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Neutrino quantum kinetics
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We present a formulation of the quantum kinetic equations (QKEs), which govern the evolution of
neutrino flavor at high density and temperature. Here, the structure of the QKEs is derived from the ground
up, using fundamental neutrino interactions and quantum field theory. We show that the resulting QKEs
describe coherent flavor evolution with an effective mass when inelastic scattering is negligible. The QKEs
also contain a collision term. This term can reduce to the collision term in the Boltzmann equation when
scattering is dominant and the neutrino effective masses and density matrices become diagonal in the
interaction basis. We also find that the QKEs include equations of motion for a new dynamical quantity
related to neutrino spin. This quantity decouples from the equations of motion for the density matrices at
low densities or in isotropic conditions. However, the spin equations of motion allow for the possibility of
coherent transformation between neutrinos and antineutrinos at high densities and in the presence of
anisotropy. Although the requisite conditions for this exist in the core collapse supernova and compact
object merger environments, it is likely that only a self-consistent incorporation of the QKEs in a
sufficiently realistic model could establish whether or not significant neutrino-antineutrino conversion
occurs.
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I. INTRODUCTION

In this paper we address the difficult problem of how
neutrino flavor evolves in a general medium. The stakes
are high because neutrino weak interactions with matter,
dictated in part by the neutrino flavor states, may lie at the
heart of our understanding of neutrino-affected astrophysi-
cal environments, and these can be important sites for the
origin of the elements.
This paper represents a first step toward the derivation of

practicable generalized kinetic equations, useful in actual
simulations of neutrino propagation in anisotropic media, in
any density regime. Here we set up the formalism, identify
the degrees of freedom needed to describe the neutrino
ensemble (these include both flavor and spin), and derive the
correct structure of the quantum kinetic equations (QKEs),
including coherent evolution and a collision term accounting
for inelastic scattering. Our final results, summarized in
Eq. (163), are somewhat formal, since self-energies entering
into the collision term on the right-hand side are not fully
calculated. Nonetheless, all the medium-induced potentials
appearing on the left-hand side of Eq. (163) are computed in
Sec. VI A, so this paper provides a complete description of
coherent spin and flavor evolution in the absence of
collisions. We will complete our program in a future paper,
devoted to a detailed analysis of the collision term.
In this work, we have sought a well-posed prescription

for treating general neutrino flavor evolution, one that can
describe how neutrinos propagate and possibly change their
flavors in environments ranging from low density regimes,
where quantum mechanical phases are important and the

evolution is Schrödinger-like, to very high temperature or
very high matter density environments, where phases are
unimportant and the propagation/evolution is governed by
the Boltzmann equation, and to all conditions between
these limits. As a result, interaction-induced decoherence,
an historically thorny issue in relativistic and nonrelativistic
quantum systems [1–12], must be addressed directly and
self-consistently.
The approach we take differs from previous treatments.

Those studies examined neutrino or general fermion flavor
conversion in both the active-active channel [13–23] and in
the active-sterile channel [24–39], with a number of different
approaches. Here we follow the general prescription used in
Refs. [40,41] for bosons, but adapted and extended appro-
priately for fermions. In this development, we start from
the most fundamental considerations of quantum field theory
and then build QKEs, which describe neutrino flavor
evolution.
In hot and dense environments in astrophysics, like those

associated with the early Universe, core collapse supernovae,
and compact object mergers, neutrinos may carry a signifi-
cant fraction of the energy and entropy. The way these
particles interact with and communicate with the medium is
through theweak interaction. As a consequence, ascertaining
the flavor states (weak interaction states) of the neutrino
fields is these environments can be a key part of under-
standing, for example, how neutrinos set the neutron-to-
proton ratio [42] and deposit energy in supernovae [43–46],
or whether neutrinos decouple in mass or in flavor states in
the very early Universe [47,48].
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A feature of both the early Universe and core collapse
supernovae is that neutrinos propagate from very hot, high-
energy density regions or epochs, where transport mean
free paths could be short compared to neutrino flavor
oscillation lengths, to environments where the opposite is
true. (We know that collective neutrino oscillations can
readily occur in the latter regime, as reviewed in Ref. [49]
and references therein, and can be sensitive to small-scale
density inhomogeneities [50–54] and the angular distribu-
tion of neutrino flux [55–57].)
Between these extremes, a poorly understood and

complicated interplay of coherent neutrino flavor oscilla-
tions and scattering-induced decoherence can govern how
flavor develops. Partly because of this complication,
modelers of supernova neutrino propagation with energy
and flavor evolution have relied on a clear separation of
regimes: Boltzmann equation treatments inside the proto-
neutron star, and in the vicinity of the chemical and thermal
equilibrium decoupling zone (neutrino sphere), and a
coherent treatment in which only forward-scattering is
considered in the low density environment sufficiently
far above the neutron star.
However, at some level these regimes cannot be separated.

Indeed, recent work [58] shows that in some supernova
envelope models, well above the neutrino sphere, neutrinos
which suffer direction-changing scattering, though compris-
ing only a seemingly negligible fraction (e.g., one in a
thousand) of all neutrinos coming from the neutron star,
nevertheless may make significant contributions to the
potentials which govern flavor transformation. Though this
neutrino “halo” effect has been argued [59,60] to make
little difference in flavor evolution during the supernova
accretion phase, in the one completely self-consistent
calculation [61] that has been done to date, it produces a
significant modification in collective neutrino oscillations
and the expected signal for an O-Ne-Mg core collapse
neutronization burst.
These studies point out that understanding neutrino

flavor evolution in some supernova and compact object
merger environments ultimately may require following the
interplay of nuclear composition, three-dimensional radi-
ation hydrodynamics, and the QKEs for neutrino flavor.
From a computational astrophysics modeling standpoint,
the essential complication of the QKEs over conventional
Boltzmann neutrino transport schemes is the necessity of
following high frequency quantum flavor oscillations along
with scattering. The QKEs we derive in this paper are no
exception. And though our QKEs can have the expected
physically intuitive limits of being Schrödinger-like at low
density and Boltzmann-like in scattering-dominated
regions, they also have features that are new and surprising
and that were not revealed by more ad hoc treatments.
Chief among these is the possibility of neutrino spin

coherence. Since that, in principle, could mediate trans-
formation between neutrinos and antineutrinos, it could

be of importance in understanding compact object phys-
ics and nucleosynthesis as outlined above. The asymme-
try between νe and ν̄e flowing from compact object
environments can be, for example, a key arbiter of
neutrino energy deposition and neutrino-heated nucleo-
synthesis. However, as will be evident in our subsequent
exposition, implementing our QKEs in realistic simula-
tions of astrophysical environments may require a radical
alteration of the current approaches and possibly a leap in
computing capabilities.
In what follows we give some background on two-

component spinor notation and introduce our model for
Majorana neutrinos in Sec. II. We also describe how to
extend our treatment to Dirac neutrinos. We present the
approach for deriving equations of motion for neutrino
correlation functions from quantum field theory in Sec. III.
In Sec. IV we relate these correlation functions to physical
quantities, such as neutrino densities and coherence terms,
and present a scheme for perturbative expansion of the
equations of motion. We then derive the kinetic equations
for neutrino densities and coherence terms in Sec. V and
calculate the potentials that describe neutrino interactions
with matter in Sec. VI. In Sec. VII, we present a discussion
of some properties of the quantum kinetic equations,
identifying the limits in which we obtain Schrödinger-like
flavor evolution and Boltzmann-like kinetics. Also, in
Sec. VII we identify some potential novel phenomena that
are absent in the approximate treatments, including the
possibility of coherent conversion between neutrinos and
antineutrinos. In Sec. VIII we compare our work to existing
approaches to neutrino QKEs, and in Sec. IX we present
our conclusions.

II. PRELIMINARIES

A. Two-component spinor notation

In this paper, we will primarily use two-component
spinor notation, common in the supersymmetry literature
and explained in detail in Ref. [62], an e-print monograph
by Stephen P. Martin, and Ref. [63]. A key reason for
this choice of notation is that the two-component lan-
guage is the most natural one for describing ultrarela-
tivistic Majorana neutrinos. Moreover, this notation
allows us to neatly separate components of physical
quantities in a way that corresponds to their different
physical meaning. In this section, we briefly review two-
component spinor notation and the relation to four-
component spinor notation.
The Lorentz group, SOð3; 1Þ, is equivalent to SUð2ÞL×

SUð2ÞR. Left-handed two-component spinors are objects
that transform in the (2,1) representation of the Lorentz
group SUð2ÞL×SUð2ÞR, while right-handed two-component
spinors transform in the (1,2) representation. By conven-
tion, left-handed spinors are labeled by undotted two-
component indices, α; β, etc., while right-handed spinors
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are labeled by dotted indices, _α; _β, etc. The presence or
absence of a dot on a spinor index simply indicates which
SUð2Þ factor is associated with the index.
Hermitian conjugation interchanges SUð2ÞL and

SUð2ÞR, so the Hermitian conjugate of a left-handed spinor
is a right-handed spinor: ψ† _α ≡ ðψαÞ†. We adopt the
convention that left-handed spinors (those with undotted
indices) are always written without the dagger symbol,
while right-handed spinors are always written with the
dagger.
Four-component spinors are objects that transform in

the ð2; 1Þ þ ð1; 2Þ representation of the Lorentz group.
A four-component Dirac spinor consists of two independent
two-component spinors and can be written as ΨD ¼
ðχα; ξ† _αÞ. A four-component Majorana spinor consists of
a two-component spinor and its Hermitian conjugate:
ΨM ¼ ðψα;ψ† _αÞ.
Note that a Dirac spinor has the same physical content as

two Majorana spinors, and therefore Dirac spinors can
always be represented as pairs of Majorana spinors. Wewill
always do so; for example, we represent the charged
leptons, which are Dirac spinors, as pairs of Majorana
spinors (the lepton and the antilepton). In this paper, the
statement that a pair of Majorana spinors forms a Dirac
spinor should be taken to mean that the Lagrangian has a
Uð1Þ symmetry under which the two Majorana fields carry
opposite charge. This symmetry constrains the mass term
to be proportional to a product of the two oppositely
charged fields.
Two-component spinor indices can be raised or lowered

with the antisymmetric symbol ϵαβ or ϵ _α _β, both variants
defined by ϵ12 ¼ −ϵ21 ¼ 1 and ϵ21 ¼ −ϵ12 ¼ 1. A raised
and a lowered index can be contracted (summed over),
provided the indices are either both dotted or both undotted.
Because of the antisymmetric nature of ϵαβ, ψαχ

α ¼
−ψαχα, and similarly for the dotted indices.
By convention, contracted undotted indices are always

written with the first index raised, e.g., ψαχα, while
contractions on dotted indices are written with the first
index lowered, e.g., ψ†

_αχ
† _α. This allows us to adopt an

index-free notation for contraction of spinor indices:
ψχ ≡ ψαχα and ψ†χ† ≡ ψ†

_αχ
† _α.

In this paper, we will primarily deal with spinor bilinears.
These quantities can either carry two undotted indices, two
dotted indices, or one of each. All spinor bilinears can be
written in terms of Lorentz tensors and Lorentz-invariant
spinor matrices,

Γα _α ¼ ΓL
μ σ

μ
α _α

Γ _αα ¼ ΓR
μ σ̄

μ _αα

Γβ
α ¼ ΓLδβα þ 1

2
iΓL

μνðSμνL Þβα

Γ _α
_β
¼ ΓRδ _α_β þ

1

2
iΓR

μνðSμνR Þ _α_β; (1)

where μ and ν are conventional spacetime indices,
i.e., assuming values 0, 1, 2, or 3.
The labels L and R on the various components of Γ are

used to indicate which spinor bilinear the component
belongs to. The basis spinor matrices are given by

σμ ¼ ð1; ~σÞ
σ̄μ ¼ ð1;−~σÞ

ðSμνL Þβα ¼ −
1

4
iðσμα _ασ̄ν _αβ − σνα _ασ̄

μ _αβÞ

ðSμνR Þ _α_β ¼
1

4
iðσ̄μ _αασν

α_β
− σ̄ν _αασμ

α _β
Þ: (2)

The signs in the definitions of SL and SR are a matter of
convention.
The spinor matrices σμ and σ̄μ satisfy the relations

σμα _ασ̄
ν _αβ þ σνα _ασ̄

μ _αβ ¼ 2gμνδβα

σ̄μ _αασν
α _β

þ σ̄ν _αασμ
α _β

¼ 2gμνδ _α_β; (3)

where gμν is the usual spacetime (inverse) metric.
It can be shown that the antisymmetric tensor quantities

ðSμνL Þ and ðSμνR Þ are anti-self-dual and self-dual, respec-
tively; that is, SμνL ¼ −iðSμνL Þ⋆ and SμνR ¼ iðSμνR Þ⋆, where
ðTμνÞ⋆ ≡ 1

2
ϵμνρσTρσ. Anti-self-dual and self-dual antisym-

metric tensors transform in separate irreducible represen-
tations of the Lorentz group, specifically in (3,1) and (1,3),
respectively. Since ΓL

μν can be expressed using the basis of
SμνL matrices, it is an anti-self-dual tensor, while ΓR

μν is a
self-dual tensor.
We can use index-free notation to denote products of

spin matrices, using the conventions given above for
contracting dotted and undotted indices and in addition
assuming that contractions are performed in the usual order
of matrix multiplication. For example,

σμσ̄νσρ ¼ ðσμσ̄νσρÞα _α ¼ σμ
α _β
σ̄ν _ββσρβ _α: (4)

Products of σ or σ̄ matrices can always be written in
terms of the basis matrices δ; σ; σ̄; SL, and SR. The products
of three σ or σ̄ matrices are

σμσ̄νσρ ¼ gμνσρ − gμρσν þ gνρσμ þ iϵμνρσ σσ

σ̄μσνσ̄ρ ¼ gμνσ̄ρ − gμρσ̄ν þ gνρσ̄μ − iϵμνρσ σ̄σ: (5)

Products of four or more σ matrices can be systemati-
cally reduced to expressions involving only the basis
matrices, by repeated use of Eqs. (3) and (5) and the
definitions of SμνL and SμνR .
We will often use 4-component spinor bilinears, which

combine all four types of two-component spinor bilinears
into a single 4 × 4 matrix:
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Γ≡
 
Γα

β Γα _β

Γ _αβ Γ _α
_β

!
: (6)

With the spinor indices arranged as in Eq. (6), we can
write contractions of 4-component spinor bilinears in an
index-free way. That is, if Γ and Δ are 4 × 4 spin matrices
having the form of Eq. (6), so is the product ΓΔ, where it is
understood that Γ andΔ are contracted together in the usual
manner of matrix multiplication.
In this paper we have adopted a commonly used repre-

sentation of 4-component spinor matrices γμ and γ5, where

γμ ¼
�

0 σμ

σ̄μ 0

�
γ5 ¼

�−1 0

0 1

�
: (7)

The choice of a particular representation of these
matrices provides a dictionary by which expressions in
2-component spinor notation can be translated to standard
4-component spinor notation, and vice versa.

B. Model

In what follows we will consider Standard Model
neutrinos with small Majorana masses. We will work in
the low-energy limit, where the energy of the particles is
much smaller than theW and Z boson masses, so that theW
and Z bosons are not dynamical. In this paper we will not
consider the interactions of neutrinos with nucleons and
nuclei; these interactions in certain limits and environments
can be similar to the interactions of neutrinos with charged
leptons. The ultimate forms of the QKEs we develop are
crafted to allow straightforward incorporation of these
interactions when necessary for realistic calculations. As
a consequence, for simplicity we will restrict our develop-
ment to the lepton sector.
After breaking electroweak symmetry, the Standard

Model Lagrangian in the lepton sector is

iψ†
I σ̄μ∂μψ I þ ie†I σ̄μ∂μeI þ iē†I σ̄μ∂μēI

−
1

2
mIJψ IψJ −me

IJeIēJ

þe†I
gð2sin2θW − 1Þσ̄μZμ

2 cos θW
eI þ ē†I

gsin2θW σ̄μZμ

cos θW
ēI

þψ†
I

gσ̄μZμ

2 cos θW
ψ I þ ψ†

I

gσ̄μWþμffiffiffi
2

p eI þ e†I
gσ̄μW−μffiffiffi

2
p ψ I

þe†I geσ̄μA
μeI − ē†I geσ̄μA

μēI

−M2
WW

þ
μ W−μ −

1

2
M2

ZZμZμ

þgauge boson kinetic termsþ H.c. (8)

Here, ψ I is the neutrino field, where I is the flavor index.
In this notation eI and ēI are the charged lepton fields, where
the former describes left-handed electrons (muons, tauons)

and right-handed positrons and the latter is its Dirac
counterpart, describing right-handed electrons and left-
handed positrons. Aμ is the photon field, and Zμ and W�μ

are the weak boson fields. MW and MZ are the W and Z
boson masses. ge is the electromagnetic coupling constant
(electron charge), g is the weak coupling constant, and θW is
the Weinberg angle. mIJ is the Majorana mass matrix for
neutrinos, and me

IJ is the Dirac mass matrix for charged
fermions. In the flavor basis, me

IJ ¼ diagðme;mμ; mτÞ,
where me is the electron mass, mμ is the muon mass, and
mτ is the tauon mass. For Majorana neutrinos, mIJ ¼ mJI .

