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Abstract We propose a model-independent framework to

classify and study neutrino mass models and their phe-

nomenology. The idea is to introduce one particle beyond

the Standard Model which couples to leptons and carries lep-

ton number together with an operator which violates lepton

number by two units and contains this particle. This allows

to study processes which do not violate lepton number, while

still working with an effective field theory. The contribution

to neutrino masses translates to a robust upper bound on the

mass of the new particle. We compare it to the stronger but

less robust upper bound from Higgs naturalness and discuss

several lower bounds. Our framework allows to classify neu-

trino mass models in just 20 categories, further reduced to 14

once nucleon decay limits are taken into account, and possi-

bly to 9 if also Higgs naturalness considerations and direct

searches are considered.

1 Introduction

Neutrino oscillation experiments established the need for

massive neutrinos and large mixings in the lepton sector.

At the same time tritium beta decay experiments, cosmology

and experiments searching for neutrinoless double beta decay

put strong constraints on the absolute scale of neutrino mass.

Despite tremendous progress in neutrino physics in recent

years, the origin of neutrino mass remains a mystery.

An elegant explanation of small neutrino masses is

obtained by linking their smallness to the breaking by two

units of lepton number (L), the number of leptons minus

antileptons, at a high scale Λ. This leads to a plethora of

explicit models such as the tree-level seesaw models [1–11]

and models at loop level (see Refs. [12–19] for the first one-

and two-loop models and recent reviews). There are also sev-
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eral systematic studies of neutrino mass generation [20–33],

in particular studies of Majorana neutrino mass generation

in terms of effective operators that break lepton number by

two units (ΔL = 2) [23–30], which provide an efficient way

to study neutrino mass generation, but do not allow to study

other phenomenology such as lepton flavour violating pro-

cesses or searches at colliders.

Here we propose a hybrid approach in order to use the

best of both schemes. It is based on the following premises:

1. In any model of Majorana neutrino masses there is at

least one new particle of mass M which directly couples

to leptons and carries lepton number (and in some cases

also baryon number B). We assume that this is the lightest

beyond the Standard Model (SM) particle involved in the

generation of neutrino masses.

2. Following the common lore in quantum field theory that

everything not forbidden is mandatory, lepton number is

violated by two units (ΔL = 2) via operators1 which

contain the new particle.

3. Neutrino masses are generated from the ΔL = 2 inter-

actions of the new particle. We assume that this contribu-

tion dominates and generates the scale of neutrino mass,

mν �

√

Δm2
atm ≃ 0.05 eV. The latter can be estimated

[25] and recast into a conservative upper bound on M .2

1 More precisely, the combination of both interactions (given in

columns 2 and 3 in Table 1) violates lepton number by two units. While

the induced ΔL = 2 SM operator is odd-dimensional [29,34], the

ΔL = 2 operator with one copy of the new particle may be even-

dimensional depending on the new particle and its interactions, in par-

ticular this may be the case if the new state is fermionic.

2 Similarly the upper bound on neutrino masses can be translated in a

lower limit on Λ (but not on M) which is of similar size.
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Most models in fact require to add more than one particle.3 In

our approach the effect of the additional particles is encoded

in the ΔL = 2 operators. In order to derive upper bounds, we

only consider the lowest-dimensional and simplest ΔL = 2

operator. We further assume order one couplings for all new

interactions, and that third generation SM fermions domi-

nate, which are the most conservative options. In contrast

to approaches based on effective operators alone, the intro-

duction of the new particle enables to study processes which

do not violate lepton number and their constraints on neu-

trino mass generation without going to explicit models. There

are in total only 20 different categories, listed in Table 1,

which describe the theory space which is consistent with the

first premise. In the following we will first discuss upper

bounds on the mass of the new states, and briefly several

lower bounds. A more detailed discussion of the latter is left

for future work.

2 Upper bounds

For Majorana neutrinos the dominant contribution to neu-

trino masses generally originates from the unique dimension

5 operator O1 ≡ L H L H , the so-called Weinberg operator

[23], where L (H ) is the SM lepton (Higgs) doublet. After

electroweak symmetry breaking it leads to mν ≃ c1 v2/Λ,

with 〈H〉 = (0, v)T , v ≃ 174 GeV and c1/Λ the Wilson

coefficient of O1. The smallness of neutrino mass is gener-

ally linked to the hierarchy v ≪ Λ, known as the seesaw

mechanism [1–11]. For c1 ∼ O(1) the scale Λ has to be

sufficiently small, Λ � 6×1014 GeV, so that mν � 0.05 eV.

Some models may feature an additional suppression encoded

in the parameter ǫ. It may be due an almost conserved lep-

ton number like in the type-II seesaw model (ǫ = μ/mΔ)

[6–10,13], inverse seesaw scenarios (ǫ = μ/m R) [38,39],

or the (Generalised) Scotogenic model (ǫ = λ5) [35–37]. In

all these cases lepton number is restored in the limit ǫ → 0.

