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ABSTRACT

We present VULCAN/2D multigroup flux-limited-diffusion radiation-hydrodynamics simulations of binary neutron
star mergers, using the Shen equation of state, covering � 100 ms, and starting from azimuthal-averaged two-
dimensional slices obtained from three-dimensional smooth-particle-hydrodynamics simulations of Rosswog
& Price for 1.4 M⊙(baryonic) neutron stars with no initial spins, co-rotating spins, or counter-rotating spins.
Snapshots are post-processed at 10 ms intervals with a multiangle neutrino-transport solver. We find polar-
enhanced neutrino luminosities, dominated by ν̄e and “νμ” neutrinos at the peak, although νe emission may
be stronger at late times. We obtain typical peak neutrino energies for νe, ν̄e, and “νμ” of ∼ 12, ∼ 16, and
∼ 22 MeV, respectively. The supermassive neutron star (SMNS) formed from the merger has a cooling timescale of
� 1 s. Charge-current neutrino reactions lead to the formation of a thermally driven bipolar wind with 〈Ṁ〉 ∼
10−3 M⊙ s−1 and baryon-loading in the polar regions, preventing any production of a γ -ray burst prior to
black hole formation. The large budget of rotational free energy suggests that magneto-rotational effects could
produce a much-greater polar mass loss. We estimate that � 10−4 M⊙ of material with an electron fraction in
the range 0.1–0.2 becomes unbound during this SMNS phase as a result of neutrino heating. We present a new
formalism to compute the νi ν̄i annihilation rate based on moments of the neutrino-specific intensity computed
with our multiangle solver. Cumulative annihilation rates, which decay as ∼t−1.8, decrease over our 100 ms
window from a few ×1050 to ∼ 1049 erg s−1, equivalent to a few ×1054 to ∼ 1053 e−e+ pairs per second.
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1. INTRODUCTION

Coalescing neutron stars are one of the primary progenitor
candidates for short-duration (i.e., � 2 s) γ -ray bursts (GRBs;
Paczynski 1986; Goodman 1986; Eichler et al. 1989; Narayan
et al. 1992; Mochkovitch et al. 1993). In-spiral of the two neutron
star components occurs due to energy and angular-momentum
loss through gravitational radiation (Taylor & Weisberg 1982;
Weisberg & Taylor 2005), which is emitted as the system evolves
toward coalescence. Modern γ -ray and X-ray satellites have
considerably improved our understanding of short-hard GRBs
(Nakar 2007), and have more strongly associated them with
binary neutron star (BNS) merger events (Lee & Ramirez-
Ruiz 2007). Gravitational wave detectors such as the Laser
Interferometer Gravitational-Wave Observatory (Abramovici
et al. 1992) will most likely improve our understanding of these
events in the coming decade.

The engine powering such short-hard GRBs and their as-
sociated high-Lorentz-factor ejecta is thought to be linked to
mass accretion from a torus onto a central black hole, formed
when the supermassive neutron star (SMNS) born from the
coalescence eventually collapses. In recent years, models of
GRB production from a high-mass, magnetar-like neutron star
have also received some attention (Usov 1992; Usov 1994;
Kluźniak & Ruderman 1998; Rosswog et al. 2003; Dai et al.
2006; Metzger et al. 2007; Dessart et al. 2007). We will ad-
dress the likelihood that the SMNS produces a GRB prior
to black hole formation in Section 3.2. A fraction of the

gravitational energy in the disk around this black hole is ra-
diated as neutrinos, which power a disk wind. A fraction of
these neutrinos and antineutrinos annihilate into e−e+. Mag-
netic processes may, through their role in angular-momentum
transport, be decisive in setting the timescale between merger
and collapse and, in addition, they may extract rotational energy
from the central black hole (Blandford & Znajek 1977). The
ejecta may be confined by the magnetic field morphology or by
the intense neutrino-driven baryon-loaded wind thought to ac-
company coalescence and black hole mass accretion (Levinson
& Eichler 2000; Rosswog & Ramirez-Ruiz 2003; Aloy et al.
2005).

Numerical simulations of BNS mergers have a rich history,
and have been considerably refined over the years, moving
from two-dimensional to three-dimensional; from Newtonian
to post-Newtonian, conformally flat, and finally to full general
relativity (GR); from simple polytropic to more sophisticated
equations of state (EOS); from the neglect of neutrinos to
approximate neutrino-trapping schemes. BNS merger studies
yield predictions for (1) their associated gravitational wave
signals (Ruffert et al. 1996; Calder & Wang 2002; Faber & Rasio
2002; Shibata & Uryū 2002; Shibata et al. 2003, 2005; Oechslin
& Janka 2007; Anderson et al. 2008b), (2) the production of
short-hard GRBs (Ruffert et al. 1997; Ruffert & Janka 1999;
Rosswog & Ramirez-Ruiz 2003; Rosswog et al. 2003; Rosswog
2005; Janka et al. 2006; Birkl et al. 2007), and (3) the pollution
of the environment by r-process nuclei (Lattimer & Schramm
1974, 1976; Symbalisty & Schramm 1982; Eichler et al. 1989;
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Davies et al. 1994; Freiburghaus et al. 1999; Rosswog et al.
1999; Surman et al. 2008).

Different modeling ingredients and approaches have been
employed. Three-dimensional Newtonian simulations without
neutrino transport were performed by Oohara & Nakamura
(1989, 1990), Nakamura & Oohara (1989, 1991), Zhuge
et al. (1994, 1996), and Rosswog et al. (2000). Ruffert et al.
(1996, 1997) included neutrinos using a grid-based code, and
this was followed by Rosswog & Davies (2002) and Rosswog &
Liebendörfer (2003) using a three-dimensional smooth-particle-
hydrodynamics (SPH) code. Recently, Setiawan et al. (2004,
2006) applied such a neutrino-leakage scheme in their study
of torus-disk mass accretion around a black hole formed in a
BNS merger, and addressed neutrino emission and annihilation.
Magnetic fields in BNS merger evolution were introduced in
three-dimensional Newtonian simulations by Price & Rosswog
(2006) and Rosswog & Price (2007).

In parallel, there have been improvements to the Newtonian
approach to incorporate the effects of GR (although largely ne-
glecting microphysics), which become important as the two neu-
tron stars come closer and eventually merge. Post-Newtonian
simulations were performed by Oohara & Nakamura (1992),
Faber & Rasio (2000, 2002), Faber et al. (2001), Ayal et al.
(2001), and Calder & Wang (2002). The conformally flat ap-
proximation was introduced in Wilson et al. (1996) and followed
by Oechslin et al. (2002), Faber et al. (2004), Oechslin & Janka
(2006, 2007), and Oechslin et al. (2007). Full two-dimensional
GR simulations, sometimes including magnetic fields, have
been performed for SMNSs, possibly resulting from BNS merg-
ers, by Baumgarte et al. (2000), Morrison et al. (2004), Duez
et al. (2004, 2006), and Shibata et al. (2006), while full three-
dimensional GR simulations of the merger were carried out by
Shibata & Uryū (2002); Shibata et al. (2003, 2005); Shibata &
Uryu (2007), Anderson et al. (2008), and Baiotti et al. (2008).

All these simulations have been conducted at various levels of
sophistication for the thermodynamic properties of matter, rang-
ing from simplistic and not-so-physically-consistent polytropic
EOSs to those employing a detailed microphysical represen-
tation of nuclear matter at an arbitrary temperature (Lattimer
& Swesty 1991; Shen et al. 1998a, 1998b). Investigations per-
formed with such detailed EOSs have been conducted by, e.g.,
Ruffert et al. (1996, 1997), Rosswog et al. (1999), and Rosswog
& Davies (2002), and the dependency of BNS merger properties
on the adopted EOS has been discussed by Oechslin & Janka
(2007) and Oechslin et al. (2007). Variations of a few times
10% in the maximum-allowed mass are seen, depending on the
compressibility of nuclear matter, but recent observations may
suggest that neutron stars with a gravitational mass in excess of
2 M⊙ do exist (Nice et al. 2005; Freire et al. 2007), supporting
a stiff EOS for nuclear matter, such as the Shen EOS that we
employ here. In Figure 1, we show, as a function of the central
density, the baryonic and gravitational neutron star masses that
we obtain for our implementation of the Shen EOS. The maxi-
mum occurs at ∼ 1.3 × 1015 g cm−3, corresponding to a grav-
itational (baryonic) mass of 2.32 M⊙ (2.77 M⊙).6 Moreover, in
the context of differentially rotating (and possibly magnetized)
SMNSs, the maximum mass that can be supported by a given
EOS may be increased by up to ∼ 50% compared to the equiv-
alent nonrotating object (Baumgarte et al. 2000; Morrison et al.
2004; Duez et al. 2004, 2006; Shibata et al. 2006; Sumiyoshi
et al. 2007; Kiuchi & Kotake 2008). Ultimately, understanding

6 Note that the values given in Dessart et al. (2008) are not exact.

Figure 1. Gravitational (solid line) and baryonic (dotted line) masses, as well
as the corresponding neutron star radius (dashed line), vs. central density
derived for our Shen EOS and the Oppenheimer–Volkov equation (one form
of the general-relativistic equation of hydrostatic equilibrium), and assuming
a nonrotating neutron star characterized by a uniform electron fraction of 0.1
and a uniform temperature of 1 MeV. Here, the transition to a black hole will
occur when the central density in the neutron star reaches ∼ 1.3×1015 g cm−3,
corresponding to a gravitational (baryonic) mass of 2.32 M⊙ (2.77 M⊙) and a
neutron star radius of ∼ 13 km.

the mechanisms and timescales for angular momentum to be re-
distributed to lead to solid-body rotation is, therefore, important.
One possible agency of redistribution is the magneto-rotational
instability (Balbus & Hawley 1991a; Akiyama et al. 2003;
Pessah et al. 2006). The implications are nontrivial because
the efficiency of angular-momentum transport determines in
part whether a black hole forms promptly, or after a short or a
long delay. It also determines how much mass can be accreted,
i.e., whether there is ∼ 0.01 or ∼ 0.1 M⊙ available in the torus
surrounding the black hole after it has formed, and what the
timescale is over which such accretion can take place to power
relativistic ejecta. Although indirect, the relevance to short-hard
GRBs and their properties is obvious, and perhaps central. In
fact, this issue is also germane to the production of collapsars
and long-duration GRBs (Dessart et al. 2008).

In this work, we perform two-dimensional multigroup,
flux-limited-diffusion (MGFLD), radiation hydrodynamics of
merged BNSs using the Shen EOS. The main goal of this work
is to document in detail the neutrino signatures from such merger
events. Our approach is to solve the neutrino transport problem
self-consistently (although with a flux limiter and assuming dif-
fusion), in combination with the dynamics of the system (but
assuming axisymmetry), over � 100 ms. At selected times,
we post-process such models with the multiangle, Sn, neutrino
transport algorithm of Livne et al. (2004), described recently in
Ott et al. (2008). In particular, our investigation allows for the
first time the computation of the neutrino–antineutrino annihi-
lation rate from a solution of the transport equation, rather than
using an approximate leakage scheme. Our investigation applies
strictly to the neutron star phase of such BNS mergers.

This paper is organized as follows. In Section 2, we present
the initial models we employ in our work, based on three-
dimensional SPH simulations of BNS mergers with different
spin configurations (Section 2.1). In Section 2.2, we present the
characteristics and procedures that we employ to evolve such
initial conditions with the MGFLD radiation-hydrodynamics
code VULCAN/2D. In Section 3, we present our results for
the neutrino signatures (Section 3.1) and the dynamics of BNS
mergers (Section 3.2). In Section 4, we address the neutrino–
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antineutrino annihilation rate in our three BNS merger models.
We first present results employing the approach used so far
(Ruffert et al. 1996, 1997; Rosswog & Liebendörfer 2003;
Setiawan et al. 2004, 2006; Birkl et al. 2007), based on a
leakage scheme for the neutrino-flavor-dependent opacities and
emissivities and a summation of all paired grid cells contributing
at any given location. In Section 4.2, we then present a
new formalism which uses moments of the neutrino-specific
intensity computed with a multiangle, Sn, scheme. Finally, we
present our conclusions in Section 5 and discuss the most
striking implications for the powering of short-duration GRBs.
For completeness, in the Appendix, we apply our formalism to
the computation of the annihilation rate in the context of slow-
and fast-rotating single protoneutron stars (PNSs).

2. MODEL DESCRIPTION

The main goal of this work is to understand the long-
term (over many rotation periods), post-coalescence, evolution
of BNS mergers, with particular attention to neutrino signa-
tures (flavor dependence, angular distribution, and radial dis-
tribution). Starting from azimuthal-averaged slices constructed
from three-dimensional SPH simulations with the MAGMA
code (Rosswog & Price 2007) and taken a few milliseconds
after coalescence, we perform two-dimensional (axisymmet-
ric) MGFLD radiation-hydrodynamics simulations using the
code VULCAN/2D (Livne et al. 2004; Dessart et al. 2006a;
Burrows et al. 2007b; Ott et al. 2008). Below, we present the
properties of the three BNS merger configurations from which
we start (Section 2.1), and then describe our approach with
VULCAN/2D in more detail (Section 2.2).

2.1. Initial Conditions

The MAGMA code (Rosswog & Price 2007) is a state-of-the-
art SPH code that contains physics modules that are relevant
to compact binary mergers and on top implements a slew of
numerical improvements over most “standard” SPH schemes.
A detailed code description can be found in Rosswog & Price
(2007), while results are presented in Price & Rosswog (2006)
and Rosswog (2007).

We briefly summarize the most important physics mod-
ules. For the thermodynamic properties of neutron star mat-
ter we use a temperature-dependent relativistic mean-field EOS
(Shen et al. 1998a, 1998b). It can handle temperatures from
0 to 100 MeV, electron fractions from Ye = 0 (pure neu-
tron matter) up to 0.56, and densities from about 10 to more
than 1015 g cm−3. No attempt is made to include matter con-
stituents that are more exotic than neutrons and protons at high
densities.

The MAGMA code contains a detailed multiflavor neutrino-
leakage scheme. An additional mesh is used to calculate the
neutrino opacities that are needed for the neutrino emission rates
at each particle position. The neutrino emission rates are used
to account for the local cooling and the compositional changes
due to weak interactions such as electron captures. A detailed
description of the neutrino treatment can be found in Rosswog
& Liebendörfer (2003).