C. Feynman rules

To compute various quantities that arise in the quantum
kinetic equations, we will need the Feynman rules that are
derived from the Lagrangian. In deriving the Feynman
rules, we make several assumptions. First, we assume that
the energy of the neutrinos and charged leptons is much
smaller than theW and Z boson masses, and thus theW and
Z bosons are not dynamical, and we can neglect their
kinetic terms. Second, in this low-energy regime, the
electromagnetic interaction is much stronger than the weak
interaction, and the distributions of charged particles
thermalize on a much shorter time scale than the neutrino
distributions. Therefore, we will follow the dynamics of
neutrinos associated with the weak interaction and make
the assumption, valid for the astrophysical regimes of
interest to us, that the effect of the electromagnetic
interaction is simply to ensure that the plasma (charged
leptons, described by the fields eI and ēI , and photons,
described by the field Aμ) can be adequately represented as
thermal distributions of particles.
The Feynman rules for the weak interaction vertices are

(9)
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Whether the σ̄ or the σ version of the vertex is used
depends on the two-component index structure of the
diagram. The requirement that spinor indices be con-
tracted in the usual order of matrix multiplication unam-
biguously determines which form of the vertex appears
in the expression.
Next, we write down the Feynman rules for the propa-

gators. In this paper we will be calculating quantities
derived from the two-particle irreducible (2PI) effective
action. In this formalism, fermion lines represent the
full expressions for neutrino and charged lepton two-point
functions; these two-point functions are, in general,
dynamical quantities that depend on particle densities
and interactions. They are not just the vacuum propagators.
In position space, we will write the general form of the
neutrino two-point functions as

(10)

The two-point functions are defined as time-ordered
expectation values of spinor field bilinears. Thus, for
example, Gα _α

ν;IJðx; yÞ ¼ hTPðψα
I ðxÞψ† _α

J ðyÞÞi and similarly
for the other components of G. Here, TP is the time
ordering operator along a specific path. As we explain
below, we will use the closed time path (CTP) contour.
Since we are dealing with out-of-equilibrium, nonvacuum
states described by a nontrivial density operator, the
brackets, hi, denote an ensemble average rather than a
vacuum expectation value.
Note that in two-component spinor notation the

arrows on fermion propagators do not denote the flow
of momentum or any conserved current but rather simply
indicate whether the two-component spinor index asso-
ciated with the arrow is dotted or undotted. This is
illustrated in the above equations for the two-point
functions. For example, it can be seen that “clashing
arrows,” where the arrows point toward each other,
correspond to two-point functions with right-handed
spinor indices, while diverging arrows go with left-handed
spinor indices, etc.
As described below, the two-point function contains both

the vacuum propagator and the particle density matrix. The
density matrix encodes the particle occupation numbers
and additional degrees of freedom describing flavor and
possibly spin (handedness) coherence. We will treat the
neutrino two-point function as a fully dynamical entity, the
time development of which allows us to solve for the time
evolution of the neutrino occupation numbers.
Similarly, the general Feynman rules for the charged

lepton two-point functions are

(11)

In this development we will assume that the charged
lepton distributions are thermal. With this assumption, the
form of the charged lepton two-point function will depend
only on the charged lepton temperature, chemical potential,
and mass.
Note that since charged leptons are Dirac particles, the

arrow-clashing propagator for charged leptons always
connects the charged lepton field with its Dirac counterpart.
On the other hand, for Majorana neutrinos, the arrow-
clashing propagator connects the field to itself.
In the low-energy limit, the electroweak bosons are not

dynamical, and their position space Feynman rules are
simply given by

(12)

Here, we have used the Feynman gauge, but other choices
of gauge give physically equivalent expressions.
We will often express combinations of coupling con-

stants and electroweak boson masses that appear in the
Feynman diagrams in terms of the Fermi constant

GF ≡ g2

4
ffiffiffi
2

p
M2

W

(13)

and use

cos θW ¼ MW

MZ
: (14)

It is sometimes convenient to denote the combination
of all components of a two-point function or vertex by
omitting the arrows. This is equivalent to using the four-
component spinor notation. For example, we can write

(15)

where

Gν;IJ ≡
 ðGν;IJÞαβ ðGν;IJÞα _β
ðGν;IJÞ _αβ ðGν;IJÞ _α _β

!
: (16)

The use of diagrams without arrows is simply shorthand
notation, which implies a sum of every possible
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combination of arrow directions that gives a nonzero
contribution to the amplitude.

III. EQUATIONS OF MOTION FOR THE
TWO-POINT FUNCTION

A. 2PI effective action and the two-point function

The equations of motion for neutrino two-point functions
can be derived from the 2PI effective action. The complete,
general procedure is presented in Refs. [10,64]. Here, we
outline the key steps in this derivation as they apply to the
dynamics of neutrinos.
The 2PI effective action is a functional of the two-point

function G ¼ Gab
IJ ðx; yÞ, corresponding to Eq. (16), where

a and b are four-component spinor indices [for example,
a ¼ ðα; _αÞ], I and J are flavor indices, and x and y are
position 4-vectors. The 2PI effective action consists of
Feynman diagrams with no external lines that are two-
particle irreducible, that is, cannot be disconnected by
cutting two fermion lines (we do not consider cutting weak
boson lines, since the weak bosons are not dynamical in
our formalism and can be reduced to four-fermion vertices).
We separate the 2PI effective action into a one-loop piece
(a single fermion loop, the only contribution to Γ2PI in free-
field theory), and the rest:

Γ2PI½G� ¼ Γ2PI
1 ½G� þ Γ2PI

2 ½G�: (17)

In this equation Γ1 is the one-loop expression, and Γ2 is the
sum of all higher-loop contributions. The diagrams are
drawn and calculated, in position space, as usual, except
that the general form for the two-point functions is used
instead of the tree-level propagator, thereby incorporating
effects from nonzero particle density and corrections to the
propagator stemming from interactions. We use the general
result from quantum field theory,

Γ2PI
1 ¼ −iðTr ln G−1 þ TrG−1

0 GÞ; (18)

where G−1
0 is the tree-level inverse propagator and G is

the complete dynamical two-point correlation function.
Here, we are suppressing spin and flavor indices, but the
quantities in this expression are 4 × 4matrices in spin space
and 3 × 3 matrices in flavor space, with an explicit form
given by the expression in Eq. (16). Products and traces of
such quantities in our equations imply contraction of both
spinor and flavor indices in the usual order of matrix
multiplication.
We can now find the equations of motion forG by setting

δΓ2PI½G�
δG ¼ 0. This gives the expression

G−1ðx; yÞ ¼ G−1
0 ðx; yÞ − Σ½x; y;G�; (19)

where we define

Σ½x; y;G�≡ −i
δΓ2PI

2 ½G�
δGðy; xÞ : (20)

Since Γ2PI
2 is the sum of two-loop and higher-order 2PI

diagrams with no external lines, Σ is proportional to the
sum of one-loop and higher-order one particle-irreducible
diagrams with two external neutrino lines. Consequently,
Σ corresponds to the neutrino proper self-energy. For the
purposes of this paper, we will calculate Σ to two-loop
order; the corresponding Feynman diagrams and calcula-
tions will be given in a subsequent section.
We can eliminate the dependence of Eq. (19) on G−1 by

acting from the right with G, to obtain

ði∂x −MÞGðx; yÞ − i
Z

d4zΣðx; zÞGðz; yÞ

¼ 1iδ4ðx − yÞ; (21)

where ∂x and M are spin × flavor matrices given by

∂x ¼
�

0 σμα _α∂x
μ

σ̄μ _αα∂x
μ 0

�
δIJ

and

M ¼
�
δα

βmIJ 0

0 δ _α _βðmIJÞ†
�
.

Here 1 is the spin × flavor unit matrix, given by

1 ¼
�

δα
β 0

0 δ _α _β

�
δIJ.

B. Spectral and statistical functions

We can use the dynamics of the two-point function G to
describe the evolution of neutrino distributions, starting
with arbitrary nonequilibrium initial conditions, by
employing the CTP formalism [64]. In the CTP formalism,
the time ordering in the path integral is taken along a closed
real-time contour, starting from the point at which initial
conditions are given, to the point in time of interest in the
calculation and then back to the initial point. The two-point
correlation function G is time ordered on the CTP contour,
Gðx; yÞ ¼ hTCTPðΨðxÞΨ̄ðyÞÞi, where TCTP is an operator
that imposes time ordering with respect to the CTP contour
and Ψ is a Majorana spinor given by Ψ ¼ ðψα;ψ† _αÞ
and Ψ̄ ¼ ðψα;ψ†

_αÞ.
The time ordering can be made explicit by decomposing

G into the components

Gðx; yÞ ¼ Fðx; yÞ − 1

2
iρðx; yÞsignCTPðx0 − y0Þ; (22)

where signCTP is a function of the ordering of x and y along
the time path, taking on a value of 1 or −1, depending on
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whether y precedes or follows x on the CTP contour.
For fermions, F and ρ are defined as follows:

Fðx; yÞ ¼ 1

2
h½ΨðxÞ; Ψ̄ðyÞ�i (23)

ρðx; yÞ ¼ ihfΨðxÞ; Ψ̄ðyÞgi: (24)

In the above expressions, ρ is the spectral function and
carries information on the particle states that can appear in
the theory; it is related to the usual vacuum propagator. F
is the statistical function and encodes the occupation
numbers of these states. Since we wish to solve for the
evolution of neutrino occupation numbers, we will pri-
marily be interested in the dynamics of the statistical
function F.
Similarly, we decompose the neutrino self-energy Σ into

a local piece, plus spectral and statistical components:

Σðx; yÞ ¼ −iΣðxÞδ4CTPðx − yÞ þ ΠFðx; yÞ

−
1

2
iΠρðx; yÞsignCTPðx0 − y0Þ: (25)

We will show how to compute these components later, but
for now we note that for our model the local term ΣðxÞ
contains contributions from one-loop diagrams, while the
spectral and statistical terms contain only contributions
from two-loop and higher diagrams. Thus, the Πρðx; yÞ
and ΠFðx; yÞ terms carry higher powers of the coupling
constant than does ΣðxÞ
Using Eqs. (22) and (25) in Eq. (21) gives the following

equation for the statistical function:

ði∂x−M−ΣðxÞÞFðx;yÞ¼
Z

x0

0

dz0
Z

d3zΠρðx;zÞFðz;yÞ

−
Z

y0

0

dz0
Z

d3zΠFðx;zÞρðz;yÞ:

(26)

In addition, there is another form of the equation for F,
which is obtained by acting on Eq. (19) from the left with
G, then separating into spectral and statistical components.
This gives

Fðx; yÞð−i∂⃖y −M − ΣðyÞÞ

¼
Z

y0

0

dz0
Z

d3zFðx; zÞΠρðz; yÞ

−
Z

x0

0

dz0
Z

d3zρðx; zÞΠFðz; yÞ: (27)

There are similar equations for the spectral function.
However, for the purpose of this paper, we will not need
these equations. The reason is that the spectral function
does not depend on the occupation numbers of particles but

rather only on the mass and the interaction strength.
For particles with a small mass and experiencing only
weak interactions, ρ will deviate only slightly from its
massless, free-field value. In equations (26) and (27), ρ
only enters in conjunction withΠF, which is already at two-
loop order. Because we are only computing quantities to
this order, any corrections to the spectral function due to the
neutrino mass or interactions will give terms in the equation
that are beyond the order of our expansion. Thus, we can
simply use the massless, free-field expression for the
spectral function, which will be derived below.

IV. WIGNER TRANSFORM AND
SEPARATION OF SCALES

A. Wigner transform

Equations (26) and (27) give the complete dynamics of
the neutrinos, approximate only insofar as we are expanding
Σ to two-loop order and decoupling the dynamics of the
spectral function from those of the statistical function by
dropping higher-order terms on the right-hand side.
However, solving these equations in their current form is
impractical. First, the connection of the object Fðx; yÞ to
actual neutrino occupation numbers is somewhat compli-
cated, so the physical meaning of these equations is difficult
to elucidate. Second, the two-point function undergoes rapid
oscillations, on the scale of the neutrino de Broglie wave-
length, with respect to the relative coordinate r ¼ x − y.
On the other hand, for weakly coupled particles, such as
neutrinos, physically meaningful quantities change much
more slowly and vary as a function of the average coor-
dinate, X ¼ 1

2
ðxþ yÞ. Resolving the rapid oscillations

associated with the neutrino de Broglie wavelength is clearly
undesirable from a computational standpoint.
We derive more useful expressions from Eqs. (26) and

(27) by performing a Wigner transform and then expanding
in small parameters. In this, we follow the procedure of
Ref. [40]. (Applications of some of these techniques in the
context of electroweak baryogenesis are presented in
Refs. [41,65–69].)
To perform the Wigner transform, we change to the

relative coordinate r and the average coordinate X. Note
that eventually, after the change of coordinates, we will
simply name the average coordinate x; it should be clear
from context whether x refers to the average coordinate or
to one of the two spacetime arguments of a two-point
function. We then Fourier transform with respect to the
relative coordinate. The Wigner transform of the statistical
function Fðx; yÞ is then

FðX; kÞ≡
Z

d4reik·rF

�
X þ 1

2
r; X −

1

2
r

�
(28)

and similarly for other functions of ðx; yÞ.
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B. Spectral and statistical functions for free,
massless fermions

Before we Wigner transform Eqs. (26) and (27), we
derive the expressions for the spectral and statistical
functions in terms of the particle densities, neglecting
neutrino mass and interactions but allowing for nonzero
neutrino densities. Neutrino masses and interactions will
result in slight changes to these expressions; we will later
calculate these changes perturbatively. As we will see, the
Wigner transformed functions have a straightforward
physical interpretation. In particular, the Wigner trans-
formed statistical function, FðX; kÞ, contains components
proportional to neutrino and antineutrino density matrices,
fIJðX; kÞ and f̄IJðX; kÞ, while the spectral function in free-
field theory contains no dynamical components and there-
fore simply encodes the possible particle states. For
anisotropic particle distributions, FðX; kÞ can contain an
additional dynamical quantity, which can be interpreted as
describing coherence between left-handed and right-
handed fermion states.
We begin with the statistical function. In terms of the

four-component Majorana spinor fields, this is given by

FIJðX; kÞ ¼
1

2

Z
d4reik·r

��
ΨI

�
X þ 1

2
r

�
;

Ψ̄J

�
X −

1

2
r

���
: (29)

For convenience of notation, we will evaluate this
expression at X ¼ 0 and later generalize the results to
any position X:

FIJð0; kÞ ¼
1

2

Z
d4reik·r

��
ΨI

�
r
2

�
; Ψ̄J

�
−
r
2

���
: (30)

We will calculate the various components of F in
two-component spinor notation, in which the Majorana
spinors are given byΨI ¼ ðψ I;α;ψ

† _α
I Þ and Ψ̄J ¼ ðψβ

J;ψ
†
J;_β
Þ.

First, we calculate

FIJ;α _βð0; kÞ ¼
1

2

Z
d4reik·r

��
ψ I;α

�
r
2

�
;ψ†

J;_β

�
−
r
2

���
:

(31)

The two-component spinor field ψ I;α is given by

ψ I;αðxÞ ¼
Z

~dqðbIð~qÞuαð~qÞe−iq·x þ d†I ð~qÞvαð~qÞeiq·xÞ:

(32)

In manifestly Lorentz invariant notation, ~dq ¼ d4q
ð2πÞ4 ×

2πδðq2Þθðq0Þ. bIð~qÞ is an operator that annihilates a left-
handed neutrino of flavor I and momentum ~q, and d†I ð~qÞ is

an operator that creates a right-handed antineutrino of
flavor I and momentum ~q. Note that for Majorana
neutrinos, particles and antiparticles simply correspond
to opposite spin states; as a result, we could instead have
used the spin-dependent operators bs, where s ¼ �. In our
notation, b ¼ b− and d ¼ bþ. The creation and annihila-
tion operators satisfy the anticommutation relations:

fbIð~q1Þ; b†Jð~q2Þg ¼ ð2πÞ3δ3ð~q1 − ~q2Þ2EqδIJ

fdIð~q1Þ; d†Jð~q2Þg ¼ ð2πÞ3δ3ð~q1 − ~q2Þ2EqδIJ: (33)

All other anticommutators are zero.
uαð~qÞ and vαð~qÞ are two-component spinors that satisfy

qμσ̄μ _ααuαð~qÞ ¼ 0

qμσ̄μ _ααvαð−~qÞ ¼ 0; (34)

where qμ ≡ ðq0; ~qÞ, with the timelike component taken to
be positive definite. u and v are normalized as follows:

uαð~qÞu†_βð~qÞ ¼ qμσ
μ

α _β

vαð−~qÞv†_βð−~qÞ ¼ −qμσ
μ

α _β
: (35)

Substituting Eq. (32) into Eq. (31) gives an expression with
four terms:

FIJ;α _βð0;kÞ ¼
1

2

Z
d4r
Z

~dq1 ~dq2

×
�
h½bIð~q1Þ;dJð~q2Þ�iuαð~q1Þv†_βð~q2Þeiðk−

q1−q2
2

Þ·r

þh½bIð~q1Þ;b†Jð~q2Þ�iuαð~q1Þu†_βð~q2Þeiðk−
q1þq2

2
Þ·r

þh½d†I ð~q1Þ;dJð~q2Þ�ivαð~q1Þv†_βð~q2Þeiðkþ
q1þq2

2
Þ·r

þh½d†I ð~q1Þ;b†Jð~q2Þ�ivαð~q1Þu†_βð~q2Þeiðkþ
q1−q2

2
Þ·r
�
:

(36)

The commutators of creation and annihilation operators
are clearly related to the particle number operator and
consequently depend on the neutrino distributions. We
make the assumption that the neutrino distributions are
approximately homogenous and time invariant on the scale
of the de Broglie wavelength, so that the integral over r can
be formally taken to infinity while still assuming that the
expectation values of the commutators do not vary over the
integration range. In the astrophysical venues we target for
application of our QKEs, there are unlikely to be any
density fluctuations on scales comparable with the neutrino
de Broglie wavelength (∼10 fm).
With the assumption of approximate time invariance, the

first and last terms in Eq. (36) do not contribute to the
integral, since a pair of creation operators or a pair of
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annihilation operators acting on a state will always change
its energy. Since a time-invariant state is an energy
eigenstate, the action of the pair of operators will always
give a state that is orthogonal to the original, and as a result
the expectation value vanishes. Note that this result does
not hold true for states describing neutrino distributions that
vary on a scale comparable to the de Broglie frequency;
here, we assume that there is no such rapid variation.
Similarly, we can use the assumption of approximate

homogeneity to show that the remaining terms, involving
a creation operator and an annihilation operator, must be
proportional to δ3ð~q1 − ~q2Þ, since the expectation value
will be zero unless the operators create and annihilate a
particle with the same momentum. All of this allows us
to write the commutators of the creation and annihilation
operators as

h½bIð~q1Þ; b†Jð~q2Þ�i ¼ hfbIð~q1Þb†Jð~q2Þgi − 2hb†Jð~q2ÞbIð~q1Þi
¼ ð2πÞ3δ3ð~q1 − ~q2Þ2EqðδIJ − 2fIJð ~q1ÞÞ:

(37)

Here fIJð~q1Þ is the density matrix for neutrinos. For
I ¼ J, fIIð~q1Þ simply corresponds to the expectation
value of the number operator for flavor I and gives
the occupation number of neutrinos of flavor I and
momentum ~q1. For I ≠ J, fIJ corresponds to coherence
between neutrinos of different flavors.
Similarly,

h½d†I ð~q1Þ; dJð~q2Þ�i
¼ −ð2πÞ3δ3ð~q1 − ~q2Þ2EqðδIJ − 2f̄IJð~q1ÞÞ; (38)

where f̄IJð~q1Þ is the density matrix for antineutrinos.
From this point on in our exposition, we will use x to

mean the average coordinate X in Wigner transformed
quantities. Using Eqs. (37) and (38), to perform the integrals
in Eq. (36), simplifying the spinor bilinears by using
Eq. (35), and generalizing from x ¼ 0 to any position gives

Fα _βðx; kÞ

¼ 2πδðk2Þkμσμα _β
�
1

2
− θðk0Þfðx; ~kÞ − θð−k0Þf̄ðx;−~kÞ

�
;

(39)

where we have suppressed flavor indices on fIJ and f̄IJ.
Similarly,

F _αβðx; kÞ ¼ 2πδðk2Þkμσ̄μ _αβ

×
�
1

2
− θðk0Þf̄Tðx; ~kÞ − θð−k0ÞfTðx;−~kÞ

�
:

(40)
Note that F _αβðkÞ is related to FT

α _β
ð−kÞ, where the

transpose is over flavor indices.

