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	e discovery of neutrino masses through the observation of oscillations boosted the importance of neutrinoless double beta
decay (0]��). In this paper, we review the main features of this process, underlining its key role from both the experimental and
theoretical point of view. In particular, we contextualize the 0]�� in the panorama of lepton number violating processes, also
assessing some possible particle physics mechanisms mediating the process. Since the 0]�� existence is correlated with neutrino
masses, we also review the state of the art of the theoretical understanding of neutrinomasses. In the 
nal part, the status of current0]�� experiments is presented and the prospects for the future hunt for 0]�� are discussed. Also, experimental data coming from
cosmological surveys are considered and their impact on 0]�� expectations is examined.

1. Introduction

In 1937, almost ten years a�er Paul Dirac’s “	e quantum
theory of electron” [1, 2], Majorana proposed a new way to
represent fermions in a relativistic quantum 
eld theory [3]
and remarked that this could be especially useful for neutral
particles. A single Majorana quantum 
eld characterizes the
situation in which particles and antiparticles coincide, as it
happens for the photon. Racah stressed that such a 
eld could
fully describe massive neutrinos, noting that the theory by
Majorana leads to physical predictions essentially dierent
from those coming from Dirac theory [4]. Two years later,
Furry [5] studied within this scenario a new process similar
to the “double beta disintegration,” introduced by Goeppert-
Mayer in 1935 [6]. It is the double beta decaywithout neutrino
emission, or neutrinoless double beta decay (0]��). 	is
process assumes a simple form; namely,(�, �) �→ (�,� + 2) + 2e−. (1)

	e Feynman diagram of the 0]�� process, written in terms
of the particles we know today and of massive Majorana
neutrinos, is given Figure 1.

	e main and evident feature of the 0]�� transition is
the explicit violation of the number of leptons and, more
precisely, the creation of a pair of electrons. 	e discovery
of 0]�� would therefore demonstrate that lepton number is
not a symmetry of nature. 	is, in turn, would support the
exciting theoretical picture that leptons played a part in the
creation of thematter-antimatter asymmetry in the Universe.

In the attempt to investigate the nature of the 0]�� pro-
cess, various other theoretical possibilities were considered,
beginning by postulating new superweak interactions [7, 8].
However, the general interest has always remained focused
on the neutrino mass mechanism. In fact, this scenario is
supported by two important facts:

(1) On the theoretical side, the triumph of the Standard
Model (SM) of electroweak interactions in the 1970s
[9–11] led to formulating the discussion of new
physics signals using the language of eective opera-
tors, suppressed by powers of the new physics mass
scale. 	ere is only one operator that is suppressed
only by one power of the new mass scale and violates
the global symmetries of the SM or, more precisely,
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Figure 1: Diagram of the 0]�� process due to the exchange of
massive Majorana neutrinos, here denoted generically by ]�.

the lepton number: it is the one that gives rise to
Majorana neutrino masses [12] (see also [13–16]).

(2) On the experimental side, some anomalies in neu-
trino physics, which emerged throughout 30 years,
found their natural explanation in terms of oscilla-
tions of massive neutrinos [17]. 	is explanation was
con
rmed by several experiments (see [18, 19] for
reviews). 	us, although oscillation phenomena are
not sensitive to theMajorana nature of neutrinos [20],
the concept of neutrinomass has changed its status in
physics, from the one of hypothesis to the one of fact.
	is, of course, strengthened the case for lightmassive
neutrinos to play a major role for the 0]�� transition.

For these reasons, besides being an interesting nuclear
process, 0]�� is a also a key tool for studying neutrinos,
probing whether their nature is the one of Majorana particles
and providing us with precious information on the neutrino
mass scale and ordering. Even though the predictions of the0]�� lifetime still suer from numerous uncertainties, great
progresses in assessing the expectations for this process have
been and are being made.	ese will be discussed later in this
review.

About the Present Review. In recent years, several review
papers concerning neutrinoless double beta decay have been
written. 	ey certainly witness the vivid interest of the
scienti
c community in this topic. Eachwork emphasizes one
or more relevant aspects such as the experimental part [21–
25], the nuclear physics [26, 27], the connectionwith neutrino
masses [28, 29], and other particle physics mechanisms [30–
33]. 	e present work is not an exception. We mostly focus
on the 
rst three aspects. 	is choice is motivated by our
intention to follow the theoretical ideas that describe themost
plausible expectations for the experiments. In particular,
a�er a general theoretical introduction (Sections 2 and 3),
we examine the present knowledge on neutrino masses in
Section 4 and the status of expectations from nuclear physics
in Section 5. 	en we review the experimental situation
(Section 6) and emphasize the link between neutrinoless
double beta decay and cosmology (Section 7).