Similarly, in models where the Weinberg operator is absent

but O
′n
1 ≡ L H L H(H† H)n is generated, neutrino masses

are suppressed by (v2/Λ2)n [40]. Finally neutrinos may be

massless at tree level and only be generated at loop level.

Hence, it is better to parameterise neutrino mass by

mν ≃
cRv2

(16π2)ℓΛ
, with cR ≃

∏

i

gi × ǫ ×
(

v2

Λ2

)n

,

(1)

3 Thus this approach does not include models where the new particles

are charged under extra symmetries beyond the SM gauge group. One

example are models where the new particles couple in pairs to the SM

leptons, like in the Scotogenic model and its Generalised versions [35–

37]. In this cases the new states have new global symmetries (discrete

or continuous), and a DM candidate is present. These type of scenarios

will be studied in future work.

where i runs over the couplings gi and ℓ is the loop order

at which neutrino mass is generated. The couplings gi are

subject to perturbativity constraints, which naively demands

them to be at most order one. For low-scale models rare pro-

cesses typically constrain the couplings to be even smaller,

naively gi � O(0.1). The number of couplings increases

with the loop order. A conservative estimate yields that there

are at least 2ℓ couplings in an ℓ loop diagram and thus

Λ � 1012 (1010) [108] GeV using O(1) couplings for neu-

trino masses generated at one (two) [three] loop order. Neu-

trino mass generation at higher loop order is thus theoretically

disfavoured. These simple estimates however do not allow to

distinguish further between different models and thus it is

desirable to go beyond.

As outlined in the introduction the generation of Majorana

neutrino mass requires the introduction of at least one new

particle which couples to leptons and the existence of a ΔL =
2 operator. This allows to obtain a conservative upper limit

for the mass of the lightest new particle by demanding that the

atmospheric neutrino mass scale is generated. In the estimate

we use third generation SM Yukawa couplings and order one

values for the new unknown couplings. In the case of a model

with several new particles, our analysis applies to the lightest

particle of the model which typically generates the largest

contribution to neutrino mass.

In Table 1 we list all possible particles with lepton number

(first column) which couple to leptons at the renormalizable

level. The first four particles induce neutrino mass at tree

level via the well-known seesaw mechanisms (type-I [1–5],

type-II [6–10,13], type-III [11]) and via the mixing m L̄1L of

a new vector-like lepton doublet L1 with the SM lepton dou-

blet L . Notice that there is no symmetry that allows the new

Weinberg-like operator L1 H L H and forbids the usual one.

However, this contribution may be significant for m/M � 1,

which induces large mixing with the SM leptons and is there-

fore constrained by measurements in the charged lepton sec-

tor. Notice that it in this scenario neutrino masses are gen-

erated at tree level with the particles of the usual seesaws

as mediators and therefore two new particles are needed.

Finally, Σ̄1 generates the SM operator O
′1
1 and thus may

generate neutrino masses at tree-level with four insertions of

the SM Higgs vacuum expectation value, but the most con-

servative bound is obtained for neutrino masses generated

one-loop order. The remaining particles generate neutrino

masses radiatively. Note also that for N̄ the renormalizable

Yukawa with the Higgs field generates Dirac neutrino masses

at tree level after electroweak spontaneous symmetry break-

ing. This is the only case where, if lepton number is imposed

as an exact symmetry at the perturbative level, neutrinos will
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Table 1 Particles with quantum numbers (SU(3)c, SU(2)L, U(1)Y)
L,3B

P

that couple to SM leptons at the renormalizable level, where P =
F, S, V denotes whether it is a fermion, scalar or vector. Fermions

are 2-component Weyl fermions. The corresponding Dirac partner is

denoted by a bar on top of the same symbol. The interaction with

leptons is shown in the second column. We do not show the SU(2)

contractions. In order to obtain a conservative upper bound for the

mass M , we choose the lowest-dimensional and simplest ΔL = 2

operator (third column). After integrating out the particle, the operator

in the fourth column is generated. The operator naming convention

follows the general classification of Babu and Leung [24] together with

O
′n
a ≡ Oa(H† H)n . The fifth column provides the lowest loop order

at which neutrino mass is generated and the sixth column shows an

estimate for it following Ref. [25]. From perturbativity considerations,

c, y � O(1), and using couplings to the third family, this translates into

an upper bound on M which is shown in the last column. W -bosons in

the loop lead to a further suppression by g2/2 ≃ 0.2

Particle ΔL = 0 |ΔL| = 2 BL ℓ mν Upper bound (GeV)