The self-gravity of the fluid is treated in a Newtonian fashion.
Both the gravitational forces and the search for the particle
neighbors are performed with a binary tree that is based on
that described in Benz et al. (1990). These tasks are the
computationally most expensive part of the simulations and in
practice they completely dominate the CPU-time usage. Forces

emerging from the emission of gravitational waves are treated
in a simple approximation. For more details, we refer to the
literature Rosswog et al. (2000); Rosswog & Davies (2002).

In terms of numerical improvements over “standard” SPH
techniques, the code contains the following:

1. To restrict shocks to a numerically resolvable width, arti-
ficial viscosity is used. The form of the artificial viscosity
tensor is oriented at Riemann solvers (Monaghan 1997).
The resulting equations are similar to those constructed
for Riemann solutions of compressible fluid dynamics. In
order to apply the artificial viscosity terms only where
they are really needed, i.e., close to a shock, the numer-
ical parameter that controls the strength of the dissipative
terms is made time dependent, as suggested by Morris &
Monaghan (1997). An extra equation is solved for this
parameter, which contains a source term that triggers on
the shock and a term causing an exponential decay of the
parameter in the absence of shocks. Tests can be found
in Rosswog et al. (2000) and an illustration of the time-
dependent viscosity parameter in the context of Sod’s
shock-tube problem can be found in (Rosswog et al. 2008,
their Figure 1).

2. A self-consistent treatment of extra terms in the hydrody-
namics equations that arise from varying smoothing lengths
(the so-called grad-h terms; Springel & Hernquist 2002;
Monaghan 2002; Price 2004; Rosswog & Price 2007).

3. A consistent implementation of adaptive gravitational soft-
ening lengths as described in Price & Monaghan (2007).

4. The option to evolve magnetic fields via so-called Euler
potentials (Stern 1970) that guarantee that the constraint
∇ · B = 0 is fulfilled. The details can be found in Rosswog
& Price (2007) and Rosswog & Price (2008).

Our work starts from three-dimensional SPH simulations
of BNS mergers in an isolated binary system, made up of
two individual neutron stars, each with a baryonic mass of
1.4 M⊙ (equivalent to a gravitational mass of ∼ 1.3 M⊙), and
separated by a distance of 48 km. Their initial hydrostatic
structure is computed by solving the Newtonian equations. The
properties of nuclear matter (pressure, energy, entropy, etc.) are
obtained by interpolation in the Shen EOS (Shen et al. 1998a,
1998b), assuming zero temperature and β equilibrium. A large
number of SPH particles (N ≈ 106) are then mapped onto the
resulting density profiles. These particles are further relaxed to
find their true equilibrium state (see, e.g., Rosswog & Price
2007).

Because the tidal synchronization time exceeds the gravita-
tional decay time, BNSs cannot be tidally locked during their
inspiral phase, and are thus expected to be close to irrotational
(see, e.g., Bildsten & Cutler 1992 and Kochanek 1992); how-
ever, past investigations of the coalescence of BNSs suggest that
the intrinsic spin of each neutron star is an important parame-
ter, as it determines, for example, the width of the baryon-poor
funnel above the forming central object that is thought to play
a decisive role in the launching of a GRB (see, e.g., Zhuge
et al. 1996; Faber et al. 2001; Oechslin et al. 2007). There-
fore, to encompass the range of possible outcomes, we simulate
three initial configurations: (1) no spins (no intrinsic neutron
star spin), (2) co-rotating spins (each neutron star has a period
equal to that of the orbit, and rotates in the same direction), and
(3) counter-rotating spins (same spin period as for co-rotating
spins, but with rotation in a reverse direction to that of the or-
bit; the spins are counter-aligned). In the rest of this paper, we
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broadly refer to these models as the no-spin, the co-rotating spin,
and the counter-rotating spin BNS models. The co-rotating and
counter-rotating cases are included here to bracket the range
of possibilities, but they represent unlikely extremes. We leave
to future work the consideration of higher-mass BNS merg-
ers (Rosswog & Ramirez-Ruiz 2003) or asymmetric systems
(Rosswog et al. 2000).

In practice, we post-process these three-dimensional SPH
simulations by constructing azimuthal-averages, selecting a
time after coalescence (when the two neutron stars come into
contact) of 10.0 ms (no-spins), 12.4 ms (co-rotating spins),
and 20.4 ms (counter-rotating spins), corresponding in each
VULCAN/2D simulations to the time origin. At these times,
these systems are evolving toward, but have not yet reached,
complete axisymmetric configurations. This is a compromise
made to model with VULCAN/2D the epoch of peak neutrino
brightness. At these initial times, the amount of mass with a
density greater than 1013 g cm−3 is 2.5 M⊙ in the no-spin BNS
model, 2.31 M⊙ in the co-rotating spin model, and 2.43 M⊙ in
the counter-rotating spin model. In the same model order, and
at these times, the mass contained inside the ∼ 13 km radius
of the highest mass neutron star allowed by the Shen EOS is
only 1.11, 1.26, and 1.03 M⊙, respectively. The SPH simulations
employed to generate these models are Newtonian, and, thus,
one would expect more mass at small radii and systematically
higher densities if allowance for GR effects were made, but the
use of the highly incompressible Shen EOS, together with the
significant amount of mass in quasi-Keplerian motion and on
wide orbits, suggests that the systems should survive at least for
some time before the general-relativistic gravitational instability
occurs.

2.2. VULCAN/2D

Starting from fluid variables constructed with azimuthal aver-
ages of the three-dimensional SPH simulations described above,
we follow the evolution of three BNS merger configurations
with the Newtonian hydrodynamic code VULCAN/2D (Livne
1993), supplemented with an algorithm for neutrino transport
as described in Livne et al. (2004) and Walder et al. (2005). The
version of the code used here is the same as that discussed in
Dessart et al. (2006a) and Burrows et al. (2006a), and uses the
two-dimensional MGFLD method to handle neutrino transport
(see Appendix A of Dessart et al. 2006a). Additional details
on VULCAN/2D are provided in Burrows et al. (2007b). Mag-
netic fields are ignored in this study, as is the potential role of
physical viscosity, i.e., there is no viscosity included besides
one of an inherently numerical nature. The gravitational poten-
tial is assumed to be Newtonian and computed using a multipole
solver (Dessart et al. 2006a). Our study presents a self-consistent
treatment of neutrino emission, scattering, and absorption in a
multispecies MGFLD context. Associated neutrino–matter cou-
pling source terms are included in the momentum and energy
conservation equations and their relevance to the merger evo-
lution is, thus, computed explicitly for a typical duration of
� 100 ms. For these dynamical calculations, we include all
neutrino processes described in Burrows et al. (2006b), but
neglect the secondary processes of neutrino–electron scatter-
ing. The transport solution in the MGFLD scheme we em-
ploy is solved for the three neutrino species νe, ν̄e, and
“νμ,” (which groups together the μ and τ neutrinos) and at
eight neutrino energies: 2.50, 6.87, 12.02, 21.01, 36.74, 64.25,
112.36, and 196.48 MeV. The energy spacing is constant in
the log.

The choice of the spatial grid is determined primarily by
the very aspherical density distribution of the merger and the
very steep density drop-off at the neutron star surface in the
polar direction. We present in Figures 2 and 3 (top row)
the initial temperature (logarithmic scale and in MeV), elec-
tron fraction, and the density distribution (white-line contours
overplotted for every decade between 107 and 1014 g cm−3)
for each BNS merger configuration that we map onto the
VULCAN/2D grid. Note that fast rotation in the inner region, al-
though sub-Keplerian, displaces the density maximum by 8 km
from the center and along the equator in the no-spin BNS model.
These density peaks also correspond to extrema in the electron
fraction of ∼ 0.1 at this time. To setup the hybrid VULCAN/2D
grid, we position the transition radius between the inner Carte-
sian and the outer spherical polar regions at 12 km. The density
at this location is at all times in excess of 1014 g cm−3, and
thus—due to the stiffness of the Shen EOS in that regime—
away from the regions of large density gradient. The resolution
in this inner region is typically 200 × 200 m2, corresponding
to 12/0.2 = 60 zones in each (cylindrical) direction r and z
from the center to the transition radius. Beyond the transition
radius, we use a logarithmically increasing radial grid spacing
with ∆r/r = 1.85%, using 301 zones to 3000 km. The grid cov-
ers one hemisphere, from the rotation axis to the equator (both
treated as reflecting boundaries), and the computation assumes
axisymmetry, i.e., the azimuthal gradients are zero. We fill the
grid outside the merger with material having a low density of
5 × 103 g cm−3 and a low temperature of 4 × 108 K. Below
Ye = 0.05, we compute thermodynamic variables, as well as
opacities/emissivities, by adopting an electron fraction of 0.05.
Given the smooth variation for the corresponding quantities
(pressure, entropy, mean-free path, etc.) at this level of neutron
richness, this approximation is expected to be quite good.

For example, the difference in any of these quantities be-
tween a neutron fraction (1 − Ye) of 95% and 100% (the
latter would be the case for Ye = 0.0) is approximately
5% × (the neutron contribution − the proton contribution),
corrected for the electron contribution difference, which is
minuscule for cross sections. For the pressure, since the
proton contribution at high densities is within ∼ 30% of the neu-
tron contribution and at low densities is almost equal to the neu-
tron contribution (ideal gas),7 the error is less than ∼ 1.5–2.0%.
For the scattering opacities, the universality of the neutral cur-
rent makes this net error even smaller. For the electron–neutrino
absorptive opacities, a high neutron fraction is accompanied by
a low final-state proton blocking. For the anti-electron–neutrino
absorption, a low proton fraction is accompanied by a high
final-state neutron blocking factor. The net result is an absorp-
tion cross section at high densities that is only a few percent
different for neutron fractions of 95% and 100%.

After the MGFLD radiation-hydrodynamics simulations are
completed, we post-process individual snapshots keeping the
hydrodynamics frozen, and relaxing only the radiation quan-
tities. This operation is performed for each model at 10 ms
intervals over the whole evolution using the multiangle, Sn,
radiation-transport module of Livne et al. (2004) and described
more recently in Ott et al. (2008). We refer the reader to those
papers for details on the method and the nomenclature. This Sn

variant yields the explicit angular dependence of the neutrino-
specific intensity, and, thus, represents a more accurate modeling

7 Note that the electron pressure contribution below Ye = 0.05 and at high
densities is fractionally less than Ye, numerically due to the dominance of the
strong nuclear force.
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Figure 2. Colormap of the temperature (MeV; log scale) at 0 (top row; inner 150 × 150 km2 region) and 100 ms (bottom row; inner 250 × 250 km2 region) after the
start of the simulation. In the bottom panels, velocity vectors are added, with a saturation length at 15% of the width of the display and corresponding to a velocity of
30,000 km s−1. From left to right columns, we show the no-spin, co-rotating, and counter-rotating models. We also overplot white density contours for every decade,
starting at a maximum of 1014 g cm−3. Note that the minimum of the color bar changes between the top and bottom rows.

(A color version of this figure is available in the online journal.)

of the strongly anisotropic neutrino luminosity in such highly
aspherical systems (Ott et al. 2008). The Sn calculation is done
with the same number of energy groups (i.e., eight) and on the
same spatial grid. In the Sn algorithm, the transition at depth to
MGFLD described in Ott et al. (2008) is natural here, since it
occurs at 12 km, and, thus, in regions where the densities are
nuclear. However, the spatial resolution is not fully satisfactory
at the neutron star surface and along the polar direction, a re-
gion where the density decreases by few orders of magnitude
in just a few kilometers. Thus, this represents a challenge for
radiation transport on our Eulerian grid. In the first instance, we
relax the MGFLD results with Sn, adopting 8 ϑ-angles. In the
Sn approach, n such ϑ-angles translate into n(n+2)/2 directions
mapping the unit sphere uniformly. To obtain the steady-state
angle-dependent radiation field, we apply the Sn algorithm to
initial conditions resulting from the converged MGFLD model.
The solution is found by iterating on the radiation field at each
time step until it does not change by more than one part in a
thousand at any grid location. This newly found radiation field
is then evolved in time through a number of consecutive time
steps, until the solution has propagated through the entire grid.
In the optically thick regions, the Sn and the MGFLD solutions
are inherently close, so convergence is reached after a few ms,

although about 10 iterations are required for convergence at each
time step. In the optically thin regions, and in the regions inter-
mediate between these two regimes, the convergence is obtained
at each time step after 3–4 iterations, but the two solvers yield
quite different results, so the Sn run has to be evolved for at least
10 ms, allowing the new multiangle radiation field to “propa-
gate out” and fill the entire grid. Hence, after having reached
10 ms, the Sn run is stopped whenever the radiation field does not
change by more than one part in a thousand at any location and
from one time step to the next. Once converged, we perform an
accuracy check by remapping the angle-dependent neutrino ra-
diation field from 8 to 16 ϑ-angles, and then relaxing this higher
angular-resolution simulation. Due to the increased computa-
tional costs, we use the high (16 ϑ-angles) angular-resolution
configuration only for snapshots at 10, 60, and 100 ms, but for
all three BNS merger configurations studied here. Importantly,
the explicit angle dependence of the neutrino-radiation field al-
lows us to compute its various moments, which we employ in a
novel formulation of the neutrino–antineutrino annihilation rate
(Section 4.2). Surprisingly, and as documented in Table 1 (see
also Section 4.1), this sophisticated, i.e., multidimensional,
multigroup, multiangle, approach that we follow yields re-
sults that agree favorably with those obtained using the leakage
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Figure 3. Same as for Figure 2, but now for the electron fraction Ye. Note that the extent of the displayed region and the extrema of the color bar change between the
top and bottom rows. In the counter-rotating spin model, an axis problem develops early on in the VULCAN/2D simulation (visible as a spurious low Ye “needle”
along the rotation axis), despite the high spatial resolution employed.

(A color version of this figure is available in the online journal.)

scheme of Ruffert et al. (1996, 1997), which by contrast is gray
and makes rough estimates of directional diffusion times, scale
heights, etc. (the expression of the diffusion time is itself, by
essence, an approximation, based on random-walk arguments).
Our computation of the angle dependence of the radiation field
offers, however, a number of interesting new insights, which we
explore in Section 4.