Amore peculiar aspect of this review is the eort to follow
the historical arguments, without worrying too much about
covering once more well-known material or about present-
ing an exhaustive coverage of the huge recent literature on the
subject. Another speci
c characteristic is the way the infor-
mation on the neutrinoMajorana mass is dealt with. In order
to pass from this quantity to the (potentially measurable)
decay rate, we have to dispose of quantitative information
on the neutrino masses and on the matrix elements of the
transition, which in turn requires the description of the
nuclear wave functions and of the operators that are implied.
	erefore, our approach is to consider the entire available
information on neutrino masses and, in particular, the one
coming from cosmology. We argue that the recent progresses
(especially those coming from the Planck satellite data [34])
play a very central role for the present discussion. On the
other side, the matrix elements have to be calculated (rather
than measured) and are thus subject to uncertainties which
are di�cult to assess reliably. Moreover, the adoptedmethods
of calculation do not precisely reproduce other measurable
quantities (single beta decay, two-neutrino double beta decay,
etc.). We thus prefer to adopt a cautious/conservative assess-
ment of the theoretical ranges of these matrix elements.

We would like to warn the reader that other attitudes in
the discussion are surely possible, and it is indeed the case
for some of the mentioned review works. Using less stringent
limits from cosmology and disregarding the uncertainties
from nuclear physics are equivalent to assuming the most
favorable situation for the experiments. 	is could be con-
sidered bene
cial for the people involved in experimental
search for the neutrinoless double beta decay. However,
we prefer to adhere to a more problematic view in the
present work, simply because we think that it more closely
re�ects the present status of facts. Considering the numerous
experiments involved in the 
eld, we deem that an updated
discussion on these two issues has now become quite urgent.
	is will help us to assess and appreciate better the progresses
expected in the close future, concerning the cosmological
measurements of neutrino masses and perhaps also the the-
oretical calculations of the relevant nuclear matrix elements.

2. The Total Lepton Number

No elementary process where the number of leptons or
the number of hadrons varies has been observed yet. 	is
suggests the hypothesis that the lepton number � and the
baryon � are subject to conservations laws. However, we do
not have any deep justi
cation for which these laws should
be exact. In fact, it is possible to suspect that their validity
is just approximate or circumstantial, since it is related to
the range of energies that we can explore in laboratories.
(Notice also that the fact that neutral leptons (i.e., neutrinos
or antineutrinos) are very di�cult to observe restricts the
experimental possibilities to test the total lepton number.)

In this section, we discuss the status of the investigations
on the total lepton number in the SM and in a number of
minimal extensions, focusing on theoretical considerations.
In particular, we introduce the possibility that neutrinos are
endowed with Majorana mass and consider a few possible
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manifestations of lepton number violating phenomena. 	e
case of the 0]�� will instead be addressed in the rest of this
work.

2.1. � and � Symmetries in the SM. 	e SM in its minimal
formulation has various global symmetries, including � and�, which are called “accidental.” 	is is due to the speci
c
particle content of the model and to the hypothesis of renor-
malizability. Some combinations of these symmetries, like, for
example, “�-�,” are conserved also nonperturbatively. 	is is
su�cient to forbid the 0]�� transition completely in the SM.
In other words, a hypothetical evidence for such a transition
would directly point out to physics beyond the SM. At the
same time, the minimal formulation of the SM implies that
neutrinos are massless, and this contradicts the experimental

ndings. 	erefore, the question of how to modify the SM
arises, and this in turn poses the related burning question
concerning the nature of neutrino masses.

2.2. Majorana Neutrinos. In 1937, Majorana proposed a the-
ory of massive and “real” fermions [3]. 	is theory contains
less 
elds than the one used by Dirac for the description of
the electron [1, 2] and, in this sense, it is simpler. Following the
formalism introduced in 1933 by Fermiwhen describing the�
decay [36], the condition of reality for a quantized fermionic

eld can be written as 	 = 
	�, (2)

where 
 is the charge conjugation matrix, while 	 ≡ 	†�0
is the Dirac conjugate of the 
eld. In particular, Majorana
advocated a speci
c choice of the Dirac �-matrices, such that
��0 = 1, which simpli
es various equations.	e free particle
Lagrangian density formally coincides with the usual one:

LMajorana = 12	 (��� − �) 	. (3)

FollowingMajorana’s notations, the decomposition of the
quantized 
elds into oscillators is	 (�) = ∑

p,�
[� (p�) � (�; p�) + �∗ (p�) �∗ (�; p�)] , (4)

where � = ±1 is the relative orientation between the spin and
themomentum (helicity).We adopt the normalization for the

wave functions: ∫�x|�(�, x)|2 = 1, and for the oscillators:�(p�)�∗(p���) + �∗(p���)�(p�) = �pp����� . For any value of
the momentum, there are 2 spin (or helicity) states:�∗ (p+) |vac.⟩ = |p ↑⟩ ,�∗ (p−) |vac.⟩ = |p ↓⟩ . (5)

Figure 2 illustrates the comparison between the particle
content of both a Dirac and aMajorana 
eld in the case p = 0
(rest frame).

Evidently, a Majorana neutrino is incompatible with any (1) transformation, for example, � or the weak hypercharge
(i.e., however broken in the vacuum). In general, � will be
violated by the presence of Majorana mass.

