1)

where Si/Si0 are the theoretical/measured differential cross sections, and ∆Si is the

uncertainty. Neutrino and antineutrino data are combined together in the data fitting.

• TEXONO. The TEXONO experiment [86] measured the νee
− cross section with

a CsI(Tl) scintillating crystal detector setting near the Kuo-Sheng Nuclear Power

Reactor. Therefore the neutrino flux is the standard reactor νe flux which peaks

around 1 MeV. However, in TEXONO events are selected in the range 3 MeV < T <

8 MeV so the low energy part (Eν < 3 MeV) in the flux does not contribute to the

signal. After data collection from 2003 to 2008, 414 ± 80 ± 61 events were selected.

The measured Weinberg angle is sin2 θW = 0.251± 0.031(stat)± 0.024(sys), and the

ratio of experimental to SM cross section is 1.08±0.21(stat)±0.16(sys). We perform

a χ2-fit on the measured event rate R,

χ2
TEXONO =

∑
i

(
Ri −R0

i

∆Ri

)2

, (4.2)
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where Ri and R0
i are the theoretical and measured even rates in the i-th recoil energy

bin, and ∆Ri is the corresponding uncertainty. Both R0
i and ∆Ri can be read off

from figure 16 of [86]. The theoretical event rate is proportional to the event numbers

divided by the bin width. The event number in the recoil energy bin T1 < T < T2 is

computed by,

N(T1, T2) = a

∫
Φ(Eν)σ(Eν , T 1, T 2)dEν . (4.3)

Here a is an overall factor which can be calibrated using the SM values in figure 16

of [86], Φ(Eν) is the reactor neutrino flux, and σ is a partial cross section defined as

σ(Eν , T1, T2) ≡
∫ T2

T1

dσ

dT
(Eν , T )dT. (4.4)

The integral can be analytically computed and the explicit expression is given in

appendix C, which is technically useful in the data fitting. Note that for a neutrino

of energy Eν , the recoil energy can not exceed

Tmax =
2E2

ν

M + 2Eν
. (4.5)

However, eq. (4.4) does not automatically vanish if T1 is larger than Tmax. There-

fore in practice one should notice the technically important replacement (T1, T2) →
(T 1, T 2) in eq. (4.3), where T 1, 2 are defined as

T 1, 2 ≡ min(T1, 2, Tmax). (4.6)

• GEMMA. The GEMMA experiment [84, 85] aimed at measuring the neutrino mag-

netic moment by a HPGe detector setting near the Kalinin Nuclear Power Plant.

To reduce the SM background, only very low recoil energy events are selected, from

3 keV to 25 keV. In this range, the SM neutrino interactions are negligibly small

with respect to its current sensitivity. We take the data from figure 8 of [85] and

compute the event numbers also according to eq. (4.3), except that the factor a is

directly computed from the electron density in Ge, and the flux is renormalized to

2.7× 1013 events/cm2/s. The χ2-fit is the same as the TEXONO experiment.

5 Bounds

Now that we have described the data sets used in the analysis and the theoretical framework

of U(1)X models, we can perform a χ2-fit to derive limits on the relevant parameters of

the models, namely, ε (kinetic mixing parameter), gX (gauge coupling from the U(1)X
symmetry), α (parameter that encodes the kinetic and mass mixing defined in eq. (2.14),

and mZ′ (gauge boson mass).

We will discuss now the constraints exhibited in figures 1–4. In figure 1 we show the

limits on (mZ′ , gX) in the absence of ε and α contributions, i.e. for ε = α = 0, which is

equivalent to not having any kinetic and mass mixing terms. The results depend on explicit
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Figure 1. Constraints on gX when α = ε = 0. The U(1)X charges of eR and `L = (νe, e)
T
L are

listed to the right of the plot, taken from table 1.
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Figure 2. Constraints on gX for α = 0.0 gX (solid), α = ±0.5 gX (dashed) and α = ±1.0 gX
(dotted), assuming U(1)B−L charges and ε = 0. The bounds with negative α are lower than those

with positive α. The other existing constraints (purple curves) are taken from ref. [67].

U(1)X models, i.e. the U(1)X charge assignments, which are listed in table 1. Naturally,

the larger the lepton charges under U(1)X the larger the new physics contribution to the

neutrino-electron scattering, and thus the stronger the bound on the gX parameter. In the

U(1)F model, the left-handed leptons have charge −3, whereas the right-handed electron

has −4. Notice that due to these large charge assignments the U(1)F is subject to the

strongest bound on gX . For mZ′ < 1 MeV, all models in our study are excluded for gX
larger than 4× 10−6. As for large gauge boson masses, say mZ′ = 10 GeV, gX > 6× 10−3

is excluded. The linear behavior of the limits for large Z ′ masses as displayed in figure 1

occurs simply because m2
Z′ � 2meT , see eq. (3.14).

Figure 2 chooses a particular example, namely U(1)B−L, and studies the limits on (mZ′ ,

gX) in the presence of nonzero α. We have fixed there the ratio of α and gX to certain values.
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Figure 3. Constraints on ε when gX = α = 0. The result in this case is independent of the U(1)X
charge assignments.

If this ratio is around 1 the situation would correspond to the VEVs of the new scalar field

lying close to the electroweak scale.6 The plot shows that within −1 ≤ α/gX ≤ 1, the

bounds become stronger when α increases by roughly a factor of 100.5 ≈ 3. We would like

to comment that though α and gX are two independent parameters, they can be both very

small at the same order of magnitude without fine tuning. As one can see from eq. (2.15),

in the limit of ε = 0, α is of the order δ/v2 where v is the electroweak energy scale. If all the

scalar VEVs are at (or not far from) the electroweak scale, then δ should be proportional

to gXv
2 [see e.g. eq. (A.12)], thus α is at the same order of magnitude as gX . In figure 2, we

also present other existing constraints (purple curves) from [67]. Here (g−2)e and (g−2)µ
denote the constraints from anomalous magnetic moments of electrons and muons [28];

the fixed target constraint is a combined result from the beam dump experiments [87–89];

the atomic physics constraint originates from modifications of the Coulomb potentials in

atoms [90]; and the constraints from globular clusters or the Sun are related to the energy

loss due to the light Z ′ [67].

In figure 3 we present the limits on the kinetic mixing as a function of the Z ′ mass

for gX = α = 0. This is an approximate case. Notice from eq. (2.15) that if ε, δ � 1,

then tanα ∼ εsW , or α ∼ ε/2. Thus, the choice α = 0 as done in figure 3 is just an

approximation. This setup is thus corresponding to a model with no mass mixing and the

gX coupling finely tuned. Anyways, as before, it is quite visible the complementary role

that GEMMA, TEXONO and CHARM-II play at probing light vector mediators.

In figure 4, we show an orthogonal scenario, namely bounds on the parameter α as a

function of Z ′ mass with gX , ε = 0. This case is relevant to a model featuring a sizable mass

mixing, no kinetic mixing and a dwindled gX coupling. These bounds are independent of

the U(1)X charges of the fermions and thus can be regarded being model-independent. We

6The case of ε ∼ gX seems less realistic and hence we do not show a corresponding plot for different

values of ε. If α � gX the limits are insensitive to α, for α � gX we approach the situation displayed in

figure 3.
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Figure 4. Constraints on α when gX = ε = 0. The result in this case is independent of the U(1)X
charge assignments.

highlight that there are other relevant limits on the mass mixing parameter, such as those

stemming from coherent neutrino-nucleus scattering or atomic parity violation, but they

are not as restrictive as neutrino-electron scattering yet.