We next calculate Fα
β. This is given by the expression

FIJ;α
βð0;kÞ¼ 1

2

Z
d4r
Z

~dq1 ~dq2

×
�
h½bIð~q1Þ;d†Jð~q2Þ�iuαð~q1Þvβð~q2Þeiðk−

q1þq2
2

Þ·r

þh½d†I ð~q1Þ;bJð~q2Þ�ivαð~q1Þuβð~q2Þeiðkþ
q1þq2

2
Þ·r
�
;

(41)

where we have omitted vanishing terms. Since the
anticommutators of b and d† vanish, we can write the
commutators as

h½bIð~q1Þ; d†Jð~q2Þ�i ¼ −2hd†Jð~q1ÞbIð~q2Þi
¼ −ð2πÞ3δ3ð~q1 − ~q2Þ2Eqð2ϕIJð~q1ÞÞ:

(42)

The matrix ϕIJ is a correlation function between neutrino
and antineutrino creation and annihilation operators and so
describes coherence between neutrino and antineutrino
states. We will see that this object vanishes with the
assumption of isotropy (as expected from conservation
of angular momentum) but may, in general, be present in an
anisotropic environment.
We simplify the spinor bilinears in Eq. (41) by using

uαð~qÞvβð~qÞ ¼ vαð−~qÞuβð−~qÞ

¼ 1

2
iq½μðx1 − ix2Þν�ðSLμνÞαβ: (43)

Here, x1 and x2 are spacelike unit vectors orthogonal to
the direction of the momentum and to each other.
Equation (43) may be directly verified by choosing a
coordinate system in which qμ ¼ ðq; 0; 0; qÞ, x1;μ ¼
ð0; 1; 0; 0Þ, and x2;μ ¼ ð0; 0; 1; 0Þ then solving Eq. (34)
for the spinors u and v, imposing the normalization
conditions (35), explicitly calculating the spinor bilinears
and comparing to the expressions for ðSμνL Þαβ. Note that the
prefactor q½μðx1 þ ix2Þν� is chosen to be anti-self-dual.
We choose a prefactor of this form because the contraction
with SLμν projects out the self-dual component, so any self-
dual component in the prefactor would not contribute
to Eq. (43).
Using Eqs. (42) and (43) and performing the integrals in

Eq. (41) gives

Fα
βðx; kÞ ¼ −2πδðk2Þ 1

2
ik½μðx̂1 − ix̂2Þν�ðSLμνÞαβ

× ðθðk0Þϕð~kÞ þ θð−k0ÞϕTð−~kÞÞ: (44)

Similarly,
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F _α
_βðx; kÞ ¼ −2πδðk2Þ 1

2
ik½μðx̂1 þ ix̂2Þν�ðSRμνÞ _α _β

× ðθðk0Þϕ†ð~kÞ þ θð−k0Þϕ⋆ð−~kÞÞ: (45)

We now turn to the spectral function. Unlike the
statistical function, in free field theory the spectral function
is completely determined by the anticommutation relations
between creation and annihilation operators. Thus, the only
nonzero components of the spectral function are

ρα _β;IJðx; kÞ ¼ 2iπδðk2Þsignðk0Þkμσμα_βδIJ (46)

ρ _αβ
IJ ðx; kÞ ¼ 2iπδðk2Þsignðk0Þkμσ̄μ _αβδIJ: (47)

C. Wigner-transformed equations of motion
for the statistical function

Having determined the physical content of the statistical
function, we return to the Wigner transform of Eqs. (26)
and (27). The full Wigner transformed expressions contain
gradient expansions, which are infinite series of derivatives
with respect to x and k. We truncate these infinite series by
expanding in a small parameter ϵ.
In our expansion, we make use of the fact that, in the

regime we are considering, neutrino masses and interaction
potentials are small compared to the neutrino energy. Also,
we expect the variation of physical quantities with respect
to the average coordinate x to be slow compared to the
inverse neutrino de Broglie frequency. These considera-
tions lead us to introduce the power counting

∂x;M;Σ
E

¼ OðϵÞ Πρ;ΠF

E
¼ Oðϵ2Þ; (48)

where E is the neutrino energy. The contributions to self-
energy Πρ and ΠF are Oðϵ2Þ because they appear only at
two-loop order in the Feynman diagram expansion, while
Σ appears at one-loop order.
This power counting includes the standard gradient

expansion (see, for example, Refs. [40,41,70]). However,
our approach is specialized to the ultrarelativistic neutrinos
that are relevant for supernova and compact object merger
environments. Moreover, since this work involves neutri-
nos having energies far below the electroweak scale, the
interactions are always weak.
We keep terms to Oðϵ2Þ, since this allows us to include

terms involving Πρ and ΠF, which describe inelastic and
nonforward scattering of neutrinos. To Oðϵ2Þ, the Wigner
transformed equations for F are�

1

2
i∂ þ k

�
Fðx; kÞ − ðM þ ΣðxÞÞFðk; xÞ

þ 1

2
ið∂μ

xΣðxÞÞð∂k
μFðx; kÞÞ

¼ −
1

2
iðΠþðx; kÞG−ðx; kÞ − Π−ðx; kÞGþðx; kÞÞ (49)

and its Hermitian conjugate. Here, ∂k
μ ≡ ∂

∂kμ. We have made
the right-hand side of the equation more compact by
introducing the notation

G� ≡ −
1

2
iρ� F

Π� ≡ −
1

2
iΠρ � ΠF: (50)

We will use Eq. (49) and its Hermitian conjugate as the
starting point for deriving the equations of motion for the
neutrino density matrices.

V. DERIVATION OF QUANTUM KINETIC
EQUATIONS

A. Outline of the derivation and some preliminaries

Equation (49) has a complicated structure, containing the
kinetic equations as well as algebraic constraints relating
various components ofF to each other. To derive the quantum
kinetic equations, we systematically expand Eq. (49) in the
separation of scales, using the power counting defined
in Eq. (48).
We expect the statistical function F to have an Oð1Þ

piece of the form given by Eqs. (39) and (40) and (44) and
(45), plus a small correction due to nonzero interactions and
neutrino masses. This correction will be OðϵÞ, while our
kinetic equations will be constructed to Oðϵ2Þ. Thus, the
OðϵÞ correction to F will enter into the kinetic equations
and must be calculated.
Our strategy is to first expand Eq. (49) to OðϵÞ and use

this to find the first-order shift in F due to the mass and
interactions. Then, we will insert the OðϵÞ expression for F
back into Eq. (49), expand to Oðϵ2Þ, and extract the
equations of motion for the density matrices and spin
coherence densities.
We will show, in a subsequent section, that Σ corre-

sponds to the matter and neutrino self-interaction potential
arising from coherent forward scattering and has the form

Σ ¼
�

δΣS ΣL · σ

ΣR · σ̄ δΣ†
S

�
; (51)

where ΣL and ΣR are Hermitian, and, for Majorana
fermions, trivially related to each other. ΣL=R ¼ OðϵÞ
and δΣS ¼ Oðϵ2Þ.
To Oðϵ2Þ, the equations of motion for the statistical

function can be written as

ΩF ¼ −
1

2
iðΠþG− − Π−GþÞ (52)

and the Hermitian conjugate. The operator Ω has the
following structure:

VLASENKO, FULLER, AND CIRIGLIANO PHYSICAL REVIEW D 89, 105004 (2014)

105004-10



Ω ¼
 

−m − δΣS ðkþ 1
2
i∂ − ~ΣLÞ · σ

ðkþ 1
2
i∂ − ~ΣRÞ · σ̄ −m† − δΣ†

S

!

≡
�
kþ 1

2
i∂ − ~Σ −M

�
: (53)

Here, ~Σ ¼ Σþ δΣ − 1
2
ið∂μΣÞ∂k

μ, where Σ is the OðϵÞ
quantity, δΣ is an Oðϵ2Þ correction resulting from the
OðϵÞ shift in the argument of Σ½F�, and theOðϵ2Þ derivative
term comes from the Wigner transform. The collisional
gain-loss potentials Π� can, in general, have all possible
components,

Π� ¼
 
ΠS þ 1

2
iΠL;μν

T SLμν ΠL · σ

ΠR · σ̄ Π†
S þ 1

2
iΠR;μν

T SRμν

!�
; (54)

where all quantities are Oðϵ2Þ. We will see that if the spin
coherence density is zero, the gain-loss potentials take on a
simpler form, where ΠS and ΠT are zero to Oðϵ2Þ.
For Majorana neutrinos, we will find that ΣL is related to

ΣR and ΠL is related to ΠR. This is because Σ and Π are
functionals of the two-point function G and mirror the
relations between GL and GR. For now, however, we will
treat all components of Σ, Π, and G as independent and
make use of the Majorana conditions when we derive the
final kinetic equations.
Regardless of whether the fermions are Majorana or

Dirac, the components of Σ, Π�, and F have certain
properties which follow from charge, parity, time reversal
invariance, which requires that these quantities be invariant
under simultaneous Hermitian conjugation in spinor and
flavor space. We can write F, in the most general possible
form, as

F ¼
 
FL
S þ 1

2
iFL

TSL FL
V · σ

FR
V · σ̄ FR

S þ 1
2
iFR

TSR

!
; (55)

where the notation is FL=R
T SL=R ≡ ðFL=R

T ÞμνSL=Rμν . The

components of F must satisfy FL†
V ¼ FL

V, FR†
V ¼ FR

V ,
FL†
S ¼ FR

S , and FL†
T ¼ FR

T . The corresponding components
of Σ and Π� satisfy similar Hermiticity conditions.

B. QKEs to Oð1Þ: Large and small components

To Oð1Þ, Eq. (52) and its Hermitian conjugate simply
give

kF ¼ OðϵÞ Fk ¼ OðϵÞ: (56)

This gives the approximate dispersion relation k2 ¼ 0 to
OðϵÞ. Thus, we can choose the z axis to be along k and

write down k ¼ j~kjκ̂ þOðϵÞ, where the components of κ̂
are κ̂ ¼ ðsignðk0Þ; 0; 0; 1Þ. Note that since κ̂ ≈ k

j~kj, the first

component of κ̂ is �1, depending on whether we are
dealing with a positive or negative value of k0.
We introduce additional basis vectors as follows:

κ̂0 ¼ ðsignðk0Þ; 0; 0;−1Þ
x̂1 ¼ ð0; 1; 0; 0Þ
x̂2 ¼ ð0; 0; 1; 0Þ: (57)

These basis vectors satisfy the relations

κ̂2 ¼ κ̂02 ¼ 0

κ̂ · κ̂0 ¼ 2

κ̂ · x̂i ¼ κ̂0 · x̂i ¼ 0

x̂i · x̂j ¼ −δij: (58)

Note that we have imposed the condition that x̂1, x̂2, and
ẑ ¼ ð0; 0; 0; 1Þ form a right-handed set of basis vectors.
The momentum 4-vector k can receive OðϵÞ corrections
due to a shift in the dispersion relation induced by
interactions. However, the basis vectors remain the same,
regardless of any such shifts.
In addition to the Oð1Þ dispersion relation, substituting

the general form for F in Eq. (55) into Eq. (56) gives the
following constraints on the components of F:

FS ¼ OðϵÞ
FL=R;μ
V ¼ κ̂μFL=R þOðϵÞ

FLμν
T ¼ 1

2
Fi
Tðδij − iϵijÞðκ̂∧x̂jÞμν þOðϵÞ

FRμν
T ¼ 1

2
Fi
Tðδij þ iϵijÞðκ̂∧x̂jÞμν þOðϵÞ: (59)

The wedge product notation is defined in the usual way:
ðU∧VÞμν ≡UμVν −UνVμ. Note that we use the names
FL=R and FT to denote both the full 4-vector or tensor
quantities and their components. Since we will often use
notation where the Lorentz indices are not explicitly shown,
it is important to note whether an expression refers to the
full quantity or the component. This will be clear from
context.
The expressions for FL

T and FR
T can be rewritten as

FLμν
T ¼ 1

2
ðF1

T þ iF2
TÞðκ̂∧ðx̂1 − ix̂2ÞÞμν

≡ ðκ̂∧ðx̂1 − ix̂2ÞÞμνΦ

FRμν
T ¼ 1

2
ðF1

T − iF2
TÞðκ̂∧ðx̂1 þ ix̂2ÞÞμν

≡ ðκ̂∧ðx̂1 þ ix̂2ÞÞμνΦ†; (60)

where we have defined Φ≡ 1
2
ðF1

T þ iF2
TÞ.
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Since we have k2 ¼ 0 toOðϵÞ, the components of F have
the form

FL=R ¼ 2πδðk2 þOðϵÞÞj~kjgL=R
Fi
T ¼ 2πδðk2 þOðϵÞÞj~kjgiT: (61)

For a multiflavor system, the notation δðk2 þOðϵÞÞ is
symbolic, since each component of the flavor matrices gL=R
and giT will in general carry different corrections to the
argument of the delta function.
To OðϵÞ, we write F as follows:

F → Fð1Þ þ Δ: (62)

Here, Fð1Þ incorporates the OðϵÞ correction to the
dispersion relation and has the form

Fð1Þ ¼
 

1
2
iΦðκ̂∧x̂−Þ · SL FLðκ̂ · σÞ
FRðκ̂ · σ̄Þ 1

2
iΦ†ðκ̂∧x̂þÞ · SR

!
; (63)

where x̂� ¼ ðx̂1 � ix̂2Þ. Δ is the set of OðϵÞ small compo-
nents. In general,

Δ ¼
 
ΔS þ 1

2
iΔL

TSL ΔL · σ

ΔR · σ̄ Δ†
S þ 1

2
iΔR

TSR

!
: (64)

Note that the form of F given by Eqs. (59)–(61) is
consistent with Eqs. (39) and (40) and (44), which are
derived from free, massless field theory. All correlation
functions that we have found in Sec. IV B are included in
the Oð1Þ expression for F. Specifically,

FL ¼ 2πδðk2 þOðϵÞÞj~kj

×

�
1

2
− θðk0Þfð~kÞ − θð−k0Þf̄ð−~kÞ

�

FR ¼ 2πδðk2 þOðϵÞÞj~kj

×

�
1

2
− θðk0Þf̄Tð~kÞ − θð−k0ÞfTð−~kÞ

�

Φ ¼ −2πδðk2 þOðϵÞÞj~kj
× ðθðk0Þϕð~kÞ þ θð−k0ÞϕTð−~kÞÞ: (65)

Note that the results of Sec. IV B place additional
constraints on the form of F. These constraints relate FLðkÞ
to FRð−kÞ and FTðkÞ to FTð−kÞ and do not follow from
Eq. (52). These constraints follow from the Majorana
nature of the fermions, which was assumed in Sec. IV B
but not in the derivation of Eq. (52). As mentioned above,
wewill use the more general formalism of Eq. (52) and treat
FL and FR as independent quantities, until we are ready to
extract the equations of motion for the density matrices.

C. QKEs to OðϵÞ: Small components and the
dispersion relation

We next expand Eq. (52) order by order, first using the
OðϵÞ expansion to find the small components Δ and the
OðϵÞ shift in the dispersion relation, and then inserting
the results into the Oðϵ2Þ equations to obtain the kinetic
equations. To OðϵÞ, Eq. (52) is

kΔþ
�
kþ 1

2
i∂
�
F − ΣF −MF ¼ Oðϵ2Þ: (66)

Decomposing this into irreducible representations of the
Lorentz group gives the following set of equations:

(i) Scalar:

k · ΔR þ
�
kþ 1

2
i∂
�
· FR

V − ΣL · FR
V ¼ Oðϵ2Þ (67)

k · ΔL þ
�
kþ 1

2
i∂
�
· FL

V − ΣR · FL
V ¼ Oðϵ2Þ (68)

(ii) Vector:

kΔ†
S − k · ΔR

T −
�
kþ 1

2
i∂
�
· FR

T þ ΣL · FR
T −mFL

V

¼ Oðϵ2Þ (69)

kΔS þ k · ΔL
T þ

�
kþ 1

2
i∂
�
· FL

T − ΣR · FL
T −m†FR

V

¼ Oðϵ2Þ (70)

For the vector equations, the notation is V · T ≡ VμTμν

and T · V ≡ TνμVμ.
(iii) Tensor:�

k∧ΔR þ
�
kþ 1

2
i∂
�
∧FR

V − ΣL∧FR
V

�
L
−
1

2
mFL

T

¼ Oðϵ2Þ (71)

�
k∧ΔL þ

�
kþ 1

2
i∂
�
∧FL

V − ΣR∧FL
V

�
R
þ 1

2
m†FR

T

¼ Oðϵ2Þ; (72)

where the superscripts L and R denote anti-self-dual
and self-dual projections, respectively; that is, for an
antisymmetric tensor T, TL ≡ 1

2
ðT − iT⋆Þ and TR≡

1
2
ðT þ iT⋆Þ.

These equations, and their Hermitian conjugates, deter-
mine the form of the small components Δ and the
dispersion relations for FL=R and FT . To solve the equa-
tions, it is useful to decompose all our quantities into
components along the basis vectors in Eq. (57).
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The decomposition for FL=R and FL=R
T is given by

Eqs. (59)–(61). For the other 4-vector quantities, we use

∂ ¼ 1

2
∂κ0 κ̂ þ 1

2
∂κκ̂0 − ∂ix̂i (73)

ΣL=R ¼ 1

2
Σκ0
L=Rκ̂ þ

1

2
Σκ
L=Rκ̂

0 − Σi
L=Rx̂

i (74)

ΔL=R ¼ 1

2
Δκ

L=Rκ̂
0 − Δi

L=Rx̂
i (75)

k ¼ 1

2
ðk · κ̂0Þκ̂ þ 1

2
ðk · κ̂Þκ̂0

¼ 1

2
ðj~kj þ EÞκ̂ þ 1

2
ðk · κ̂Þκ̂0: (76)

Note that theΔκ0
L=R component does not appear, since this

kind of first-order shift would be along the same direction
as FL=R and can therefore be absorbed into the Oð1Þ
quantity. For a 4-vector quantity V, we have labeled its
component along any basis vector ŵ as Vw ≡ V · ŵ. This
choice of notation determines the particular signs and
factors of 1=2 in Eqs. (73)–(76). For example,
κ̂ · ΣL ¼ Σκ. Since, from the Oð1Þ dispersion relation,

E ¼ j~kj þOðϵÞ, the κ̂ component of k is j~kj þOðϵÞ.
The tensor small component is decomposed as follows:

1

2
ðκ̂∧κ̂0ÞΔκκ0

T þ ðx̂1∧x̂2ÞΔxx
T þ ðκ̂0∧x̂iÞΔi

T : (77)

Again, the component proportional to κ̂∧x̂i does not
appear, as this component can be absorbed into FT . The
anti-self-dual and self-dual projections of Eq. (77) are

ΔL
T ¼ 1

2
ðκ̂0∧x̂iÞðδij − iϵijÞΔj

T

þ
�
1

2
ðκ̂∧κ̂0Þ − iðx̂1∧x̂2Þ

�
ΔT

ΔR
T ¼ 1

2
ðκ̂0∧x̂iÞðδij þ iϵijÞΔj

T

þ
�
1

2
ðκ̂∧κ̂0Þ þ iðx̂1∧x̂2Þ

�
Δ†

T; (78)

where ΔT ≡ 1
2
ðΔκκ0

T þ iΔxx
T Þ.