Dirac massive particle Majorana massive particle 

0 0

− −

+ +

Figure 2: Massive 
elds in their rest frames. 	e arrows show the
possible directions of the spin. (Le�) the 4 states of Dirac massive

eld. 	e signs indicate the charge that distinguishes particles and
antiparticles, for example, the electric charge of an electron. (Right)
the 2 states of Majorana massive 
eld. 	e symbol “zero” indicates
the absence of any  (1) charge: particles and antiparticles coincide.

In the SM, the neutrino 
eld appears only in the combi-
nation �� = !��, (6)

where!� ≡ (1−�5)/2 is the so-called chiral projector (Table 1).
It is then possible to implement the hypothesis of Majorana
in the most direct way by de
ning the real 
eld:	 ≡ �� + 
���. (7)

In fact, we can conversely obtain the SM 
eld by a projection:�� ≡ !�	. (8)

2.3. Ultrarelativistic Limit andMassiveNeutrinos. 	ediscov-
ery that parity is a violated symmetry in weak interactions
[37, 38] was soon followed by the understanding that the
charged current (which contains the neutrino 
eld) always
includes the le� chiral projector [39–41] (see Sections 2.2 and
3.1).

It is interesting to note the following implication. Within
the hypothesis that neutrinos aremassless, theDirac equation
becomes equivalent to two Weyl equations [42] correspond-
ing to the Hamiltonian functions:"

]/] = ∓$p%, (9)

where % are the three Pauli matrices and the two signs apply
to the neutral leptons that, thanks to the interaction, produce
charged leptons of charge ∓1, respectively. In other words, we
can de
ne these states as neutrinos and antineutrinos, respec-
tively.Moreover, by looking at (9), one can see that the energy
eigenstates are also helicity eigenstates. More precisely, the
spin of the neutrino (antineutrino) is antiparallel (parallel) to
its momentum. See Figure 3 for illustration.

	e one-to-one connection between chirality and helicity
holds only in the ultrarelativistic limit, when the mass of the
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Table 1: List of the matter particles in the SM.	e label “singlet” is o�en replaced with “right” and likewise for “doublet” it can become “le�.”
Hypercharge is assigned according to & = '3� + *. 	e chirality of a 
eld (and all its  (1) numbers) can be exchanged by considering the
charge conjugate 
eld; for example, e�� ≡ 
e�	 has electric charge +1 and leptonic charge −1.
Name Field symbol SU(3)c multiplicity SU(2)L multiplicity  (1)Y charge Lepton number � Baryon number �
Quark doublet -� 3 2 +1/6 0 1/3

Singlet up quark 4	 3 1 +2/3 0 1/3

Singlet down quark �	 3 1 −1/3 0 1/3

Lepton doublet 5� 1 2 −1/2 1 0

Singlet charged lepton e	 1 1 −1 1 0

A fast lepton withA fast lepton with

0 0

negative helicity yields �−

→ it must be called ��

positive helicity yields �+

→ it must be called ��

Direction of motion Direction of motion 

Figure 3: 	e chiral nature of weak interactions allows us to de
ne
what is a neutrino and what is an antineutrino in the ultrarelativistic
limit, when chirality coincides with helicity and the value of themass
plays only a minor role.

neutrinos is negligible. 	is is typically the case that applies
for detectable neutrinos, since the weak interaction cross
sections are bigger at larger energies. However, these remarks
do not imply in any way that neutrinos are massless. On the
contrary, we know that neutrinos are massive.

A consequence of the chiral nature of weak interactions
is that if we assume that neutrinos have the type of mass
introduced by Dirac, we have a couple of states that are
sterile under weak interactions in the ultrarelativistic limit.
Conversely, the fact that the le� chiral state exists can
be considered a motivation in favor of the hypothesis of
Majorana. In fact, this does not require the introduction of the
right chiral state, as instead required by the Dirac hypothesis.
Most importantly, it should be noticed that in the case of
Majoranamass it is not possible to de	ne the di
erence between
a neutrino and an antineutrino in a Lorentz invariant way.

2.4. Right-Handed Neutrinos and Uni	ed Groups. 	e simi-
larity between � and � is perceivable already within the SM.
	e connection is even deeper within the so-called Grand
Uni
ed	eories (GUTs), that is, gauge theories with a single
gauge coupling at a certain high energy scale. 	e standard
prototypes are SU(5) [47] and SO(10) [48, 49]. GUTs undergo
a series of symmetry-breaking stages at lower energies,
eventually reproducing the SM. 	ey lead to predictions
on the couplings of the model and suggest the existence
of new particles, even if theoretical uncertainties make it
di�cult to obtain reliable predictions.	e possibilities to test

u u u

d d d

u u u

d d d

e

e

�

?

15 particles per matter family

Direction of motion

Figure 4: Helicity of the 15 massless matter particles contained in
each family of the SM (see Table 1). 	e arrow gives the direction of
the momentum.

these theories are limited, and major manifestations could be
violations of � and �.

	e matter content of GUTs is particularly relevant to
the discussion. In fact, the organization of each family of the
SM suggests the question whether right-handed neutrinos
(RH) exist along with the other 7 RH particles (Figure 4).
	is question is answered a�rmatively in some extensions of
the SM. For example, this is true for gauge groups that also
include a SU(2)	 factor, on top of the usual SU(2)� factor. In
the SO(10) gauge group,which belongs to this class ofmodels,
each family of matter includes the 15 SM particles plus 1 RH
neutrino.