3. BNS MERGER EVOLUTION AND NEUTRINO
SIGNATURES

In each model, the restart with VULCAN/2D is followed
by a transient phase that lasts a few milliseconds and that is
characterized by high-frequency oscillations of the highest den-
sity material, located within 10–20 km of the center. Given the
good match between the Shen EOS used in the MAGMA code
(Rosswog & Price 2007) in this work (pressures differ by at most
a few percent), we speculate that these oscillations are caused
in part by the glitch introduced through the azimuthal averaging
of the three-dimensional SPH simulation snaphsot. However,
they may also reflect a fundamental dynamical property of this
early phase. Similar oscillations are seen in three-dimensional
simulations performed with MAGMA, and have also been re-
ported in the literature, e.g., by Baiotti et al. (2008). The as-
sociated shocks generate thermal energy (note that the thermal
part of the pressure is subdominant at nuclear densities), but this

thermal component is negligible compared, for example, with
what is needed to power the neutrino luminosities that we see.
Any initial mismatch is thus merely a small transient which
has a negligible impact on the long-term evolution of the BNS
mergers that we study in this work.

The evolxsutions of the BNS merger models with initially
no spins, co-rotating spins, and counter-rotating spins are
qualitatively similar. As discussed above, at the start of the
VULCAN simulations, the matter distribution is far from
stationary, with a significant amount of material at subnuclear
densities and at large distances from the center. Throughout the
∼ 100 ms of evolution that we follow, matter in the inner few
hundred kilometers settles in and comes to rest at the neutron star
surface, while material beyond a few hundred kilometers and
located at low, near-equatorial latitudes migrates outward due
to the large thermal pressure gradient and the strong centrifugal
effects. This expansion also takes place in the vertical direction,
leading to the formation of a low-density cocoon surrounding an
inner and denser disk. In the intermediate region, i.e., at radii of
50–100 km and along the equatorial direction, material evolves
toward quasi-Keplerian motion, with little inward or outward
migration. In Figures 2 and 3, we show the T − Ye distributions
at the start of the VULCAN/2D simulations (top row), and
100 ms later (bottom row), together with isodensity contours
(shown in white) for every decade starting at a maximum value
of 1014 g cm−3.
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Table 1
νi ν̄i Annihilation Rates Using the Leakage and the Sn Schemes

Time No Spins Co-Rotating Spins Counter-Rotating Spins

(ms)
∫

dV Q+(νe ν̄e)
∫

dV Q+(“νμν̄μ”)
∫

dV Q+(νe ν̄e)
∫

dV Q+(“νμν̄μ”)
∫

dV Q+(νe ν̄e)
∫

dV Q+(“νμν̄μ”)

(B s−1) (B s−1) (B s−1)

Leakage Scheme

10 1.56(−1) 3.28(−5) 2.05(−1) 1.01(−4) 2.18(−1) 1.40(−4)

20 9.28(−2) 5.99(−6) 4.79(−2) 2.38(−6) 1.05(−1) 1.01(−5)

30 3.80(−2) 1.15(−6) 3.70(−2) 1.43(−6) 5.95(−2) 3.35(−6)

40 3.11(−2) 8.54(−7) 4.67(−2) 1.08(−6) 3.65(−2) 1.36(−6)

50 2.82(−2) 6.23(−7) 5.67(−2) 1.35(−6) 2.16(−2) 5.81(−7)

60 1.78(−2) 2.57(−7) 4.43(−2) 8.74(−7) 1.50(−2) 3.00(−7)

70 1.32(−2) 1.63(−7) 2.69(−2) 3.78(−7) 1.18(−2) 1.79(−7)

80 1.22(−2) 1.67(−7) 3.55(−2) 8.16(−7) 1.01(−2) 1.21(−7)

90 1.47(−2) 2.94(−7) 2.96(−2) 6.64(−7) 7.64(−3) 7.64(−8)

100 1.60(−2) 3.73(−7) 2.54(−2) 5.41(−7) 6.48(−3) 5.47(−7)

Sn Scheme

10 1.81(−1) 1.44(−2) 5.97(−1) 9.19(−3) 3.63(−1) 4.76(−2)

20 6.82(−2) 6.41(−3) 9.22(−2) 1.15(−3) 8.92(−2) 1.70(−2)

30 3.95(−2) 3.96(−3) 4.59(−2) 4.59(−4) 4.08(−2) 1.01(−2)

40 2.71(−2) 2.58(−3) 4.13(−2) 2.82(−4) 2.77(−2) 7.83(−3)

50 2.18(−2) 1.78(−3) 4.19(−2) 1.89(−4) 1.92(−2) 5.84(−3)

60 1.82(−2) 1.39(−3) 3.59(−2) 1.34(−4) 1.28(−2) 4.27(−3)

70 1.47(−2) 1.02(−3) 2.31(−2) 8.70(−5) 1.04(−2) 3.76(−3)

80 1.11(−2) 6.94(−4) 2.30(−2) 6.22(−5) 8.49(−3) 3.28(−3)

90 1.01(−2) 5.25(−4) 1.84(−2) 4.28(−5) 7.13(−3) 2.83(−3)

100 9.67(−3) 3.93(−4) 1.59(−2) 3.02(−5) 6.21(−3) 2.46(−3)

Notes. Upper half: listing of the volume-integrated rates for the νe ν̄e and “νμν̄μ” annihilation rates using the approach of Ruffert

et al. (1996, 1997), as summarized in Section 4.1. The time for each calculation refers to the time since the start of the VULCAN/2D

simulation. Numbers in parenthesis correspond to powers of 10. The strong decrease of the energy-deposition rates reflects the fading of

the neutrino luminosity due to the cooling of the SMNS. A density cut above 1011 g cm−3 is applied for both emission and deposition

sites. Lower half: same as the upper half, but this time using the 8 ϑ-angle Sn calculations performed through a post-processing of the

MGFLD radiation-hydrodynamics snapshots computed with VULCAN/2D. The same hydrodynamics background (ρ, T, Ye distribution)

is used for the leakage and the Sn-schemes.

At 100 ms after the start of the VULCAN/2D simulations,
each merger has reached a quasi-steady equilibrium configu-
ration, characterized by a large equator to pole radius ratio
of 5/1, visible from the latitudinal variation of the extent of
the 1010 g cm−3 density contour (the bottom row panels in
Figure 2 and 3) or from radial slices of the density in the po-
lar and equatorial directions (Figure 4). This is a general re-
sult for fast-rotating neutron stars (or other degenerate objects
like white dwarfs) which has been documented in various con-
texts in the past (Ostriker & Mark 1968; Hachisu 1986; Liu &
Lindblom 2001; Yoon & Langer 2005; Rosswog & Davies 2002;
Kiuchi & Kotake 2008). At the start of the VULCAN simula-
tions, high-density material was located in a thin (� 20 km)
structure extending � 300 km in the equatorial direction. After
100 ms, 90% of the total mass is contained within 30 km of
the center (corresponding to ∼ 2.5 M⊙) and at densities greater
than 1013 g cm−3. At the same time, the remaining ∼ 10% (cor-
responding to ∼ 0.2 M⊙) is located in a quasi-Keplerian disk
with an outer edge at � 100 km (Figures 4 and 5; see also
Section 3.1). This is also illustrated in Figure 6 for the no-spin
model and at 60 ms after the start of the VULCAN/2D simula-
tion, a figure in which we show the interior baryonic mass as a
function of spherical radius, and how it compares with various
multiples of the Schwarzschild radius.

3.1. Neutrino Signatures

Neutrino processes of emission and absorption/scattering
in BNS merger simulations have been treated using leakage

schemes by Ruffert et al. (1996, 1997), Rosswog & Liebendörfer
(2003), Setiawan et al. (2004, 2006), and Birkl et al. (2007). In
this approach, the difficult solution of the multiangle, multigroup
Boltzmann transport equation is avoided by introducing a
neutrino-loss timescale, for both energy and number, and applied
to optically thick and optically thin conditions. In addition,
an estimated rate of electron-type neutrino loss allows the
electron fraction to be updated. Overall, benchmarking of these
leakage schemes using more sophisticated one-dimensional
core-collapse simulations that solve the Boltzmann equation
suggests that the resulting neutrino luminosities are within a
factor of a few (at most) of what would be obtained using a
more accurate treatment.

The work presented here offers a direct test of this. Moreover,
because the neutrino source terms are included in the momentum
and energy equations solved by VULCAN/2D, we can model
the birth and subsequent evolution of the resulting neutrino-
driven wind. Our simulations being two-dimensional and less
CPU intensive than three-dimensional SPH simulations can also
be extended to � 100 ms, and, thus, we can investigate the long-
term evolution of the merger. In particular, we directly address
the evolution of the neutrino luminosity and confront this with
the results using the expedient of a steady state often employed
in work that is also limited to a short time span of 10–20 ms
after the merger.

In the leakage schemes of Ruffert et al. (1996, 1997) and
Rosswog & Liebendörfer (2003), the neutrino emission pro-
cesses treated are electron and positron capture on protons
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Figure 4. Time evolution of the density distribution along the equatorial (top row) and the polar (bottom row) directions for the BNS merger models with initially no
spins (left), co-rotating spins (middle), and counter-rotating spins (right).

(A color version of this figure is available in the online journal.)

Figure 5. Time evolution of the angular velocity distribution along the equatorial direction for the BNS merger models with initially no spins (left), co-rotating spins
(middle), and counter-rotating spins (right). The dashed line gives the local Keplerian angular velocity (adopting the mass of the spherical volume interior to a given
radius), suggesting that the material at low latitudes, and located between ∼ 30 and ∼ 100 km, constitutes a quasi-Keplerian disk (which forms during the prior phase
when the two neutron stars plunge toward each other), with densities on the order of 1012 g cm−3. Note also the strong degree of differential rotation in the no-spin
and counter-rotating spin cases, which is preserved throughout the VULCAN/2D simulation.

(A color version of this figure is available in the online journal.)

(yielding νe) and neutrons (yielding ν̄e), respectively, and
electron–positron pair annihilation and plasmon decay (each
yielding electron-, μ-, and τ -type neutrinos). For electron-type
neutrinos, the dominant emission processes are the charged-
current β-processes. For neutrino opacity, Ruffert et al. (1996,
1997) include neutrino scattering on nucleons. Rosswog &
Liebendörfer (2003) also treat electron-type neutrino absorp-
tion on nucleons.

The neutrino emission, absorption, and scattering processes
used in VULCAN/2D simulations are those summarized in Bur-
rows et al. (2006b), and include all the above, plus electron neu-
trino absorption on nuclei and nucleon–nucleon bremsstrahlung.
The latter is the dominant emission process of νμ and ντ neutri-
nos in PNSs (Thompson et al. 2000). In VULCAN/2D, the νμ

and ντ neutrinos are grouped together and referred to as “νμ”
neutrinos. We present in Figure 7 the evolution of the neutrino
luminosity for the BNS merger models with initially no spins
(top), co-rotating spins (center), and counter-rotating spins (bot-
tom) over a typical timespan of � 100 ms, and for an adopted
radius of 200 km along the equatorial (polar) directions in black
(red). In each case, we plot the νe (solid line), the ν̄e (dashed

line), and the “νμ” (dash-dotted line) neutrinos. For compar-
ison with the predictions of the leakage scheme of Ruffert
et al. (1996), we have implemented their formalism, following
exactly the description given in their paper in their Appendices
A and B. We plot the corresponding results at 10 ms intervals
for each case (diamonds: νe; triangles: ν̄e; squares: “νμ”; see
also Section 4.1).

For the BNS merger models with initially no spins, co-rotating
spins, and counter-rotating spins, the neutrino signal predicted
by VULCAN/2D follows a qualitatively similar evolution. The
initial fast rise represents the time it takes the neutrino emis-
sion processes to ramp up to their equilibrium rates, modu-
lated by the diffusion time out of the opaque core (and out
of the not-so-opaque surface layers) and the light-travel time
of ∼ 1 ms to the radius of 200 km where the luminosity is
recorded. The peak luminosity occurs at about 5 ms after the
start of the VULCAN/2D simulations, and is dominated by
ν̄e and “νμ” neutrinos. The νe neutrino luminosity is initially
systematically subdominant compared with the other two neu-
trino species. This is primarily a result of the high neutron
richness of the merged object. Among the models, the stronger
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Figure 6. Interior baryonic mass vs. spherical radius for the BNS merger model
with no initial spins. The time corresponding to these data is 60 ms after the start
of the VULCAN/2D simulation. Following Ruffert et al. (1996), we overplot
the Schwarzschild radius Rs(m(r)), scaled by 0.5, 2.5, and 3, corresponding to
the range of masses plotted on the vertical axis. Our results differ from those
of Ruffert et al. (1996) in that only a small mass range falls within the radius
3×Rs(m(r)) of the last stable circular orbit for an equal mass binary in harmonic
coordinates (Kidder et al. 1992; Wex & Schaefer 1993). This difference likely
results from the smaller mass binary system (2 × 1.4 M⊙ here compared to
2 × 1.65 M⊙ in their work; the mass is the baryonic mass in both cases here)
and the stiffer EOS we employ (Shen EOS vs. Lattimer & Swesty EOS), with
an incompressibility of 180 MeV.

neutrino signal, in particular for the “νμ” neutrinos, is pro-
duced in the counter-rotating model, which achieves the largest
central temperature (∼ 17 MeV), followed by the no-spin model
(∼ 15 MeV). The co-rotating spin model has the weakest neu-
trino signal of all three, mainly because the tidal locking leads
to a very smooth merger and correspondingly low temperatures
(the central temperature is about 10 MeV). Specifically, the
angle-integrated, species-integrated, peak neutrino luminosity
for the BNS model with no initial spin is 1.5×1053 (2.2×1052,
7.0 × 1052, and 6.7 × 1052), for the co-rotating spin model
1.2 × 1053 (2.2 × 1052, 5.7 × 1052, and 3.9 × 1052), and for
the counter-rotating spin model 2.2 × 1053 erg s−1(2.9 × 1052,
8.2×1052, and 1.2×1053). The values given in parentheses cor-
respond in each case to the angle-integrated peak luminosity for
the νe, the ν̄e, and the “νμ” neutrinos, respectively. Apart from a
significant discrepancy with the “νμ”-neutrino luminosities, the
peak neutrino luminosities using our MGFLD approach com-
pare well with those published in the literature based on a leak-
age scheme (Ruffert et al. 1997; Rosswog & Liebendörfer 2003).
However, in all cases, cooling of the BNS merger causes a de-
crease of all neutrino luminosities after the peak (i.e., rather than
a long-term plateau), with a faster decline rate in the no-spin and
counter-rotating spin cases. The luminosity decay rate is faster
for the “νμ” neutrinos than for the electron-type neutrinos. This
translates into a strong decrease of the neutrino–antineutrino an-
nihilation rate due to its scaling with the square of the neutrino
luminosity (see Section 4). In agreement with past work that
focused on the initial 10–20 ms after the onset of coalescence,
we find that the electron antineutrino luminosity dominates over
the electron neutrino luminosity, but in contrast with the work of
Ruffert et al. (1996) and Rosswog & Liebendörfer (2003), our
“νμ” neutrino luminosities are at least one order of magnitude
higher. This discrepancy may in part stem from their neglect
of the nucleon–nucleon bremsstrahlung opacity and emission
processes. Taking out the contribution from nucleon–nucleon
bremsstrahlung in our VULCAN/2D BNS no-spin model leads

Figure 7. Time evolution of the MGFLD energy-integrated fluxes at R =
200 km, scaled by a factor 4πR2 (thus equivalent to a luminosity), for the νe

(solid), the ν̄e (dashed), and the “νμ” (dash-dotted) neutrinos, plotted along
the equatorial (black) and polar (red) directions, and for the BNS merger
models initially with no spins (top), co-rotating spins (middle), and counter-
rotating spins (bottom). We also overplot the neutrino luminosities (diamonds:
νe; triangles: ν̄e; squares: “νμ”) computed in Section 4.1 using the leakage
scheme of Ruffert et al. (1996), but only for snapshots at 10 ms intervals.
Nucleon–nucleon bremsstrahlung processes are not treated in their scheme and
this is in part the origin of the very low “νμ” neutrino luminosity compared to the
VULCAN/2D prediction. Note that the fast rise of the VULCAN/2D neutrino
luminosities reflects the light-travel time of ∼ 1 ms to the 200 km radius where
the luminosity is recorded. Note that the luminosity unit used is the Bethe, i.e.
1051 erg ≡ 1 Bethe [1 B].