N̄ ∼ (1, 1, 0)
−1,0
F y N̄ H L M N̄ N̄ O1 0

y2 v2

M
M � 1015

Δ ∼ (1, 3, 1)
−2,0
S y LΔL μ HΔ† H O1 0

y μ v2

M2 M � 1015

Σ̄0 ∼ (1, 3, 0)
−1,0
F y Σ̄0 L H M Σ̄0Σ̄0 O1 0

y2 v2

M
M � 1015

L1 ∼ (1, 2,−1/2)
1,0
F m L̄1 L c

Λ
L1 H L H O1 0 c m

M
v2

Λ
c M � 1015

y H†eL1
c
Λ2 L̄1ūd̄† L†

O
†
8 2

c yyu yd yl

(4π)4
v2

Λ
M � 107

h ∼ (1, 1, 1)
−2,0
S y L Lh c

Λ
h†eL H O2 1

c y yl

(4π)2
v2

Λ
M � 1010

k ∼ (1, 1, 2)
−2,0
S y ē†ē†k c

Λ3 k† L† L† L† L†
O

†
9 2

c y y2
l

(4π)4
v2

Λ
M � 106

Ē ∼ (1, 1, 1)
−1,0
F y Ē L H† c

Λ4 L E H Q†ū† H O6 2
c y yu

(4π)4
v2

Λ
M � 1010

m ēE c
Λ3 Ē L L L H O2 1 c m

M
yl

(4π)2
v2

Λ
M � 1010

Σ̄1 ∼ (1, 3, 1)
−1,0
F y H†Σ̄1 L c

Λ2 L H HΣ1 H O
′1
1 1

c y

(4π)2
v2

Λ
M � 1012

L2 ∼ (1, 2,−3/2)
1,0
F y HeL2

c
Λ2 L̄2 L L L O2 1

c y yl

(4π)2
v2

Λ
M � 1011

X2 ∼ (1, 2, 3/2)
−2,0
V y ē†σ̄μL X2μ

c
Λ

ū†σ̄μd̄ X
†
2μ H O8 2

cy yu yd ye

(4π)4
v2

Λ
M � 107

R̃2 ∼ (3, 2, 1/6)
−1,1
S y d L R̃2

c
Λ

R̃
†
2 QL H O3b

1
c y yd

(4π)2
v2

Λ
M � 1011

R2 ∼ (3, 2, 7/6)
−1,1
S y ē† Q† R2

c
Λ3 R

†
2 L† L† L†d̄†

O
†
10 2

c y yd yl

(4π)4
v2

Λ
M � 107

y ūL R2
c

Λ3 R
†
2 L† L† L†d̄†

O
†
15 3

c y yd yu g2

2(4π)6
v2

Λ
M � 106

S1 ∼ (3, 1, 1/3)
−1,−1
S y L QS1

c
Λ

S
†
1 L Hd O3b

1
c y yd

(4π)2
v2

Λ
M � 1011

y ū†ē†S1
c
Λ

S
†
1 L Hd̄ O8 2

c y yl yu yd

(4π)4
v2

Λ
M � 107

S3 ∼ (3, 3, 1/3)
−1,−1
S y L S3 Q c

Λ
d L S

†
3 H O3b

1
c y yd

(4π)2
v2

Λ
M � 1011

S̃1 ∼ (3̄, 1, 4/3)
−1,−1
S y ē†d̄† S̃1

c
Λ3 S̃

†
1 L† L† L† Q†

O
†
10 2

c y yd yl

(4π)4
v2

Λ
M � 107

V2 ∼ (3̄, 2, 5/6)
−1,−1
V y d̄†σ̄μV2μL c

Λ5 Q†σ̄μLV
†
2μ HēL H O23 3

c y yd yl

(4π)6
v2

Λ
M � 104

y QσμV2μē† c

Λ5 Q†σ̄μLV
†
2μ HēL H O44a,b,d

3
c y g2

2(4π)6
v2

Λ
M � 107

Ṽ2 ∼ (3̄, 2,−1/6)
−1,−1
V y ū†σ̄μṼ2μL c

Λ
Q†σ̄μL H Ṽ

†
2μ O4a 1

c y yu

(4π)2
v2

Λ
M � 1012

U1 ∼ (3, 1, 2/3)
−1,1
V y Q†σ̄μU1μL c

Λ
ū†σ̄μL HU

†
1μ O4a 1

c y yu

(4π)2
v2

Λ
M � 1012

y d̄σμU1μē† c
Λ

ū†σ̄μL HU
†
1μ O8 2

c y yu yd yl

(4π)4
v2

Λ
M � 107

U3 ∼ (3, 3, 2/3)
−1,1
V y Q†σ̄μU3μL c

Λ
ū†σ̄μLU

†
3μ H O4a 1

c y yu

(4π)2
v2

Λ
M � 1012

Ũ1 ∼ (3, 1, 5/3)
−1,1
V y ūσμē†Ũ1μ

c

Λ5 ū†σ̄μL HŨ
†
1μēL H O46 3

c y g2

2(4π)6
v2

Λ
M � 107

be massive Dirac particles.4 For the rest of the states, if lep-

ton number is conserved, neutrinos would remain massless

to all orders.