It should be noted that RH neutrinos do not participate
in SM interactions and can therefore be endowed with a
Majorana mass7, still respecting the SM gauge symmetries.
However, they do participate in the new interactions, and,
more importantly for the discussion, they can mix with the

ordinary neutrinos via the Dirac mass terms, �Dirac. 	ere-
fore, in presence of RH neutrinos, the SM Lagrangian (a�er
spontaneous symmetry breaking) will include the terms

Lmass = −]	
�Dirac
ℓ
 ]�ℓ + 12]	
7

]�	
 + ℎ.$., (10)

where ℓ = e, :, < and � = 1, 2, 3. It is easy to understand that,
at least generically, this framework implies that the lepton
number is broken.
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Let us assume the existence of RH neutrinos, either
embedded in a uni
ed group or not, and let us suppose that
they are heavy (this happens, e.g., if the scale of the new
gauge bosons is large and the couplings of the RH neutrinos
to the scalar bosons implementing spontaneous symmetry
breaking of the new gauge group are not small). In this case,
upon integrating away the heavy neutrinos from the theory,
the light neutrinos will receive Majorana mass, with size
inversely proportional to the mass of the RH ones [13–16].
	is is the celebrated Type I Seesaw Model. In other words,
the hypothesis of heavy RH neutrinos allows us to account
for the observed small mass of the neutrinos. Unfortunately,
we cannot predict the size of the light neutrinomass precisely,

unless we know both7 and�Dirac.
In principle, RH neutrinos could also be quite light. An

extreme possibility is that some of them have masses of the
order of eV or less and give rise to new �avor oscillations
observable in terrestrial laboratories [50–52].	is could help
to address some experimental anomalies [53, 54]. However,
it has been known for long [55, 56] that the presence of eV
neutrinos would also imply large eects in cosmology, both
in the number of relativistic species and in the value of the
neutrino mass. 	ese eects are not in agreement with the
existing information from cosmology (see Section 4.3) and,
for this reason, we will not investigate this hypothesis further
(we refer the interested reader to the various discussions on
the impact of eV neutrinos on the 0]��; see, e.g., [57–59]).

In view of the evidences of neutrinosmasses, theories like
SO(10) are particularly appealing, since they oer a natural
explanation of light Majorana neutrino masses. However, a
complete theory able to link in a convincing way fermion
masses (including those of neutrinos) and to provide us with
reliable predictions of new phenomena, such as 0]��, does
not exist yet. Despite the fact that many attempts were made
in the past, it seems that this enterprise is still in its initial
stages.

2.5. Leptogenesis. Although particles and antiparticles have
the same importance in our understanding of particle
physics, we know that the Universe contains mostly baryons
rather than antibaryons (the lepton number in the Universe
is probed much less precisely; while we know that cosmic
neutrinos and antineutrinos are abundant, it is not easy
to measure their asymmetry which, according to standard
cosmology, should be very small; however, we expect to
have the same number of electrons and protons to guarantee
the overall charge neutrality). In 1967, Sakharov proposed a
set of necessary conditions to generate the cosmic baryon
asymmetry [60]. 	is has been the beginning of many
theoretical attempts to “explain” these observations in terms
of new physics.

In the SM, although � and � are not conserved separately
at the nonperturbative level [61–63], the observed value of
the Higgs mass is not big enough to account for the observed
baryon asymmetry [64, 65]. New violations of the global � or� are needed.

An attractive theoretical possibility is that RH neutrinos
not only enhance the SM endowing neutrinos with Majo-
rana mass, but also produce a certain amount of leptonic

asymmetry in the Universe. 	is is subsequently converted
into a baryonic asymmetry thanks to � + � violating eects,
which are built-in in the SM. It is the so-called Leptogenesis
mechanism, and it can be wittingly described by asking the
following question: do we all descend from neutrinos? 	e
initial proposal of Leptogenesis dates back to 1980s [66], and
there is a large consensus that this type of idea is viable and
attractive. Subsequent investigators showed that the number
of alternative theoretical possibilities is very large and, in
particular, that there are other possible sources of � violations
besides RH neutrinos. Conversely, the number of testable
possibilities is quite limited [67].

We believe that it is important to stay aware of the pos-
sibility of explaining the baryon number excess through
Leptogenesis theories. However, at the same time, one should
not overestimate the heuristic power of this theoretical
scheme, at least within the presently available information.

2.6. Neutrino Nature and Cosmic Neutrino Background. 	e
Big Bang theory predicts that the present Universe is le�
with a residual population of ∼56 nonrelativistic neutrinos
and antineutrinos per cm3 and per species. It constitutes a
Cosmic Neutrino Background (C]B). Due to their very low
energy, (9) does not hold for these neutrinos. 	is happens
because at least two species of neutrinos are nonrelativistic.
	e detection of this C]B could therefore allow understand-
ing which hypothesis (Majorana or Dirac) applies for the
neutrino description.