6 Conclusion

Additional neutral gauge bosons are a common feature of theories beyond the Standard

Model. We have investigated here several different U(1)X models and have presented

bounds on the key physical parameters (mass, gauge coupling and quantities describing

mixing). The data we have used is from past experiments on neutrino-electron scattering,

namely CHARM-II, GEMMA and TEXONO. We have provided general formulas for the

Z-Z ′ mixing and for the cross sections that allow to use them for any model with an

additional Z ′ boson or dark photon. Our study motivates analyses of upcoming neutrino-

electron scattering data to further probe the parameter space of such models.
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A Gauge boson mass generation

In this appendix, we discuss the mass generation of the gauge bosons from the term

L ⊃
∑
φ

|Dµφ|2,

where φ stands for all kinds of scalar fields with nonzero VEVs, denoted by 〈φ〉.
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According to the definition of Dµ in eq. (2.2), the mass terms of gauge bosons should be

∑
φ

∣∣∣∣∣
3∑

a=1

gta〈φ〉Ŵ a
µ + g′

QφY
2
〈φ〉B̂µ + gX

QφX
2
〈φ〉X̂µ

∣∣∣∣∣
2

. (A.1)

First, we consider the case that φ is an SU(2)L doublet. The hypercharge QφY should be 1

or −1 to make (
σ3
2

+
QφY
2

)
〈φ〉 = 0 (A.2)

possible, which is necessary to avoid a broken U(1)em. For QφY = −1, we can redefine

φ → φ̃ = iσ2φ
∗ to flip the sign of the hypercharge. So we only need to consider QφY = 1.

The VEV that does not break U(1)em should be

〈φ〉 =
1√
2

(
0

vφe
iξ

)
, (A.3)

where a complex phase ξ is allowed (e.g. in a CP violating 2 Higgs doublet model). The

gauge boson mass matrix (in the fundamental basis) computed from eqs. (A.3) and (A.1)

turns out to be

M̂2 =



1
4g

2v2φ 0 0 0 0

0 1
4g

2v2φ 0 0 0

0 0 1
4g

2v2φ −1
4gv

2
φg
′ −1

4ggXQ
φ
Xv

2
φ

0 0 −1
4gv

2
φg
′ 1

4v
2
φg
′2 1

4gXQ
φ
Xv

2
φg
′

0 0 −1
4ggXQ

φ
Xv

2
φ

1
4gXQ

φ
Xv

2
φg
′ 1

4g
2
X

(
QφXvφ

)2


. (A.4)

This mass matrices is in the fundamental basis defined in eq. (2.3) so the first three columns

correspond to the three SU(2)L gauge bosons (Ŵ1, Ŵ2, Ŵ3), the 4th column to the U(1)Y
gauge boson B̂, and the last column to the U(1)X gauge boson X̂. As for the mass matrices

of gauge bosons in other bases, they can be derived from M̂2 according to eq. (2.16) and

eq. (2.6).

Next, we consider a singlet φ. Similar to the argument around eq. (A.2), we get

QφY = 0. The most general VEV is

〈φ〉 =
1√
2
vφe

iξ, (A.5)

which leads to the mass matrix

M̂2 = diag

(
0, 0, 0, 0,

1

4
g2XQ

φ
Xv

2
φ

)
. (A.6)
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Therefore, for arbitrary numbers of doublet and singlet scalar fields, the mass matrix

should be

M̂2 =



1
4g

2v2 0 0 0 0

0 1
4g

2v2 0 0 0

0 0 1
4g

2v2 −1
4gg
′v2 −1

4ggXv
2
X

0 0 −1
4gg
′v2 1

4g
′2v2 1

4gXg
′v2X

0 0 −1
4ggXv

2
X

1
4gXg

′v2X
1
4g

2
Xv

2
XX


, (A.7)

where

v2 =
∑

φ=doublets

v2φ, (A.8)

v2X =
∑

φ=doublets

v2φQ
φ
X , (A.9)

v2XX =
∑
φ=all

(
QφXvφ

)2
. (A.10)

The matrix in eq. (A.7) can be block-diagonalized as follows,

M̂2 = UW


g2v2

4 I2×2 0 0 0

0 0 0 0

0 0 z δ

0 0 δ x

UTW , (A.11)

where

z ≡ 1

4
v2
(
g2 + g′2

)
, δ ≡ − 1

4
gXv

2
X

√
g2 + g′2, x ≡ 1

4
g2Xv

2
XX , (A.12)

UW =


I2×2

sW cW 0

cW −sW 0

0 0 1

 , (A.13)

sW =
g′√

g2 + g′2
, cW =

g√
g2 + g′2

. (A.14)

The expression for M̂2 in eq. (A.11) is the most general mass term including mass mixing

in scenarios in which U(1)em survives the symmetry breaking.

For completeness, we finally give the exact expressions for the physical Z and Z ′ boson

masses, which read

m2
Z =

x+ z + 2δsW ε− c2W zε2 +
√

∆

2 (1− ε2)
, (A.15)

m2
Z′ =

x+ z + 2δsW ε− c2W zε2 −
√

∆

2 (1− ε2)
, (A.16)

with

∆ ≡
(
1− c2W ε2

) (
4δ2 + 4δsW zε+ z2 − c2W z2ε2

)
+ 2

(
1 + s2W

)
xzε2 + 4δsWxε+ x2 − 2xz .

(A.17)
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ν ν

e e

W
Z Z ′

W Z Z ′W Z Z ′W Z Z ′

pν kν

pe ke

pν kν

pe ke

(a1) (a2) (a3)

(b1) (b2) (b3)

νe + e− → νe + e− να + e− → να + e− να + e− → να + e−

νe + e− → νe + e− να + e− → να + e− να + e− → να + e−

Figure 5. The Feynman diagrams of να + e− → να + e− (upper three diagrams) and να + e− →
να + e− (lower three diagrams). The W -mediated diagrams (a1) and (b1) exist only when α = e.

B Cross sections of neutrino-electron scattering

Here we present the analytical calculation of the cross sections of (anti)neutrino-electron

scattering in a general U(1)X model. The relevant Feynman diagrams are presented in

figure 5, where diagrams (a1)-(a3) are for antineutrino scattering and (b1)-(b3) are for

neutrino scattering. Diagrams (a1) and (b1) are purely SM contributions, while diagrams

(a3) and (b3) are new contributions due to the extra U(1)X . Although (a2) and (b2) are

SM diagrams they may be modified in this model due to the kinetic mixing of gauge bosons.