4 This would not be the case of the vector-like states Σ̄0 and Σ̄1, where

a combination of the SM neutrinos and the neutral states of the new

multiplets remains massless.

The second column displays the renormalizable coupling

of the new particle and defines its lepton number. In order

to obtain a conservative upper bound on M (see below),

we choose the lowest-dimensional and simplest ΔL = 2

operator. This operator is listed in the third column. In some

sense, our approach is technically equivalent to studying the
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simplest models for each type of particle and deriving their

upper bound. The fourth column (named BL) lists the odd-

dimensional [29,34] ΔL = 2 operator which is generated

after integrating out the new particle. We follow the naming

convention of Babu and Leung as provided in Refs. [24,25]

and introduce the additional notation O′n
a ≡ Oa(H† H)n .

The loop order ℓ at which neutrino masses are generated is

given in the fifth column. The sixth column provides an esti-

mate for neutrino mass by closing off loops of SM particles,

following Ref. [25]: Each loop contributes (4π)−2, chirality-

flips are proportional to the SM Yukawa coupling, and W -

bosons contribute g2/2. The Weinberg operator is induced

via matching at loop-level, with neutrino masses generated in

the form of Eq. (1). As we are interested in conservative upper

limits, we neglect any additional suppression and set ǫ = 1.

The constraint on the atmospheric mass scale translates into

an upper bound on Λ and consequently on M , as the EFT

requires M ≤ Λ.5 This bound is conservative and shown in

the last column. We note that the upper limits derived are

applicable to all models involving a particular particle, as

long it is the lightest one, which is phenomenologically the

most interesting possibility. In the cases where several SU(2)

contractions in the ΔL = 2 SM operators are possible we

select the ones that yield the most conservative upper limit.

The upper limits on the mass in Table 1 are robust, model-

independent and conservative within our assumptions, but

not necessarily the strongest possible bounds for a particular

model, because there may be extra suppressions, as discussed

above. The bounds span several orders of magnitude, in the

range [106, 1015] GeV. Limits for dominant couplings to the

first two families are obtained by a simple rescaling. Relax-

ing the perturbativity conditions on the couplings pushes all

bounds up. Clearly, the most promising particle to search

for is a doubly-charged scalar due to its low upper limit of

106 GeV, followed by X2, R2, S̃1, V2, and Ũ1 with upper

limits that are one order of magnitude weaker. The Zee–

Babu model [15,16] is the simplest model which contains

the doubly-charged scalar. Its large electric charge further

makes it a very interesting candidate for searches at colliders

via its decays into same-sign leptons [41].

2.1 Relation to well-known models

The Zee model [12] includes both the singly-charged scalar

h and a new scalar doublet φ ∼ (1, 2, 1/2)S . Writing the

interactions as LyLh, L† yl ē
† H , L† y′ē†φ and μh† Hφ, neu-

trino mass is generated at one loop and its largest value

reads mmax
ν ∼ y′ yτ y

(4π)2
μv2

M2 , where M = max(mh, mφ). Our

approach can be used for mh < mφ and our estimation is

5 The upper bound also applies to Λ, which encodes the heavier

(unspecified and model-dependent) particle/s involved in the violation

of lepton number.

recovered for c = y′ μ/mφ . Using order one couplings and

μ ≤ mφ , the upper limit reads mh < mφ � 105 TeV, and

from the exact formula, we indeed find the same result (see

also Ref. [42] for a numerical analysis of the model).

The Zee–Babu model [15,16] (see Refs. [43–48] for

detailed studies of its phenomenology) contains a doubly-

charged scalar k and a new singly-charged h. The possible

terms ē† yē†k, Ly′Lh, L† yl ē
† H , and μkh†h† generate the

largest value of neutrino mass mmax
ν ∼ y′2 y2

τ y

(4π)4
μv2

M2 , where

M = max(mh, mk). For mk < mh our general estimation

is recovered for c = y′2μ/mh . Using order one couplings

and μ � mh , which can be derived from naturalness and the

absence of charge-breaking minima, our estimate results in

mk < mh � 3000 TeV. If h is the lighter state, then in general

we can only derive mh < 105 TeV (like in the Zee model).

However, if based on some other theoretical argument or

observational fact one also knew that the largest neutrino

mass is generated via the Zee–Babu model, then mk � 3000

TeV and therefore also mh � 3000 TeV. This is however not

the case in general. Performing a numerical scan, one finds:

mh, mk � 300 TeV [47,48].