(A color version of this figure is available in the online journal.)

to a general reduction of the “νμ” luminosity by a factor of 2–
3, which then no longer dominates. However, it is still not as
low as that predicted with our implementation of the leakage
scheme of Ruffert et al. (1996, 1997). Moreover, in the no-spin
and co-rotating spin cases, the relationships between the fluxes
of the various neutrino flavors changes significantly with time,
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partly because they are differently affected by neutron star cool-
ing and changes in neutron richness. While the decrease of the
luminosity predicted by VULCAN/2D makes physical sense,
it contrasts with the findings of Setiawan et al. (2004, 2006) in
their study of neutrino emission from torus disks around ∼ 4 M⊙

black holes. In their models, they incorporate physical viscos-
ity in the disk, together with the associated heat release, which
keeps the gas temperature high. In our models, neutrino emis-
sion is a huge energy sink, not compensated by α-disk viscosity
heating.

The MGFLD treatment we use permits the calculation of
the energy-dependent neutrino spectrum and its variation with
angle. For the BNS merger models with initially no spins (left),
co-rotating spins (middle), and counter-rotating spins (right),
we show such spectra along the equatorial (black) and polar
(red) directions in Figure 8, using a reference radius of 200 km.
We can also explicitly compute average neutrino energies, here
defined as

√

〈

ε2
ν

〉

≡

[
∫

dενε
2
νFν(εν, R)

∫

dενFν(εν, R)

]

1
2

. (1)

At 50 ms after the start of the VULCAN/2D simulations, such
average neutrino energies in the no-spin BNS model and along
the pole are 13.4 (νe), 16.7 (ν̄e), and 25.2 MeV (“νμ”), while they
are 10.7, 15.6, and 21.2 MeV, respectively, along the equatorial
direction. In the co-rotating model and along the polar direction,
we have 14.0 (νe), 17.0 (ν̄e), and 22.0 MeV (“νμ”), and along
the equatorial direction, we have, respectively 9.9, 15.2, and
17.5 MeV. In the counter-rotating model and along the polar
direction, we have 12.9 (νe), 17.1 (ν̄e), and 27.5 MeV (“νμ”),
and along the equatorial direction, we have 11.5, 16.7, and
25.1 MeV, respectively. The oblateness of the compact massive
BNS merger, with its lower temperature and its more gradual
density fall-off along the equator, systematically places the
neutrinospheres in lower temperature regions, translating into
softer neutrino spectra.

The aspherical density/temperature distributions naturally
lead to a strong anisotropy of the radiation field, whose lati-
tudinal dependence is shown in Figure 9 for the three models
(we use the same left to right ordering), and at a time of 60 ms af-
ter the start of the VULCAN/2D simulations. Note the stronger
neutrino flux along the polar direction (see also Rosswog &
Liebendörfer 2003, their Figure 12), resulting from the larger
radiating surface seen from higher latitudes, as well as the sys-
tematically larger matter temperatures at the decoupling region
along the local vertical (also yielding a harder neutrino spec-
trum). In Figure 9, we include in red the corresponding neutrino
fluxes computed with the 16 ϑ-angle Sn scheme, which shows
comparable fluxes along the equator, but considerably larger
ones at higher latitudes. We also show in Figure 10 the energy-
and species-integrated specific neutrino energy-deposition and
loss rates in the no-spin BNS model at 60 ms after the start of the
simulation, for both the MGFLD and the Sn calculations. Note
how much more emphasized the anisotropy is with the mul-
tiangle, Sn, solver, and how enhanced is the magnitude of the
deposition along the polar direction. This is a typical property
seen for fast-rotating PNSs simulated with such a multiangle
solver (Ott et al. 2008).

In Figure 11, we show the energy-dependent neutrinosphere
radii for the νe (left), ν̄e (middle), and “νμ” (right) neutrinos,
and for the BNS merger models with initially no spins (top
row), co-rotating spins (middle row), and counter-rotating spins

Figure 8. MGFLD flux spectra at R = 200 km, scaled by a factor 4πR2

(thus equivalent to a luminosity spectrum), for νe (solid), ν̄e (dashed), and “νμ”
(dash-dotted) neutrinos, for the BNS merger models initially with no spins
(left), co-rotating spins (middle), and counter-rotating spins (right), and plotted
along the equatorial (black) and polar (red) directions. For all models, the time
corresponds to 60 ms after the start of the simulation.

(A color version of this figure is available in the online journal.)

(bottom row). These decoupling radii manifest a strong variation
with latitude, but also with energy due to the approximate ε2

ν

dependence of the material opacity to neutrinos. The diffusion of
neutrinos out of the opaque core, which leads to global cooling
of the neutron star, is also energy dependent. The location-
dependent diffusion timescale tdiff

νi
(r, z) is given by (Mihalas &

Mihalas 1984; Ruffert et al. 1996)

tdiff
νi

(r, z) ≈ 3τνi
∆R/c, (2)

where c is the speed of light, ∆R is the local density scale
height, τνi

is the optical depth (species and energy dependent),
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Figure 9. Angular variation from pole to equator of the energy-integrated
neutrino fluxes at 100 km (this radius is chosen smaller than for Figure 7 to
better reveal the flux anisotropy), scaled by a factor 4πR2 (thus equivalent to
a luminosity), for the νe (solid), the ν̄e (dashed), and the “νμ” (dash-dotted)
neutrinos, for the BNS merger models initially with no spins (top), co-rotating
spins (middle), and counter-rotating spins (bottom). For each model, we show
the MGFLD (black) and Sn (red; using the 16 ϑ-angle calculations) predictions
at 60 ms after the start of each simulation. Note the Sn oscillatory features in
the neutrino flux, more prominent along the polar direction, which is an artifact
of the Sn scheme. The range of the ordinate axis varies between frames.

(A color version of this figure is available in the online journal.)

and νi is the neutrino species (i.e., νe, ν̄e, or “νμ”). For the
νe neutrinos, we find an optical depth in the core that varies
from a few ×102 for 10 MeV neutrinos to a few ×104 for
100 MeV neutrinos. These optical depths translate into diffusion
times that are on the order of 10 ms to 1 s. The quasi-Keplerian
disk that extends from 20–30 to 100 km is moderately optically

Figure 10. Colormaps of energy- and species-integrated specific neutrino
energy deposition (whose volume-integrated values is referred to as Q(cc); see
Figure 17) and loss rates in the BNS merger model with no initial spin (shown
here in units of 1020 erg s−1 g−1). This snapshot corresponds to a time of
60 ms after the start of the simulation. The left section of the plot depicts the
MGFLD result and the right shows the result of the Sn calculation. Note the
distinctively enlarged polar gain regions and greater specific gain of the Sn result
compared to the MGFLD calculation. This is in part a consequence of the larger
polar neutrino fluxes and overall greater flux asymmetry in the Sn model (see
Figure 9).

(A color version of this figure is available in the online journal.)

thick to neutrinos at the peak of the energy distribution (i.e., at
10–20 MeV). Heat can thus leak out in the vertical direction
over a typical diffusion time of a few tens of milliseconds (see
Figure 12). This is comparable to the accretion timescale of
the disk itself (Setiawan et al. 2004, 2006), which suggests that
this neutrino energy is available to power relativistic ejecta,
and is not advected inward with the gas, as proposed by
Di Matteo et al. (2002).

Compared to PNSs formed in the “standard” core-collapse
of a massive star, SMNSs formed through coalescence have
a number of contrasting properties. (1) most of the material
is at nuclear density, unlike in PNSs where newly accreted
material deposited at the PNS surface radiates its thermal
energy as it contracts and cools. (2) most of the material is
neutron rich, thereby diminishing the radiation of electron-
type neutrinos in favor of antielectron-type neutrinos. In PNSs,
electron-type neutrinos are an important cooling agent, but have
large opacities. In SMNSs, the material is strongly deleptonized
and electron-type neutrinos are nondegenerate. They suffer
relatively lower opacity and can therefore diffuse out more
easily. The opacity of other neutrino species is even lower
and therefore more prone to energy leakage through radiation.
(3) energy gain through accretion is modest since there is merely
a few 0.1 M⊙ of material outside of the SMNS. In our three
merger models, the internal energy budget of such shear-heated
SMNSs is � 1053 erg, half of which is thermal energy. With
a total neutrino luminosity of ∼ 5 × 1052 erg s−1, the cooling
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Figure 11. Using a colormap of the density distribution (as shown in log scale) at 60 ms after the start of the VULCAN/2D simulations for the BNS merger models
with initially no spins (top row), co-rotating spins (middle row), and counter-rotating spins (bottom row), we overplot in each case the contours corresponding to
the energy-dependent and latitude-dependent neutrinosphere radii at neutrino energies εν of 2.50, 6.87, 12.02, 21.01, 36.74, 64.25 MeV, for the νe (left column), ν̄e

(middle column), and “νμ” (right column) neutrinos. Corresponding radii (along a given latitude) increase monotonically with energy (matter opacity to neutrinos

scales as ∼ ε2
ν ). For these calculations, the optical depth is integrated inward along a fixed latitude starting at the maximum spherical radius of 3000 km.

(A color version of this figure is available in the online journal.)

timescale for these SMNS should be on the order of a second.
This is significantly, but not dramatically, shorter than the 10–
30 s cooling timescale of hot PNSs, i.e., the time it takes
these objects to radiate a total of ∼ 3 × 1053 erg of internal
energy.

A fraction of the diffusing core energy is absorbed through
charge-current reactions (with associated volume-integrated
energy Ė(cc)) and turned into internal energy in a “gain” layer at
the surface of the SMNS, primarily on the pole-facing side and at
high latitudes (see Figure 10). This neutrino energy deposition
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Figure 12. Variation of the log of the optical depth along the z-direction for the
νe neutrino at 12.02 MeV in the BNS merger model with no initial spins, plotted
for a selection of cylindrical radii: 5, 15, 25, 50, and 100 km (see legend for the
corresponding linestyles). The time corresponds to 60 ms after the start of the
VULCAN/2D simulations. Note that the disk transitions from optically thick to
optically thin conditions at ∼ 100 km, and that optical depth increases to a few
hundreds of km only inside the SMNS. For most of the disk, the diffusion time
(Equation 2) for 12.02 MeV νe neutrinos is on the order of a few milliseconds.
The disk is therefore only moderately optically thick for neutrinos with energies
at the peak of the spectral energy distribution.

is the origin of a thermally driven wind whose properties we
now describe.

3.2. Neutrino-Driven Wind

A few milliseconds after the start of our simulations and
onset of the burst of neutrinos from the BNS merger, a neutrino-
driven wind develops. It relaxes into a quasi-steady state by
the end of the simulations at 100 ms. Note that in this quasi
steady-state configuration, and as shown in Figure 10, the en-
ergy gain/losses due to neutrino in the polar direction is mostly
net heating, with no presence of a sizable net cooling region. In
Figure 13, we show this evolution for the no-spin BNS merger
model for four selected times: 10, 30, 60, and 100 ms. One can
see the initial transient feature, which advects out and eventually
leaves the grid. This transient phase is not caused by neutrino
energy deposition, but is rather due to infall at small radii and in
the polar regions of the ambient medium that we placed around
the merged object, as well as due to the sound waves gener-
ated by the core during the initial quakes. One can then see
the strengthening neutrino-driven wind developing in the polar
funnel. The side lobes of the SMNS confine the ejecta at radii
� 500 km to a small angle of ∼ 20◦ about the poles, but this
opening angle grows at larger distances to ∼ 90◦. The confine-
ment at small radii also leads to the entrainment of material from
the side lobes, overloading the wind and making it choke. The
radial density/velocity profile of this wind flow is thus kinked,
with variations in velocity that can be as large as the aver-
age asymptotic velocity value of ∼ 30,000 km s−1 (Figure 4).
As shown in Figure 13, the mass loss associated with the
neutrino-driven wind is on the order of a few 10−3 M⊙ s−1 str−1

at a few tens of milliseconds, but decreases to 10−3–10−4 M⊙ s−1

str−1 at 100 ms. The wind is also weaker along the poles than
along the 70◦–80◦ latitudes. The associated angle-integrated
mass loss summed over 100 ms approaches 10−4M⊙ and is
made up in part of high Ye material (∼ 0.5) along the pole, but
mostly of low Ye material (∼ 0.1–0.2) along midlatitudes. Thus,
“r-process material” will feed the interstellar medium through
this neutrino-driven wind. This latitudinal variation of the elec-
tron fraction at large distances is controlled by the relative
strength of the angle- and time-dependent νe and ν̄e neutrino

luminosities, the expansion timescale of the “wind” parcels,
and the neutron richness at their launching site (Ott et al. 2007).
Along the pole and at the SMNS surface, the low-density, high
neutron richness, and relatively stronger νe neutrino luminosi-
ties at late times in the no-spin and co-rotating spin models
lead to a high asymptotic Ye value (high proton richness). De-
spite the relatively high resolution employed in our simulations
(∼ 300 m in the radial direction at ∼ 20 km), higher resolution
would be needed to resolve this region accurately. Although we
expect this trend would hold at higher resolution, it would likely
yield lower asymptotic values of the electron fraction along the
pole.