The initial/final states (momenta and spins) of neutrinos and electrons are denoted in

the way shown in figure 5. The scattering amplitudes are written as follows:

iMa1 = vs(pν)

(
i
g√
2
γµL

)
ur(pe)

−i
p2W −m2

W

ur
′
(ke)

(
i
g√
2
γLµ

)
vs
′
(kν) (B.1)

= vs(pν)

(
i
g√
2
γµL

)
vs
′
(kν)

−i
p2W −m2

W

ur
′
(ke)

(
i
g√
2
γLµ

)
ur(pe), (B.2)

iMa2 = vs(pν) (iΓνZ)µ vs
′
(kν)

−i
p2Z −m2

Z

ur
′
(ke) (iΓ`Z)µ u

r(pe), (B.3)

iMa3 = vs(pν) (iΓνZ′)
µ vs

′
(kν)

−i
p2Z′ −m2

Z′
ur
′
(ke) (iΓ`Z′)µ u

r(pe), (B.4)
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iMb1 = us
′
(kν)

(
i
g√
2
γµL

)
ur(pe)

−i
p2W −m2

W

ur
′
(ke)

(
i
g√
2
γLµ

)
us(pν), (B.5)

= us
′
(kν)

(
i
g√
2
γµL

)
us(pν)

−i
p2W −m2

W

ur
′
(ke)

(
i
g√
2
γLµ

)
ur(pe), (B.6)

iMb2 = us
′
(kν) (iΓνZ)µ us(pν)

−i
p2Z −m2

Z

ur
′
(ke) (iΓ`Z)µ u

r(pe), (B.7)

iMb3 = us
′
(kν) (iΓνZ′)

µ us(pν)
−i

p2Z′ −m2
Z′
ur
′
(ke) (iΓ`Z′)µ u

r(pe) (B.8)

where

γµL ≡ γ
µ 1− γ5

2
=

1 + γ5

2
γµ, (B.9)

pW = pν + pe, (for ν) or pe − kν , (for ν), (B.10)

pZ = pZ′ = pν − kν . (B.11)

In the second lines of iMa1 and iMb1, we have applied Fierz transformation to get uniform

expressions so that they can be combined with the NC contributions.

The total amplitudes of νe + e− scattering and νe + e− scattering are

iMa ≡
∑
j

iMaj =
∑
j

vs(pν)PR (Γj)
µ vs

′
(kν)ur

′
(ke)i

(
Γ̃j

)
µ
ur(pe), (B.12)

iMb ≡
∑
j

iMbj =
∑
j

us
′
(kν) (Γj)

µ PLu
s(pν)ur

′
(ke)i

(
Γ̃j

)
µ
ur(pe), (B.13)

where

(Γ1, Γ2, Γ3) ≡
(
g√
2
γµL, ΓνZ , ΓνZ′

)
, (B.14)

(Γ̃1, Γ̃2, Γ̃3) ≡
(

1

χW

g√
2
γµL,

1

χZ
Γ`Z ,

1

χZ′
Γ`Z′

)
, (B.15)

χW ≡ p2W −m2
W , χZ ≡ p2Z −m2

Z , χZ′ ≡ p2Z′ −m2
Z′ . (B.16)

Note that in realistic experiments the incoming (anti)neutrinos should be (right-)left-

handed. So in practice, one can attach the right-handed or left-handed projectors PR =
1+γ5

2 , PL = 1−γ5
2 to the initial state of incoming antineutrinos or neutrinos respectively:

vs(pν)→ vs(pν)PR, (B.17)

us(pν)→ PLu
s(pν). (B.18)

Applying the trace technology, we get

|iMa|2 =
∑
ss′

1

2

∑
rr′

|iMss′rr′
a |2

=
∑
jk

tr
[
γ · pνPRΓµj γ · kνΓρkPL

] tr

2

[
(γ · ke +me)Γ̃jµ(γ · pe +me)Γ̃kρ

]

= 8E2
νm

2
e

[
G2

+ +G2
−

(
1− T

Eν

)2

−G+G−
meT

E2
ν

]
, (B.19)
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where

G± ≡
∑
i

(ci − di)(c̃i ± d̃i), (B.20)

and ci, di, c̃i, and d̃i are defined by

Γµi = γµ(ci + diγ
5), Γ̃µi = γµ(c̃i + d̃iγ

5). (B.21)

From eqs. (B.14) and (B.15), the explicit values of ci, di, c̃i, and d̃i are(
c1, d1, c̃1, d̃1

)
=

(
g

2
√

2
, − g

2
√

2
,

g

2
√

2χW
, − g

2
√

2χW

)
,

c2 =
g
√

1− ε2cα − cW gXsαQVν − gεsαsW
4
√

1− ε2cW
, d2 = c2|g → −g, QVν → QAν

c3 =
cαcW gXQ

V
ν + gεcαsW + g

√
1− ε2sα

4
√

1− ε2cW
, d3 = c3|g → −g, QVν → QAν

c̃2 = −
sα
(
cW gXQ

V
` + 3gεsW

)
+ cαg

(
1− 4s2W

)√
1− ε2

4cWχZ
√

1− ε2
,

c̃3 =
cαcW gXQ

V
` + 3gεcαsW + gsα

(
4s2W − 1

)√
1− ε2

4cWχZ′
√

1− ε2
,

d̃2 =
−cW gXsαQA` + g

√
1− ε2cα − gεsαsW

4
√

1− ε2cWχZ
,

d̃3 =
cαcW gXQ

A
` + gεcαsW + g

√
1− ε2sα

4
√

1− ε2cWχZ′
.

One can compute |iMb|2 in the similar way. The result is

|iMb|2 = 8E2
νm

2
e

[
G2
− +G2

+

(
1− T

Eν

)2

−G+G−
meT

E2
ν

]
. (B.22)

Plugging eqs. (B.19) and (B.22) into the cross section formula

dσ

dT
=
|iM|2

32πmeEν
, (B.23)

we get

dσ

dT
(νe + e− → νe + e−) =

me

4π

[
G2

+ +G2
−

(
1− T

Eν

)2

−G+G−
meT

E2
ν

]
, (B.24)

dσ

dT
(νe + e− → νe + e−) =

me

4π

[
G2
− +G2

+

(
1− T

Eν

)2

−G+G−
meT

E2
ν

]
, (B.25)

where

G+ =
g2c2αs

2
W +A+s

2
α +B+cαsα

2c2WχZ
+
g2s2αs

2
W +A+c

2
α −B+cαsα

2c2WχZ′
, (B.26)
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G− =
g2

2χW
+
A−s

2
α +B−cαsα + g2c2α

(
s2W −

1
2

)
2c2WχZ

+
A−c

2
α −B−cαsα + g2s2α

(
s2W −

1
2

)
2c2WχZ′

,

(B.27)

A+ ≡
gεcW gXsW

(
2QLν +QR`

)
+ c2W g

2
XQ

L
νQ

R
` + 2g2ε2s2W

2 (1− ε2)
, (B.28)

B+ ≡
−g
√

1− ε2cW gX
(
2s2WQ

L
ν +QR`

)
− 2g2ε

√
1− ε2s3W − 2g2ε

√
1− ε2sW

2 (1− ε2)
, (B.29)

A− ≡
(
−cW gXQL` − gεsW

) (
cW gXQ

L
ν + gεsW

)
2 (ε2 − 1)

, (B.30)

B− ≡
g
√

1− ε2
(
cW gX

(
−QLν + 2s2WQ

L
ν +QL`

)
+ 2gεs3W

)
2 (ε2 − 1)