We next use Eqs. (73)–(77) to decompose Eqs. (67)–(72)
into components. For the scalar equations (67) and (68),
this gives

j~kjΔκ
R þ ðk · κ̂ÞFR þ 1

2
i∂κFR − Σκ

LFR ¼ Oðϵ2Þ (79)

j~kjΔκ
L þ ðk · κ̂ÞFL þ 1

2
i∂κFL − Σκ

RFL ¼ Oðϵ2Þ: (80)

The Hermitian portions of these equations are

j~kjΔκ
R þ ðk · κ̂ÞFR −

1

2
fΣκ

L; FRg ¼ Oðϵ2Þ (81)

j~kjΔκ
L þ ðk · κ̂ÞFL −

1

2
fΣκ

R; FLg ¼ Oðϵ2Þ: (82)

The anti-Hermitian portions of the scalar equations
involve derivatives of F along κ̂ and are therefore
kinetic equations, giving the evolution of the neu-
trino density matrices along the neutrino world line.
We will return to the kinetic equations when we expand
to Oðϵ2Þ.
The vector equations (69) and (70) include components

along κ̂ and x̂i [the component along κ̂0 is trivial
to OðϵÞ]. Before extracting these components, it is
useful to separate the vector equations into those
involving ΔS and those involving ΔT . Taking the
Hermitian conjugate of Eq. (69) and adding this to
Eq. (70) gives

2kΔS þ i∂ · FL
T − ðΣR · FL

T þ FL
T · ΣLÞ − ðm†FR þ FLm†Þ

¼ Oðϵ2Þ: (83)

Subtracting Eq. (70) from the Hermitian conjugate of
Eq. (69) gives

2k · ðΔL
T þ FL

TÞ − ðΣR · FL
T − FL

T · ΣLÞ − ðm†FR − FLm†Þ
¼ Oðϵ2Þ: (84)

The components of Eqs. (83) and (84) along κ̂ give ΔS
and ΔT as functions of FL, FR, and Fi

T :

2j~kjΔS − i∂iPij
þF

j
T þ ðΣi

RP
ij
þF

j
T − Pij

þF
j
TΣi

LÞ
− ðm†FR þ FLm†Þ ¼ Oðϵ2Þ (85)

− 2j~kjΔT þ ðΣi
RP

ij
þF

j
T þ Pij

þF
j
TΣi

LÞ − ðm†FR − FLm†Þ
¼ Oðϵ2Þ: (86)

Here, Pij
� are projection operators on the x̂1; x̂2 plane, given

by Pij
� ≡ 1

2
ðδij � iϵijÞ.

The components of Eq. (83) along x̂i give kinetic
equations for Fi

T ; we will return to these equations when
we consider the Oðϵ2Þ expansion. The components of
Eq. (84) along x̂i are

4j~kjPij
−Δ

j
T þ 2ðk · κ̂ÞPij

þF
j
T − ðΣκ

RP
ij
þF

j
T þ Pij

þF
j
TΣκ

LÞ
¼ Oðϵ2Þ: (87)

Acting on this with P− and using PþP− ¼ 0 and
P−P− ¼ P− gives Pij

−Δ
j
T ¼ Oðϵ2Þ. The Hermitian conju-

gate is Pij
þΔ

j
T ¼ Oðϵ2Þ; adding these equations together
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gives Δj
T ¼ Oðϵ2Þ. The remainder of the equation, with its

Hermitian conjugate, is

ðk · κ̂ÞPij
þF

j
T −

1

2
ðΣκ

RP
ij
þF

j
T þ Pij

þF
j
TΣκ

LÞ ¼ Oðϵ2Þ (88)

ðk · κ̂ÞPij
−F

j
T −

1

2
ðΣκ

LP
ij
−F

j
T þ Pij

−F
j
TΣκ

RÞ ¼ Oðϵ2Þ: (89)

This is a set of dispersion relations for FT ; we will return to
these equations later.
We next consider the tensor equations, (71) and (72).

The components proportional to κ̂0∧x̂i are trivial to OðϵÞ.
The components proportional to κ̂∧κ̂0 are

j~kjΔκ
R − ðk · κ̂ÞFR −

1

2
i∂κFR þ Σκ

LFR ¼ Oðϵ2Þ (90)

j~kjΔκ
L − ðk · κ̂ÞFL −

1

2
i∂κFL þ Σκ

RFL ¼ Oðϵ2Þ: (91)

The Hermitian parts of these equations, together with
Eqs. (79) and (80), give Δκ

R ¼ Oðϵ2Þ and the dispersion
relations for FL and FR:

ðk · κ̂ÞFR −
1

2
fΣκ

L; FRg ¼ Oðϵ2Þ (92)

ðk · κ̂ÞFL −
1

2
fΣκ

R; FLg ¼ Oðϵ2Þ: (93)

The anti-Hermitian part simply replicates the OðϵÞ kinetic
equation obtained from the scalar equations. The com-
ponents along x̂1∧x̂2 are trivially related to those
along κ̂∧κ̂0.
The components of Eqs. (71) and (72) along κ̂∧x̂i are

Pij
þ

�
j~kjΔj

R −
1

2
i∂jFR þ Σj

LFR þ 1

2
mFj

T

�
¼ Oðϵ2Þ (94)

Pij
−

�
j~kjΔj

L −
1

2
i∂jFL þ Σj

RFL −
1

2
m†Fj

T

�
¼ Oðϵ2Þ: (95)

The Hermitian parts of Eqs. (94) and (95) give expres-
sions for Δi

L=R:

j~kjΔi
R þ 1

2
ϵij∂jFR þ ðPij

þΣ
j
LFR þ FRPij

−Σ
j
LÞ

þ 1

2
ðmPij

þF
j
T þ Pij

−F
j
Tm

†Þ ¼ Oðϵ2Þ (96)

j~kjΔi
L −

1

2
ϵij∂jFL þ ðPij

−Σ
j
RFL þ FLP

ij
þΣ

j
RÞ

−
1

2
ðm†Pij

−F
j
T þ Pij

þF
j
TmÞ ¼ Oðϵ2Þ: (97)

The anti-Hermitian parts are trivially related to the
Hermitian parts.
In summary, the equations to OðϵÞ give the following

expressions for the small components:

Δκ
L=R ¼ Oðϵ2Þ Δi

T ¼ Oðϵ2Þ (98)

ΔS ¼
1

2j~kj
ðm†FR þ FLm†Þ

þ Pij
þ

2j~kj
ði∂iFj

T − ðΣi
RF

j
T − Fj

TΣi
LÞÞ (99)

ΔT ¼ −
1

2j~kj
ðm†FR − FLm†Þ

þ Pij
þ

2j~kj
ðΣi

RF
j
T þ Fj

TΣi
LÞ (100)

Δi
L ¼ 1

2j~kj
ðm†Pij

−F
j
T þ Pij

þF
j
TmÞ

þ 1

j~kj

�
1

2
ϵij∂jFL − ðPij

−Σ
j
RFL þ FLP

ij
þΣ

j
RÞ
�

(101)

Δi
R ¼ −

1

2j~kj
ðmPij

þF
j
T þ Pij

−F
j
Tm

†Þ

−
1

j~kj

�
1

2
ϵij∂jFR þ ðPij

þΣ
j
LFR þ FRPij

−Σ
j
LÞ
�
: (102)

We also obtain dispersion relations for FT and FL=R,
given by Eqs. (88) and (89) and (92) and (93).

D. Kinetic equations for FL=R

We now construct equations for the evolution of FL and
FR, which encode the particle densities, to Oðϵ2Þ. These
equations are derived from the scalar components of
Eq. (52). To Oðϵ2Þ, the scalar equations are

k · ðFR þ ΔRÞ þ
1

2
i∂ · FR − ~ΣL · FR

þ 1

2
i∂ · ΔR − ΣL · ΔR −mΔS

¼ −
1

2
iðΠþ

L · F−
R − Π−

L · Fþ
R Þ

þ 1

8
iðΠLþ

T GL−
T − ΠL−

T GLþ
T Þ (103)
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k · ðFL þ ΔLÞ þ
1

2
i∂ · FL − ~ΣR · FL

þ 1

2
i∂ · ΔL − ΣR · ΔL −m†Δ†

S

¼ −
1

2
iðΠþ

R · F−
L − Π−

R · Fþ
L Þ

þ 1

8
iðΠRþ

T GR−
T − ΠR−

T GRþ
T Þ; (104)

where we have used the notation ΠTGT ≡ ðΠTÞμνGμν
T .

Taking the anti-Hermitian parts of these equations and
decomposing the 4-vector quantities into components gives

i∂κFR −
i

2

����~k
����
	
∂iΣi

L; FR



−ð ~Σκ

LFR − FR
~Σκ†
L Þ − i∂iΔi

R

þ ½Σi
L;Δi

R� − ðmΔS − Δ†
Sm

†Þ ¼ iCR (105)

i∂κFL −
i

2

����~k
����
	
∂iΣi

R; FL



− ð ~Σκ

RFL − FL
~Σκ†
R Þ − i∂iΔi

L

þ ½Σi
R;Δi

L� − ðm†Δ†
S − ΔSmÞ ¼ iCL; (106)

where

CR ¼ −
1

2
ðfΠκþ

L ; G−
Rg − fΠκ−

L ; Gþ
RgÞ þ CR

T (107)

CL ¼ −
1

2
ðfΠκþ

R ; G−
Lg − fΠκ−

R ; Gþ
LgÞ þ CL

T: (108)

The quantitiesG� are defined in Eq. (50). The terms CL
T and

CR
T involve the tensor components of Π and are given by

CL
T ¼ 1

8
ðΠRþ

T GR−
T þ GL−

T ΠLþ
T − ΠR−

T GRþ
T − GLþ

T ΠL−
T Þ

(109)

CR
T ¼ 1

8
ðΠLþ

T GL−
T þ GR−

T ΠRþ
T − ΠL−

T GLþ
T −GRþ

T ΠR−
T Þ:

(110)

Next, we break this expression down into components
along the basis vectors. Since G�

T contains only compo-
nents proportional to κ̂∧x̂i, the contraction G�

TμνΠ
μν∓
T will

only have nonzero contributions from components of Π∓
T

that are proportional to κ̂0∧x̂i. Thus, we can write

ΠL�
T ¼ Πi�

T Pij
þðκ̂0∧x̂jÞ (111)

ΠR�
T ¼ Πi�

T Pij
−ðκ̂0∧x̂jÞ: (112)

We now use G�
T ¼ �FT , switch to the notation Φ≡

1
2
ðF1

T þ iF2
TÞ, and similarly define P�

T ≡ 1
2
ðΠ1

T þ iΠ2
TÞ�.

With this notation, the terms appearing in Eqs. (107) and
(108) are

CR
T ¼ ðPþ

T þ P−
T Þ†Φþ Φ†ðPþ

T þ P−
T Þ (113)

CL
T ¼ ðPþ

T þ P−
T ÞΦ† þ ΦðPþ

T þ P−
T Þ†: (114)

Next, we use Eqs. (99) and (101) and (102) to express the
small components ΔS and Δi

L=R in terms of FL=R and Fi
T .

Equation (106) contains the combination of small compo-
nents UL ≡ −i∂iΔi

L þ ½Σi
R;Δi

L� − ðm†Δ†
S − ΔSmÞ, and

Eq. (105) contains a similar combination, which we denote
UR. We separate this into parts that depend on FL=R and FT :

UL½FL=R� ¼ −i∂iΔi
L½FL=R� þ ½Σi

R;Δi
L½FL=R��

− ðm†Δ†
S½FL=R� − ΔS½FL=R�mÞ (115)

UL½FT � ¼ −i∂iΔi
L½FT � þ ½Σi

R;Δi
L½FT ��

− ðm†Δ†
S½FT � − ΔS½FT �mÞ: (116)

Using Eqs. (99) and (101) gives

UL½FL� ¼
1

2j~kj
i∂ifΣi

R; FLg −
1

2j~kj
× ½m†m − ϵij∂iΣj

R þ Σi
RΣi

R − i½Σ1
R;Σ2

R�; FL�
(117)

UL½FT � ¼
1

2j~kj
ðΣi

Rm
†Pij

−F
j
T − Pij

þF
j
TmΣi

RÞ

−
1

2j~kj
ðm†Σi

LP
ij
−F

j
T − Pij

þF
j
TΣi

LmÞ: (118)

Similarly, we calculate UR½FR� and UR½FT �:

UR½FR� ¼
1

2j~kj
i∂ifΣi

L; FRg −
1

2j~kj
× ½mm† þ ϵij∂iΣj

L þ Σi
LΣi

L þ i½Σ1
L;Σ2

L�; FR�
(119)

UR½FT � ¼ −
1

2j~kj
ðΣi

LmPij
þF

j
T − Pij

−F
j
Tm

†Σi
LÞ

þ 1

2j~kj
ðmΣi

RP
ij
þF

j
T − Pij

−F
j
TΣi

Rm
†Þ: (120)

The equations for FL=R are coupled to Fi
T via the UL=R½FT �

terms as well as terms contained in CL and CR. Therefore,
in addition to the kinetic equations for FL=R, which are
related to the usual neutrino density matrices, we will need
to derive the kinetic equations for Fi

T, which encode
coherence between left-handed and right-handed neutrinos.
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Note that the coupling of Fi
T to FL=R vanishes in the limit of

isotropy. This is as expected, since in the isotropic limit
conservation of angular momentum prohibits the intercon-
version of left-handed and right-handed states.
Using the notation Φ ¼ 1

2
ðF1

T þ iF2
TÞ, we write the

kinetic equations for FL and FR as

i∂κFR þ 1

2j~kj
ifΣi

L; ∂iFRg þ
1

2
if∂μΣκ

L; ∂μ
kFRg

− ½HL; FR� þ UR½Φ� ¼ iCR½FL; FR;Φ� (121)

i∂κFL þ 1

2j~kj
ifΣi

R; ∂iFLg þ
1

2
if∂μΣκ

R; ∂μ
kFLg

− ½HR; FL� þ UL½Φ� ¼ iCL½FL; FR;Φ�; (122)

where the Hamiltonian-like operators are

HL ¼ Σκ
L þ δΣκ

L þ 1

2j~kj
ðmm† þ ϵij∂iΣj

L þ 4Σ−
LΣ

þ
L Þ (123)

HR ¼ Σκ
R þ δΣκ

R þ 1

2j~kj
ðm†m − ϵij∂iΣj

R þ 4Σþ
RΣ−

RÞ (124)

and the couplings to the spin coherence density are

UR½Φ� ¼
1

j~kj
ððmΣ−

R − Σ−
LmÞΦþ Φ†ðm†Σþ

L − Σþ
Rm

†ÞÞ

(125)

UL½Φ� ¼ −
1

j~kj
ððm†Σþ

L − Σþ
Rm

†ÞΦ† þ ΦðmΣ−
R − Σ−

LmÞÞ:

(126)

Here, Σ� ≡ 1
2
ðΣ1 � iΣ2Þ, while CL and CR correspond to

Boltzmann collision terms, as will be shown below. These
are given by Eqs. (107) and (108) and (113) and (114).

E. Kinetic equations for spin coherence

We see that the equations of motion for FL and FR,
which encode the density matrices for the particles, are
coupled to the spin coherence density Φ. We will see below
that this spin coherence can mediate oscillations between
particles of opposite helicity. We now derive the equations
of motion for Φ.
We begin with kinetic equations for FT, which can be

derived from the vector components of Eq. (52). To Oðϵ2Þ,
the vector equations are

�
kþ 1

2
i∂
�
Δ†

S − ΣLΔ
†
S −mðFL þ ΔLÞ

−
�
kþ 1

2
i∂
�
· ðFR

T þ ΔR
TÞ þ ~ΣL · ðFR

T þ ΔR
TÞ

¼ 1

2
iðΠþ

L · FR−
T − Π−

L · FRþ
T Þ

−
1

2
iðΠþ

S F
−
L − Π−

SF
þ
L þ ΠTþ

L · F−
L − ΠT−

L · Fþ
L Þ (127)

�
kþ 1

2
i∂
�
ΔS − ΣRΔS −m†ðFR þ ΔRÞ

þ
�
kþ 1

2
i∂
�
· ðFL

T þ ΔL
TÞ − ~ΣR · ðFL

T þ ΔL
TÞ

¼ −
1

2
iðΠþ

R · FL−
T − Π−

R · FLþ
T Þ

−
1

2
iðΠ†þ

S F−
R − Π†−

S Fþ
R − ΠTþ

R · F−
R þ ΠT−

R · Fþ
R Þ: (128)

We take the Hermitian conjugate of the Eq. (127), add to
Eq. (128), and then choose the x̂i components and act with
Pij
þ. This gives

i∂κPij
þF

j
T − ð ~Σκ

RP
ij
þF

j
T − Pij

þF
j
T
~Σ†κ
L Þ

− i

2j~kj
ð∂nΣn

RP
ij
þF

j
T þ Pij

þF
j
T∂nΣn

LÞ

þ i

2j~kj
Pij
þð∂jΣn

RP
nmþ Fm

T þ Pnmþ Fm
T ∂jΣn

LÞ

þ Pij
þððm†Δj

R þ Δj
Lm

†Þ þ ðΣj
RΔS þ ΔSΣ

j
LÞÞ

þ Pij
þði∂jΔT − ðΣj

RΔT − ΔTΣ
j
LÞÞ ¼ iCi

T; (129)

where

Ci
T ¼ 1

2
ðΠþκ

R Pij
þF

j
T þ Pij

þF
j
TΠ

þκ
L Þ

þ 1

2
ðΠ−κ

R Pij
þF

j
T þ Pij

þF
j
TΠ−κ

L Þ
− Pij

þðΠjþ
T G−

R þ G−
LΠ

jþ
T − Πj−

T Gþ
R −Gþ

LΠ
j−
T Þ: (130)

Writing this in terms of the complex matrix Φ, defined
above,

i∂κΦ − ð ~Σκ
RΦ − Φ ~Σ†κ

L Þ þ i∂þΔT − ðΣþ
RΔT − ΔTΣþ

L Þ

− i

2j~kj
ð∂iΣi

RΦþ Φ∂iΣi
LÞ þ

i

j~kj
ð∂þΣ−

RΦþ Φ∂þΣ−
LÞ

þ ðm†Δþ
R þ Δþ

Lm
†Þ þ ðΣþ

RΔS þ ΔSΣþ
L Þ ¼ iCΦ; (131)

where, using P�
T ¼ 1

2
ðΠ1

T þ iΠ2
TÞ�,
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CΦ ¼ 1

2
ððΠþκ

R þ Π−κ
R ÞΦþ ΦðΠþκ

L þ Π−κ
L ÞÞ

− Pþ
T G

−
R −G−

LP
þ
T þ P−

TG
þ
R þ Gþ

LP
−
T : (132)

We separate the combination of small components in
Eq. (129) into a part dependent on Φ and one dependent
on FL=R:

V½Φ� þ V½FL=R� ¼ i∂þΔT − ðΣþ
RΔT −ΔTΣþ

L Þ
þ ðm†Δþ

R þΔþ
Lm

†Þ þ ðΣþ
RΔS þΔSΣþ

L Þ:
(133)

Using Eqs. (99)–(102) for the small components,
we obtain

V½Φ� ¼ 1

2j~kj
i∂iðΣi

RΦþ ΦΣi
LÞ

−
1

2j~kj
ðm†mþ 2i∂−Σþ

R þ 4Σþ
RΣ−

RÞΦ

þ 1

2j~kj
Φðmm† − 2i∂−Σþ

L þ 4Σ−
LΣ

þ
L Þ (134)

V½FL=R� ¼ −
1

j~kj
ðm†Σþ

LFR − FLm†Σþ
L Þ

þ 1

j~kj
ðΣþ

Rm
†FR − FLΣþ

Rm
†Þ: (135)

We arrange the kinetic equation for Φ as

i∂κΦþ 1

2j~kj
iðΣi

R∂iΦþ ∂iΦΣi
LÞ

þ 1

2
ið∂μΣκ

R∂μ
kΦþ ∂μ

kΦ∂μΣκ
LÞ

− ðHΦΦ − ΦH̄ΦÞ þ V½FL=R� ¼ iCΦ; (136)

where V½FL=R� is given by Eq. (135), and the operators Hϕ

and H̄ϕ are given by

HΦ ¼ HR (137)