This exemplifies that the upper bounds in Table 1 are

robust (model-independent) and conservative, but not nec-

essarily the strongest possible bounds for a particular model,

because there can be extra suppressions which could even

exclude the model, for instance if there is a small violation

of lepton number. Our analysis serves to identify the most

promising particles to search for on general grounds.

2.2 Higgs naturalness

Generally the new particles contribute to the Higgs mass m H

and thus it is possible to obtain an upper bound on the mass

of the new particle from demanding a low fine-tuning of m H .

We define the theory at the scale Λ and estimate the leading

log-enhanced contribution for each case.

Scalar particles with electroweak charges and mass M con-

tribute to the Higgs mass via their Higgs portal coupling λ at

one-loop order,

δm2
H ≃ −

λ Nw Nc

16π2
M2 ln

(

M2

Λ2

)

, (2)

where Nc [Nw] denotes the dimension of the SU(3) [SU(2)]

representation. Even if absent at tree level, λ is generated at

one-loop order by electroweak gauge boson loops,

δλ ≃
3(Y 2g′4 + C2g4)

32π2
ln

(

M2

Λ2

)

, (3)

123



Eur. Phys. J. C (2019) 79 :938 Page 5 of 10 938

with the SU(2) Casimir invariant C2 and hypercharge Y . Thus

naturalness poses a limit on the scalar mass

M

∣

∣

∣

∣

ln
M

Λ

∣

∣

∣

∣

�
16π2|δm2

H |1/2
max

√

6Nc(3Dg4 + NwY 2g′4)
, (4)

where D is the SU(2) Dynkin index and |δm2
H |1/2

max is

the maximum correction to the Higgs mass that is con-

sidered natural. In the type-II seesaw model, the trilinear

coupling μ also contributes to the Higgs mass, δm2
H ≃

12μ2 ln(M2/Λ2)/(16π2) [49,50], which translates into an

upper bound μ| ln(M/Λ)|1/2 �
√

2/3π |δm2
H |1/2

max. A similar

bound can be obtained in the Zee model [42].

New fermions with mass M and Yukawa coupling y con-

tribute to the Higgs mass at one-loop order,

δm2
H ≃

4NcC |y|2

16π2
M2 ln

(

M2

Λ2

)

, (5)

with C = 2 for the electroweak triplets Σ̄i and C = 1 for

the electroweak doublet and singlet fermions. Particles with

electroweak charges also contribute at two-loop order to the

Higgs mass,

δm2
H ≃

8κ Nc(3Dg4 + NwY 2g′4)

(16π2)2
M2 ln

(

M2

Λ2

)

(6)

with κ = 1(1/2) for Dirac (Majorana) fermions. Thus natu-

ralness demands the fermion masses to obey

M

∣

∣

∣

∣

ln
M

Λ

∣

∣

∣

∣

1/2

�
2π |δm2

H |1/2
max

|y|
√

2NcC
, (7)

M

∣

∣

∣

∣

ln
M

Λ

∣

∣

∣

∣

1/2

�
4π2|δm2

H |1/2
max

√

κ Nc(3Dg4 + NwY 2g′4)
. (8)

Vector bosons. For models with vector bosons Higgs nat-

uralness is model-dependent, because there are additional

contributions depending on how their mass is generated.

In Fig. 1 we show the model-independent upper limits

from neutrino mass as blue bars and indicate the upper limits

from Higgs naturalness by horizontal red lines. We do not

show masses below 100 GeV, because only a sterile neutrino

N̄ is allowed to be lighter. The renormalization scale is set

to the maximally-allowed value of Λ from neutrino masses

and |δm2
H |1/2

max = m H = 125 GeV. The electroweak two-

loop contribution generally dominates if present. For N̄ there

is only the one-loop contribution. In this case we use the

neutrino mass scale to fix the Yukawa coupling y. The Higgs

naturalness limits for the three seesaw models are consistent

with previous results [51–53] taking the different choice of

renormalization scale into account.

3 Lower bounds

In this paper we do not attempt a complete study of the phe-

nomenology, since it largely depends on the flavour structure.

In the next subsection we illustrate how it is possible to use

this framework to study it, while in the following subsections

we make some general remarks.

3.1 Studying flavour-dependent processes

The classification in terms of the lightest new particle and

a ΔL = 2 effective operator can be used to study pro-

cesses which do not violate lepton number. We illustrate

this using as an example the S1 leptoquark with interaction

terms yi j L i Q j S1 + ci j

Λ
L i H S

†
1 d̄ j . If the contribution from

the bottom quark dominates and thus (mν)i j = f [yi3c j3 +
y j3ci3]/Λ with f = f (mb, mS1), the Yukawa coupling

y is determined in terms of neutrino masses and leptonic

mixing up to an overall unknown factor ζ and 2 discrete

choices (±) [30,37], e.g. for normal mass ordering yi3 =
ζ±√

Λ/(2 f )(
√

m2u∗
2 ±√

m3u∗
3), where mi are the neutrino

masses and ui the columns of the leptonic mixing matrix

(Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix). Sim-

ilarly to Ref. [30], this determines (1) the branching ratios of

S1 → bνi , tℓi and thus provides a clear prediction for col-

lider searches;6 (2) the relative branching ratios for different

processes, which are completely fixed. On the other hand the

overall rate of lepton-flavour-violating observables depends

on the unknown combination of parameters ζ±√
Λ/(2 f ).