. (B.31)

So far we have not taken any approximation in the above calculation. Since most

neutrino-electron scattering data are at energies much lower than mW and mZ , we will

take the approximation

χW ≈ −
√

2g2

8GF
, χZ ≈ −

√
2g2

8GF c2W
, χZ′ = −

(
2meT +m2

Z′
)
. (B.32)

If the contribution of diagram (a1) or (b1) in figure 5 is absent, one simply applies the limit

χW →∞. (B.33)

In the approximation given by eq. (B.32) and eq. (B.33), G± can be expressed (we also

assume QLν = QL` ) as

G+ = GSM
+

−
2
√

2GF
(
A+s

2
α +B+cαsα

)
g2

−
g2s2αs

2
W +A+c

2
α −B+cαsα

2c2W
(
2meT +m2

Z′
) , (B.34)

G− = GSM
−

−
2
√

2GF
(
A−s

2
α +B−cαsα

)
g2

−
g2s2α

(
s2W −

1
2

)
+A−c

2
α −B−cαsα

2c2W
(
2meT +m2

Z′
) , (B.35)

where GSM
+ and GSM

− in the limit α→ 0 are pure SM contributions:

GSM
+ = − 2

√
2GF s

2
W c

2
α, G

SM
−

=

{√
2GF

(
c2α
(
1− 2s2W

)
− 2
)

(neutral current + charged current)
√

2GF c
2
α

(
1− 2s2W

)
(NC only)

. (B.36)

Note that A± and B± are suppressed by ε and gX :

lim
ε, gX→0

(A±, B±) = 0. (B.37)
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Define

(a1, b1) ≡
(
−2
√

2
A+s

2
α +B+cαsα
g2

, −
g2s2αs

2
W +A+c

2
α −B+cαsα

2c2W

)
, (B.38)

(a2, b2) ≡

(
−2
√

2
A−s

2
α +B−cαsα
g2

, −
g2s2α

(
s2W −

1
2

)
+A−c

2
α −B−cαsα

2c2W

)
, (B.39)

we can rewrite the cross section in the form of eqs. (3.9), (3.10) and (3.12).

C Partial cross section

The partial cross section is defined as

σ(Eν , T1, T2) ≡
∫ T2

T1

dσ

dT
(Eν , T )dT. (C.1)

We can rewrite it as

σ(Eν , T1, T2) = G2
F

∑
i, j

∫ T2

T1

KijxixjdT = G2
F

(
xT Ix

)
, (C.2)

where I is a matrix defined as the integral of the matrix K. The matrix K and the vector

x are given as follow:

x ≡

{
(gSM1 + a1, g

SM
2 + a2, b1, b2) (for neutrino)

(gSM2 + a2, g
SM
1 + a1, b2, b1) (for antineutrino)

, (C.3)

Kij =



(−T+Eν)2me
4πE2

ν
− Tm2

e
4πE2

ν

(−T+Eν)2me
2πE2

νGF (m2
Z′+2Tme)

− Tm2
e

4m2
Z′πE

2
νGF+8πTE2

νGFme

0 me
4π − Tm2

e

4m2
Z′πE

2
νGF+8πTE2

νGFme
me

2m2
Z′πGF+4πTGFme

0 0 (−T+Eν)2me
4πE2

νG
2
F (m2

Z′+2Tme)2
− Tm2

e

4πE2
νG

2
F (m2

Z′+2Tme)2

0 0 0 me
4πG2

F (m2
Z′+2Tme)2

 . (C.4)

The nonzero analytical expressions of Iij ≡
∫ T2
T1
KijdT are:

I11 = −
me (T1 − T2)

(
3E2

ν − 3 (T1 + T2)Eν + T 2
1 + T 2

2 + T1T2
)

12πE2
ν

, (C.5)

I12 =
m2
e (T1 − T2) (T1 + T2)

8πE2
ν

, (C.6)

I13 =
log

(
m2
Z′+2meT2

m2
Z′+2meT1

)(
m2
Z′ + 2Eνme

)
2 + 2me

(
m2
Z′ +me (4Eν − T1 − T2)

)
(T1 − T2)

16πE2
νGFm

2
e

, (C.7)

I22 =
me (T2 − T1)

4π
, (C.8)

I23 = −
tanh−1

(
me(T1−T2)

m2
Z′+me(T1+T2)

)
m2
Z′ +me (T2 − T1)

8πE2
νGF

, (C.9)
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I24 =

log

(
m2
Z′+2meT2

m2
Z′+2meT1

)
4πGF

, (C.10)

I33 = −
1
2 log

(
m2
Z′+2meT2

m2
Z′+2meT1

)(
m2
Z′ + 2Eνme

)
+

me(T1−T2)(m4
Z′+me(2Eν+T1+T2)m

2
Z′+2m2

e(E2
ν+T1T2))

(m2
Z′+2meT1)(m2

Z′+2meT2)

8πE2
νG

2
Fm

2
e

,

(C.11)

I34 = −

(
1

m2
Z′+2meT2

− 1
m2
Z′+2meT1

)
m2 − log

(
m2
Z′ + 2meT1

)
+ log

(
m2
Z′ + 2meT2

)
16πE2

νG
2
F

, (C.12)

I44 =
me (T2 − T1)

4πG2
F

(
m2
Z′ + 2meT1

) (
m2
Z′ + 2meT2

) . (C.13)
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[4] P. Langacker and M. Plümacher, Flavor changing effects in theories with a heavy Z ′ boson

with family nonuniversal couplings, Phys. Rev. D 62 (2000) 013006 [hep-ph/0001204]

[INSPIRE].

[5] M. Dittmar, A.-S. Nicollerat and A. Djouadi, Z ′ studies at the LHC: an update, Phys. Lett.

B 583 (2004) 111 [hep-ph/0307020] [INSPIRE].

[6] L. Basso, A. Belyaev, S. Moretti and C.H. Shepherd-Themistocleous, Phenomenology of the

minimal B-L extension of the Standard model: Z ′ and neutrinos, Phys. Rev. D 80 (2009)

055030 [arXiv:0812.4313] [INSPIRE].

[7] P.J. Fox, J. Liu, D. Tucker-Smith and N. Weiner, An Effective Z ′, Phys. Rev. D 84 (2011)

115006 [arXiv:1104.4127] [INSPIRE].

[8] A. Alves, S. Profumo and F.S. Queiroz, The dark Z
′

portal: direct, indirect and collider

searches, JHEP 04 (2014) 063 [arXiv:1312.5281] [INSPIRE].

[9] G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Z ′ and dark matter: LHC

vs LUX constraints, JHEP 03 (2014) 134 [arXiv:1401.0221] [INSPIRE].

[10] J.M. Cline, G. Dupuis, Z. Liu and W. Xue, The windows for kinetically mixed Z ′-mediated

dark matter and the galactic center gamma ray excess, JHEP 08 (2014) 131

[arXiv:1405.7691] [INSPIRE].

[11] A. De Simone, G.F. Giudice and A. Strumia, Benchmarks for dark matter searches at the

LHC, JHEP 06 (2014) 081 [arXiv:1402.6287] [INSPIRE].