H̄Φ ¼ HL: (138)

F. Majorana conditions and dispersion relation

We now extract the kinetic equations for particle and
antiparticle density matrices. These equations can be
obtained by integrating the equations of motion for FL
and FR over positive or negative energies.
For Majorana neutrinos, the equations of motion for FL

and FR must be redundant; that is, the positive-energy
component of FL contains the same information as the

negative-energy component of FR. Specifically, FLðkÞ ¼
FT
Rð−kÞ, and ΦðkÞ ¼ ΦTð−kÞ. The redundancy of the

equations of motion requires

m ¼ mT ΣR ¼ −ΣT
L ≡ Σ: (139)

The condition m ¼ mT follows from the form of the
Majorana mass term. When we calculate the matter
potential and the gain-loss potentials below, we will see
that the other conditions are also satisfied. This follows
simply from the fact that the potentials Σ and Π are
functionals of the two-point function, and the Majorana
constraints on the form of the two-point function lead to the
appropriate constraints on Σ and Π.
In addition to imposing the Majorana constraints, we

must solve the dispersion relations for FL, FR, and FT ,
given by Eqs. (92) and (93) and (88) and (89), to OðϵÞ.
We solve Eq. (92), by transforming to the basis in flavor
space that diagonalizes Σκ

L. In this basis, FR satisfies
Eq. (92) if it has the form

FR ¼

0
B@

δð1; 1Þg11R δð1; 2Þg12R :::

δð2; 1Þg21R δð2; 2Þg22R :::

::: ::: :::

1
CA: (140)

Here, δðI; JÞ is an expression containing a delta function
that enforces the condition k · κ̂ − 1

2
ðΣI

L þ ΣJ
LÞ ¼ Oðϵ2Þ,

where ΣI
L is the Ith eigenvalue of Σκ

L. We wish to write

this as 2πδðk2 þOðϵÞÞj~kj, to match the Oð1Þ expression

FL ¼ 2πδðk2Þj~kjgðkÞ. Therefore, the appropriate form of

the delta function is δðI; JÞ ¼ 2πδðk2 − j~kjðΣI
L þ ΣJ

LÞþ
Oðϵ2ÞÞj~kj.
Using flavor projection operators PI , where

P1 ¼

0
B@ 1 0 …

0 0 …
… … …

1
CA;

P2 ¼

0
B@ 0 0 …

0 1 …
… … …

1
CA;

etc., we can write

FR ¼
X
IJ

2πδðk2 − j~kjðΣI
L þ ΣJ

LÞÞj~kjPIgRPJ: (141)

We can now transform to an arbitrary basis (such as the
flavor basis) by using the unitary matrix UL, which
transforms from the desired basis to one in which Σκ

L is
diagonal, and use Eq. (40) to express FR in terms of f and
f̄. The result is
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FR ¼ 2πj~kj
X
IJ

δðk2 − j~kjðΣI
L þ ΣJ

LÞÞðU†
LPIULÞ

×

�
1

2
− θðk0Þf̄Tð~kÞ − θð−k0ÞfTð−~kÞ

�
ðU†

LPJULÞ:

(142)

Similarly,

FL ¼ 2πj~kj
X
IJ

δðk2 − j~kjðΣI
R þ ΣJ

RÞÞðU†
RPIURÞ

×

�
1

2
− θðk0Þfð~kÞ − θð−k0Þf̄ð−~kÞ

�
ðU†

RPJURÞ;

(143)

where the density matrices f and f̄ are expressed in the
original flavor basis. For spin coherence, the dispersion
relation is given by Eqs. (88) and (89). In terms of the
quantity Φ, these equations give

ðk · κ̂ÞΦ −
1

2
ðΣκ

RΦþ ΦΣκ
LÞ ¼ Oðϵ2Þ: (144)

Note thatΦ satisfies the dispersion relation if it has the form

Φ ¼ −2πj~kj
X
IJ

δðk2 − j~kjðΣI
R þ ΣJ

LÞÞðU†
RPIURÞ

× ðθðk0Þϕð~kÞ þ θð−k0ÞϕTð−~kÞÞðU†
LPJULÞ: (145)

G. Equations of motion for density matrices
and spin coherence densities

We can now find the equations of motion for the density
matrices of Majorana neutrinos. These equations can be
obtained by integrating the equation of motion for FL,
Eq. (122), over positive energies and similarly integrating
Eq. (121) for FR over positive energies and taking the
transpose. We also integrate Eq. (136) over positive
energies to obtain the equations of motion for the spin
coherence density. Because of the Majorana nature of
the fermions, these equations are redundant with those
obtained by integrating over negative energies; the redun-
dancy is satisfied if the Majorana conditions on the mass
and the matter potentials, Eq. (139), hold. Performing the
integration and imposing the Majorana conditions gives

i∂κfð1Þ þ 1

2j~kj
ifΣi; ∂ifg

− 1

2
i

	∂Σκ

∂~x ;
∂f
∂~k



− ½H; f�ð1Þ þ U½ϕ� ¼ iC½f; f̄;ϕ� (146)

i∂κf̄ð1Þ −
1

2j~kj
ifΣi; ∂if̄g

þ 1

2
i

	∂Σκ

∂~x ;
∂f̄
∂~k



− ½H̄; f̄�ð1Þ þ Ū½ϕ� ¼ iC̄½f; f̄;ϕ� (147)

i∂κϕð1Þ þ 1

2j~kj
iðΣi∂iϕ − ∂iϕΣiTÞ

− 1

2
i

�∂Σκ

∂~x ·
∂ϕ
∂~k − ∂ϕ

∂~k ·
∂ΣκT

∂~x
�

− ðHΦϕ − ϕH̄ΦÞð1Þ þ V½f; f̄� ¼ iCϕ½ϕ; f; f̄; �: (148)

Since ΣL and ΣR are related by the Majorana condition,
we use the notation Σ≡ ΣR ¼ −ΣT

L. The terms immedi-
ately following the first derivative term, i.e., those involving
anticommutators and derivatives of the matter potential,
give trajectory deviation and a shift in energy of the
particles in response to a changing matter potential.
The Hamiltonian operators for neutrinos and antineu-

trinos, H and H̄, are

H ¼ Σκ þ δΣκ þ 1

2j~kj
ðm†m − ϵij∂iΣj þ ΣiΣi − i½Σ1;Σ2�Þ

(149)

H̄ ¼ Σκ þ δΣκ −
1

2j~kj
ðm†m − ϵij∂iΣj þ ΣiΣi − i½Σ1;Σ2�Þ:

(150)

The terms coupling the kinetic equations to the spin
coherence are

U ¼ 1

j~kj
ðΣþm⋆ϕ† − ϕmΣ−Þ

þ 1

j~kj
ðm⋆ΣþTϕ† − ϕΣ−TmÞ (151)

Ū ¼ −
1

j~kj
ðΣþm⋆ϕ⋆ − ϕTmΣ−Þ

−
1

j~kj
ðm⋆ΣþTϕ⋆ − ϕTΣ−TmÞ: (152)

The collision terms on the right-hand side are

C ¼ 1

2
ðf ~Πκþ

R ; fg − f ~Πκ−
R ; 1 − fgÞ

þ ð ~Pþ
T þ ~P−

T Þϕ† þ ϕð ~Pþ
T þ ~P−

T Þ† (153)
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C̄ ¼ 1

2
ðf½ ~Πκþ

L �T; f̄g − f½ ~Πκ−
L �T; 1 − f̄gÞ

þ ð ~Pþ
T þ ~P−

T ÞTϕ⋆ þ ϕTð ~Pþ
T þ ~P−

T Þ⋆ (154)

Cϕ ¼ 1

2
½ð ~Πκþ

R þ ~Πκ−
R Þϕþ ϕð ~Πκþ

L þ ~Πκ−
L Þ�

þ f ~Pþ
T − ð1 − fÞ ~P−

T þ ~Pþ
T f̄

T − ~P−
T ð1 − f̄TÞ; (155)

where

~Πκ�
L;Rð~kÞ ¼

Z
∞

0

dk0Πκ�
L;RðkÞδðk0 − j~kjÞ

~P�
T ð~kÞ ¼

Z
∞

0

dk0P�
T ðkÞδðk0 − j~kjÞ:

The first two terms in C and C̄ correspond to the gain-
loss terms in the Boltzmann equation, including Fermi
blocking. The remainder represent coupling to the spin
coherence ϕ via collisional processes.
The superscript “ ð1Þ” we take to indicate terms that

include corrections stemming from a shift in the dispersion
relation, up to Oðϵ2Þ. Specifically,

fð1Þ ¼
Z

∞

0

dk0

2π
ð−2FLÞ

¼ f −
X
IJ

ΣI þ ΣJ

2j~kj
ðU†PIUÞfðU†PJUÞ (156)

f̄ð1Þ ¼
Z

∞

0

dk0

2π
ð−2FRÞT

¼ f̄ þ
X
IJ

ΣI þ ΣJ

2j~kj
ðU†PJUÞf̄ðU†PIUÞ (157)

and

½H; f�ð1Þ ¼ ½HðϵÞ; fð1Þ� þ ½Hðϵ2Þ; f�; (158)

where HðϵÞ and Hðϵ2Þ are the OðϵÞ and Oðϵ2Þ contribu-
tions to H.
The quantities appearing in the equation of motion for

spin coherence are Hamiltonian-like quantities acting on ϕ
itself,

HΦ ¼ H (159)

H̄Φ ¼ −H̄T . (160)

as well as a term coupling ϕ to f and f̄:

V½f; f̄� ¼ 1

j~kj
ðm⋆ΣþTf̄T − fm⋆ΣþTÞ

þ 1

j~kj
ðΣþm⋆f̄T − fΣþm⋆Þ: (161)

The quantity ϕð1Þ incorporates corrections due to the
dispersion relation:

ϕð1Þ ¼ ϕ −
X
IJ

ΣI − ΣJ

2j~kj
ðU†PIUÞϕðUTPJU⋆Þ: (162)

H. 2Nf × 2Nf notation

Equations (146)–(148), the quantum kinetic equations,
can be written more compactly as follows:

iD½F � − ½H;F � ¼ iC½F �: (163)

Here, for three neutrino flavors, F and H are 6 × 6
matrices having the following block structure:

F ≡
�

f ϕ

ϕ† f̄T

�
; H≡

�
H Hνν̄

H†
νν̄ −H̄T

�
: (164)

The quantities H and H̄ are the neutrino and antineutrino
Hamiltonians, given by Eqs, (149) and (150), while Hνν̄ is
given by

Hνν̄ ¼ −
1

j~kj
ðΣþm⋆ þm⋆ΣþTÞ: (165)

The derivative term is

iD½F � ¼ i∂κF ð1Þ þ i

2j~kj

	�
Σi 0

0 −ΣiT

�
; ∂iF




− 1

2
i

	 ∂
∂~x
�Σκ 0

0 −ΣκT

�
;
∂F
∂~k



(166)

and the collision term is

C ¼
� C Cϕ

C†
ϕ C̄T

�
; (167)

where C, C̄ and Cϕ are given by Eqs. (153), (154),
and (155).

VI. NEUTRINO INTERACTIONS WITH MATTER

In this section, we compute the matter potential Σ for
neutrinos. We also show how the gain-loss potentials Π�
are calculated and explicitly compute some of the terms in
Π� to show that these quantities can be identified with the
gain-loss terms in the Boltzmann equation.
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A. Matter potential

The matter potential corresponds to the local piece of the
neutrino self-energy, as given by Eq. (25). Since, in the
low-energy limit, the W and Z boson propagators are local
[proportional to δðx − yÞ], to leading order the matter
potential is given by the one-loop diagrams shown in
Fig. 1. We note that in general, the leading-order form of
the weak boson propagator receives small corrections,
which may be physically important in some environments
[71–76]. For simplicity, we do not include these corrections
here; however, incorporating them would be relatively
straightforward.
Note that the one-loop diagrams involving only neutrino

propagators include all corrections to the neutrino two-point
function, since the neutrino two-point function is treated as a
dynamical quantity. As a consequence, the diagrams already
include all “bubble” diagrams with bubbles branching off an
internal neutrino line. However, since we are not treating
charged leptons as dynamical, there are additional contri-
butions corresponding to corrections to the charged lepton
two-point function. Examples of such contributions are
given in Fig. 2. Diagrams such as this generate a neutrino
magnetic moment, thus giving neutrinos a small effective
interaction with the electromagnetic field. These diagrams
also give a small effective mass splitting between muon and
tau neutrinos, due to the different mass of the virtual charged
lepton on the internal lines. Since the subdiagram involves
the electromagnetic, rather than the weak interaction, even
higher-order diagrams like this can give a larger contribution
to Σ than two-loop diagrams involving only the weak
interaction. Nevertheless, for simplicity, we will not include
such diagrams here and simply use the leading-order
expressions for the charged lepton two-point function.
However, it should be kept in mind that the charged lepton
corrections, though small, nevertheless may prove important
in neutrino flavor evolution in supernovae, as demonstrated
in Refs. [71,77,78].
Having made these simplifications, we compute the first

diagram in Fig. 1. Note that this diagram cannot involve an
arrow-clashing charged lepton propagator (involving either
an odd number of mass insertions or any kind of charged
lepton spin coherence) because the arrow-clashing

propagator always connects the charged lepton field to
its Dirac counterpart, which does not interact via the
charged current interaction. Therefore, the only contribu-
tions to Σ from this diagram are those given in Fig. 3.
In position space, these diagrams give

ΣW;e
IJ;α _αðx; yÞ ¼ iδ4ðx − yÞð−i2

ffiffiffi
2

p
GFÞσμα _βG

e; _ββ
IJ ðx; yÞσμβ _α

(168)

ΣW;e; _αα
IJ ðx; yÞ ¼ iδ4ðx − yÞð−i2

ffiffiffi
2

p
GFÞσ̄μ _αβGe

IJ;β _β
ðx; yÞσ̄μ _βα:

(169)

The superscript W indicates that this is the contribution to
the matter potential stemming from the charged current
interaction.
Upon Wigner transformation, this is

ΣW;e
IJ;α _αðxÞ ¼ 2

ffiffiffi
2

p
GF

Z
d4q
ð2πÞ4 σ

μ

α_β
Fe; _ββ
IJ ðx; qÞσμ;β _α (170)

ΣW;e; _αα
IJ ðxÞ ¼ 2

ffiffiffi
2

p
GF

Z
d4q
ð2πÞ4 σ̄

μ; _αβFe
IJ;β _β

ðx; qÞσ̄ _βα
μ : (171)

In the flavor basis, neglecting corrections from inter-
actions with the plasma, the statistical function for charged
fermions is

Z

e

e

W Z

Z

FIG. 1. Feynman graphs for neutral and charged current
one-loop contributions to neutrino self-energy.

e

W

e

W

=

+

W

e

e

e
+ . . .+

+

W

e

FIG. 2. Examples of diagrams that incorporate corrections to
the charged lepton two-point function. For simplicity, we neglect
all but the leading-order diagram in this section.

e

W

e

W

FIG. 3. Contributions to the charged current one-loop diagram.
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Fe; _αα
IJ ðx;qÞ¼ 2π

X
K

δðq2−m2
KÞq · σ̄ _ααðPKÞJI

×

�
1

2
−θðq0ÞfeR;Kðx; ~qÞ−θð−q0Þf̄eL;Kðx;−~qÞ

�
(172)

Fe
IJ;α _αðx;qÞ¼2π

X
K

δðq2−m2
KÞq ·σα _αðPKÞIJ

×

�
1

2
−θðq0ÞfeL;Kðx; ~qÞ−θð−q0Þf̄eR;Kðx;−~qÞ

�
:

(173)

Here, the flavor index K denotes electrons, muons, and
tauons. mK is the charged lepton mass corresponding to
flavor K, ðPKÞIJ are flavor projection matrices, feL;K is the
density of left-handed charged leptons of flavorK, and f̄eR;K
is the density of right-handed charged antileptons of flavor
K. Note that this expression assumes that there is no
coherence between charged leptons of different flavor. This
assumption is motivated by two arguments. First, mass-
squared splittings between charged leptons are large, so at
low energies flavor coherence would be difficult to gen-
erate. Second, charged leptons interact much more strongly
than neutrinos. Scattering is expected to cause decoherence,
so that even if charged lepton flavor coherence could be
generated it would be quickly destroyed by interactions.
In supernovae, and in certain epochs in the early

Universe, the temperature is too low for a substantial
number of muons or tauons to be present in the plasma.
In this case, we can set fK; f̄K ≈ 0 for K ≠ 1.
Performing the integrals in Eqs. (170) and (171) over q0

and using the definition of ΣL=R in Eq. (51) gives

ΣW;e
L ðxÞ ¼ −4

ffiffiffi
2

p
GF

X
K

PT
K

×
Z

~dqKq
μ
KðfeL;Kðx; ~qÞ − f̄eR;Kðx; ~qÞÞ

¼ −4
ffiffiffi
2

p
GF

X
K

PT
KJ

μ
L;KðxÞ (174)

ΣW;e
R ðxÞ ¼ 4

ffiffiffi
2

p
GF

X
K

PK

×
Z

~dqKq
μ
KðfeL;Kðx; ~qÞ − f̄eR;Kðx; ~qÞÞ

¼ 4
ffiffiffi
2

p
GF

X
K

PKJ
μ
L;KðxÞ: (175)

Here, ~dqK ≡ d3~q
ð2πÞ32Eq;K

and qμK ¼ ðEq;K; ~qÞ, with Eq;K ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þm2

K

p
. JμL;K is the current associated with left-handed

charged leptons of flavor K.

The second diagram in Fig. 1 has a similar structure and
gives the contribution to Σ

Σν
LðxÞ ¼ −2

ffiffiffi
2

p
GFðJμðνÞðxÞÞT

Σν
RðxÞ ¼ 2

ffiffiffi
2

p
GFJ

μ
ðνÞðxÞ; (176)

where JμðνÞðxÞ is the neutrino current, given by

JμðνÞðxÞ ¼
Z

~dqqμðfðx; ~qÞ − f̄ðx; ~qÞÞ: (177)

For neutrinos, we also obtain contributions to Σα
β and

Σ _α
_β by including the arrow-clashing propagator in the loop.