Along the equatorial direction, low Ye material (∼ 0.1–0.2)
migrates outward, but its velocity is below the local escape
speed and it is unclear how much will eventually escape to
infinity.8 This is further illustrated in Figure 14 where we show
the angular variation of the density and velocity at 2900 km in
the no-spin BNS model, at 121 ms. The BNS merger is thus
cloaked along the poles by material with a density in excess of
104 g cm−3, while along lower latitudes even denser material
from the side lobes obstructs the view from the center of the
SMNS. Importantly, wind material will feed the polar regions
for as long as the merger remnant remains gravitationally stable.
Being so heavily baryon-loaded, the outflow can in no way be
accelerated to relativistic speeds with high Lorentz factors. In
this context, the powering of a short-hard GRBs is impossible
before black hole formation.

As seen in Figure 5, the rotational profile in the inner
100 km is strongly differential in the no-spin and counter-
rotating spin cases, while it is quasi-uniform in the co-
rotating spin case (see also Rosswog & Davies 2002, their
Figure 17). The good conservation of specific angular momen-
tum in VULCAN/2D is in part responsible for the preserva-
tion of the initial rotation profile throughout the simulation.
In reality, such a differential rotation should not survive. Our
two-dimensional axisymmetric setup inhibits the development
of triaxial instabilities that arise at modest and large ratios of ro-
tational and gravitational energies (Rampp et al. 1998; Centrella
et al. 2001; Saijo et al. 2003; Ott et al. 2005, 2007), i.e., under
the conditions that prevail here. Moreover, our good, but not ex-
cellent, spatial resolution prevents the modeling of the magneto-
rotational instability, whose effect is to efficiently redistribute
angular momentum (Balbus & Hawley 1991b; Pessah et al.
2006, 2007), and dissipate energy, and, in the present context,
leads to mass accretion onto the SMNS. The magneto-rotational
instability, operating on an rotational timescale, could lead to
solid-body rotation within a few milliseconds in regions around
∼ 10 km, and within a few tens of milliseconds in regions around
∼ 100 km. Note that this is a more relevant timescale than the
typical ∼ 100 s that characterizes the angular-momentum loss
through magnetic dipole radiation (Rosswog & Davies 2002).
Importantly, in the three BNS merger models we study, we find
that the free energy of rotation (the energy difference between
the given differentially rotating object and that of the equivalent
solid-body rotating object with the same cumulative angular
momentum) is very large. Despite differences of a factor of a
few between models, it typically reaches ∼ 5 × 1051 erg inside
the SMNS (regions with densities greater than 1014 g cm−3), but

8 Note that in the counter-rotating model, an axis problem in the form of a
low-density, high-velocity, narrow region starts at the onset of the neutrino-
driven wind and persists throughout the simulation. This spurious feature is,
however, localized and therefore does not influence the global properties of the
simulation.
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Figure 13. Colormaps of the log of the mass-loss rate per steradian (d2M/dt dΩ, in units of M⊙ s−1 str−1) for the no-spin BNS merger model at 10 ms (top left),
30 ms (top right), 60 ms (bottom left), and 100 ms (bottom right) after the start of the VULCAN/2D simulation, and depicting the mass loss associated with the initial
transient, followed by the neutrino-driven wind. The displayed region covers 2000 × 2000 km2. Regions that are infalling or denser than 1010 g cm−3 are shown in
red, and velocity vectors, overplotted in black, have a length saturated at 7% of the width of the display for a magnitude of 30,000 km s−1. Note the concomitant mass
loss from the poles down to midlatitudes (the wind) and the expansion of BNS merger material at near-equatorial latitudes.

(A color version of this figure is available in the online journal.)

is on the order of 2×1052 erg in the torus disk, regions with den-
sities between 1011 and 1014 g cm−3. Similar conditions in the
core-collapse context yield powerful, magnetically (and ther-
mally) driven explosions (LeBlanc & Wilson 1970; Bisnovatyi-
Kogan et al. 1976; Akiyama et al. 2003; Ardeljan et al. 2005;
Moiseenko et al. 2006; Obergaulinger et al. 2006; Burrows
et al. 2007a; Dessart et al. 2007). Rotation dramatically en-
hances the rate of mass ejection by increasing the density
rather than the velocity of the flow, even possibly halting ac-
cretion and inhibiting the formation of a black hole (Dessart
et al. 2008). In the present context, the magneto-rotational
effects, which we do not include here, would considerably
enhance the mass flux of the neutrino-driven wind. Impor-
tantly, the loss of differential rotational energy needed to fa-
cilitate the gravitational instability is at the same time de-
laying it through the enhanced mass loss it induces. Work is
needed to understand the systematics of this interplay, and how
much rotational energy the back hole is eventually endowed
with.

Oechslin et al. (2007), using a conformally flat approximation
to GR and an SPH code, find that BNS mergers of the type
discussed here and modeled with the Shen EOS avoid the
general-relativistic gravitational instability for many tens of
milliseconds after the neutron stars first come into contact.
Baumgarte et al. (2000), and more recently Morrison et al.
(2004), Duez et al. (2004, 2006), and Shibata et al. (2006),
using GR (and for some using a polytropic EOS), find that
imposing even modest levels of differential rotation yields a
significant increase by up to 50% in the maximum mass that can
be supported stably, in particular pushing this value beyond that
of the merger remnant mass after coalescence. Surprisingly,
Baiotti et al. (2008), using a full GR treatment but with a
simplified (and soft) EOS, find prompt black hole formation
in such high-mass progenitors. Despite this lack of consensus,
the existence of neutron stars with a gravitational mass around
2 M⊙ favors a high incompressibility of nuclear matter, such
as in the Shen EOS, and suggests that SMNSs formed through
BNS merger events may survive for tens of milliseconds before
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Figure 14. Variation of the radial velocity (solid) and density (dotted; log scale)
vs. colatitude and at a spherical radius of 2900 km for the BNS merger model
with no initial spin. The time plotted is 121 ms after the start of the MGFLD
VULCAN/2D simulation. Note that the escape speed at this radius and for a
∼ 2.8 M⊙ central object is ∼ 16,000 km s−1, so most of the mass near-equatorial
latitudes will remain trapped in the gravitational potential of the SMNS.

experiencing the general-relativistic gravitational instability. In
particular, the presence of a significant amount of material (a
few tenths of a solar mass), located on wide orbits in a Keplerian
disk, reduces the amount of mass that resides initially in the core,
i.e., prior to outward transport of angular momentum.

4. ν–ν̄ ANNIHILATION

Besides being prime candidates for gravitational wave emis-
sion, BNS mergers may lead to short-hard GRBs (for an
overview, see, e.g., Piran 2005; Nakar 2007). In this context,
the high energy radiation arises from nonthermal radiation as-
sociated with relativistic ejecta. The annihilation of neutrino
pairs, by the process

νi + ν̄i → e+ + e−; i ∈ {e, μ, τ }, (3)

represents one possible powering source for high-Lorentz-factor
baryon-free ejecta beamed into a small solid angle about the
rotation axis of the BNS merger (Ruffert et al. 1997; Ruffert &
Janka 1999; Asano & Fukuyama 2000, 2001; Miller et al. 2003;
Kneller et al. 2006; Birkl et al. 2007; Rosswog et al. 2003;
Rosswog 2005, and references therein).

Here, we revisit this proposition by quantitatively studying
the energetics of neutrino–antineutrino annihilation in the three
BNS mergers that we simulated with VULCAN/2D. First, in
Section 4.1, we apply the approach used in previous work and
based on the leakage scheme of Ruffert et al. (1996, 1997).
This approach was also used by Rosswog & Liebendörfer
(2003), but for merger events whose dynamical evolution was
computed independently.9 Note that similar νi ν̄i annihilation
rate calculations, i.e., without the full momentum-space angular
dependence, have been carried out in the core-collapse and
PNS contexts, both with Newtonian gravity (Goodman et al.
1987; Cooperstein et al. 1986, 1987; Janka 1991) and in GR
(Salmonson & Wilson 1999; Bhattacharyya et al. 2007). In
Section 4.2 we present a new formalism based on moments of the
neutrino-specific intensity. The angle and energy dependence
of the neutrino radiation field is obtained by post-processing

9 SPH versus grid-based code; different EOS; different resolution.

individual MGFLD VULCAN/2D snapshots (see Section 3)
with the multiangle, Sn, variant. In both cases, because the
power associated with neutrino–antineutrino annihilation is
subdominant compared to that associated with the charge-
current reactions prior to black hole formation, it can be
estimated only through a post-processing step.

4.1. Formalism Based on a Beakage Scheme and the Approach
of Ruffert et al. (1996)

Our first approach to estimate the neutrino–antineutrino
annihilation rate is based on a leakage scheme. We implemented
the method presented by Ruffert et al. (1996, 1997), which
comprises two steps. First, using the processes described in
Section 3.1, the instantaneous rate of neutrino emission Q(νi)
is computed for all grid cells. It is subsequently weighted by
the direction-dependent factor that depends on the radiative-
diffusion timescale tdiff

νi
and neutrino-emission timescale t loss

νi

relevant for that cell. Since we are primarily interested in
the energy deposition in the polar regions, we consider only
the cylindrical-z-direction when estimating tdiff

νi
. The effective

emissivity Qeff(νi) then has the form

Qeff(νi) =
Q(νi)

1 +
(

t loss
νi

)−1
tdiff
νi

, (4)

where expressions for the various components are given explic-
itly in Appendices A and B of Ruffert et al. (1996).

In Figure 15, we show the effective emissivity resulting from
this leakage scheme and with the neutrino processes of Ruffert
et al. (1996) for the νe (left column), ν̄e (middle column),
and “νμ” (right column) neutrinos, for the BNS merger mod-
els with initially no spins (top row), co-rotating spins (middle
row), and counter-rotating spins (bottom row). For each pro-
cess, emission is conditioned by the competing elements of
optical depth, density, temperature, and electron fraction. In
practice, it peaks in regions that are dense, hot, but not too
optically thick, i.e., at the surface of the SMNS (see density
contours in Figure 15, overplotted in black). Optical depths
in excess of 100 for all neutrino energies make the inner re-
gion (the inner ∼ 15 km, where densities have nuclear values) a
weak “effective” emitter, with their contribution operating on a
0.1–1 s timescale. The dominant emission associated with the
“νμ” neutrinos originates from a considerably higher-density
region than that associated with the electron-type neutrinos, i.e.
1012–1013 g cm−3 compared to 109–1011 g cm−3, with a corre-
sponding “leakage” luminosity in all three merger models that
is typically an order of magnitude smaller than predicted by
VULCAN/2D (see Figure 7). This low “νμ” emissivity is likely
caused by the neglect of nucleon–nucleon bremsstrahlung pro-
cesses in the approach of Ruffert et al. (1996, 1997), which leads
to a smaller decoupling radius for “νμ” neutrinos, and, there-
fore, an underestimate of the size of the radiating surface from
which they emerge (as shown in Figure 11, right column). In
practice, the decoupling radius is energy dependent, but here we
stress the systematic reduction of the decoupling radius for all
“νμ” neutrino energies because of the neglect of this extra opac-
ity source. The importance of the bremsstrahlung process for
“νμ” emissivity and opacity has been emphasized by Thompson
et al. (2000) for “hot” PNSs. The SMNS that results from the
merger is considerably heated by shocks and shear, and is thus
also in a configuration where such bremsstrahlung processes are
important and should be included.
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Figure 15. Colormap of the log of the “effective” emissivity Qeff (νi ) for νe (left), ν̄e (middle), and “νμ” (right) neutrinos at 60 ms after the start of the simulation for
the BNS merger configuration with no initial spins (top row), co-rotating spins (middle row), and counter-rotating spins (bottom row). We also overplot isodensity
contours at every decade between 1010 and 1014 g cm−3, to allow a visual assessment of the effect of the adopted density cut (at 1011 g cm−3) on the computation
of the annihilation rate. Note how severely this cut truncates the emission of “νμ” neutrinos. The calculation is based on the formalism developed and presented by
Ruffert et al. (1996).

(A color version of this figure is available in the online journal.)

From the effective emissivity distribution computed for each
neutrino flavor with the leakage scheme, Ruffert et al. (1997)
then sum the contributions from all pairings between grid cells.
For completeness, we briefly reproduce here the presentation
of Ruffert et al. (1997). The integral to be computed for
the energy-integrated νi ν̄i (representing equivalently νeν̄e or
“νμν̄μ”) annihilation rate at position 
r is

Q+(νi ν̄i) =
1

4

σ0

c (mec2)2

{

(C1 + C2)νi ν̄i

3
·

∮

4π

dΩ Iνi

×

∮

4π

dΩ
′ Iν̄i

[〈ǫ〉νi
+ 〈ǫ〉ν̄i

](1 − cos Φ)2

+ C3,νi ν̄i
(mec

2)2 ·

∮

4π

dΩ Iνi

×

∮

4π

dΩ
′ Iν̄i

〈ǫ〉νi
+ 〈ǫ〉ν̄i

〈ǫ〉νi
〈ǫ〉ν̄i

(1 − cos Φ)

}

. (5)

Iνi
is the neutrino-specific intensity. Ω and Ω

′ are the solid
angles subtended by the cells producing the neutrino and
antineutrino radiation incident from all directions. C1, C2, and
C3 are related to the weak coupling constants, CA and CV,
and depend on the neutrino species (see Ruffert et al. 1997
as well as Section 4.2). σ0 is the baseline weak interaction
cross section, 1.705 ×10−44 cm2, c is the speed of light, me

is the electron mass. Φ is the angle between the neutrino and
antineutrino beams, entering the annihilation rate formulation
through the term (1 − cos Φ) (squared or not), which thus gives a
stronger weighting to larger-angle collisions. This is what makes
the dumbell-like morphology of BNS mergers such a prime
candidate for νi ν̄i annihilation over spherical configurations
(see also the Appendix). 〈ǫ〉νi

and 〈ǫ〉ν̄i
are the νi and ν̄i

mean neutrino energies, respectively, whose values we adopt for
consistency from the simulations of Ruffert et al. (1997), i.e.,
12, 20, and 27 MeV for νe, ν̄e, and “νμ”, respectively (our values
are within a few times 10% of these, so this has little impact
on our discussion). Note also that the average neutrino energies
for all three species are much larger than mec

2, and therefore
make the second term in the above equation negligible (it is
about a factor of 1000 smaller than the first one, and also has a
much weaker large-angle weighting). The total annihilation rate
is then the sum Q+(νeν̄e) + Q+(“νμν̄μ”).