For more complicated flavour structures it may be useful

to use the recently-proposed parametrisation of the neutrino

mass matrix [54]. A detailed study of the phenomenology is

left for future work.

3.2 Charged lepton flavour/universality violation

In the type-I seesaw model charged lepton flavour viola-

tion is suppressed due to the large scale of the new parti-

cles and unitarity (GIM mechanism). The doubly-charged

scalars Δ++ and k induce tri-lepton decays at tree level and

pose a stringent constraint on the involved Yukawa couplings

y/M � (g/mW )[B Rlim(l → l1l2l̄3)/B R(l → l ′νν̄′)]1/4

in terms of the branching ratios B R and the current limit

B Rlim. For instance, BR(μ− → 3e) < 10−12 implies that

the symmetric couplings of k should satisfy |yeμy∗
μμ| <

2.3 × 10−5
(

mk

TeV

)2
.

First-generation leptoquarks may induce μ−e conversion

at tree level and thus y/M � (B Rlim ωcapt/(4 CN ))1/4 where

ωcapt denotes the capture rate and CN ∼ (0.01 − 0.1) m5
μ

parameterizes the nuclear physics. The contribution to radia-

6 The decays via the effective operator are generally suppressed.
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Fig. 1 Summary plot of the upper limits. The blue bars illustrate the

robust, model-independent and conservative upper limits from neutrino

masses. If two upper limits are provided for a given particle in Table 1,

we use the most conservative one. The horizontal red lines indicate

the upper limits from Higgs naturalness. Hatching indicates parameter

space excluded by non-observation of B-violating nucleon decays. In

order to illustrate the current collider limits, we show current limits from

ATLAS and CMS in black circles and estimated limits in white. These

limits depend on the flavour structure and are thus model-dependent.

We quote the most stringent lower limit. Particles that are excluded by

combining the constraints from nucleon decays and neutrino masses are

highlighted in red, and particles for which collider searches and Higgs

naturalness limits are comparable in green

tive leptonic muon and tau decays can be estimated by

B R(l → l ′γ )/B R(l → l ′νν̄′) ∼ 3αem y4/(16πG2
F M4),

but may be further enhanced if the fermion in the loop is

heavier than the decaying lepton. For example, in the Zee–

Babu model, μ → eγ limits imply [48]

|y′∗
eτ y′

τμ|2

(
mh

TeV
)4

+ 16
|y∗

ee yeμ + y∗
eμyμμ + y∗

eτ yτμ|2

(
mk

TeV
)4

� 10−6.

(9)

A singly-charged scalar also generates violations of univer-

sality. In particular, the extracted Fermi constant from muon

decay changes with respect to the SM value. Using the limits

of the unitarity of the CKM, one obtains that its antisym-

metric couplings should obey |y′
eμ|2 < 0.007

(

mh

TeV

)2
, and

comparing different decay channels, one gets for example

||y′
eτ |2 − |y′

eμ|2| < 0.035
(

mh

TeV

)2
[48].

Mixing with SM leptons leads to a non-unitary PMNS

matrix [55–60]. For the type-I and type-III seesaw models, it

is generally small due to its relation to neutrino masses. How-

ever in extended models like the inverse seesaw model or in

models with new fermions with weak charges (Ē, L i ), there

may be large deviations (See e.g. Ref. [60]). The constraints

of non-unitarity are typically |y|2/( M
v

)2 � 10−3 (except for

the first-second entry, where μ → eγ implies the stronger

constraint 10−5).

Generally the new particles also lead to non-standard inter-

actions (NSI), see e.g. Ref. [61] for a recent study in which

it is found that significant NSI may still be allowed in some

regions of the parameter space of radiative neutrino mass

models. For example in the Zee model, the maximum NSIs

depend on the assumptions made regarding the allowed fine-

tuning of the off-diagonal Yukawas of the second Higgs dou-

blet, which on the generic Higgs basis contribute to charged

lepton masses, and also on the assumptions made on the tri-

linear μ term, which generates a correction to the Higgs mass

at one loop.

3.3 Lepton number violation

The new particles in Table 1 may generate new contributions

to ΔL = 2 probes, like neutrinoless double beta decay. The

new contributions may be significant in some cases [62,63]:

(1) for type-I/III seesaw, if the new fermions have masses of

order O(1) GeV [64–67]; (2) if the scale Λ of the relevant

dimension-7 ΔL = 2 operator, like O8, is low enough, Λ �

O(100) TeV [25].7 For type-II seesaw, the amplitude is very

suppressed, by (q/mΔ)2, where q ∼ 100 MeV.