Let us assume having a target of 100 g of 3H. Electron
neutrinos can be detected through the reaction [69, 70]

]e + 3
H �→ 3He + e−. (11)

In the standard assumption of a homogeneous Fermi-Dirac
distribution of the C]B, we expect ∼8 events per year if
neutrinos are Majorana particles and about half if the Dirac
hypothesis applies [71]. Indeed, in the former case, the states
with positive helicity (by de
nition, antineutrinos) will act
just as neutrinos, since they are almost at rest. Instead, in the
latter case, they will remain antineutrinos and thus they will
not react.

It can be noticed that the signal rate is not prohibitively
small, but the major di�culty consists in attaining a suf-

cient energy resolution to keep at a manageable level the
background from beta decay. We will not discuss further the
feasibility of such an experiment, and refer to [70, 71] formore
details.

3. Particle Physics Mechanisms for 0]��
In this section, we focus on one of the most appealing lepton
number violating process, the 0]��. 	e exchange of light
Majorana neutrinos is up to now the most appealing mecha-
nism to eventually explain the 0]��. Some reasons justifying
this statement were already mentioned, but here a more
elaborate discussion is proposed. In particular, we review the
basic aspects of the light neutrino exchange mechanism for0]�� and compare it to other ones.Moreover, the possibilities
of inferring the size of neutrino masses from a hypothetical



6 Advances in High Energy Physics

observation of 0]�� and of constraining (or proving the
correctness) some alternative mechanisms with searches at
the accelerators are also discussed.

3.1. �e Neutrino Exchange Mechanism. 	e de
nition of a
key quantity for the description of the neutrino exchange
mechanismneeds to be introduced. It is the propagator of vir-
tual Majorana neutrinos. Due to the reality condition, (3) can
lead to new types of propagators that do not exist within the
Dirac theory. In fact, in this case, we can use the antisymme-
try of the charge conjugation matrix and get⟨0 @@@@' [	 (�) 	 (A)]@@@@ 0⟩ = −Δ (� − A)
, (12)

where Δ denotes the usual propagator, and

Δ (�) ≡ ∫ �4-(2E)4 � (-̂ + �)-2 − �2 + �0e−
�. (13)

In the low energy limit (relevant to � decay processes)
the interaction of neutrinos is well described by the current-
current four-fermion interactions, corresponding to the
Hamiltonian density

HFermi = G�√2I�†I�, (14)

where G� is the Fermi coupling, and we introduced the
current I� = I�lept + I�hadr for � = 0, 1, 2, 3, that decreases the
charge of the system (its conjugate, I†� , does the contrary). In
particular, the leptonic currentI�lept = ∑

ℓ=e,�,�
�ℓ�� (1 − �5) �]ℓ (15)

de
nes the ordinary neutrino with “�avor” ℓ. In order to
implement the Majorana hypothesis, one can use (7) and

introduce the 
eld 	 = �� + 
���. Nothing changes in the
interactions if one substitutes the 
eld �

]ℓ
with the corre-

sponding 
eld 	
]ℓ
, since the chiral projector selects only the


rst piece, �
]ℓ�.

Let us assume that the 
eld 	 is a mass eigenstate. A
contribution to the 0]�� transition arises at the second order
of the Fermi interaction. Let us begin from the operator

− G2� ∫�4�I�†hadr (�) �e (�) ��!�	]e (�)
⋅ ∫ �4AI�†hadr (A) �e (A) ��!�	]e (A) . (16)

By contracting the neutrino 
elds, the leptonic part of this
operator becomes�e (�) ��!�Δ (� − A) !���
��e (A) (17)

while the ordinary propagator, sandwiched between two
chiral projectors, reduces to

!�Δ (�) !� = !� ∫ �4-(2E)4 ��-2 − �2 + �0e−
�. (18)

	e momentum - represents the virtuality of the neutrino,
whose value is connected to the momenta of the 
nal state
electrons and to those of the intermediate virtual nucleons.
In particular, since the latter are con
ned in the nucleus,
the typical 3 momenta are of the order of the inverse of the
nucleonic size, namely,@@@@-⃗@@@@ ∼ ℏ$/fm ∼ few 100MeV, (19)

whereas the energy (-0) is small.	e comparison of this scale
with the one of neutrino mass identi
es and separates “light”
from “heavy” neutrinos for what concerns 0]��.

	e most interesting mechanism for 0]�� is the one that
sees light neutrinos as mediators. It is the one originally
considered in [5] and it will be discussed in great detail in
the subsequent sections. In the rest of this section, instead,
we examine various alternative possibilities.

We have some hints, mostly of theoretical nature, that
the light neutrinos might have Majorana mass. However, the
main reason for the hypothesis that the 0]�� receives its
main contribution from light Majorana neutrinos is the fact
that experiments point out the existence of 3 light massive
neutrinos.