In practice, we turn the angle integrals into discretized sums
through the transformation

∮

4π

dΩ Iν −→
∑

k

∆Ωk · Iν,k, (6)

where ∆Ωk is the solid angle subtended by the cell k as seen
from the location 
r . Ruffert et al. (1997) applied their method to
three-dimensional Cartesian simulations, while our simulations
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are two-dimensional and have both axial symmetry, and mirror
symmetry about the equatorial plane. Making use of these
symmetry properties, we remap our VULCAN/2D simulation
from a two-dimensional (cylindrical) meridional slice onto a
three-dimensional spherical volume which covers the space with
a uniform grid of 40 zones for the 2π azimuthal direction and
20 zones for the π polar direction, while the reduced radial grid
has a constant spacing in the log and uses 20 zones between
12 and 120 km. We compute the annihilation rate at locations
in a two-dimensional meridional slice of this new volume, with
16 uniformly spaced angles from the pole to the equator, and
40 zones with a constant spacing in the log between 15 and
120 km.10 To estimate the annihilation rate at 
r , one needs to
estimate the flux received from all cells 
rk . Ruffert et al. (1997)
assume that neutrino radiation is isotropic in the half-space
around the outward direction given by the density gradient 
nρ

at 
k. Moreover, they approximate each emitting cell volume as
a sphere, whose radius at (rk, θk, φk) is

Dk =

(

∆φk∆μk∆r3
k

4π

)1/3

, (7)

where μk = cos θk . With our location dependent cell volume,
we obtain

∑

k

∆Ωk · Iν,k ≈
1

π

∑

k

∆μk∆φk∆r3
k

3d2
k

Qeff(νi), (8)

where dk = |
r − 
rk|. When we sum over discrete cells, the

cosine of the angle between 
k and 
k′ is given by cos Φkk′ =
(
r − 
rk)(
r − 
rk′)/(|
r − 
rk||
r − 
rk′ |).

Following Ruffert et al. (1997), we apply selection crite-
ria to determine whether to include a contribution. Specifi-
cally, emission and deposition sites must be in regions with
a density lower than 1011 g cm−3. Interestingly, the leakage
scheme predicts a very small “effective” emissivity from high-
density regions, due to the very long diffusion times from
those optically thick regions. Relaxing the density cuts in the
calculations leads only to a 50% enhancement in volume-
integrated annihilation rate Ė(νeν̄e), but an increase of a fac-
tor of ∼ 20 for Ė(“νμν̄μ”). As pointed out earlier, the loca-
tion in very high-density regions of the “νμ” emitting cells
means that most of the emitting volume is truncated by the
adopted 1011 g cm−3 density cut, while results converge
when this cut is increased to densities of ∼ 1013 g cm−3.
Even with the latter, Ė(“νμν̄μ”) is still three orders of mag-

nitude smaller than Ė(νeν̄e), likely a result of the neglect of
bremsstrahlung, and the unfavorable (1 − cos Φkk′)2 for this
compact emitting configuration.

By contrast with the rather large uncertainty introduced
through the somewhat arbitrary density cuts, the annihilation
rate calculation is weakly affected by increasing the resolution.
In the no-spin BNS model at 50 ms, changing the number of
radial-angle zones for the deposition sites {nredep, ntedep} from
(40, 16) to (60, 48) and for emitting sites {nremit, ntemit, npemit}
from (20, 20, 40) to (30, 30, 60) increases Ė(νeν̄e) from 2.82 ×
1049 to 3.14 × 1049 erg s−1 (a ∼ 10% increase) and increases
Ė(“νμν̄μ”) from 6.23 × 1044 to 7.59 × 1044 erg s−1 (a ∼ 20%
increase). The same test done for the no-spin BNS model at
60 ms after the start of the simulations yields a Ė(νeν̄e) which is

10 We also perform higher-resolution accuracy-check calculations, but our
results are already converged at this lower resolution.

identical to within 1%, while Ė(“νμν̄μ”) increases by ∼ 10% in
the higher-resolution model. Hence, higher resolution does not
change these values by a significant amount.

In the left half of each panel in Figure 16, we show the
distribution in a two-dimensional meridional slice (it is in
fact axisymmetric by construction) for the annihilation rate
Q+(νeν̄e) of electron-type neutrinos, for the BNS merger models
with initially no spins (left), co-rotating spins (middle), and
counter-rotating spins (right). Volume-integral values Ė(νiν̄i)
as a function of time for all three models are shown in
Figure 17 (left panel; dashed line joined by star symbols) and
given in Table 1. The deposition rate is maximum near the
poles, where the large-angle collisions occur, and close to the
peak emission sites (as shown in Figure 15), i.e., near the SMNS
surface, with peak values on the order of 1029 erg cm−3 s−1 for
all three models. In this formalism, Ė(“νμν̄μ”) (the middle panel
of Figure 17) is at least three orders of magnitude smaller than
Ė(νeν̄e). The peak volume-integrated energy deposition reaches
a few 1050 erg s−1, typically two orders of magnitude below that
achieved by charge-current reactions, whose associated energy
deposition drives the neutrino-driven wind (Section 3; the right
panel of Figure 17).

4.2. Formalism Based on Multiangle Transport and Moments
of the Specific Intensity

We now present a formalism for the computation of the νi ν̄i

annihilation rate that directly exploits the neutrino-transport
solution computed with VULCAN/2D in our BNS mergers,
rather than using evaluations based on the leakage scheme
(Ruffert et al. 1996, 1997).

Our approach is to use the angle-dependent neutrino-specific
intensity calculated for snapshots at 10 ms intervals for these
BNS merger models using our multiangle, Sn, scheme (Livne
et al. 2004; Ott et al. 2008; Section 2.2). In the Appendix, and for
completeness, we present such annihilation-rate calculations,
but in the context of the postbounce phase of a 20 M⊙ progenitor
(Ott et al. 2008) and of the accretion-induced collapse (AIC) of
a massive and fast-rotating white dwarf (Dessart et al. 2006b).
The formalism presented here applies to all cases equivalently.

Following Burrows et al. (2006b) and Janka (1991), the
expression for the local energ-deposition rate Q+(νi ν̄i) at a
position 
r due to annihilation of νi ν̄i pairs into electron–positron
pairs is given to leading order by

Q+(νi ν̄i) =
1

6

σ0

(

C2
A + C2

V

)

νi ν̄i

c(mec2)2

∫ ∞

0

dεν

∫ ∞

0

dε′
ν(εν + ε′

ν)

×

∮

4π

dΩ

∮

4π

dΩ
′Iνi

I ′
ν̄i

(1 − cos Φ)2, (9)

where Iνi
≡ Iνi

(εν, 
r, 
n, t) is the νi-neutrino-specific intensity
at energy εν , location 
r , along the direction 
n, and at time t.
The primes denote the antiparticle. The angle Φ is the angle
between the directions 
n and 
n′ of the neutrino and antineutrino,
i.e., cos Φ = 
n · 
n′.

The formulation we present applies equally to all neutrino
species, as long as the values of the weak coupling constants
CA and CV are appropriately set. We have CV = 1/2 + 2 sin2 θW

for the electron types, CV = −1/2 + 2 sin2 θW for the νμ and ντ

types, and CA = ±1/2, with sin2 θW = 0.23. The other variables
have their usual meanings. Note that this formulation neglects
the phase-space blocking by the final-state electron–positron
pair which is relevant only at high densities and negligible



1698 DESSART ET AL. Vol. 690

Figure 16. Colormaps of the log of the energy deposition Q+(νe ν̄e) by electron–neutrino pair annihilation in the BNS merger models with initially no spin (left),
co-rotating spins (middle), and counter-rotating spins (right), and at 60 ms after the start of the VULCAN/2D simulation. In each case, the evaluation is done with
two different methods. In the left half of each panel, we show the results using the leakage scheme (Ruffert et al. 1996, 1997; see also Section 4.1). In the right half,
we show the corresponding results using the new formalism presented in Section 4.2 using 16 ϑ-angles. We set the minimum of the color bar to white for all regions
with densities greater than 1011 g cm−3. The maximum of the color bar is set at 1029 erg cm−3 s−1 to improve the visibility. Maximum values differ in fact by large
factors between the two methods (in contrast with the good agreement in the cumulative values). For the model with no initial spins, we obtain maxima at 1.0 ×
1030 (Sn), compared with 6.5 × 1028 erg cm−3 s−1 (leakage), and in the same order, we have 5.2 × 1029 and 1.4 × 1029 erg cm−3 s−1 for the co-rotating model,
and 1.4 × 1030 and 2.1 × 1029 erg cm−3 s−1 for the counter-rotating model. We do not show the distribution for the “νμν̄μ” annihilation, which is qualitatively
similar to that of νe ν̄e, being merely weaker everywhere by about an order of magnitude. With the leakage scheme, the contrast in annihilation rate between these two
neutrino types is even greater, primarily because “νμ” neutrino emission occurs at densities in excess of 1012 g cm−3, thus, beyond our density cut. In the snapshots

shown here and with the leakage scheme, we find integral net energy deposition rates by neutrino pair annihilation Ė(νiν̄i) (summed over all neutrino species) of
1.78 × 1049, 4.43 × 1049, and 1.50 × 1049 erg s−1 for the BNS merger models with initially no spins, co-rotating spins, and counter-rotating spins, respectively. In
the same order, but with the Sn scheme (and using 16 ϑ-angles), we find 2.13 × 1049, 3.54 × 1049, and 1.44 × 1049 erg s−1. Note that these numbers are at least one
to two orders of magnitude smaller than the corresponding rates due to charged-current neutrino absorption (see the left and right panels of Figure 17).

(A color version of this figure is available in the online journal.)

Figure 17. Volume-integrated energy deposition rate Ė(νe ν̄e) (top) and the Ė(“νμν̄μ”) (middle) neutrino–antineutrino annihilation processes, as well as
that due to charge-current reactions (bottom) for the models initially with no spins (black), co-rotating spins (red), and counter-rotating spins (blue) and computed
with the formalism presented in Section 4.2. The dashed lines (symbols highlight the times computed) represent for each model the corresponding result based on the
leakage scheme (Section 4.1), following the method of Ruffert et al. (1996, 1997). The computations are performed every 10 ms, from 10 to 100 ms after the start of
the VULCAN/2D simulations. Note the fast decrease of the energy-deposition rate with time (∝ t−1.8; dotted line), following the decrease of all neutrino luminosities
(see Figure 7) and the contraction of the SMNS. Note that Setiawan et al. (2004, 2006) obtain a slightly weaker dependence (∝ t−1.5), but with a black hole/torus-disk
configuration and a treatment of the physical viscosity for energy dissipation through shear in the differentially rotating disk. Note that the energy unit used is the
Bethe, i.e. 1051 erg ≡ 1 Bethe [1 B].

(A color version of this figure is available in the online journal.)

in the semi-optically thin regime where pair annihilation may
contribute to the net heating.

Now, setting the flux factor 
h = 
H/J and the Eddington-
tensor factor k = K/J , and by expanding the cos Φ = 
n · 
n′

term with an appropriate choice of the radiation unit vector
(Hubeny & Burrows 2007), we obtain for the general case in
three dimensions

Q+(νi ν̄i) =
8σ0π

2
(

C2
A + C2

V

)

νi ν̄i

3c(mec2)2

∫ ∞

0

dεν

∫ ∞

0

dε′
ν(εν + ε′

ν)

× Jνi
J ′

ν̄i

(

1 − 2
hνi
· 
h′

ν̄i
+ Tr[kνi

: k
′
ν̄i

]
)

, (10)

where the term Tr[kνi
: k

′
ν̄i

] is the trace of the matrix product of
the two Jν-normalized Eddington tensors.

Assuming the special choice of cylindrical coordinates in
axisymmetry and neglecting the velocity dependence of the
radiation field, we obtain

Q+(νi ν̄i) =
8σ0π

2
(

C2
A + C2

V

)

νi ν̄i

3c(mec2)2

∫ ∞

0

dεν

∫ ∞

0

dε′
ν(εν + ε′

ν)

× JJ ′ × (1 − 2hrh
′
r − 2hzh

′
z

+ krrk
′
rr + kzzk

′
zz + kφφk

′
φφ + 2krzk

′
rz), (11)

where we have suppressed the νi and ν̄i subscripts. Note that krz

is the only nonzero off-diagonal term in these coordinates. Using
the trace condition on the Eddington tensor, krr + kzz + kφφ = 1,
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the above can be recast into

Q+(νi ν̄i) =
8σ0π

2
(

C2
A + C2

V

)

νi ν̄i

3c(mec2)2

∫ ∞

0

dεν

∫ ∞

0

dε′
ν(εν + ε′

ν)

× JJ ′ × (1 − 2hrh
′
r − 2hzh

′
z + krrk

′
rr + kzzk

′
zz

+ (1 − krr − kzz)(1 − k
′
rr − k

′
zz) + 2krzk

′
rz).

(12)

For completeness and comparison with Janka (1991), we trans-
form to spherical coordinates and reduce to spherically sym-
metric problems, which then yields

Q+(νi ν̄i) =
8σ0π

2

3c(mec2)2

(

C2
A + C2

V

)

νi ν̄i

∫ ∞

0

dεν

∫ ∞

0

dε′
ν(εν + ε′

ν)

× JJ ′ ×

(

1 − 2hh′ + kk′ +
1

2
(1 − k)(1 − k′)

)

,

(13)

with scalar h and k. Equation (13) corresponds to the combina-
tion of Equations (1) and (6) of Janka (1991).