These components of Σ can in general have a tensor
component and a scalar component. However, the tensor
component is proportional to σ̄μSρσL σμ or σμSρσR σ̄μ, which
vanishes in four spacetime dimensions, so there is no tensor
contribution to Σ. The scalar component, on the other hand,
is proportional to the scalar component of the neutrino two-
point function, which is an OðϵÞ quantity. Consequently,
the scalar component of Σ is Oðϵ2Þ. Since this appears in
the kinetic equations as a correction to the mass, and the
mass always enters as a part of an Oðϵ2Þ term, the shift in
the mass due to the scalar component of Σ produces an
Oðϵ3Þ term, which can be neglected.
Note that the neutrino current contains an OðϵÞ correc-

tion due to a shift in the dispersion relation. Another
correction comes from the OðϵÞ contribution to F from the
small components ΔL=R. These corrections result in an
Oðϵ2Þ shift in ΣL=R, which is denoted in the quantum
kinetic equations as δΣL=R. Thus, we define Σ as the
quantity that is calculated by using the massless, free-field,
Oð1Þ expression for the current, while δΣ contains theOðϵÞ
corrections from the masses and interactions.
Similarly, we calculate the two lower diagrams in Fig. 1

to obtain the contributions to Σμ
R

4
ffiffiffi
2

p
GF1

X
K

��
sin2θW −

1

2

�
JμL;K þ sin2θWJ

μ
R;K

�
(178)

and

2
ffiffiffi
2

p
GFðtrJμðνÞÞ1σμα_β (179)

and similarly for the σ̄ component of Σ. Here, 1 is the flavor
unit matrix, and the trace is over flavor. The complete
expression for the matter potential Σ to OðϵÞ is therefore
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Σμ
R ¼ ΣðeÞμ

R þ ΣðνÞμ
R

¼ 4
ffiffiffi
2

p
GF

X
K

��
PK þ 1

�
sin2θW −

1

2

��
JμL;K

þ1sin2θWJR;K

�
þ 2

ffiffiffi
2

p
GFðJμðνÞ þ 1ðtrJμðνÞÞÞ: (180)

B. Collision terms

In this section, we consider the quantities Π� that appear
on the right-hand side of the quantum kinetic equations.
Wewill see that these terms have the gain-loss structure of a
Boltzmann collision term. Wewill refer to them as the gain-
loss potentials.
Π� are linear combinations of Πρ and ΠF given by

Eq. (50). In position space, Πρ and ΠF are nonlocal
components of the self-energy. In our model, all nonlocal
contributions correspond to two-loop (or higher-order)
diagrams involving the exchange of at least two W or Z
bosons. To two-loop order, the diagrams that contribute to
Πρ;F are shown in Fig. 4.
These diagrams give a large number of terms corre-

sponding to various scattering processes, which must all be
included in a complete treatment of inelastic scattering of
neutrinos off charged leptons and other neutrinos. Since we
do not present numerical computations of neutrino scatter-
ing in this paper, we will not calculate every term in detail.
We will show that the Π� produce Boltzmann-like gain-
loss terms, and for the purpose of illustration, we will
compute only one of the terms in detail. A calculation of the
full collision term will be presented in upcoming work.

1. Example: νν scattering neglecting spin coherence

As an illustration, we consider inelastic processes
involving only neutrinos and antineutrinos, ignoring the
presence of electrons and other particles in the thermal
bath. This means we consider only the contribution from
the upper-right and lower-right diagrams in Fig. 4, which
involve only neutrino lines. First, consider the upper-right
diagram: placing arrows on the fermion lines produces 16
arrangements that contribute to this diagram. There are four
possible combinations of external arrow directions, which
pick out the particular component of Π� that is being
calculated. For each combination of external arrows, there
are four possible combinations of internal arrow directions,
which determine the components of G that the given
contribution to Π� depends on. For example, the contri-
butions to Π _αα from this diagram are given in Fig. 5; there
are similar contributions to Πα _α, Πα

β, and Π _α
_β
, which

correspond to different directions for the external arrows.
All diagrams in Fig. 5 except the upper left include two

factors of arrow-clashing two-point functions for neutrinos.
The arrow-clashing two-point functions contain a scalar
and a tensor component; the scalar component is OðϵÞ,
while the tensor component can in general be Oð1Þ if there
is spin coherence. TheOðϵÞ terms can be dropped, since the
two-loop diagrams are already Oðϵ2Þ. Then, if spin coher-
ence is present, so that ϕ ¼ Oð1Þ, all four diagrams
contribute. However, in the absence of spin coherence,
only the first diagram is Oðϵ2Þ; the remaining three are
Oðϵ4Þ and can be dropped. Moreover, any contribution to
Πα

β or Π _α
_β must contain at least one arrow-clashing

internal line, and therefore these quantities are at least
Oðϵ3Þ and can be dropped in the absence of spin coherence.
For the sake of brevity, here we consider only terms that

do not depend on spin coherence. The procedure for
calculating the other terms will be similar.
In position space, in terms of two-point functions, the

upper-left diagram in Fig. 5 gives

Π _ααðx;yÞ¼−2δ4ðx−wÞδ4ðz−yÞG2
F

× σ̄μ _αβGðνÞ
β _β
ðx;zÞ× σ̄ν _βγGðνÞ

γ _γ ðz;wÞσ̄ _γδ
μ G

ðνÞ
δ_δ
ðw;yÞσ̄ _δα

ν :

(181)
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Z W
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W Z
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e

e

FIG. 4. Feynman graphs showing two-loop contributions to
neutrino self-energy.

Z Z Z Z

Z Z Z Z

FIG. 5. Contributions to Π _αα corresponding to the upper-right
diagram in Fig. 4.
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To proceed further, first, we calculate the appropriate
combinations of spectral and statistical components, Πþ
and Π−, defined by Eq. (50). When performing this
calculation, we do not need to keep track of the details
of the spin and flavor structure of two-point function
products, since the decomposition into spectral and stat-
istical components is the same regardless of these details.
As a result, we can write, symbolically,

Πðx; yÞ ∼G1ðx; yÞG2ðy; xÞG3ðx; yÞ: (182)

This notation simply indicates that Π is composed of three
distinct two-point functions, which are then contracted in
some way and multiplied by the appropriate couplings and
electroweak boson propagators. Note that the delta func-
tions in Eq. (181) allow us to write all two-point functions
as functions of only x and y.
We can write Gðx;yÞ¼θðx0−y0ÞGþðx;yÞ−θðy0−x0Þ

G−ðx;yÞ and similarly Πðx; yÞ ¼ θðx0 − y0ÞΠþðx; yÞ−
θðy0 − x0ÞΠ−ðx; yÞ. Then, setting x0 > y0, we obtain

Πþðx; yÞ ∼ −Gþ
1 ðx; yÞG−

2 ðy; xÞGþ
3 ðx; yÞ: (183)

Similarly, for x0 < y0, we obtain

Π−ðx; yÞ ∼ −G−
1 ðx; yÞGþ

2 ðy; xÞG−
3 ðx; yÞ: (184)

Next, we Wigner transform Eq. (181), and use Eqs. (183)
and (184) to obtainΠ�. This gives the following expression:

Π�ðkÞ ¼
Z Y3

i¼1

d4qi
ð2πÞ4 ð2πÞ

4δ4ðk − q1 − q2 − q3Þ

× 2G2
Fσ̄

μG�ðq1Þσ̄νG∓ð−q2Þσ̄μG�ðq3Þσ̄ν: (185)

The dependence of Π� and the two-point functions on the
position x is implied. We can change −q2 → q2 to obtain

Π�ðkÞ ¼
Z Y3

i¼1

d4qi
ð2πÞ4 ð2πÞ

4δ4ðkþ q2 − q1 − q3Þ

× 2G2
Fσ̄

μG�ðq1Þσ̄νG∓ðq2Þσ̄μG�ðq3Þσ̄ν: (186)

Every two-point function G� contains a positive- and a
negative-energy piece and is proportional to an on-shell delta
function, which to leading order is 2πδðq2i Þ. This, together
with the overall momentum-conserving delta function,
implies that the only terms giving a nonzero contribution
to the integral are those where all four of ðk0; q0i Þ are positive
(corresponding to the neutrino-neutrino scattering process),
those where all four are negative (corresponding to
antineutrino-antineutrino scattering), and those where two
are positive and two are negative (describing neutrino-
antineutrino scattering).

We consider the term in which all energies are positive,
which describes neutrino-neutrino scattering. Using
G� ¼ − 1

2
iρ� F, using the Oð1Þ expressions for F and

ρ given by Eqs. (39) and (40), (44) and (45), and (46) and
(47), and omitting spin coherence, we obtain

Πþ; _ααðkÞ¼
Z Y3

i¼1

~dqið2πÞ4δ4ðkþq2−q1−q3Þ

×2G2
Fðσ̄μσρσ̄νσσσ̄μστσ̄νÞ _ααqρ1qσ2qτ3

× ð1−fð~q1ÞÞfð~q2Þð1−fð~q3ÞÞ

¼−16G2
F

Z Y3
i¼1

~dqið2πÞ4δ4ðkþq2−q1−q3Þ

× ðq2 · σ̄ _ααÞðq1 ·q3Þð1−fð~q1ÞÞfð~q2Þð1−fð~q3ÞÞ:
(187)

Similarly, the contribution to Π− is

Π−; _ααðkÞ ¼ −16G2
F

Z Y3
i¼1

~dqið2πÞ4δ4ðkþ q2 − q1 − q3Þ

× ðq2 · σ̄ _ααÞðq1 · q3Þfð~q1Þð1 − fð~q2ÞÞfð~q3Þ:
(188)

Since we have chosen the term for which k0 is positive,
this expression enters into the collision term for neutrinos.
The corresponding contribution to the collision term in
Eq. (153) is

8G2
F
1

j~kj

Z Y3
i¼1

~dqið2πÞ4δ4ðkþ q2 − q1 − q3Þ

× ðk · q2Þðq1 · q3Þðf1 − f; f1ð1 − f2Þf3g
− ff; ð1 − f1Þf2ð1 − f3ÞgÞ; (189)

where f ¼ fð~kÞ and fi ¼ fð~qiÞ.
To obtain the complete piece of the collision term that

describes neutrino-neutrino scattering, we also need to
include the lower-right diagram in Fig. 4. We also introduce
s≡ ðkþ q2Þ2 ¼ ðq1 þ q3Þ2. For the approximately mass-
less neutrinos, s ≈ 2k · q2 ¼ 2q1 · q3. The collision term for
neutrino-neutrino scattering is then given by

Cνν↔νν ¼
2G2

F

j~kj

Z Y
i

~dqiδ4ðkþ q2 − q1 − q3Þs2

× f1 − f; f1½trFðð1 − f2Þf3Þ þ ð1 − f2Þf3�g
− ff; ð1 − f1Þ½trFðf2ð1 − f3ÞÞ þ f2ð1 − f3Þ�g:

(190)

This contribution to the collision term clearly has the
gain-loss structure of the Boltzmann equation with Fermi
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blocking, describing νν↔νν scattering. However, unlike in
the Boltzmann equation, the densities f are flavor matrices,
and the collision term has nontrivial flavor structure.
We can make the connection to the usual Boltzmann

term by considering a case in which there is no coherence
between neutrino flavors, so that the density matrices f are
all diagonal in the same basis. Then, the anticommutators
become products of the diagonal terms, which are just
the neutrino densities, and the collision term for flavor I
reduces to the Boltzmann form:

CI
νν↔νν ¼

4G2
F

j~kj

Z Y
i

~dqiδ4ðkþ q2 − q1 − q3Þs2×

×

	
ð1 − fIÞfI1

�
2ð1 − fI2ÞfI3 þ

X
J≠I

ð1 − fJ2ÞfJ3
�

− fIð1 − fI1Þ
�
2fI2ð1 − fI3Þ þ

X
J≠I

fJ2ð1 − fJ3Þ
�


:

(191)

This corresponds to the usual Boltzmann term describing
scattering of neutrinos off each other, with one incoming
and outgoing neutrino described by f↔f1 and the other by
f2↔f3. In the above expression, repeated indices are not
summed over unless the sum is explicitly indicated. From
the above formula, we see that the total scattering rate for
νIνI is twice that for νIνJ with J ≠ I, consistent with the
discussion in Ref. [79].

2. Generalizations

So far, we have only considered diagrams for neutrino-
neutrino scattering and assumed that the spin coherence is
zero. When all processes are included, we obtain collision
terms that have the structure

C ¼ Cνν↔νν þ Cνν̄↔νν̄ þ Cνe↔νe þ Cνē↔νē þ Cνν̄↔eē

þ C0½f; f̄;ϕ�; (192)

where C0 is a set of additional terms dependent on spin
coherence, which are zero when ϕ ¼ 0. These can be
calculated in the same way as the rest of the collision terms,
but with different arrangements of two-component spinor
arrows within the Feynman diagrams. The other collision
terms, C̄ and Cϕ, have a similar structure.

VII. PROPERTIES OF THE QUANTUM
KINETIC EQUATIONS

We now examine the quantum kinetic equations,
Eqs. (146)–(148) [summarized in Eq. (163)], and consider
some of their properties. In the previous section, we have
seen that the right-hand sides of Eqs. (146)–(148) corre-
spond to the Boltzmann collision terms, with some addi-
tional flavor structure and dependence on coherence. We

now show that the quantum kinetic equations replicate the
usual equations for coherent flavor evolution in the low-
density limit. We also discuss the spin coherence terms and
show that these terms can potentially lead to coherent
transformation between neutrino and antineutrino states.

A. Low-density limit

The low-density limit is realized in certain situations in
nature, for example, in the supernova envelope, or in the
early Universe after weak decoupling. In this limit, we
neglect the collision term, since this is proportional to G2

F,
but retain the matter potential, which is proportional to GF.
Furthermore, we assume that the matter potential Σ is
much smaller than the vacuum mass m but comparable
to m2

E . With these assumptions we can demote Σ from OðϵÞ
to Oðϵ2Þ and drop higher-order terms involving mΣ, ∂Σ,
and Σ2.
In this regime, the quantum kinetic equations become

i∂κf −
�
Σκ þm⋆m

2j~kj
; f

�
¼ 0 (193)

i∂κf̄ −
�
Σκ −

m⋆m
2j~kj

; f̄

�
¼ 0: (194)

In the low-density limit, or in the isotropic limit, the spin
coherence density ϕ is decoupled from the equations for
f and f̄. Therefore, in the low-density limit, there is no
need to solve Eq. (148) for the spin coherence density.
Equations (193) and (194) are equivalent to the usual

equations for coherent flavor evolution, for example, those
described in Refs. [22,42,46,50,53,60,71,72,80–100]. The
equations describe phenomena such as coherent oscilla-
tions, the Mikheyev–Smirnov–Wolfenstein (MSW) effect
[101,102], and collective flavor transformation due to the
neutrino self-coupling terms present in Σ. These phenom-
ena are described in detail in Ref. [49].

B. Spin coherence

A feature that appears at high densities and in the
presence of anisotropy in the neutrino field is the coupling
of the quantum kinetic equations for f and f̄ to a new
dynamical quantity, the spin coherence density ϕ. We now
examine the possible consequences of this coupling.
It is clear from the form of Eq. (163) that ϕ represents

coherence between neutrinos and antineutrinos, and the
Hνν̄ term gives mixing between neutrino and antineutrino
states. The effects of spin coherence conserve the total
number of neutrinos plus antineutrinos for each momentum
but not the two separately. This can be seen by taking the
trace of Eq. (163) to obtain
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trD½F � ¼ trC½F �: (195)

Since trF ð~kÞ ¼ trfð~kÞ þ trf̄ð~kÞ, trF ð~kÞ corresponds to
the total density of neutrinos plus antineutrinos of momen-
tum ~k. The derivative combination trD½F � can be interpreted
as simply a derivative of the neutrino plus antineutrino
density along a lightlike world line, which deviates slightly
from the world line of an actual neutrino due to an index of
refraction from the matter and neutrino potentials.
As a consequence, along the particle world line, the total

neutrino plus antineutrino density for a given momentum
can change in response to the collision term but not in
response to spin coherence. However, in the presence of
spin coherence, the quantities trf and trf̄ are not individu-
ally conserved, so the difference between neutrino and
antineutrino densities can undergo coherent evolution.
Therefore, the coupling to the spin coherence can lead to

a coherent process that converts neutrinos to antineutrinos
and vice versa. The mixing term Hνν̄ involves a combina-
tion of the neutrino mass m and spacelike components of
the matter and neutrino potential orthogonal to the momen-
tum, Σ� ¼ 1

2
ðΣ1 � iΣ2Þ. We see from this that three

conditions are necessary for a coherent change of helicity:
(1) the particles must have a mass, (2) there must be an
anisotropic matter or neutrino potential with a component
orthogonal to the particle’s momentum, and (3) the spin
coherence density ϕ must be present.
The anisotropy condition can be satisfied in the context

of a supernova explosion or a compact object merger. One
source of anisotropy, which is present even in spherically
symmetric models, is the outgoing flux of neutrinos. A
neutrino moving at a nonzero angle with respect to the
radial direction will receive a contribution to Hνν̄ from
interactions with other outgoing neutrinos.
The mixing Hamiltonian, Hνν̄, is Oðϵ2Þ, while the

diagonal blocks, H and −H̄T , are OðϵÞ. Thus, under
generic conditions, we expect the effects of mixing between
neutrinos and antineutrinos to be small. However, we can
potentially obtain large effects “at resonance,”when there is
a degeneracy between eigenvalues of H and −H̄. This is
analogous to the MSW resonance effect, where a small
neutrino mass can lead to large-scale flavor transformation
at resonance. Note that, unlike in the decoupled equations
of motion for f and f̄, Eqs. (193) and (194), the flavor-
independent components of H and H̄ that are proportional
to the flavor unit matrix must be included. Therefore,
to determine the conditions for neutrino-antineutrino res-
onance in a realistic model, it is necessary to include the
neutral current contributions to the matter potential, includ-
ing contributions from coherent forward scattering of
neutrinos on nuclei and nucleons.
The Hamiltonian H and the combined neutrino-antineu-

trino density matrix F in Eq. (163) bear some resemblance
to the description of coherent evolution of neutrinos with a
nonzero transition magnetic moment in the presence of a

magnetic field [103–105]. However, a Standard Model
neutrino magnetic moment arises from loop corrections and
is therefore quite small, requiring very large magnetic fields
to obtain neutrino-antineutrino mixing. Our effect comes
from the weak interaction, which has a handle on neutrino
helicity without the need to consider higher-order loop
corrections and does not require a large external mag-
netic field.
Whether large-scale neutrino-antineutrino transforma-

tion will actually take place in a supernova explosion is
a difficult question, due to the neutrino-neutrino interaction
terms in the Hamiltonian and the possibility for nonlinear
feedback. Resolving this question is likely to require
sufficiently realistic numerical simulations. The results
from Refs. [104,105] suggest that the presence of even a
small neutrino-antineutrino mixing term in the Hamiltonian
could potentially lead to large-scale neutrino-antineutrino
transformation.