3.2. Alternative Mechanisms to the Light Neutrino Exchange

3.2.1. Historical Proposals. A few years a�er the understand-

ing of the M0-M0
oscillation [97–99], which led Pontecorvo

to conjecture that also neutrino oscillations could exist
[17], alternative theoretical mechanisms for the 0]�� other
than the neutrino exchange were 
rstly advocated. In 1959,
Feinberg and Goldhaber [7] proposed the addition of the
following term in the eective Lagrangian density:

Hpion = N�e

E+E+e�
−1e, (20)

where �e is the electron mass and N an unspeci
ed dimen-
sionless coupling. Similarly, a�er the hypothesis of superweak
interactions in weak decays [100, 101], the importance for0]�� of operators like the one of (20) was stressed by Pon-
tecorvo [8]. He also emphasized that the size and the origin of
these operators could be quite independent from the neutrino
masses.

3.2.2. Higher Dimensional Operators. 	e SM oers a very
convenient language to order the interesting operators lead-
ing to violation of � and �. It is possible to consider eective
(nonrenormalizable) operators that respect the gauge sym-
metry SU(3)c × SU(2)L ×  (1)Y but that violate � and/or� [12, 102]. Here, we consider a few representative cases (a
more complete list can be found in [103, 104]), corresponding
to the following terms of the Lagrangian and Hamiltonian
densities:

HWeinberg = (5�")27 + 5�-�-�-�7�2 + (5�-���	)27��5 . (21)

	e matter 
elds (fermions) in the equation are written in
the standard notation of Table 1; " is the Higgs 
eld, while
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the constrains on the masses are 7 < 1011 TeV, 7� >1012 TeV, and7�� > 5TeV. In particular

(i) the 
rst (dimension-5) operator generates Majorana
neutrino masses, and the bound on 7 derives from
neutrino masses�

]
< 0.1 eV;

(ii) the dimension-6 operator leads to proton decay and
this implies the tight bound on the mass7�;

(iii) the dimension-9 operator contributes to the 0]��; its
role in the transition can be relevant if the scale of
lepton number violation is low.

Summarizing, if one assumes that the scale of new physics
is much higher than the electroweak scale, it is natural to
expect that the leading mechanism behind the 0]�� is the
exchange of light neutrinos endowed with Majorana masses.
It is also worthy to note that if light sterile neutrinos,
dark matter, or, generally, other light states are added, more
operators may be required. A large eective mass could also
come from small adimensional couplings A, for example,1/7 = A2/:.

	e number of possible mechanisms that eventually can
lead to the above eective operators is also very large. One
possible (plausible) origin of the dimension-5 operator is
discussed in Section 2.4. However, other cases are possible
and the same is true for the other operators.

3.2.3. HeavyNeutrino Exchange. Let us now consider the case
of heavy RHneutrino exchangemechanism.	e correspond-
ing operator gives rise to the eective Hamiltonian density
(for heavy neutrinos, the propagator of (18) is proportional
to �(� − A)):

H
]heavy

= − G2�7�
I�†hadr�e�

����
��e�I�†hadr. (22)

It is evident that this is a dimension-9 operator and it has
in front a constant with mass dimension �−5, since 7�
indicates the relevant heavy neutrino mass. It has to be noted
that such a de
nition can be used in an eective formula,
but a gauge model requires expressing 7� in terms of the
single RH neutrino masses 7� and of the mixing between
le�-handed neutrinos ]e� and heavy neutrinos:

17�
=  2

e�7�
. (23)

In particular, the mixings are small if7� is large since  e
 =�Dirac
e
 /7�. 	is suggests a suppression of the above eective

operator with the cube of 7�, whereas the light neutrino
exchange mechanism leads to a milder suppression, linear
in 7� (if the mixing matrices have speci
c �avor struc-
tures, deviations from this generic expectation are possible).
However, it is still possible that RH neutrinos are heavy,
but not “very” heavy. Actually, this was the 
rst case to be
considered [13], and it could be of interest both for direct
searches at accelerators (see Section 3.4) and for the 0]��.
In fact, in this case, the mixing e� is not strongly suppressed
and RH neutrinos can give an important contribution to the

transition [105]. However, two remarks on this case are in
order. As it was argued in [106], in order to avoid 
ne tunings
on the light neutrinos, themasses of RHneutrinos should not
be much larger than about 10GeV. Moreover, in the extreme
limit in which the mass becomes light (i.e., it is below the
value in (19)) and Type I Seesaw applies, the contribution of
RHneutrinos cancels the one of ordinary neutrinos [107, 108].

3.2.4. Models with RH Currents. Another class of models of
great interest are those that include RH currents and interme-
diate bosons. In the language of SM, the neutrino exchange
leads to a core operator

H�bosons = 17Q+Q+e�
−1e, (24)

where7 is a mass scale andQ identify the 
elds of the usualQ bosons. When we consider virtual Q bosons, this may
eventually lead to the usual case. In principle, it is possible
to replace the usual Q bosons with the corresponding Q	
bosons of a new SU(2)	 gauge group. In this hypothesis, the
RH neutrinos play a more important role and are no longer
subject to restrictions of the mixing matrix, as those of (23).
However, the resulting dimension-9 operator is suppressed by
4 powers of the masses of the new gauge bosons.