In practice, our approach is to start from snapshots of the
(converged) MGFLD radiation-hydrodynamics simulations of
the three BNS mergers presented in Section 3. Keeping the
hydrodynamical variables frozen, the radiation variables are
relaxed using the Sn algorithm and with 8 ϑ-angles. As an
accuracy check, we also compare the Sn results based on
simulations performed with 16 ϑ-angles. When we do this, the
converged radiation field for the 8 ϑ-angle solution is remapped
into the 16 ϑ-angle run (corresponding to a total of 144 angles),
which is then relaxed. These simulations are quite costly, and
take about 4 days with 48 processors. However, by contrast with
the approach of Ruffert et al. (1996, 1997), the annihilation rates
are then simply obtained from direct (local) integration of the
moments of the neutrino-specific intensity.

In the right half of each panel in Figure 16, we
show the distribution in a two-dimensional meridional slice
for the annihilation rate Q+(νeν̄e) of electron-type neutrinos, for
the BNS merger models with initially no spins (left), co-rotating
spins (middle), and counter-rotating spins (right), but now com-
puted from the results of the Sn calculation and the formalism
presented above. We provide in Figure 17 volume-integral val-
ues as a function of time for all three models (the top and middle
panels; solid lines) and given in Table 1. By contrast with the
leakage scheme results, the deposition is more evenly spread
around the SMNS, is maximum at depth (in the region where
the density cut applies), and reaches peak values a factor of a
few larger. We find that it is not only the large-angle collisions
that favor the deposition, but also the dependence on J2 (and its
1/R4 radial dependence in optically thin regions) which consid-
erably weights the regions close to the radiating SMNS, making
the deposition large not only in the polar regions, but also all
around the SMNS. After 40 ms, and although the associated
neutrino luminosities are quite comparable between the three
models, the (somewhat unrealistic) co-rotating spin BNS model
boasts the largest annihilation rate. This stems from the very
extended high-density SMNS configuration, leading to larger
neutrinosphere radii and extended regions favoring large-angle
collisions. This contrasts with the fact that it is the least hot
of all three configurations, and is a somewhat weaker emitter,
suggesting that it is not just the neutrino luminosity, but also
the spatial configuration of the SMNS that sets the magnitude
of the annihilation rate. In the new formalism, which employs

results from the Sn simulations, Ė(“νμν̄μ”) (the middle panel of
Figure 17) is now only one order of magnitude smaller than
Ė(νeν̄e), even for the same adopted density cut. By contrast with
the leakage scheme, and to some extent because of the treatment
of bremsstrahlung processes, the emission from “νμ” neutri-
nos is associated with more exterior regions of the SMNS, the
∼ 25 MeV “νμ” neutrinos decoupling at ∼ 18 and ∼ 100 km
along the polar and equatorial directions, respectively, and
thus in regions with densities on the order of, or lower than,
1011 g cm−3 (Figure 11). The emission is, thus, not significantly
truncated by the adopted density cut. Moreover, the subtended
angle of the representative “νμ” neutrinosphere is correspond-
ingly much bigger, favoring larger-angle collisions.

This disagreement should not overshadow the good match
between the leakage- and the Sn-scheme predictions for the
νeν̄e annihilation rate, which are typically within a few tens
of percent, only sometimes in disagreement by a factor of ∼ 3
(see, e.g., the no-spin BNS model at 10 ms). The Sn-scheme
results, thus, support the long-term decline of the annihilation
rate predicted with the leakage scheme, but with a Ė(“νμν̄μ”)

value that is typically a factor of 10 smaller than Ė(νeν̄e) at all
times. The results given here using 8 ϑ-angles are already fairly
converged. For the co-rotating spin BNS model at 60 ms after
the start of the simulation, we obtain the following differences
between the 16 and 8 ϑ-angle Sn calculations: Ė(νeν̄e) changes
to 3.54×1049 from 3.59×1049 erg s−1 (down by 2%), Ė(“νμν̄μ”)

changes to 1.73 × 1047 from 1.34 × 1047 erg s−1 (up by 29%),
and Ė(cc) changes to 1.40 × 1051 from 1.64 × 1051 erg s−1

(down by 15%).
The long time-coverage of our simulations, up to � 100 ms,

shows that the peak value, which is also coincident with the peak
neutrino luminosity at 5–10 ms, is not sustained. The conditions
at the peak of the annihilation rate do not correspond to a steady
state, but instead herald the steady decrease that follows as the
BNS merger radiates, contracts, and cools. In all simulations,
Ė(νeν̄e) is down by a factor 10–100 at 100 ms compared to its
peak value, while for Ė(“νμν̄μ”) the decrease is by 2–3 orders
of magnitude (this component is in any case subdominant).
The J2 dependence, combined with the strong fading of all
neutrino emissivities, is at the origin of the steady decrease
of the annihilation rate over the time span considered here. In
their black hole/torus-disk configuration with α-disk viscosity
(which causes significant shear heating not accounted for here),
Setiawan et al. (2004, 2006) observe that the annihilation rate
decreases as t−3/2, and, thus, only slightly more gradually than
our prediction. In our work, neutrino energy deposition by
charge-current reactions is the dominant means to counteract
the global cooling effect of neutrino emission.

We now use the results for the Sn scheme to discuss the
assumption of Ruffert et al. (1996, 1997) that neutrino emission
is quasi-isotropic. More precisely, they propose that the effective
emission for every cell is isotropic in the half space around the
outward direction given by the density gradient 
nρ . By contrast,
in the Sn scheme, the angular distribution of the neutrino
radiation field is solved for, and we can determine how isotropic
this emission is. For that purpose, we study the spatial variation
of the angular term in Equation (11),

W = (1 − 2hrh
′
r − 2hzh

′
z

+ krrk
′
rr + kzzk

′
zz + kϕϕk′

ϕϕ + 2krzk
′
rz), (14)

and plot it in Figure 18 for the νe–ν̄e annihilation rate at
a representative neutrino energy of 12.02 MeV. Overplotting
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Figure 18. Angular factor W in the νi ν̄i annihilation rate (see Equations 11
and 14) shown for the νe ν̄e process at εν = 12.02 MeV for the BNS model with
no initial spin. The snapshot corresponds to a time of 60 ms after the start of
the VULCAN/2D simulation. We superpose νe flux vectors at the same εν and
density contours corresponding to 109, 1010, and 1011 g cm−3, indicating the
local density gradient with perpendicular tick marks.

(A color version of this figure is available in the online journal.)

the (representative) 12.02 MeV νe flux vectors, together with
isodensity contours, one sees that the flux is everywhere oriented
predominantly in the radial direction, and peaks along the polar
direction. The outward direction given by the local density
gradient (given by the perpendicular-to isodensity contours,
shown here as short white tick marks) is collinear to the flux
vector along near-polar latitudes, while at midlatitudes they are
perpendicular to each other. Hence, the assumption by Ruffert
et al. (1996, 1997) of isotropic neutrino emission in the half
space around the outward direction given by the local density
gradient is not accurate in this instance. Note that it will likely
hold more suitably once the black hole forms and only the torus
disk radiates.

In Figure 18, W has a maximum of ∼ 1.33 in the optically thick
regions of the extended (equatorial) disk-like structure. There,
the flux-factor terms and k′

ϕϕ + 2krzk
′
rz are nearly zero, while

krrk
′
rr + kzzk

′
zz + kϕϕk′

ϕϕ = 1/3. In polar regions, the transition
to free streaming happens at small radii and W decreases from
∼ 1.33 at � 20 km to ∼ 0.3 at 40 km. Outside ∼ 60–100 km,
W ≈ 0, since hzzh

′
zz ≈ kzzk

′
zz ≈ 1 and all other terms are

small. Considering now the fact that the distribution of the
mean intensity, J, irrespective of energy group and species, is
oblate inside the rapidly spinning SMNS and transitions to a
prolate shape outside (see Figure 10), we can explain the spatial
distribution of the pair annihilation rate (as shown in Figure 16).
The rate peaks inside the oblate SMNS, since JJ ′ and W are
largest there. Along the polar axis, W decreases rapidly with
radius, while JJ ′ becomes prolate and remains large out to
large radii, compensating in part for the small W. In equatorial
regions, on the other hand, JJ ′ drops off more rapidly, but W
remains near 1.33 out to a radius of ∼ 150 km, and only slowly
transitions to zero as the equatorial radiation field gradually

becomes forward-peaked. This systematic behavior sustains a
significant νi ν̄i annihilation rate for equatorial radii of up to
∼ 150 km. Note, however, that net energy deposition by pair
annihilation does not occur in the equatorial charged-current
loss regions.

The findings described in the above paragraph indicate that
the dominant contribution to Q+(νi ν̄i) is not coming from
large-angle collisions of neutrinos emitted from the disk, but
rather is due to collisions at all angles and close to the high-
density, high-temperature, SMNS surface. This is in distinction
to the annihilation rate computed using the leakage scheme and
the assumptions concerning the morphology of the neutrino
radiation field made in Ruffert et al. (1997). However, once the
SMNS transitions to a black hole, the inner contribution will
vanish and the radiation will come exclusively from the cooling
hot torus. In a future paper we will address the annihilation rates
that we obtain with this BNS merger configuration.

In the future, while retaining the merits of the Sn method,
we will need to improve the computation of the annihilation
rates by accounting for GR effects. The compact and massive
configuration of BNS mergers, with GM/Rc2 on the order of
20% at 20 km, suggests that the numbers we present could be
modified with this improvement, although Birkl et al. (2007)
suggest the magnitude of the effect is at most a few tens of
percent.

5. CONCLUSION

We have presented MGFLD radiation-hydrodynamics simu-
lations of BNS mergers, starting from azimuthal-averaged two-
dimensional slices based on the three-dimensional SPH sim-
ulations produced with the MAGMA code (Rosswog & Price
2007), for neutron star components with initially no spins, co-
rotating spins, and counter-rotating spins. The main virtues of
this work are (1) the solution of the radiation transport problem
for νe, ν̄e, and “νμ” neutrinos for eight energy groups, coupled
to the hydrodynamical evolution of such mergers over a typical
timescale of � 100 ms after the two components come into con-
tact, and (2) the first quantitative assessment of baryon pollution
by the neutrino-driven wind produced by such SMNSs. Inter-
estingly, our results on neutrino signatures from such merger
events confirm the broad adequacy of previous work that avoided
solving the radiation transport problem by designing a neu-
trino trapping, or leakage, scheme (Ruffert et al. 1996, 1997;
Rosswog & Liebendörfer 2003). The only noticeable discrep-
ancy is the much stronger “νμ” luminosities that we predict with
VULCAN/2D, something that may stem in part from the ne-
glect of nucleon–nucleon bremsstrahlung in the above leakage
schemes.

At 10 ms intervals and for each BNS merger model, we
select a sequence of VULCAN/2D snapshots computed with
the MGFLD solver and post-process them with the multian-
gle Sn solver, relaxing the radiation variables, but freezing the
fluid variables. Based on a knowledge of the energy-dependent,
species-dependent, and angle-dependent neutrino-specific in-
tensity Iν(εν, 
n), we compute the neutrino–antineutrino anni-
hilation rate using a new formalism that incorporates various
moments of Iν(εν, 
n). We find that the total annihilation rate
computed with the Sn solution and our new formalism is larger,
but at most by a factor of a few, compared to the results based
on a combination of a leakage scheme (Ruffert et al. 1996)
and paired-cell summation (Ruffert et al. 1997). With density
cuts alone, the annihilation rates based on the Sn solution in-
crease by a factor of about 2. In our simulations, we find that all
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Figure 19. Variation of the log of the cumulative annihilation rate
∫ θmax dV Q+(νν̄) with polar angle θmax in the BNS merger models initially with
no spin (solid), co-rotating spins (dotted), and counter-rotating spins (dashed),
and shown here at a time of 10 ms (black) and 60 ms (red) after the start of
the VULCAN/2D simulation. In other words, θmax is the half-opening angle of
the cone that defines the integration volume for the quantity plotted along the
ordinate axis. We use the Sn results computed with 8 ϑ-angles and accounting
only for a density cut for the sites of emission and deposition. Energy deposited
in the cooling region is not subtracted off, yielding values larger by a factor of
2 compared with the corresponding values given in Table 1.

(A color version of this figure is available in the online journal.)

neutrino luminosities decrease after peak, resulting in a decrease
in the annihilation rate with time, i.e., ∝ t−1.8. We find a cumu-
lative total rate that decreases over 100 ms from a few × 1050

to ∼ 1049 erg s−1. Adopting an average energy of 8kT ∼
40 MeV for the annihilating νeν̄e (Burrows et al. 2006b), the
number of e−e+ pairs produced varies over that time span from
a few × 1054 down to ∼ 1053 s−1.

We show in Figure 19 the cumulative annihilation rate com-
puted with the Sn solution and our new formalism at 10 ms
(black) and 60 ms (red) after the start of the VULCAN/2D
simulations. Only ∼ 1% of the total is deposited along the
rotation axis and in a cone with a half-opening angle of
∼ 10◦, yielding a rate of ∼ 1049 erg s−1 at 10 ms but down
to ∼ 1048 erg s−1 at 60 ms. Integrating over a tenth of a
second, we obtain a total energy deposition of � 1048 erg.
This result is about an order of magnitude smaller than obtained
by Setiawan et al. (2004, 2006), although in their approach, neu-
trino emission is considerably boosted by shear heating in the
differentially rotating disk. Their annihilation rates are stronger
and weaken slightly more gradually with time, i.e., ∝ t−1.5.
In the VULCAN/2D simulations presented here, we have no
physical viscosity to include shear heating, nor is there ade-
quate resolution to simulate the magneto-rotational instability.
Our temperatures and neutrino emissions are therefore underes-
timates of what would occur in nature. With viscous dissipation
as an energy source, we anticipate that our results might yield
more attractive powers for the generation of a relativistic e−e+-
pair jet, an issue we defer to a future study.