VIII. COMPARISON WITH PREVIOUS WORK

Our approach to neutrino quantum kinetics heavily relies
on previous studies of transport equations from quantum
field theory (CTP and 2PI techniques) for both scalars and
fermion fields (see Refs. [64,70,106] and references
therein) and their nontrivial generalization to multiflavor
cases in the context of electroweak baryogenesis
[40,41,65–67,107,108] and leptogenesis [109–113].
Compared to previous field-theoretical analyses, our

work contains the following new elements: (i) we clearly
spell out a power counting in a ratio of scales that is specific
to neutrinos (ultrarelativistic weakly interacting particles in
an environment that is nearly homogenous on the scale of a
de Broglie wavelength) and expand the kinematics around
lightlike 4-momenta; (ii) We make no assumptions of
isotropy and treat spin degrees of freedom in full generality,
which leads us to discover spin-coherence correlations that
have been neglected in the past.
We are not aware of any other work that derives quantum

kinetic equations for neutrinos in a fully anisotropic
environment or provides a description of the evolution
of neutrino spin degrees of freedom. Since the neutrino
fields in the astrophysical environments (supernovae,
compact object mergers) of interest for application of the
QKEs are inherently anisotropic, the features of our QKEs
that arise from a nonisotropic neutrino field are poten-
tially very important. Anisotropy, spin coherence, and the
interplay between spin and flavor degrees of freedom may
play an important role in these environments.
Neutrino QKEs have been derived in the past using

different first-principles approaches and approximation
schemes. Our approach is very closely related to the one
of Raffelt and Sigl [14]. In fact, the “matrix of densities”
introduced in Ref. [14] can be related to certain Lorentz
components of the Wigner transformed neutrino two-point
function used in our work. Moreover, as in Ref. [14] we do
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rely on perturbation theory, and there is a one-to-one
correspondence between the assumptions made in these
two works. The end results of our analysis match the one of
Ref. [14] up to the inclusion of spin-coherence densities
(which is new in our work).
More recently, a new approach to neutrino quantum

kinetics was proposed in Ref. [23], based on many-body
techniques and the Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy. Again, there is a correspon-
dence between Ref. [23] and the field-theoretic treatment.
In general, in field theory the nonequilibrium system is
described by the set of all n-point Green’s functions. These
obey coupled integrodifferential equations, equivalent to
the BBGKY equations [70]. We truncate this hierarchy by
writing down dynamical equations only for the two-point
functions and expressing all higher-order Green’s functions
as a perturbative series in terms of the two-point functions.
Here we assume that higher-order correlations are absent in
the initial state, and we make essential use of our power
counting in terms of weak interactions: the methods used
here do not generalize to strongly interacting/correlated
systems. Furthermore, when considering the dynamics of
two-point functions, we neglect particle-antiparticle pairing
correlations [see the discussion following Eq. (36)]. This is
consistent with our power counting assumption that physi-
cal quantities vary slowly on the scale of the neutrino de
Broglie wavelength. Nonetheless, these correlations that
pair particles and antiparticles of opposite momenta (first
discussed in the context of neutrino kinetics in Ref. [23])
could be included in our formalism. In fact, evolution
equations that couple these particle-antiparticle densities to
the standard particle-particle and antiparticle-antiparticle
densities can be derived in the field theory framework
[107,108]. In the context of time-dependent multiflavor
mass matrices in the early Universe (at the electroweak
phase transition), it was shown in Ref. [107] that particle-
antiparticle correlations can dynamically arise from a
vanishing (equilibrium) initial condition and can play an
important role in baryogenesis. We are not aware of any
numerical exploration of the role of these correlations in a
nonhomogeneous supernova environment.
Finally, let us discuss the structure of our collision terms

[Eqs. (153), (154), (155), and (167)], in comparison to
other work. Even though here we do not calculate explicitly
all the vector and tensor components of the self-energies
Π�

L;R, it is clear that our collision term is nondiagonal both
in flavor and spin, thus producing decoherence of any linear
superposition of flavor or spin states. Neglecting spin
coherence, the structure of our result matches the
“non-Abelian” matrix structure in flavor space discussed
in Ref. [14]. We note, however, that many ad hoc treat-
ments of the QKEs, including recent ones [114], com-
pletely miss the off-diagonal entries of the collision term,
which are required by quantum mechanical considerations.

IX. CONCLUSION

We have produced a self-consistent derivation of the
quantum kinetic equations that govern how neutrino flavor
evolves in medium. This derivation started from first
principles relying only on quantum field theory and
assumed Standard Model interactions for neutrinos. To
our knowledge, this is the first such self-consistent first-
principles derivation of QKEs for flavored fermions in an
anisotropic environment. Our result, Eq. (163), captures the
correct structure of the QKEs in anisotropic environments
but is somewhat formal because the self-energies on the
right-hand side are not fully calculated. In a future paper,
we will present a detailed analysis of the inelastic collision
term, including spin coherence, thus making our results
amenable to implementation in numerical simulations.
Specializing to ultrarelativistic Majorana neutrinos and

making expansions in small parameters, Eq. (48), our
QKEs assume the usual form, which describes coherent
neutrino flavor evolution in low density media. Likewise, at
high density, where neutrino scattering is dominant, the
collision terms in our QKEs assume Boltzmann-like forms.
This is consistent with studies that have shown that the
Boltzmann equation could be derived directly from quan-
tum field theory [10].
In the low density, coherent regime, our QKEs are

broadly similar to those derived from previous treatments,
for example, those of Refs. [14,15]. In the scattering-
dominated Boltzmann limit and between these two limiting
cases, however, there are differences. Unlike previous
studies, we follow in detail neutrino spin degrees of
freedom, and in this sector there are surprises.
We have found a new dynamical quantity associated with

spin coherence. At low density we find that the equation of
motion for this quantity decouples from the rest of the
QKEs describing neutrino flavor evolution. This equation
describes Majorana neutrino spin (helicity) evolution in a
matter and neutrino background. An obvious feature we
find is that spin coherence can only arise in conditions
where neutrino fluxes and/or matter potentials are not
isotropic. Such conditions never arise in a standard
Friedman–LaMaitre–Robertson–Walker early Universe
expansion but might occur in out-of-equilibrium environ-
ments like those associated with phase transition-induced
nucleation of topological defects like bubbles or domain
walls [115,116]. By contrast, the region above the proto-
neutron star in core collapse supernovae and the neutron
star merger environment are both characterized by gross
anisotropy in matter and neutrino fields.
The terms driving coherent spin flip in our QKEs stem

from products of neutrino absolute mass and spacelike
projections of the matter potentials (hence, the requirement
for anisotropy). Unlike coherent flavor transformation,
which is sensitive only to the mass-squared differences
between different neutrino flavors, coherent spin flip is
sensitive to the neutrino absolute mass.
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Also, unlike coherent flavor transformation, coherent spin
flip is sensitive to the Majorana or Dirac nature of neutrinos.
In this paper, we have specialized to Majorana neutrinos, but
extending our treatment to Dirac neutrinos is straightfor-
ward. The simplest way to introduce Dirac neutrinos in our
model is to add an additional field describing sterile
neutrinos, νs. For pure Dirac neutrinos, the mass term
always connects the active neutrino field, ν, with the sterile
field, νs. Because the spin flip term carries a single power of
the mass, for Dirac neutrinos it will result in transformation
between active and sterile states. However, for Majorana
neutrinos, coherent spin flip generates transformation
between active neutrinos and active antineutrinos.
It is not known at present whether coherent spin flip can

result in large-scale transformation between right-handed
and left-handed neutrino states in supernovae. Because of the
nonlinearity and complexity of the QKEs, the resolution of
this question likely requires sufficiently detailed and realistic
numerical modeling. If numerical simulations do show that
effects from coherent spin flip are large enough to produce a
detectable signature in the supernova neutrino spectrum,
then measurement of a supernova neutrino signal could in
principle be used to constrain the absolute neutrino mass and
determine the Majorana vs Dirac nature of neutrinos.
Additionally, both neutrino production (e.g., Ref. [117])

and neutrino energy deposition in the core collapse super-
nova shock reheating (accretion) phase and the neutron-to-
proton ratio (e.g., Ref. [42]) in any neutrino-heated outflow
nucleosynthesis can be very sensitive to the relative fluxes
and energy spectra of νe and ν̄e. Consequently, for these

processes, any large-scale interconversion of neutrinos and
antineutrinos could be significant.
Simulations of the core collapse supernova and neutron

star merger environments are some of the most sophisti-
cated numerical calculations being done at present with, in
some cases, state-of-the-art multidimensional radiation
hydrodynamics coupled with detailed equation-of-state
and other microphysics, e.g., Refs. [118–137]. A key
conclusion that can be drawn from these studies is that
neutrinos and their interactions are important in many
aspects of compact object evolution and nucleosynthesis.
However, experiment has now caught up with theory in a
sense. It is an experimental fact that neutrinos have nonzero
rest masses and that neutrino flavors mix in vacuum. This
physics is, for the most part, not in these otherwise very
sophisticated simulations. The work presented here, a self-
consistent approach to treating this physics, suggests that
there are unresolved issues in the neutrino-supernova story.

ACKNOWLEDGMENTS

This work was supported in part by NSF Grant No. PHY-
09-70064 at UCSD and by the DOE Office of Science and
the LDRD Program at LANL and by the University of
California Office of the President and the UC HIPACC
collaboration. We would also like to acknowledge support
from the DOE/LANL Topical Collaboration. We thank
J. Carlson, J. F. Cherry, A. Friedland, K. Intriligator,
B. Keister, C. Lee, A. Manohar, M. J. Ramsey-Musolf,
S. Reddy, M. Roberts, and S. Tulin for useful discussions.

[1] J. Schwinger, J. Math. Phys. (N.Y.) 2, 407 (1961).
[2] R. A.HarrisandL.Stodolsky,J.Chem.Phys.74,2145(1981).
[3] R. A. Harris and L. Stodolsky, Phys. Lett. 116B, 464

(1982).
[4] L. Stodolsky, Phys. Rev. D 36, 2273 (1987).
[5] A. Manohar, Phys. Lett. B 186, 370 (1987).
[6] S. Habib, Y. Kluger, E. Mottola, and J. P. Paz, Phys. Rev.

Lett. 76, 4660 (1996).
[7] F. Cooper, S. Habib, Y. Kluger, and E. Mottola, Phys. Rev.

D 55, 6471 (1997).
[8] J. Berges, Nucl. Phys. A699, 847 (2002).
[9] J. Berges, S. Borsányi, and J. Serreau, Nucl. Phys. B660,

51 (2003).
[10] J. Berges and I.-O. Stamatescu, Phys. Rev. Lett. 95,

202003 (2005).
[11] B. Müller and A. Schäfer, Phys. Rev. C 73, 054905

(2006).
[12] A. Giraud and J. Serreau, Phys. Rev. Lett. 104, 230405

(2010).
[13] G. Raffelt and G. Sigl, Astropart. Phys. 1, 165 (1993).
[14] G. Sigl and G. Raffelt, Nucl. Phys. B406, 423 (1993).

[15] G. Raffelt, G. Sigl, and L. Stodolsky, Phys. Rev. Lett. 70,
2363 (1993).

[16] B. H. J. McKellar and M. J. Thomson, Phys. Rev. D 49,
2710 (1994).

[17] R. F. Sawyer, Phys. Rev. D 72, 045003 (2005).
[18] P. Strack and A. Burrows, Phys. Rev. D 71, 093004 (2005).
[19] C. Y. Cardall, Phys. Rev. D 78, 085017 (2008).
[20] M. Herranen, K. Kainulainen, and P. Matti Rahkila, J. High

Energy Phys. 09 (2008) 032.
[21] M. Herranen, K. Kainulainen, and P. M. Rahkila, Nucl.

Phys. B810, 389 (2009).
[22] J. Gava, J. Kneller, C. Volpe, and G. C. McLaughlin, Phys.

Rev. Lett. 103, 071101 (2009).
[23] C. Volpe, D. Väänänen, and C. Espinoza, Phys. Rev. D 87,

113010 (2013).
[24] K. Enqvist, K. Kainulainen, and J. Maalampi, Nucl. Phys.

B349, 754 (1991).
[25] R. Barbieri and A. Dolgov, Nucl. Phys. B349, 743 (1991).
[26] S. Dodelson and L. M. Widrow, Phys. Rev. Lett. 72, 17

(1994).
[27] X. Shi, Phys. Rev. D 54, 2753 (1996).

NEUTRINO QUANTUM KINETICS PHYSICAL REVIEW D 89, 105004 (2014)

105004-27

http://dx.doi.org/10.1063/1.1703727
http://dx.doi.org/10.1063/1.441373
http://dx.doi.org/10.1016/0370-2693(82)90169-1
http://dx.doi.org/10.1016/0370-2693(82)90169-1
http://dx.doi.org/10.1103/PhysRevD.36.2273
http://dx.doi.org/10.1016/0370-2693(87)90310-8
http://dx.doi.org/10.1103/PhysRevLett.76.4660
http://dx.doi.org/10.1103/PhysRevLett.76.4660
http://dx.doi.org/10.1103/PhysRevD.55.6471
http://dx.doi.org/10.1103/PhysRevD.55.6471
http://dx.doi.org/10.1016/S0375-9474(01)01295-7
http://dx.doi.org/10.1016/S0550-3213(03)00261-X
http://dx.doi.org/10.1016/S0550-3213(03)00261-X
http://dx.doi.org/10.1103/PhysRevLett.95.202003
http://dx.doi.org/10.1103/PhysRevLett.95.202003
http://dx.doi.org/10.1103/PhysRevC.73.054905
http://dx.doi.org/10.1103/PhysRevC.73.054905
http://dx.doi.org/10.1103/PhysRevLett.104.230405
http://dx.doi.org/10.1103/PhysRevLett.104.230405
http://dx.doi.org/10.1016/0927-6505(93)90020-E
http://dx.doi.org/10.1016/0550-3213(93)90175-O
http://dx.doi.org/10.1103/PhysRevLett.70.2363
http://dx.doi.org/10.1103/PhysRevLett.70.2363
http://dx.doi.org/10.1103/PhysRevD.49.2710
http://dx.doi.org/10.1103/PhysRevD.49.2710
http://dx.doi.org/10.1103/PhysRevD.72.045003
http://dx.doi.org/10.1103/PhysRevD.71.093004
http://dx.doi.org/10.1103/PhysRevD.78.085017
http://dx.doi.org/10.1088/1126-6708/2008/09/032
http://dx.doi.org/10.1088/1126-6708/2008/09/032
http://dx.doi.org/10.1016/j.nuclphysb.2008.09.032
http://dx.doi.org/10.1016/j.nuclphysb.2008.09.032
http://dx.doi.org/10.1103/PhysRevLett.103.071101
http://dx.doi.org/10.1103/PhysRevLett.103.071101
http://dx.doi.org/10.1103/PhysRevD.87.113010
http://dx.doi.org/10.1103/PhysRevD.87.113010
http://dx.doi.org/10.1016/0550-3213(91)90397-G
http://dx.doi.org/10.1016/0550-3213(91)90397-G
http://dx.doi.org/10.1016/0550-3213(91)90396-F
http://dx.doi.org/10.1103/PhysRevLett.72.17
http://dx.doi.org/10.1103/PhysRevLett.72.17
http://dx.doi.org/10.1103/PhysRevD.54.2753


[28] R. Foot and R. R. Volkas, Phys. Rev. D 55, 5147 (1997).
[29] N. F. Bell, R. R. Volkas, and Y. Y. Y. Wong, Phys. Rev. D

59, 113001 (1999).
[30] A. D. Dolgov, S. H. Hansen, G. Raffelt, and D. V.

Semikoz, Nucl. Phys. B590, 562 (2000).
[31] R. R. Volkas and Y. Y. Y. Wong, Phys. Rev. D 62, 093024

(2000).
[32] K. Abazajian, G. M. Fuller, and M. Patel, Phys. Rev. D 64,

023501 (2001).
[33] A. D. Dolgov and S. H. Hansen, Astropart. Phys. 16, 339

(2002).
[34] A. Kusenko, S. Pascoli, and D. Semikoz, J. High Energy

Phys. 11 (2005) 028.
[35] D. Boyanovsky, Phys. Rev. D 76, 103514 (2007).
[36] D. Boyanovsky and C.-M. Ho, Phys. Rev. D 76, 085011

(2007).
[37] D. Boyanovsky and C.-M. Ho, J. High Energy Phys. 07

(2007) 030.
[38] C. T. Kishimoto and G. M. Fuller, Phys. Rev. D 78, 023524

(2008).
[39] A. Kusenko, Phys. Rep. 481, 1 (2009).
[40] V. Cirigliano, C. Lee, M. J. Ramsey-Musolf, and S. Tulin,

Phys. Rev. D 81, 103503 (2010).
[41] V. Cirigliano, C. Lee, and S. Tulin, Phys. Rev. D 84,

056006 (2011).
[42] Y. Qian, G. M. Fuller, G. J. Mathews, R. W. Mayle, J. R.

Wilson, and S. E. Woosley, Phys. Rev. Lett. 71, 1965
(1993).

[43] H. A. Bethe, J. H. Applegate, and G. E. Brown, Astrophys.
J. 241, 343 (1980).

[44] H. A. Bethe and J. R. Wilson, Astrophys. J. 295, 14
(1985).

[45] G. M. Fuller, R. Mayle, B. S. Meyer, and J. R. Wilson,
Astrophys. J. 389, 517 (1992).

[46] B. Dasgupta, E. P. O’Connor, and C. D. Ott, Phys. Rev. D
85, 065008 (2012).

[47] G. M. Fuller and C. T. Kishimoto, Phys. Rev. Lett. 102,
201303 (2009).

[48] S. Dodelson and M. Vesterinen, Phys. Rev. Lett. 103,
171301 (2009).

[49] H. Duan, G. M. Fuller, and Y.-Z. Qian, Annu. Rev. Nucl.
Part. Sci. 60, 569 (2010).

[50] R. F. Sawyer, Phys. Rev. D 42, 3908 (1990).
[51] F. N. Loreti and A. B. Balantekin, Phys. Rev. D 50, 4762

(1994).
[52] F. N. Loreti, Y.-Z. Qian, G.M. Fuller, and A. B. Balantekin,

Phys. Rev. D 52, 6664 (1995).
[53] J. P. Kneller, G. C. McLaughlin, and J. Brockman, Phys.

Rev. D 77, 045023 (2008).
[54] J. Kneller and C. Volpe, Phys. Rev. D 82, 123004 (2010).
[55] G. Raffelt, S. Sarikas, and D. de Sousa Seixas, Phys. Rev.

Lett. 111, 091101 (2013).
[56] A. Mirizzi, Phys. Rev. D 88, 073004 (2013).
[57] A. Mirizzi, arXiv:1308.5255.
[58] J. F. Cherry, J. Carlson, A. Friedland, G. M. Fuller, and

A. Vlasenko, Phys. Rev. Lett. 108, 261104 (2012).
[59] S. Sarikas, I. Tamborra, G. Raffelt, L. Hüdepohl, and

H.-T. Janka, Phys. Rev. D 85, 113007 (2012).
[60] A. Mirizzi and P. D. Serpico, Phys. Rev. D 86, 085010

(2012).

[61] J. F. Cherry, J. Carlson, A. Friedland, G. M. Fuller, and
A. Vlasenko, Phys. Rev. D 87, 085037 (2013).

[62] S. P. Martin arXiv:hep-ph/9709356.
[63] H. K. Dreiner, H. E. Haber, and S. P. Martin, Phys. Rep.

494, 1 (2010).
[64] J. Berges, AIP Conf. Proc. 739, 3 2004).
[65] T. Prokopec, M. G. Schmidt, and S. Weinstock, Ann. Phys.

(Amsterdam) 314, 208 (2004).
[66] T. Prokopec, M. G. Schmidt, and S. Weinstock, Ann. Phys.

(Amsterdam) 314, 267 (2004).
[67] T. Konstandin, T. Prokopec, and M. G. Schmidt, Nucl.

Phys. B716, 373 (2005).
[68] T. Konstandin and T. Ohlsson, Phys. Lett. B 634, 267

(2006).
[69] V. Cirigliano, Y. Li, S. Profumo, and M. J. Ramsey-Musolf,

J. High Energy Phys. 01 (2010) 02.
[70] E. Calzetta and B. L. Hu, Phys. Rev. D 37, 2878 (1988).
[71] G. M. Fuller, R. W. Mayle, J. R. Wilson, and D. N.

Schramm, Astrophys. J. 322, 795 (1987).
[72] D. Nötzold and G. Raffelt, Nucl. Phys. B307, 924 (1988).
[73] M. Blennow, A. Mirizzi, and P. D. Serpico, Phys. Rev. D

78, 113004 (2008).
[74] A. Esteban-Pretel, A. Mirizzi, S. Pastor, R. Tomàs, G. G.