Evidently, new RH gauge bosons with masses accessible
to direct experimental investigation are of special interest (see
Section 3.4). Since to date we do not have any experimental
evidence, this possibility will not be emphasized in the
following discussion. Anyway, investigations at the LHC
are currently in progress and the interpretation of some
anomalous events (among the collected data) as a hint in favor
of relatively lightQ	 bosons has already been proposed [109–
111].

3.3. From 0]�� to Majorana Mass: A Remark on “Natural”
Gauge �eories. In a well-known work, Schechter and Valle
[112] employ the basic concepts of gauge theories to derive
some important considerations on the 0]��. In particular,
their argument proceeds as follows:

(1) If the 0]�� is observed, there will be some process
(among elementary particles) where the electron-,
up-, and down
elds are taken twice. 	is “black box”
process in [112] (Figure 5) eectively resembles the
one caused by the dimension-9 operator in (21).

(2) Using Q bosons, it is possible to contract the two
quark pairs and obtain something like the operator in
(24).

(3) Finally, the electron- and the Q-
elds can be con-
verted into neutrino 
elds. A contribution to the
Majorana neutrino mass is therefore obtained.

(4) 	e possibility that this contribution could be can-
celed by others is barred out as “unnatural.”

	is argument works in the “opposite direction” with
respect to ones presented so far. Instead of starting from
the Majorana mass to derive a contribution for the 0]��, it
shows that from the observation of the 0]��, it is possible
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dd uu

�e �ee−e−

Figure 5: Diagram representing the contribution of the “black box”
operator to the Majorana mass. Figure from [114].

to conclude the existence of the Majorana mass. 	e result
could be seen as an application (or a generalization) of
Symanzik’s rule as given by Coleman [113]: if a theory predicts�-violation, it will not be possible to screen it to forbid only a
Majorana neutrino mass.

	e size of the neutrino masses is not indicated in the
original work, but a straightforward estimation of the dia-
gram of Figure 5 shows that they are so small that they have

no physical interest, being of the order of 10−24 eV [114].
However, what can be seen as a weak point of the argumen-
tation is the concept of “natural theory,” whose de
nition is
not discussed in [112] but simply proclaimed. In fact, it is
possible to 
nd examples of models where the 0]�� exists
but the Majorana neutrino mass contribution is zero [106],
in accordance with the claim of Pontecorvo [8] but clashing
with the expectations deriving from that of [112].

We think that the (important) point made in [112] is valid
not quite as a theorem (aword that, anyway, the authors never
use to indicate their work). We rather believe it acts mostly as
a reminder that any speci
c theory that includes Majorana
neutrino masses will have various speci
c links between
these masses, 0]��, and possibly other manifestations of �-
violation.We see as a risk the fact that, due to the impossibility
of avoiding the issue of model dependence, we will end up
with the idea that we can accept “petition of principles.”

3.4. Role of the Search at Accelerators. 	ere is the hope that
the search for new particles at the accelerators might reveal
new physics relevant to the interpretation or in some way
connected to the 0]��.	is is a statement ofwide validity. For
example, the minimal supersymmetric extension of the SM
is compatible with new �-violating phenomena taking place
already at the level of renormalizable operators [115]. Also
the hypothesized extradimensions at the TeV scale might
be connected to new �-violating operators [116]. Or even,
models where the smallness of the neutrinomass is explained
through loop eects imply typically new particles that are not
ultraheavy [117]. Notice that these are just a few among the
many theoretical possibilities to select which, unfortunately,
lack clear principles.

	e recent scienti
c literature tried at least to exploit some
minimality criteria, and the theoretical models that received
the largest attention are indeed those discussed above. A
speci
c subclass, named ]SM [118], is found interesting
enough to propose a dedicated search at the CERN SPS
[118, 119], aiming to 
nd rare decays of the ordinary mesons

into heavy neutrinos.Othermodels that foresee a new layer of
gauge symmetry at accessible energies and, more speci
cally,
those connected to le�-right gauge symmetry [120] might
instead lead to impressive �-violation at accelerators [121–
123].	is should be quite analogous to the 0]�� process itself
and that could be seen as manifestations of operators similar
to those in (24).

We would like just to point out that, in both cases, in
order to explain the smallness of neutrino masses, very small
adimensional couplings are required. Although this position
is completely legitimate, in front of the present understanding
of particle physics, it seems fair to say that this leaves us with
some theoretical question to ponder.

4. Present Knowledge of Neutrino Masses

In this sectionwe discuss the crucial parameter describing the0]�� if the process is mediated by light Majorana neutrinos
(as de
ned in Section 3.1). We take into account the present
information coming from the oscillation parameters, cosmol-
ogy, and other data. On the theoretical side, we motivate the
interest for a minimal interpretation of the results.