– 23 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.70.093009
https://arxiv.org/abs/hep-ph/0408098
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0408098
https://doi.org/10.1103/RevModPhys.81.1199
https://arxiv.org/abs/0801.1345
https://inspirehep.net/search?p=find+EPRINT+arXiv:0801.1345
https://doi.org/10.1103/PhysRevD.62.013006
https://arxiv.org/abs/hep-ph/0001204
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0001204
https://doi.org/10.1016/j.physletb.2003.09.103
https://doi.org/10.1016/j.physletb.2003.09.103
https://arxiv.org/abs/hep-ph/0307020
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0307020
https://doi.org/10.1103/PhysRevD.80.055030
https://doi.org/10.1103/PhysRevD.80.055030
https://arxiv.org/abs/0812.4313
https://inspirehep.net/search?p=find+EPRINT+arXiv:0812.4313
https://doi.org/10.1103/PhysRevD.84.115006
https://doi.org/10.1103/PhysRevD.84.115006
https://arxiv.org/abs/1104.4127
https://inspirehep.net/search?p=find+EPRINT+arXiv:1104.4127
https://doi.org/10.1007/JHEP04(2014)063
https://arxiv.org/abs/1312.5281
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5281
https://doi.org/10.1007/JHEP03(2014)134
https://arxiv.org/abs/1401.0221
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.0221
https://doi.org/10.1007/JHEP08(2014)131
https://arxiv.org/abs/1405.7691
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.7691
https://doi.org/10.1007/JHEP06(2014)081
https://arxiv.org/abs/1402.6287
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.6287


J
H
E
P
0
5
(
2
0
1
8
)
0
9
8

[12] O. Buchmueller, M.J. Dolan, S.A. Malik and C. McCabe, Characterising dark matter

searches at colliders and direct detection experiments: vector mediators, JHEP 01 (2015) 037

[arXiv:1407.8257] [INSPIRE].

[13] O. Ducu, L. Heurtier and J. Maurer, LHC signatures of a Z ′ mediator between dark matter

and the SU(3) sector, JHEP 03 (2016) 006 [arXiv:1509.05615] [INSPIRE].

[14] A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dirac-fermionic dark matter in U(1)X
models, JHEP 10 (2015) 076 [arXiv:1506.06767] [INSPIRE].

[15] M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini and K. Schmidt-Hoberg, Constraining

dark sectors with monojets and dijets, JHEP 07 (2015) 089 [arXiv:1503.05916] [INSPIRE].

[16] N. Okada and S. Okada, Z ′BL portal dark matter and LHC Run-2 results, Phys. Rev. D 93

(2016) 075003 [arXiv:1601.07526] [INSPIRE].

[17] E. Accomando et al., Z
′
, Higgses and heavy neutrinos in U(1)

′
models: from the LHC to the

GUT scale, JHEP 07 (2016) 086 [arXiv:1605.02910] [INSPIRE].

[18] I. Alikhanov and E.A. Paschos, Searching for new light gauge bosons at e+e− colliders,

arXiv:1710.10131 [INSPIRE].

[19] J. Erler, P. Langacker, S. Munir and E. Rojas, Improved constraints on Z ′ bosons from

electroweak precision data, JHEP 08 (2009) 017 [arXiv:0906.2435] [INSPIRE].

[20] R. Martinez and F. Ochoa, Constraints on 3-3-1 models with electroweak Z pole observables

and Z ′ search at the LHC, Phys. Rev. D 90 (2014) 015028 [arXiv:1405.4566] [INSPIRE].

[21] A.E. Carcamo Hernandez, R. Martinez and F. Ochoa, Z and Z ′ decays with and without

FCNC in 331 models, Phys. Rev. D 73 (2006) 035007 [hep-ph/0510421] [INSPIRE].

[22] R. Gauld, F. Goertz and U. Haisch, On minimal Z ′ explanations of the B → K∗µ+µ−

anomaly, Phys. Rev. D 89 (2014) 015005 [arXiv:1308.1959] [INSPIRE].

[23] A.J. Buras and J. Girrbach, Left-handed Z ′ and Z FCNC quark couplings facing new

b→ sµ+µ− data, JHEP 12 (2013) 009 [arXiv:1309.2466] [INSPIRE].

[24] M. Lindner, F.S. Queiroz and W. Rodejohann, Dilepton bounds on left–right symmetry at the

LHC run II and neutrinoless double beta decay, Phys. Lett. B 762 (2016) 190

[arXiv:1604.07419] [INSPIRE].

[25] P. Fayet, Light spin 1/2 or spin 0 dark matter particles, Phys. Rev. D 70 (2004) 023514

[hep-ph/0403226] [INSPIRE].

[26] C. Bouchiat and P. Fayet, Constraints on the parity-violating couplings of a new gauge boson,

Phys. Lett. B 608 (2005) 87 [hep-ph/0410260] [INSPIRE].

[27] M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662

(2008) 53 [arXiv:0711.4866] [INSPIRE].

[28] M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002

[arXiv:0811.1030] [INSPIRE].

[29] HADES collaboration, G. Agakishiev et al., Searching a Dark Photon with HADES, Phys.

Lett. B 731 (2014) 265 [arXiv:1311.0216] [INSPIRE].

[30] WASA-at-COSY collaboration, P. Adlarson et al., Search for a dark photon in the

π0 → e+e−γ decay, Phys. Lett. B 726 (2013) 187 [arXiv:1304.0671] [INSPIRE].

– 24 –

https://doi.org/10.1007/JHEP01(2015)037
https://arxiv.org/abs/1407.8257
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.8257
https://doi.org/10.1007/JHEP03(2016)006
https://arxiv.org/abs/1509.05615
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.05615
https://doi.org/10.1007/JHEP10(2015)076
https://arxiv.org/abs/1506.06767
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.06767
https://doi.org/10.1007/JHEP07(2015)089
https://arxiv.org/abs/1503.05916
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.05916
https://doi.org/10.1103/PhysRevD.93.075003
https://doi.org/10.1103/PhysRevD.93.075003
https://arxiv.org/abs/1601.07526
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.07526
https://doi.org/10.1007/JHEP07(2016)086
https://arxiv.org/abs/1605.02910
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.02910
https://arxiv.org/abs/1710.10131
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.10131
https://doi.org/10.1088/1126-6708/2009/08/017
https://arxiv.org/abs/0906.2435
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.2435
https://doi.org/10.1103/PhysRevD.90.015028
https://arxiv.org/abs/1405.4566
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.4566
https://doi.org/10.1103/PhysRevD.73.035007
https://arxiv.org/abs/hep-ph/0510421
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0510421
https://doi.org/10.1103/PhysRevD.89.015005
https://arxiv.org/abs/1308.1959
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1959
https://doi.org/10.1007/JHEP12(2013)009
https://arxiv.org/abs/1309.2466
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.2466
https://doi.org/10.1016/j.physletb.2016.08.068
https://arxiv.org/abs/1604.07419
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.07419
https://doi.org/10.1103/PhysRevD.70.023514
https://arxiv.org/abs/hep-ph/0403226
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0403226
https://doi.org/10.1016/j.physletb.2004.12.065
https://arxiv.org/abs/hep-ph/0410260
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0410260
https://doi.org/10.1016/j.physletb.2008.02.052
https://doi.org/10.1016/j.physletb.2008.02.052
https://arxiv.org/abs/0711.4866
https://inspirehep.net/search?p=find+EPRINT+arXiv:0711.4866
https://doi.org/10.1103/PhysRevD.80.095002
https://arxiv.org/abs/0811.1030
https://inspirehep.net/search?p=find+EPRINT+arXiv:0811.1030
https://doi.org/10.1016/j.physletb.2014.02.035
https://doi.org/10.1016/j.physletb.2014.02.035
https://arxiv.org/abs/1311.0216
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.0216
https://doi.org/10.1016/j.physletb.2013.08.055
https://arxiv.org/abs/1304.0671
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.0671