Another constraint comes from the fact that in the

early universe sphaleron processes (active for temperatures

7 From neutrino masses, the scale of O8 is below 104 TeV [25]. O8 can

be generated by L1, X2, S1, U1.
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1012 GeV � T � 100 GeV) together with processes

mediated by a Δ(B − L) = 2 operator may erase any

previously-generated baryon asymmetry [68]. This imposes

lower bounds on the scale Λ due to interactions mediated

by either (1) the BL operators (fourth column) or (2) the

ΔL = 2 operator (third column), if the new particle is rel-

ativistic and a ΔL = 0 interaction (e.g. gauge interactions

and/or the Yukawa coupling shown in the second column)

rate is faster than the Hubble rate. In particular, in order for a

B − L asymmetry generated at TB−L not to be washed-out,

for order one couplings the requirement reads

Λ � [Mp T 2d−9
B−L

/(20PSn) ]1/(2d−8), (10)

where Mp is the Planck scale, d is the dimension of the

operator (third and/or fourth column) and PSn denotes the

n-particle phase space factor. For example, for two massless

final state particles and TB−L = 106, 1010, 1012 GeV, this

reads Λ � 1011, 1013, 1014 GeV for the Weinberg operator

and roughly Λ � 107, 1010, 1013 GeV for other operators

of dimension d ≤ 11. Notice that a lower limit on M can

be derived for order one couplings combining the washout

lower limit with upper limit on Λ from neutrino masses, if

the exact combination of powers of Λ and M is known.

3.4 Baryon number violation

There are stringent limits on baryon-number-violating (B − L

conserving) dimension-6 operators with first generation

quarks (See e.g. [69–74]) due to nucleon decays [23,75,76]

such as p → e+π0, p → ν̄π+ and n → ν̄π0, whose

lower limit on the lifetime is O(1033) y [77,78]. Unless B-

conservation is imposed, the scalar leptoquarks S1, S3 and

S̃1 have diquark couplings like S1 d̄ ū, S1,3 Q† Q†, S̃1 ūū and

thus induce nucleon decay. The vectors V2 and Ṽ2 also have

diquark couplings ūσ̄μV2μQ† and d̄σμṼ2μQ†, respectively,

which mediate nucleon decay together with the other cou-

plings shown in Table 1. For S̃1, the antisymmetry of the

coupling implies that the decay proceeds into three leptons

via W -boson exchange [72], suppressed by Vtd yt if cou-

pled to the top quark. The lower limits on the mass are

M � 1016 (1011) GeV for O(1) couplings for one lepton

(three leptons in the case of S̃1) in the final state, which are

in tension with the neutrino mass bounds.

There are also diquark couplings for R2, R̃2, generated by

the B + L conserving dimension-5 operators, R̃2 Q H† Q/Λ′

and H† R2d̄†d̄†/Λ′. Similarly, the vectors U1, U3 also gener-

ate operators like d̄†σμ H† QU
μ
1,3/Λ

′. Therefore R̃2, U1, U3

induce nucleon decays such as n → π+e− [79,80] with

decay width Γ (n → π+e−) ≃ y2Λ5
QCDv2/(8πΛ′2 M4),

where ΛQCD ∼ 1 GeV. Using Γ (n → π−e+)−1 � 5.3 ×
1033 y [81] and M ≤ Λ′, we obtain a lower limit Λ′ ≥ 1011

GeV for order one couplings, again in tension with the neu-

trino mass bound. Alternatively the scale Λ′ can be taken to

be the Planck mass, which leads to the lower bound M � 107

GeV [70,82]. In the case of R2, the antisymmetry makes it

decay predominantly via the channel p → K +ν [74], and

the bounds are similar to those above. In Fig. 1, we highlight

the particles that are excluded by combining the constraints

from nucleon decays and neutrino masses using red labels.

Due to its large hypercharge Ũ1 will only mediate nucleon

decays via B-violating operators of dimension larger than 5,

involving multiple mesons and leptons, and thus it is currently

not constrained.

B-violating processes may also wash out the baryon asym-

metry of the Universe, but these are generally more strongly

constrained by nucleon decays.