Raffelt, P. D. Serpico, and G. Sigl, Phys. Rev. D 78,
085012 (2008).

[75] A. Esteban-Pretel, S. Pastor, R. Tomàs, G. G. Raffelt, and
G. Sigl, Phys. Rev. D 77, 065024 (2008).

[76] A. Esteban-Pretel, R. Tomàs, and J. W. F. Valle, Phys. Rev.
D 81, 063003 (2010).

[77] F. J. Botella, C.-S. Lim, and W. J. Marciano, Phys. Rev. D
35, 896 (1987).

[78] A. Mirizzi, S. Pozzorini, G. G. Raffelt, and P. D. Serpico,
J. High Energy Phys. 10 (2009) 020.

[79] E. G. Flowers and P. G. Sutherland, Astrophys. J. 208, L19
(1976).

[80] S. Samuel, Phys. Rev. D 48, 1462 (1993).
[81] Y. Qian and G. M. Fuller, Phys. Rev. D 51, 1479 (1995).
[82] S. Samuel, Phys. Rev. D 53, 5382 (1996).
[83] H.-T. Elze, T. Kodama, and R. Opher, Phys. Rev. D 63,

013008 (2000).
[84] S. Pastor, G. Raffelt, and D. V. Semikoz, Phys. Rev. D 65,

053011 (2002).
[85] S. Pastor and G. Raffelt, Phys. Rev. Lett. 89, 191101

(2002).
[86] A. B. Balantekin and H. Yüksel, New J. Phys. 7, 51

(2005).
[87] G. M. Fuller and Y. Qian, Phys. Rev. D 73, 023004

(2006).
[88] H. Duan, G. M. Fuller, J. Carlson, and Y. Qian, Phys. Rev.

D 74, 105014 (2006).
[89] H. Duan, G. M. Fuller, J. Carlson, and Y. Qian, Phys. Rev.

Lett. 97, 241101 (2006).
[90] H. Duan, G. M. Fuller, and Y. Qian, Phys. Rev. D 74,

123004 (2006).
[91] S. Hannestad, G. G. Raffelt, G. Sigl, and Y. Y. Y. Wong,

Phys. Rev. D 74, 105010 (2006).
[92] H. Duan, G. M. Fuller, and Y. Qian, Phys. Rev. D 76,

085013 (2007).
[93] H. Duan, G. M. Fuller, J. Carlson, and Y. Qian, Phys. Rev.

D 75, 125005 (2007).

VLASENKO, FULLER, AND CIRIGLIANO PHYSICAL REVIEW D 89, 105004 (2014)

105004-28

http://dx.doi.org/10.1103/PhysRevD.55.5147
http://dx.doi.org/10.1103/PhysRevD.59.113001
http://dx.doi.org/10.1103/PhysRevD.59.113001
http://dx.doi.org/10.1016/S0550-3213(00)00566-6
http://dx.doi.org/10.1103/PhysRevD.62.093024
http://dx.doi.org/10.1103/PhysRevD.62.093024
http://dx.doi.org/10.1103/PhysRevD.64.023501
http://dx.doi.org/10.1103/PhysRevD.64.023501
http://dx.doi.org/10.1016/S0927-6505(01)00115-3
http://dx.doi.org/10.1016/S0927-6505(01)00115-3
http://dx.doi.org/10.1088/1126-6708/2005/11/028
http://dx.doi.org/10.1088/1126-6708/2005/11/028
http://dx.doi.org/10.1103/PhysRevD.76.103514
http://dx.doi.org/10.1103/PhysRevD.76.085011
http://dx.doi.org/10.1103/PhysRevD.76.085011
http://dx.doi.org/10.1088/1126-6708/2007/07/030
http://dx.doi.org/10.1088/1126-6708/2007/07/030
http://dx.doi.org/10.1103/PhysRevD.78.023524
http://dx.doi.org/10.1103/PhysRevD.78.023524
http://dx.doi.org/10.1016/j.physrep.2009.07.004
http://dx.doi.org/10.1103/PhysRevD.81.103503
http://dx.doi.org/10.1103/PhysRevD.84.056006
http://dx.doi.org/10.1103/PhysRevD.84.056006
http://dx.doi.org/10.1103/PhysRevLett.71.1965
http://dx.doi.org/10.1103/PhysRevLett.71.1965
http://dx.doi.org/10.1086/158346
http://dx.doi.org/10.1086/158346
http://dx.doi.org/10.1086/163343
http://dx.doi.org/10.1086/163343
http://dx.doi.org/10.1086/171228
http://dx.doi.org/10.1103/PhysRevD.85.065008
http://dx.doi.org/10.1103/PhysRevD.85.065008
http://dx.doi.org/10.1103/PhysRevLett.102.201303
http://dx.doi.org/10.1103/PhysRevLett.102.201303
http://dx.doi.org/10.1103/PhysRevLett.103.171301
http://dx.doi.org/10.1103/PhysRevLett.103.171301
http://dx.doi.org/10.1146/annurev.nucl.012809.104524
http://dx.doi.org/10.1146/annurev.nucl.012809.104524
http://dx.doi.org/10.1103/PhysRevD.42.3908
http://dx.doi.org/10.1103/PhysRevD.50.4762
http://dx.doi.org/10.1103/PhysRevD.50.4762
http://dx.doi.org/10.1103/PhysRevD.52.6664
http://dx.doi.org/10.1103/PhysRevD.77.045023
http://dx.doi.org/10.1103/PhysRevD.77.045023
http://dx.doi.org/10.1103/PhysRevD.82.123004
http://dx.doi.org/10.1103/PhysRevLett.111.091101
http://dx.doi.org/10.1103/PhysRevLett.111.091101
http://dx.doi.org/10.1103/PhysRevD.88.073004
http://arXiv.org/abs/1308.5255
http://dx.doi.org/10.1103/PhysRevLett.108.261104
http://dx.doi.org/10.1103/PhysRevD.85.113007
http://dx.doi.org/10.1103/PhysRevD.86.085010
http://dx.doi.org/10.1103/PhysRevD.86.085010
http://dx.doi.org/10.1103/PhysRevD.87.085037
http://arXiv.org/abs/hep-ph/9709356
http://dx.doi.org/10.1016/j.physrep.2010.05.002
http://dx.doi.org/10.1016/j.physrep.2010.05.002
http://dx.doi.org/10.1063/1.1843591
http://dx.doi.org/10.1016/j.aop.2004.06.002
http://dx.doi.org/10.1016/j.aop.2004.06.002
http://dx.doi.org/10.1016/j.aop.2004.06.001
http://dx.doi.org/10.1016/j.aop.2004.06.001
http://dx.doi.org/10.1016/j.nuclphysb.2005.03.013
http://dx.doi.org/10.1016/j.nuclphysb.2005.03.013
http://dx.doi.org/10.1016/j.physletb.2006.01.045
http://dx.doi.org/10.1016/j.physletb.2006.01.045
http://dx.doi.org/10.1007/JHEP01(2010)002
http://dx.doi.org/10.1103/PhysRevD.37.2878
http://dx.doi.org/10.1086/165772
http://dx.doi.org/10.1016/0550-3213(88)90113-7
http://dx.doi.org/10.1103/PhysRevD.78.113004
http://dx.doi.org/10.1103/PhysRevD.78.113004
http://dx.doi.org/10.1103/PhysRevD.78.085012
http://dx.doi.org/10.1103/PhysRevD.78.085012
http://dx.doi.org/10.1103/PhysRevD.77.065024
http://dx.doi.org/10.1103/PhysRevD.81.063003
http://dx.doi.org/10.1103/PhysRevD.81.063003
http://dx.doi.org/10.1103/PhysRevD.35.896
http://dx.doi.org/10.1103/PhysRevD.35.896
http://dx.doi.org/10.1088/1126-6708/2009/10/020
http://dx.doi.org/10.1086/182223
http://dx.doi.org/10.1086/182223
http://dx.doi.org/10.1103/PhysRevD.48.1462
http://dx.doi.org/10.1103/PhysRevD.51.1479
http://dx.doi.org/10.1103/PhysRevD.53.5382
http://dx.doi.org/10.1103/PhysRevD.63.013008
http://dx.doi.org/10.1103/PhysRevD.63.013008
http://dx.doi.org/10.1103/PhysRevD.65.053011
http://dx.doi.org/10.1103/PhysRevD.65.053011
http://dx.doi.org/10.1103/PhysRevLett.89.191101
http://dx.doi.org/10.1103/PhysRevLett.89.191101
http://dx.doi.org/10.1088/1367-2630/7/1/051
http://dx.doi.org/10.1088/1367-2630/7/1/051
http://dx.doi.org/10.1103/PhysRevD.73.023004
http://dx.doi.org/10.1103/PhysRevD.73.023004
http://dx.doi.org/10.1103/PhysRevD.74.105014
http://dx.doi.org/10.1103/PhysRevD.74.105014
http://dx.doi.org/10.1103/PhysRevLett.97.241101
http://dx.doi.org/10.1103/PhysRevLett.97.241101
http://dx.doi.org/10.1103/PhysRevD.74.123004
http://dx.doi.org/10.1103/PhysRevD.74.123004
http://dx.doi.org/10.1103/PhysRevD.74.105010
http://dx.doi.org/10.1103/PhysRevD.76.085013
http://dx.doi.org/10.1103/PhysRevD.76.085013
http://dx.doi.org/10.1103/PhysRevD.75.125005
http://dx.doi.org/10.1103/PhysRevD.75.125005


[94] A. B. Balantekin and Y. Pehlivan, J. Phys. G 34, 47
(2007).

[95] H. Duan, G. M. Fuller, J. Carlson, and Y. Qian, Phys. Rev.
Lett. 99, 241802 (2007).

[96] H. Duan, G. M. Fuller, J. Carlson, and Y. Qian, Phys. Rev.
Lett. 100, 021101 (2008).

[97] C. Lunardini, B. Müller, and H. Janka, Phys. Rev. D 78,
023016 (2008).

[98] B. Dasgupta, A. Dighe, A. Mirizzi, and G. Raffelt, Phys.
Rev. D 78, 033014 (2008).

[99] A. Friedland, Phys. Rev. Lett. 104, 191102 (2010).
[100] H. Duan, A. Friedland, G. C. McLaughlin, and R. Surman,

J. Phys. G 38, 035201 (2011).
[101] L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).
[102] S. P. Mikheyev and A. Y. Smirnov, Yad. Fiz. 42 (1985).
[103] M. Dvornikov, Nucl. Phys. B855, 760 (2012).
[104] A. de Gouvêa and S. Shalgar, J. Cosmol. Astropart. Phys.

10 (2012) 027.
[105] A. de Gouvêa and S. Shalgar, J. Cosmol. Astropart. Phys.

04 (2013) 018.
[106] J.-P. Blaizot and E. Iancu, Phys. Rep. 359, 355 (2002).
[107] C. Fidler, M. Herranen, K. Kainulainen, and P. M. Rahkila,

J. High Energy Phys. 02 (2012) 65.
[108] M. Herranen, K. Kainulainen, and P. Matti Rahkila, J. High

Energy Phys. 12 (2010) 72.
[109] B. Garbrecht and M. Herranen, Nucl. Phys. B861, 17

(2012).
[110] M. Beneke, B. Garbrecht, C. Fidler, M. Herranen, and

P. Schwaller, Nucl. Phys. B843, 177 (2011).
[111] M. Beneke, B. Garbrecht, M. Herranen, and P. Schwaller,

Nucl. Phys. B838, 1 (2010).
[112] M. Garny, A. Hohenegger, A. Kartavtsev, and M. Lindner,

Phys. Rev. D 81, 085027 (2010).
[113] M. Garny, A. Hohenegger, A. Kartavtsev, and M. Lindner,

Phys. Rev. D 80, 125027 (2009).
[114] Y. Zhang and A. Burrows, Phys. Rev. D 88, 105009

(2013).
[115] E.W. Kolb and Y. Wang, Phys. Rev. D 45, 4421 (1992).
[116] X. Shi and G. M. Fuller, Phys. Rev. Lett. 83, 3120

(1999).
[117] C. L. Fryer, Astrophys. J. 699, 409 (2009).
[118] M. Herant, W. Benz, W. R. Hix, C. L. Fryer, and

S. A. Colgate, Astrophys. J. 435, 339 (1994).

[119] A. Mezzacappa, A. C. Calder, S. W. Bruenn, J. M.
Blondin, M.W. Guidry, M. R. Strayer, and A. S. Umar,
Astrophys. J. 495, 911 (1998).

[120] A. Mezzacappa, M. Liebendörfer, O. E. Messer, W. R. Hix,
F.-K. Thielemann, and S. W. Bruenn, Phys. Rev. Lett. 86,
1935 (2001).

[121] A. Mezzacappa, Annu. Rev. Nucl. Part. Sci. 55, 467
(2005).

[122] S. W. Bruenn, A. Mezzacappa, W. R. Hix, J. M. Blondin,
P. Marronetti, O. E. B. Messer, C. J. Dirk, and S. Yoshida,
arXiv:1002.4914.

[123] M. T. Keil, G. G. Raffelt, and H.-T. Janka, Astrophys.
J. 590, 971 (2003).

[124] K. Kotake, K. Sato, and K. Takahashi, Rep. Prog. Phys. 69,
971 (2006).

[125] J. W. Murphy and A. Burrows, Astrophys. J. 688, 1159
(2008).

[126] C. D. Ott, E. Schnetter, A. Burrows, E. Livne,
E. O’Connor, and F. Löffler, J. Phys. Conf. Ser. 180,
012022 (2009).

[127] B. Müller, H. Janka, and H. Dimmelmeier, Astrophys.
J. Suppl. Ser. 189, 104 (2010).

[128] T. D. Brandt, A. Burrows, C. D. Ott, and E. Livne,
Astrophys. J. 728, 8 (2011).

[129] B. Müller, H.-T. Janka, and A. Heger, Astrophys. J. 761, 72
(2012).

[130] C. Y. Cardall, Nucl. Phys. B, Proc. Suppl. B229–B232,
315 (2012).

[131] F. Hanke, A. Marek, B. Müller, and H.-T. Janka,
Astrophys. J. 755, 138 (2012).

[132] C. I. Ellinger, G. Rockefeller, C. L. Fryer, P. A. Young, and
S. Park, arXiv:1305.4137.

[133] J. W. Murphy, J. C. Dolence, and A. Burrows, Astrophys.
J. 771, 52 (2013).

[134] C. L. Fryer, Classical Quantum Gravity 30, 244002 (2013).
[135] I. Tamborra, F. Hanke, B. Mueller, H.-T. Janka, and

G. Raffelt, Phys. Rev. Lett. 111, 121104 (2013).
[136] S. W. Bruenn, A. Mezzacappa, W. R. Hix, E. J. Lentz,

O. E. Bronson Messer, E. J. Lingerfelt, J. M. Blondin,
E. Endeve, P. Marronetti, and K. N. Yakunin, Astrophys.
J. Lett. 767, L6 (2013).

[137] Y.Suwa,T.Takiwaki,K.Kotake,T.Fischer,M.Liebendörfer,
and K. Sato, Astrophys. J. 764, 99 (2013).

NEUTRINO QUANTUM KINETICS PHYSICAL REVIEW D 89, 105004 (2014)

105004-29

http://dx.doi.org/10.1088/0954-3899/34/1/004
http://dx.doi.org/10.1088/0954-3899/34/1/004
http://dx.doi.org/10.1103/PhysRevLett.99.241802
http://dx.doi.org/10.1103/PhysRevLett.99.241802
http://dx.doi.org/10.1103/PhysRevLett.100.021101
http://dx.doi.org/10.1103/PhysRevLett.100.021101
http://dx.doi.org/10.1103/PhysRevD.78.023016
http://dx.doi.org/10.1103/PhysRevD.78.023016
http://dx.doi.org/10.1103/PhysRevD.78.033014
http://dx.doi.org/10.1103/PhysRevD.78.033014
http://dx.doi.org/10.1103/PhysRevLett.104.191102
http://dx.doi.org/10.1088/0954-3899/38/3/035201
http://dx.doi.org/10.1103/PhysRevD.17.2369
http://dx.doi.org/10.1016/j.nuclphysb.2011.10.025
http://dx.doi.org/10.1088/1475-7516/2012/10/027
http://dx.doi.org/10.1088/1475-7516/2012/10/027
http://dx.doi.org/10.1088/1475-7516/2013/04/018
http://dx.doi.org/10.1088/1475-7516/2013/04/018
http://dx.doi.org/10.1016/S0370-1573(01)00061-8
http://dx.doi.org/10.1007/JHEP02(2012)065
http://dx.doi.org/10.1007/JHEP12(2010)072
http://dx.doi.org/10.1007/JHEP12(2010)072
http://dx.doi.org/10.1016/j.nuclphysb.2012.03.009
http://dx.doi.org/10.1016/j.nuclphysb.2012.03.009
http://dx.doi.org/10.1016/j.nuclphysb.2010.10.001
http://dx.doi.org/10.1016/j.nuclphysb.2010.05.003
http://dx.doi.org/10.1103/PhysRevD.81.085027
http://dx.doi.org/10.1103/PhysRevD.80.125027
http://dx.doi.org/10.1103/PhysRevD.88.105009
http://dx.doi.org/10.1103/PhysRevD.88.105009
http://dx.doi.org/10.1103/PhysRevD.45.4421
http://dx.doi.org/10.1103/PhysRevLett.83.3120
http://dx.doi.org/10.1103/PhysRevLett.83.3120
http://dx.doi.org/10.1088/0004-637X/699/1/409
http://dx.doi.org/10.1086/174817
http://dx.doi.org/10.1086/305338
http://dx.doi.org/10.1103/PhysRevLett.86.1935
http://dx.doi.org/10.1103/PhysRevLett.86.1935
http://dx.doi.org/10.1146/annurev.nucl.55.090704.151608
http://dx.doi.org/10.1146/annurev.nucl.55.090704.151608
http://arXiv.org/abs/1002.4914
http://dx.doi.org/10.1086/375130
http://dx.doi.org/10.1086/375130
http://dx.doi.org/10.1088/0034-4885/69/4/R03
http://dx.doi.org/10.1088/0034-4885/69/4/R03
http://dx.doi.org/10.1086/592214
http://dx.doi.org/10.1086/592214
http://dx.doi.org/10.1088/1742-6596/180/1/012022
http://dx.doi.org/10.1088/1742-6596/180/1/012022
http://dx.doi.org/10.1088/0067-0049/189/1/104
http://dx.doi.org/10.1088/0067-0049/189/1/104
http://dx.doi.org/10.1088/0004-637X/728/1/8
http://dx.doi.org/10.1088/0004-637X/761/1/72
http://dx.doi.org/10.1088/0004-637X/761/1/72
http://dx.doi.org/10.1016/j.nuclphysbps.2012.09.049
http://dx.doi.org/10.1016/j.nuclphysbps.2012.09.049
http://dx.doi.org/10.1088/0004-637X/755/2/138
http://arXiv.org/abs/1305.4137
http://dx.doi.org/10.1088/0004-637X/771/1/52
http://dx.doi.org/10.1088/0004-637X/771/1/52
http://dx.doi.org/10.1088/0264-9381/30/24/244002
http://dx.doi.org/10.1103/PhysRevLett.111.121104
http://dx.doi.org/10.1088/2041-8205/767/1/L6
http://dx.doi.org/10.1088/2041-8205/767/1/L6
http://dx.doi.org/10.1088/0004-637X/764/1/99