J
H
E
P
0
5
(
2
0
1
8
)
0
9
8

[31] Z.-H. Yu, Q.-S. Yan and P.-F. Yin, Detecting interactions between dark matter and photons

at high energy e+e− colliders, Phys. Rev. D 88 (2013) 075015 [arXiv:1307.5740] [INSPIRE].

[32] S.N. Gninenko, Search for MeV dark photons in a light-shining-through-walls experiment at

CERN, Phys. Rev. D 89 (2014) 075008 [arXiv:1308.6521] [INSPIRE].

[33] B. Döbrich et al., Hidden Photon Dark Matter Search with a Large Metallic Mirror, in the

proceedings of the 10th Patras Workshop on Axions, WIMPs and WISPs (AXION-WIMP

2014), June 29–July 4, Geneva, Switzerland (2014), arXiv:1410.0200 [INSPIRE].

[34] BaBar collaboration, J.P. Lees et al., Search for a dark photon in e+e− collisions at BaBar,

Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].

[35] P. Arias et al., Extracting hidden-photon dark matter from an LC-circuit, Eur. Phys. J. C 75

(2015) 310 [arXiv:1411.4986] [INSPIRE].

[36] D. Curtin, R. Essig, S. Gori and J. Shelton, Illuminating dark photons with high-energy

colliders, JHEP 02 (2015) 157 [arXiv:1412.0018] [INSPIRE].

[37] S. Alekhin et al., A facility to search for hidden particles at the CERN SPS: the SHiP

physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].

[38] Belle collaboration, I. Jaegle, Search for the dark photon and the dark Higgs boson at Belle,

Phys. Rev. Lett. 114 (2015) 211801 [arXiv:1502.00084] [INSPIRE].

[39] NA48/2 collaboration, J.R. Batley et al., Search for the dark photon in π0 decays, Phys.

Lett. B 746 (2015) 178 [arXiv:1504.00607] [INSPIRE].

[40] NA64 collaboration, D. Banerjee et al., Search for invisible decays of sub-GeV dark photons

in missing-energy events at the CERN SPS, Phys. Rev. Lett. 118 (2017) 011802

[arXiv:1610.02988] [INSPIRE].

[41] DAMIC collaboration, A. Aguilar-Arevalo et al., First direct-detection constraints on

eV-scale hidden-photon dark matter with DAMIC at SNOLAB, Phys. Rev. Lett. 118 (2017)

141803 [arXiv:1611.03066] [INSPIRE].

[42] G. Barello, S. Chang, C.A. Newby and B. Ostdiek, Don’t be left in the dark: improving LHC

searches for dark photons using lepton-jet substructure, Phys. Rev. D 95 (2017) 055007

[arXiv:1612.00026] [INSPIRE].

[43] CRESST collaboration, G. Angloher et al., Dark-photon search using data from CRESST-II

phase 2, Eur. Phys. J. C 77 (2017) 299 [arXiv:1612.07662] [INSPIRE].

[44] M. He, X.-G. He and C.-K. Huang, Dark photon search at a circular e+e− collider, Int. J.

Mod. Phys. A 32 (2017) 1750138 [arXiv:1701.08614] [INSPIRE].

[45] S. Biswas, E. Gabrielli, M. Heikinheimo and B. Mele, Dark-photon searches via ZH

production at e+e− colliders, Phys. Rev. D 96 (2017) 055012 [arXiv:1703.00402] [INSPIRE].

[46] BESIII collaboration, M. Ablikim et al., Dark photon search in the mass range between 1.5

and 3.4 GeV/c2, Phys. Lett. B 774 (2017) 252 [arXiv:1705.04265] [INSPIRE].

[47] LHCb collaboration, Search for dark photons produced in 13 TeV pp collisions, Phys. Rev.

Lett. 120 (2018) 061801 [arXiv:1710.02867] [INSPIRE].

[48] M. He, X.-G. He, C.-K. Huang and G. Li, Search for a heavy dark photon at future e+e−

colliders, JHEP 03 (2018) 139 [arXiv:1712.09095] [INSPIRE].

– 25 –

https://doi.org/10.1103/PhysRevD.88.075015
https://arxiv.org/abs/1307.5740
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.5740
https://doi.org/10.1103/PhysRevD.89.075008
https://arxiv.org/abs/1308.6521
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.6521
https://arxiv.org/abs/1410.0200
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.0200
https://doi.org/10.1103/PhysRevLett.113.201801
https://arxiv.org/abs/1406.2980
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.2980
https://doi.org/10.1140/epjc/s10052-015-3536-0
https://doi.org/10.1140/epjc/s10052-015-3536-0
https://arxiv.org/abs/1411.4986
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.4986
https://doi.org/10.1007/JHEP02(2015)157
https://arxiv.org/abs/1412.0018
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.0018
https://doi.org/10.1088/0034-4885/79/12/124201
https://arxiv.org/abs/1504.04855
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.04855
https://doi.org/10.1103/PhysRevLett.114.211801
https://arxiv.org/abs/1502.00084
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.00084
https://doi.org/10.1016/j.physletb.2015.04.068
https://doi.org/10.1016/j.physletb.2015.04.068
https://arxiv.org/abs/1504.00607
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.00607
https://doi.org/10.1103/PhysRevLett.118.011802
https://arxiv.org/abs/1610.02988
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.02988
https://doi.org/10.1103/PhysRevLett.118.141803
https://doi.org/10.1103/PhysRevLett.118.141803
https://arxiv.org/abs/1611.03066
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.03066
https://doi.org/10.1103/PhysRevD.95.055007
https://arxiv.org/abs/1612.00026
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.00026
https://doi.org/10.1140/epjc/s10052-017-4878-6
https://arxiv.org/abs/1612.07662
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.07662
https://doi.org/10.1142/S0217751X1750138X
https://doi.org/10.1142/S0217751X1750138X
https://arxiv.org/abs/1701.08614
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.08614
https://doi.org/10.1103/PhysRevD.96.055012
https://arxiv.org/abs/1703.00402
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.00402
https://doi.org/10.1016/j.physletb.2017.09.067
https://arxiv.org/abs/1705.04265
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.04265
https://doi.org/10.1103/PhysRevLett.120.061801
https://doi.org/10.1103/PhysRevLett.120.061801
https://arxiv.org/abs/1710.02867
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.02867
https://doi.org/10.1007/JHEP03(2018)139
https://arxiv.org/abs/1712.09095
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.09095


J
H
E
P
0
5
(
2
0
1
8
)
0
9
8

[49] BaBar collaboration, J.P. Lees et al., Search for invisible decays of a dark photon produced

in e+e− collisions at BaBar, Phys. Rev. Lett. 119 (2017) 131804 [arXiv:1702.03327]

[INSPIRE].