3.5 Direct searches

In the following we quote results from direct searches at

colliders, which generically assume 100% branching ratio in

the considered channel. In realistic neutrino mass models, the

limits are generally weaker due to multiple possible decay

channels and thus reduced branching ratios. In any case there

are already stringent lower bounds on several of the con-

sidered particles. Searches for two like-sign charged leptons

constrain doubly-charged scalars (Δ++, k) to be heavier than

M � 770 − 870 GeV, depending on the flavor [83]. Simi-

lar limits are expected for X2. The different particles can

be distinguished by the different chirality of the final state

leptons (see e.g. Ref. [84]). A model-independent bound of

M � 200 − 220 GeV is obtained for Δ++ by searching for

W +W − in the final state [85]. The constraint on the fermionic

triplet of type-III seesaw (Σ̄0) is M > 840 GeV assuming

equal branching ratio to all flavors [86]. Similar limits are

expected for vector-like leptons (Ē , Σ̄1, L1, L2).

Also leptoquarks have been searched for at the LHC. Neu-

trino masses are generically dominated by third generation

couplings. Searches for pair production of scalar leptoquarks

with two b-jets and eμ (ττ ) final states put a lower bound on

the mass of M > 640 GeV [87] (M > 850 GeV [88]). These

searches do not apply to the S1 leptoquark, because it does not

couple down-type quarks to charged leptons. There are also

constraints from searches for two jets and electrons (muons)

which lead to more stringent constraints of M > 1010 GeV

[89] (M > 1530 GeV [90]). Constraints on vector lepto-

quarks are generally a factor of
√

3 more stringent due to

the multiple polarizations of the vector leptoquark. In par-

ticular CMS searches for vector leptoquarks decaying to a

quark and a neutrino (electron or muon) now constrain the

mass of the leptoquark to be larger than 1.8 TeV (1.7 TeV)

[91]. Singly-charged scalars h are bounded to be � 100 GeV

from LEP data. Finally, there are no competitive constraints

yet for sterile neutrinos N̄ .
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In Fig. 1 we show the most stringent lower bounds from

LHC searches using black circles. This typically demands

couplings to first or second generation. For some of the

particles there are no dedicated searches and therefore no

published lower limits. For them, we use the lower bound

of a particle which would yield the same signal, and high-

light these bounds with white circles. We find that for Δ, R2

(Σ̄0, L1, Σ̄1, L2), direct searches are in tension with (com-

parable to) Higgs naturalness limits.8 These are highlighted

with green labels. We emphasise once more that these col-

lider limits, as well as the other lower bounds, are model-

dependent.

4 Conclusions

We have derived general robust upper bounds on the mass

of new particles contributing to neutrino masses. Our main

results are summarised in Fig. 1. We have also compared our

limits with those from Higgs naturalness, which are much

stronger, but less robust. The most promising particles to

search for are new doubly-charged scalars with masses below

O(106) GeV, followed by X2 and Ũ1 which also have low

upper limits and are unconstrained by nucleon decays. Limits

from direct searches together with Higgs naturalness argu-

ments disfavour Δ, Σ̄0, L1, Σ̄1, L2, and R2.

The lower bounds are generally model-dependent. Among

these, in the cases where nucleon decays are generated, they

provide the most stringent limits. Limits from nucleon decays

(taking conservatively the operators to be Planck scale sup-

pressed) imply that S1, S3, S̃1, R2, V2 and Ṽ2 can not be the

dominant source for neutrino masses, unless baryon-number

conservation is imposed. The vector bosons V2 and Ṽ2, U1

are naturally present as gauge bosons in Grand Unified Theo-

ries, for example in the 24 of SU(5) and the 45 of SO(10) (and

in the Pati-Salam model), respectively. For SU(5)/SO(10) the

typical scale is incompatible with the gauge bosons being

the dominant source of neutrino masses. Our limits are com-

patible with leptogenesis (for seesaw models) and low-scale

generation of the baryon asymmetry of the Universe. In par-

ticular the Davidson-Ibarra bound [92] is readily satisfied

by our upper bound for the type-I seesaw model. If baryon

number is conserved, all particles are allowed to be at the

TeV scale (up to limits from direct searches) and provide the

dominant contribution to neutrino masses. Let us emphasize

once more that our upper limits are very conservative, and

in many models the scale will be much lower due to several

chirality suppressions and/or small couplings, and/or if there

is a small violation of lepton number ǫ (see Eq. (1), and first

8 R2 is already excluded by nucleon decays and neutrino masses, and

it is shown with a red label.

paragraph of section 2), like for example in inverse seesaw

models.

This work is intended to serve not only as an indication

of the most promising particles to directly search for at col-

liders, but also as a simple way of organising the plethora of

neutrino mass models in just 20 categories, which allows for

an easier study of their phenomenology. If nucleon decays

are not suppressed or forbidden by the absence of couplings

to first generation quarks, or by baryon number conservation,

it reduces to only 14 allowed categories. Direct searches and

Higgs naturalness may further disfavour up to 5 more parti-

cles, leaving a final count of 9 allowed categories. Lastly, we

would like to emphasise that in order to explore the whole

model space, new dedicated collider searches for some of the

particles (e.g. the ones with white circled regions in Fig. 1)

are needed.
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