Baryon loading of relativistic ejecta is a recognized problem
in the production of a GRB, but this is the first time the
neutrino-driven wind, the baryon polluter, has been simulated
dynamically. All three BNS merger simulations we performed
reveal the birth of a thermally driven wind through neutrino
energy deposition in a gain layer at the surface, and primarily at
high latitudes. The wind blows mostly along the polar funnel,
contained in a cone with an opening angle of ∼ 20◦ within
x � 500 km, but widening at larger distances to ∼ 90◦. The

electron fraction of the associated ejecta is close to 0.5, along
the pole, but is ∼ 0.1–0.2 along all lower latitudes. Low-Ye

material at near-equatorial latitudes and large distances has a
radial velocity below the local escape speed, and since local
pressure gradients are not negligible, it is unclear whether it
will eventually escape. Overall, it appears that if this pre-
black hole phase lasts for 100 ms, � 10−4 M⊙ of “r-process
material” will feed the interstellar medium through this neutrino-
driven wind. Moreover, such baryonic pollution along the polar
direction may affect any subsequent relativistic ejecta, although
the wind from the SMNS may last for only a short time,
perhaps 100 ms. Traveling at a tenth the speed of light, it will
reach only out to 0.01 light second, thus much shorter than the
duration of short GRBs. This initial wind phase cannot provide
the sustained confinement needed for the potential relativistic
ejecta. Although we focus on the phase prior to black hole
formation, a neutrino-driven wind may blow after the black
hole forms, too, but this time from the surrounding hot and
dense torus, and driven by charge-current neutrino absorption
at the disk surface. Importantly, because of the centrifugal
barrier felt by particles coming in from sizable orbits in the
disk, these injected baryons should remain away from the polar
region, while neutrino–antineutrino annihilation would continue
to contribute along the rotation axis of the SMNS, but now
in an essentially baryon-free environment. This provides an
attractive mechanism for confinement, since neutrino emission
would yield both the power source for the relativistic ejecta
(caused by neutrino–antineutrino annihilation) and the confined
neutrino-driven wind (caused by charge-current reactions). In
the future, we will investigate the neutrino signatures that are
obtained in the context where the compact object is a black hole,
and only the surrounding torus material radiates neutrinos. Such
a disk wind would offer a natural confining ingredient for any
relativistic ejecta propelled along the rotation axis and powered
by annihilation of neutrinos and antineutrinos radiated from the
disk, as proposed by Mochkovitch et al. (1993).

The huge amount of free energy of rotation, on the order
of 1052 erg in the SMNS and its torus disk, together with
millisecond orbital periods, suggests that the magneto-rotational
instability could play a major role in redistributing angular
momentum, leading to solid-body rotation and increasing the
magnetic pressure in the corresponding layers by orders of
magnitude. Magneto-rotational effects should be strong and
would lead to a considerably stronger neutrino-driven wind,
as in the AIC of white dwarfs (Dessart et al. 2007), and delay
the formation of a black hole. Similarly, Dessart et al. (2008)
found that in collapsar candidates (Woosley & Heger 2006;
Yoon et al. 2006; Meynet & Maeder 2007), the large amount of
free energy of rotation in their iron core at the time of collapse
can lead to a magnetically driven explosion, associated with
very large mass loss rates which may compete with the mass
accretion rate from the torus disk and jeopardize the formation
of a black hole. By contrast with such collapsar models, SMNSs
formed from merger events are unambiguously endowed with a
large rotational-energy budget (stored in the orbital motion), of
which a large fraction is differential and may be tapped. Hence,
the phase prior to black hole formation should be modeled at
very high resolution and in combination with neutrino transport
to address these issues. The maximum neutron star mass allowed
by the EOS will ultimately determine how much mass accretion
can take place from the torus disk, and it thus represents a central
question for short-duration GRBs. Presently, there is a lack of
consensus that leaves this issue largely unsettled.
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Figure 20. Colormaps of the energy deposition rate Q+(νe ν̄e) by electron–neutrino pair annihilation in the nonrotating model s20.nr (left), the rotating model s20.π
(center), and in the 1.92-M⊙ AIC model of Dessart et al. (2006b) (right), and in each case at 160 ms after bounce. The energy deposition by the “νμν̄μ” annihilation
process exhibits the same qualitative spatial distribution and is not shown here (the corresponding cumulative rates are typically a factor of 10 weaker than for νe ν̄e).
The black lines demarcate regions in which charged-current losses dominate and regions deep inside the PNS where β-equilibrium prevails. Any energy deposition
from pair annihilations is instantly reemitted in these regions by charged-current interactions and no net energy-deposition results. In the snapshots shown here, we
find integral net energy-deposition rates by neutrino pair annihilation of 1.65 × 1049, 1.44 × 1049, and 0.59 × 1049 erg s−1 for models s20.nr, s20.π , and the AIC
model, respectively. In this computation, we exclude the regions with a density larger than 1011 g cm−3, as well as regions of negative net gain (shown in white).
These numbers are one to two orders of magnitude smaller than the corresponding rates due to charged-current neutrino absorption. Note that all models are run with
16 ϑ-angles.

(A color version of this figure is available in the online journal.)

Table 2
Cumulative νi ν̄i Annihilation Rates

Model Name t − tb Ė(cc) Ė(νe ν̄e) Ė(“νμν̄μ”) Polar

(ms) (1049 erg s−1) (1049 erg s−1) (1049 erg s−1) Fall-Off

s20.nr 160 214.0 1.30 0.35 ∝∼r−8.3

s20.nr 500 81.8 0.77 0.12 ∝∼r−9.5–r−8.0

s20.π 160 160.2 1.03 0.41 ∝∼r−7.8

s20.π 550 26.2 0.29 0.12 ∝∼r−6.5

AIC 1.92-M⊙ 160 53.7 0.42 0.17 ∝∼r−8.3

AIC 1.92-M⊙ 773 48.9 0.19 0.02 ∝∼r−5.8

Notes. Summary of the cumulative (but instantaneous) neutrino–antineutrino annihilation rate calculations. t − tb corresponds to the

postbounce time of the computation. Ė(cc) is the integrated gain from charged-current interactions, while Ė(νe ν̄e) and Ė(“νμν̄μ”) denote

the integral energy deposition by annihilation of νe ν̄e and “νμν̄μ” pairs (accounting for νμν̄μ and ντ ν̄τ ), respectively. The rightmost

column gives the approximate power-law exponent that describes the radial fall-off of the energy deposition rates along the polar

direction (we see the same distribution for both the νe ν̄e and “νμν̄μ” cases). For a spherically symmetric model in which neutrinos

irradiate isotropically from a neutrinosphere, Q+(νi ν̄i ) ∝ r−8 at radii large compared to the neutrinosphere radius (Goodman et al.

1987). The ebbing annihilation rate with time results from its strong JJ ′ dependence (Equation 11), and reflects PNS cooling (see the

text for discussion.)
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APPENDIX

In this appendix, we broaden the discussion on the νi ν̄i

annihilation process presented in Section 4, by moving away
from BNS mergers, and focusing instead on 100–200 ms old
PNSs, formed from the collapse of their Fe or O/Ne/MG
core as it exceeded the Chandrasekhar mass. Such PNSs are
hot because they are young, by contrast with BNS mergers,
whose SMNSs are “rejuvenated” through shear heating and
shocks associated with the coalescence phase. Specifically, we
investigate the postbounce neutrino heating phase of the 20 M⊙

progenitor model of Woosley et al. (2002), adopting initially no
rotation (model s20.nr) or differential rotation (model s20.π ; the
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initial angular velocity at the center is π rad s−1, equivalent to an
initial central period of 2 s). These models were evolved with the
MGFLD and the Sn solver using the radiation-hydrodynamics
code VULCAN/2D, and the results were described in detail
in Ott et al. (2008). To investigate the effect of very fast
rotation in a PNS context, we also investigate the postbounce
neutrino heating phase of the 1.92 M⊙ AIC model of Dessart
et al. (2006b). To make a meaningful comparison of the νi ν̄i

annihilation rate in all three models, we take their properties at
160 ms after bounce (at times when the neutrino luminosities
are comparable), and, thus, it is the shape of the radiating PNS
that differs between models (for completeness, we also include
some quantities at the last computed times—see Table 2). In this
respect, our choice of models extends from the quasi-spherical
s20.nr model to the mildly oblate s20.π model, and finally to
the strongly oblate (with a disk-like extension) AIC model. In
all three models, the Sn neutrino radiation field was computed
with 16 ϑ-angles. Including the ϕ direction, a total number of
144 angles were treated, following the prescription described in
Ott et al. (2008).

In Figure 20, we present two-dimensional colormaps of the
spatial distribution of the energy deposition by νeν̄e annihilation
in the three model snapshots considered here. We draw as
white the regions of high density (ρ � 1011 g cm−3) where
equilibration via charged-current interactions is fast, as well
as regions in which cooling by charged-current interactions
dominates. Any energy input by neutrino pair annihilation in
these regions is overwhelmed by cooling through charged-
current processes and does not contribute to the net neutrino
gain. Note also that we do not show the distribution for the
“νμν̄μ,” because it is qualitatively similar to that of νeν̄e, being
merely weaker, i.e., with a volume-integrated magnitude that is
a factor of about 10 smaller.

In the nonrotating model s20.nr, the Q+(νeν̄e) distribution
is approximately spherically symmetric, tracing regions of
high neutrino-energy density in the neutrino-diffuse postshock
region, and peaking near the lower edge of the gain region
around ∼ 95 km. The νeν̄e process dominates over that for
“νμν̄μ,” because the benefit of the favorable “νμ” neutrino
luminosity is more than canceled by the ∼ 5 times smaller
“νμν̄μ” cross sections and by the smaller decoupling radii for
“νμ” neutrinos, yielding systematically smaller collision angles.

In the 160 ms postbounce snapshot of model s20.nr, Q+(νi ν̄i)
falls off radially as ∼ r−8.3 (both for νeν̄e and the “νμν̄μ”
annihilations), which is slightly steeper than the theoretical
estimate r−8 for r ≫ Rν made by Goodman et al. (1987).
We find and list in Table 2 volume-integrated energy deposition
rates of 1.30×1049 and 0.35×1049 erg s−1 for νeν̄e and ” νμν̄μ”
annihilation processes, respectively. These rates are more than
two orders of magnitude smaller than those associated with the
net gain from charged-current reactions, which amount to 2.14×
1051 erg s−1 at that time. At 500 ms after bounce in the s20.nr
model, the energy deposition rates have declined to 0.77 × 1049

and 0.12 × 1049 erg s−1 for νeν̄e and ” νμν̄μ” annihilation,
respectively. At this time, we measure a more rapid radial
fall-off ∝ r−9.5 for radii � 100 km and somewhat shallower
decline ∝ r−8 for larger radii. These results echo the steep
decrease with time of the annihilation rate found for the BNS
mergers discussed in this paper, suggesting that neutrino-cooled
compact objects are quickly weakening neutrino-annihilation
power sources in the absence of energy sources such as shear
heating in a differentially rotating disk (Setiawan et al. 2004,
2006).

Our results for model s20.nr support the conclusions of
previous studies (Cooperstein et al. 1986, 1987; Janka 1991)
that argued that νi ν̄i annihilation contributes little to the neutrino
heating in quasi-spherical postbounce supernova cores. GR
effects (bending of neutrino geodesics and redshift), which
yield larger annihilation rates for very compact configurations
(Salmonson & Wilson 1999; Bhattacharyya et al. 2007; Birkl
et al. 2007), are most likely irrelevant at the large radii at which
annihilation may have any significance in our models. GM/Rc2

is already as low as ∼ 0.02 at the inner edge of the polar gain
region in models s20.nr and s20.π and not larger than ∼ 0.06 in
the AIC snapshot.

Model s20.π is rapidly rotating and has large pole-equator
neutrino flux asymmetries (Ott et al. 2008). Though prolate
and quickly varying with radius, the Q+(νi ν̄i) distributions in
model s20.π do not vary with angle by more than a factor
of 2 (neglecting for now the large equatorial cooling regions
between ∼ 100 and 200 km). Along the poles, charged-current
losses negate net energy deposition by νi ν̄i annihilation at
radii � 80 km. Again, Q+(νeν̄e) dominates over Q+(“νμν̄μ”),

while both decrease with radius by ∼ r−7.8 at 160 ms after
bounce and ∼ r−6.5 at 550 ms after bounce. As listed in
Table 2, we find at 160 ms after bounce volume-integrated
energy depositions of 1.03 × 1049 and 0.41 × 1049 erg s−1,
for νeν̄e and “νμν̄μ,” respectively. At 550 ms after bounce, these

values have decreased to 0.29 × 1049 (νeν̄e) and 0.12 × 1049

erg s−1 (“νμν̄μ”). The total annihilation contribution to neutrino
heating is equivalent to ∼ 1% (∼ 1.5%) at 160 ms (550 ms).

The right panel in Figure 20 shows the energy deposition
by νeν̄e annihilation in the AIC model at 160 ms after bounce
(see, Dessart et al. 2006b for details). In this rapidly rotating
oblate PNS (the central period is ∼ 2.2 ms at this postbounce
time), neutrinos are emitted from both the central object and its
extended, moderately hot equatorial disk-like structure (more
specifically from the pole-facing side of these side lobes).
Significant energy deposition by neutrino pairs occurs at small
radii in a wide polar wedge of ∼ 60◦ (widening with radius to
∼ 120◦) and Q+(νeν̄e) reaches peak rates near the PNS surface
at ∼ 15 km of up to 1029 erg cm−3 s−1, with Q+(“νμν̄μ”) being
globally smaller by an order of magnitude. The radial decline
of Q+(νi ν̄i) along the polar direction becomes shallower with
time, with power-law exponents varying from ∼−8.3 to ∼ −5.8
from 160 to 773 ms after bounce.

In this AIC model, both Q+(νeν̄e) and Q+(“νμν̄μ”) reach local
values at small radii that are of the same order of magnitude
as the peak values in energy deposition per unit volume by
charged-current interactions, yet the very limited volume of the
high-Q+(νi ν̄i) gain regions leads to only very modest integral
values at 160 ms after bounce of 0.42 × 1049 and 0.17 ×
1049 erg s−1 for νeν̄e and “νμν̄μ” pair annihilation, respectively,
in our Newtonian model. At 773 ms after bounce and in the same
order, these values are 0.19 × 1049 and 0.02 × 1049 erg s−1,
respectively. Compared with the charged-current interactions
driving the post-explosion wind phase of the AIC (Dessart
et al. 2006b), even a 10-times-larger integral Ė(νi ν̄i) (e.g.,
via GR effects) would still amount to only � 10% of the total
charged-current energy deposition rate in this model.
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