[50] NA64 collaboration, D. Banerjee et al., Search for vector mediator of Dark Matter production

in invisible decay mode, Phys. Rev. D 97 (2018) 072002 [arXiv:1710.00971] [INSPIRE].

[51] H.J. Steiner, Experimental limit on neutrino-electron scattering, Phys. Rev. Lett. 24 (1970)

746 [INSPIRE].

[52] F. Reines and H.S. Gurr, Upper limit for elastic scattering of electron anti-neutrinos by

electrons, Phys. Rev. Lett. 24 (1970) 1448 [INSPIRE].

[53] H.S. Gurr, F. Reines and H.W. Sobel, Search for anti-electron-neutrino + e− scattering,

Phys. Rev. Lett. 28 (1972) 1406 [INSPIRE].

[54] J.F. Wheater and C.H. Llewellyn Smith, Electroweak radiative corrections to neutrino and

electron scattering and the value of sin2 θW , Nucl. Phys. B 208 (1982) 27 [Erratum ibid. B

226 (1983) 547] [INSPIRE].

[55] CHARM collaboration, J. Dorenbosch et al., Experimental results on neutrino-electron

scattering, Z. Phys. C 41 (1989) 567 [Erratum ibid. C 51 (1991) 142] [INSPIRE].

[56] Super-Kamiokande collaboration, Y. Fukuda et al., Measurement of the solar neutrino

energy spectrum using neutrino electron scattering, Phys. Rev. Lett. 82 (1999) 2430

[hep-ex/9812011] [INSPIRE].

[57] J.N. Bahcall, M. Kamionkowski and A. Sirlin, Solar neutrinos: radiative corrections in

neutrino-electron scattering experiments, Phys. Rev. D 51 (1995) 6146 [astro-ph/9502003]

[INSPIRE].

[58] LSND collaboration, L.B. Auerbach et al., Measurement of electron-neutrino-electron elastic

scattering, Phys. Rev. D 63 (2001) 112001 [hep-ex/0101039] [INSPIRE].

[59] O.G. Miranda, M. Maya and R. Huerta, Update to the neutrino-electron scattering in

left-right symmetric models, Phys. Rev. D 53 (1996) 1719 [hep-ph/9509335] [INSPIRE].

[60] J. Barranco, O.G. Miranda, C.A. Moura and J.W.F. Valle, Constraining non-standard

neutrino-electron interactions, Phys. Rev. D 77 (2008) 093014 [arXiv:0711.0698] [INSPIRE].

[61] A. Bolanos et al., Probing non-standard neutrino-electron interactions with solar and reactor

neutrinos, Phys. Rev. D 79 (2009) 113012 [arXiv:0812.4417] [INSPIRE].

[62] E.A. Garces et al., Low-energy neutrino-electron scattering as a standard model probe: the

potential of LENA as case study, Phys. Rev. D 85 (2012) 073006 [arXiv:1112.3633]

[INSPIRE].

[63] J. Billard, L.E. Strigari and E. Figueroa-Feliciano, Solar neutrino physics with low-threshold

dark matter detectors, Phys. Rev. D 91 (2015) 095023 [arXiv:1409.0050] [INSPIRE].

[64] E. Bertuzzo et al., Dark matter and exotic neutrino interactions in direct detection searches,

JHEP 04 (2017) 073 [Erratum ibid. 04 (2017) 073] [arXiv:1701.07443] [INSPIRE].

[65] W. Rodejohann, X.-J. Xu and C.E. Yaguna, Distinguishing between Dirac and Majorana

neutrinos in the presence of general interactions, JHEP 05 (2017) 024 [arXiv:1702.05721]

[INSPIRE].

[66] K.A. Kouzakov and A.I. Studenikin, Electromagnetic interactions of neutrinos in processes

of low-energy elastic neutrino-electron scattering, arXiv:1711.00517 [INSPIRE].

– 26 –

https://doi.org/10.1103/PhysRevLett.119.131804
https://arxiv.org/abs/1702.03327
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.03327
https://doi.org/10.1103/PhysRevD.97.072002
https://arxiv.org/abs/1710.00971
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.00971
https://doi.org/10.1103/PhysRevLett.24.746
https://doi.org/10.1103/PhysRevLett.24.746
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,24,746%22
https://doi.org/10.1103/PhysRevLett.24.1448
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,24,1448%22
https://doi.org/10.1103/PhysRevLett.28.1406
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,28,1406%22
https://doi.org/10.1016/0550-3213(82)90187-0
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B208,27%22
https://doi.org/10.1007/BF01579572
https://inspirehep.net/search?p=find+J+%22Z.Physik,C41,567%22
https://doi.org/10.1103/PhysRevLett.82.2430
https://arxiv.org/abs/hep-ex/9812011
https://inspirehep.net/search?p=find+EPRINT+hep-ex/9812011
https://doi.org/10.1103/PhysRevD.51.6146
https://arxiv.org/abs/astro-ph/9502003
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9502003
https://doi.org/10.1103/PhysRevD.63.112001
https://arxiv.org/abs/hep-ex/0101039
https://inspirehep.net/search?p=find+EPRINT+hep-ex/0101039
https://doi.org/10.1103/PhysRevD.53.1719
https://arxiv.org/abs/hep-ph/9509335
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9509335
https://doi.org/10.1103/PhysRevD.77.093014
https://arxiv.org/abs/0711.0698
https://inspirehep.net/search?p=find+EPRINT+arXiv:0711.0698
https://doi.org/10.1103/PhysRevD.79.113012
https://arxiv.org/abs/0812.4417
https://inspirehep.net/search?p=find+EPRINT+arXiv:0812.4417
https://doi.org/10.1103/PhysRevD.85.073006
https://arxiv.org/abs/1112.3633
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3633
https://doi.org/10.1103/PhysRevD.91.095023
https://arxiv.org/abs/1409.0050
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.0050
https://doi.org/10.1007/JHEP04(2017)073
https://arxiv.org/abs/1701.07443
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.07443
https://doi.org/10.1007/JHEP05(2017)024
https://arxiv.org/abs/1702.05721
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.05721
https://arxiv.org/abs/1711.00517
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.00517


J
H
E
P
0
5
(
2
0
1
8
)
0
9
8

[67] R. Harnik, J. Kopp and P.A.N. Machado, Exploring ν signals in dark matter detectors,

JCAP 07 (2012) 026 [arXiv:1202.6073] [INSPIRE].

[68] K. Kaneta, Z. Kang and H.-S. Lee, Right-handed neutrino dark matter under the B-L gauge

interaction, JHEP 02 (2017) 031 [arXiv:1606.09317] [INSPIRE].

[69] Y. Kaneta and T. Shimomura, On the possibility of a search for the Lµ-Lτ gauge boson at

Belle-II and neutrino beam experiments, PTEP 2017 (2017) 053B04 [arXiv:1701.00156]

[INSPIRE].

[70] C.-H. Chen and T. Nomura, Lµ-Lτ gauge-boson production from lepton flavor violating τ

decays at Belle II, Phys. Rev. D 96 (2017) 095023 [arXiv:1704.04407] [INSPIRE].

[71] T. Araki, S. Hoshino, T. Ota, J. Sato and T. Shimomura, Detecting the Lµ-Lτ gauge boson

at Belle II, Phys. Rev. D 95 (2017) 055006 [arXiv:1702.01497] [INSPIRE].

[72] S. Bilmis et al., Constraints on dark photon from neutrino-electron scattering experiments,

Phys. Rev. D 92 (2015) 033009 [arXiv:1502.07763] [INSPIRE].

[73] S.-F. Ge and I.M. Shoemaker, Constraining photon portal dark matter with TEXONO and

Coherent data, arXiv:1710.10889 [INSPIRE].

[74] nuSTORM collaboration, P. Kyberd et al., nuSTORM — Neutrinos from STORed muons:

letter of intent to the Fermilab physics advisory committee, arXiv:1206.0294 [INSPIRE].

[75] J. Bian, Measurement of neutrino-electron elastic scattering at NOvA near detector, talk

given at the Meeting of the APS Division of Particles and Fields (DPF 2017), July

31–August 4, Batavia, Illinois U.S.A. (2017), arXiv:1710.03428 [INSPIRE].

[76] K.S. Babu, C.F. Kolda and J. March-Russell, Implications of generalized Z-Z ′ mixing, Phys.

Rev. D 57 (1998) 6788 [hep-ph/9710441] [INSPIRE].

[77] J. Heeck and W. Rodejohann, Kinetic and mass mixing with three abelian groups, Phys. Lett.

B 705 (2011) 369 [arXiv:1109.1508] [INSPIRE].

[78] B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196.

[79] M.D. Campos et al., Neutrino masses and absence of flavor changing interactions in the

2HDM from gauge principles, JHEP 08 (2017) 092 [arXiv:1705.05388] [INSPIRE].

[80] B. Dutta et al., Sensitivity to Z-prime and nonstandard neutrino interactions from ultralow

threshold neutrino-nucleus coherent scattering, Phys. Rev. D 93 (2016) 013015

[arXiv:1508.07981] [INSPIRE].

[81] J.B. Dent et al., Accelerator and reactor complementarity in coherent neutrino-nucleus

scattering, Phys. Rev. D 97 (2018) 035009 [arXiv:1711.03521] [INSPIRE].

[82] CHARM-II collaboration, P. Vilain et al., Measurement of differential cross-sections for

muon-neutrino electron scattering, Phys. Lett. B 302 (1993) 351 [INSPIRE].

[83] CHARM-II collaboration, P. Vilain et al., Precision measurement of electroweak parameters

from the scattering of muon-neutrinos on electrons, Phys. Lett. B 335 (1994) 246 [INSPIRE].

[84] A.G. Beda et al., GEMMA experiment: three years of the search for the neutrino magnetic

moment, Phys. Part. Nucl. Lett. 7 (2010) 406 [arXiv:0906.1926] [INSPIRE].

[85] A.G. Beda et al., Upper limit on the neutrino magnetic moment from three years of data

from the GEMMA spectrometer, arXiv:1005.2736 [INSPIRE].

– 27 –

https://doi.org/10.1088/1475-7516/2012/07/026
https://arxiv.org/abs/1202.6073
https://inspirehep.net/search?p=find+EPRINT+arXiv:1202.6073
https://doi.org/10.1007/JHEP02(2017)031
https://arxiv.org/abs/1606.09317
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.09317
https://doi.org/10.1093/ptep/ptx050
https://arxiv.org/abs/1701.00156
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.00156
https://doi.org/10.1103/PhysRevD.96.095023
https://arxiv.org/abs/1704.04407
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.04407
https://doi.org/10.1103/PhysRevD.95.055006
https://arxiv.org/abs/1702.01497
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.01497
https://doi.org/10.1103/PhysRevD.92.033009
https://arxiv.org/abs/1502.07763
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.07763
https://arxiv.org/abs/1710.10889
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.10889
https://arxiv.org/abs/1206.0294
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.0294
https://arxiv.org/abs/1710.03428
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.03428
https://doi.org/10.1103/PhysRevD.57.6788
https://doi.org/10.1103/PhysRevD.57.6788
https://arxiv.org/abs/hep-ph/9710441
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9710441
https://doi.org/10.1016/j.physletb.2011.10.050
https://doi.org/10.1016/j.physletb.2011.10.050
https://arxiv.org/abs/1109.1508
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.1508
https://doi.org/10.1007/JHEP08(2017)092
https://arxiv.org/abs/1705.05388
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.05388
https://doi.org/10.1103/PhysRevD.93.013015
https://arxiv.org/abs/1508.07981
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.07981
https://doi.org/10.1103/PhysRevD.97.035009
https://arxiv.org/abs/1711.03521
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.03521
https://doi.org/10.1016/0370-2693(93)90408-A
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B302,351%22
https://doi.org/10.1016/0370-2693(94)91421-4
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B335,246%22
https://doi.org/10.1134/S1547477110060063
https://arxiv.org/abs/0906.1926
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.1926
https://arxiv.org/abs/1005.2736
https://inspirehep.net/search?p=find+EPRINT+arXiv:1005.2736


J
H
E
P
0
5
(
2
0
1
8
)
0
9
8

[86] TEXONO collaboration, M. Deniz et al., Measurement of ν̄e-electron scattering

cross-section with a CsI(Tl) scintillating crystal array at the Kuo-Sheng nuclear power

reactor, Phys. Rev. D 81 (2010) 072001 [arXiv:0911.1597] [INSPIRE].

[87] J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for

dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].

[88] B. Batell, M. Pospelov and A. Ritz, Exploring portals to a hidden sector through fixed targets,

Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].

[89] R. Essig, R. Harnik, J. Kaplan and N. Toro, Discovering new light states at neutrino

experiments, Phys. Rev. D 82 (2010) 113008 [arXiv:1008.0636] [INSPIRE].

[90] D.F. Bartlett and S. Loegl, Limits on an electromagnetic fifth force, Phys. Rev. Lett. 61

(1988) 2285 [INSPIRE].

– 28 –

https://doi.org/10.1103/PhysRevD.81.072001
https://arxiv.org/abs/0911.1597
https://inspirehep.net/search?p=find+EPRINT+arXiv:0911.1597
https://doi.org/10.1103/PhysRevD.80.075018
https://arxiv.org/abs/0906.0580
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.0580
https://doi.org/10.1103/PhysRevD.80.095024
https://arxiv.org/abs/0906.5614
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.5614
https://doi.org/10.1103/PhysRevD.82.113008
https://arxiv.org/abs/1008.0636
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.0636
https://doi.org/10.1103/PhysRevLett.61.2285
https://doi.org/10.1103/PhysRevLett.61.2285
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,61,2285%22

	Introduction
	General U(1)X models
	Neutrino-electron scattering in U(1)X models
	Data fitting
	Bounds
	Conclusion
	Gauge boson mass generation
	Cross sections of neutrino-electron scattering
	Partial cross section