4.1.�e Parameter���. We know three light neutrinos.	ey
are identi
ed by their charged current interactions; that is,
they have “�avor” ℓ = e, :, <. 	e Majorana mass terms in
the Lagrangian density are described by a symmetric matrix:

Lmass = 12 ∑
ℓ,ℓ�=e,�,�

]
�
ℓ
−17ℓℓ�]ℓ� + ℎ.$.. (25)

	e only term that violates the electronic number by two
units is7ee, and this simple consideration motivates the fact
that the amplitude of the 0]�� decay has to be proportional
to these parameters, while the width has to proportional to
its squared modulus. We can diagonalize the neutrino mass
matrix by mean of a unitary matrix7 =  � diag (�1, �2, �3)  †, (26)

where the neutrinomasses�
 are real and nonnegative.	us,
we can de
ne

��� ≡ @@@@@@@@@@ ∑
=1,2,3 2
e
�


@@@@@@@@@@ , (27)

where the index � runs on the 3 light neutrinos with given
mass.	is parameter is o�en called “eectiveMajoranamass”
(it can be thought of as the “electron neutrinomass” that rules
the 0]�� transition, but keeping in mind that it is dierent
from the “electron neutrinomass” that rules the � decay tran-
sition).

	e previous intuitive argument in favor of this de
nition
is corroborated by calculating the Feynman diagram of
Figure 1. Firstly, it has to be noted that the electronic neutrino
]e is not a mass eigenstate in general. 	en, substituting (26)
into (25), we see that we go from the �avor basis to the mass
basis by setting

]ℓ = ∑

=1,2,3

 ℓ
]
. (28)
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	erefore, in the neutrino propagators of Figure 1, we will
refer to the masses �
 (that in our case are “light”) while, in
the two leptonic vertices, we will have e
. Taking the product
of these factors, we get the expression given in (27).

It should be noted that the leptonic mixing matrix  
as introduced above diers from the ordinary one used in
neutrino oscillation analyses. Indeed, the latter is given a�er
rotating away the phases of the neutrino 
elds and observ-
ing that oscillations depend only upon the combination77†/(2R). 	is matrix contains only one complex phase
which plays a role in oscillations (the “CP-violating phase”).
Instead, in the case of 0]��, the observable is dierent. It is
just |7ee|. Here, there are new phases that cannot be rotated
away and that play a physical role.	ese are sometimes called
“Majorana phases.” 	eir contribution can be made explicit
by rewriting (27) as follows:

��� = @@@@@@@@@@ ∑
=1,2,3e
�� @@@@@ 2
e

@@@@@ �


@@@@@@@@@@ . (29)

We can now identify  e
 of (29) with the mixing matrix used
in neutrino oscillation analyses (note that the speci
c choice
and the symbols for these phases may dier among authors).

Before proceeding in the discussion, some remarks are in
order:

(i) It is possible to adopt a convention for the neutrino
mixing matrix such that the 3 mixing elements  e

are real and positive. However, in the most common
convention,  e3 is de
ned to be complex.

(ii) Only two Majorana phases play a physical role, the
third one just being matter of convention.

(iii) It is not possible even in principle to reconstruct the
Majorana mass matrix simply on experimental bases,
unless we 
nd another observable which depends on
Majorana phases.

Furthermore, a speci
c observation on the Type I Seesaw
Model is useful. Let us consider the simplest case with only
]e and one heavy neutrino ]� that mix with this state. 	e
Majorana mass matrix is of the form

( 0 �Dirac�Dirac 7�
) . (30)

One should not be misled, concluding that in this case (and,
generally, in the Type I Seesaw) ��� is zero. In fact, as it is
well known, the masses of the light neutrinos (in this case, of
]e) arise when one integrates away the heavy neutrino state,
getting

�
]e
= −(�Dirac)27�

. (31)

As discussed in [106], we obtain in this one-�avor case the
nonzero contribution

��� = @@@@@�]e

@@@@@ (1 + ⟨-2⟩72
�
) . (32)

	e second factor is the direct contribution of the heavy
neutrino (this formula agrees with the naive scaling expected
from the heavy neutrino contribution; but in speci
c three-
�avor models it is possible, at least in principle, that heavy
neutrinos give a large and even dominating contribution to

the 0]�� decay rate [106]). 	e quantity ⟨-2⟩ depends on the

nuclear structure and it is of the order of (100MeV)2 and thus
(32) is valid if we assume |�

]e
| ≪ 100MeV ≪ 7�.

In the above discussion, we have emphasized the three-
�avor case. 	e main reason for this is evidently that we
know about the existence of only 3 light neutrinos. It is
possible to test this hypothesis by searching for new oscil-
lation phenomena, by testing the universality of the weak
leptonic couplings and/or the unitarity of the matrix in (28),
by searching directly at accelerators new and (not too) light
neutrino states, and so forth. However, we believe that it is
fair to state that, to date, we have no conclusive experimental
evidence or strong theoretical reason to deviate from this
minimal theoretical scheme. We will adopt it in the proceed-
ing of the discussion. In this way, we can take advantage of
the precious information that was collected on the neutrino
masses to constrain the parameter ��� and to clarify the
various expectations.

4.2. Oscillations. In [35], a complete analysis of the current
knowledge of the oscillation parameters and of neutrino
masses can be found. Although the absolute neutrino mass
scale is still unknown, it has been possible to measure,
through oscillation experiments, the squared mass splittings
between the three active neutrinos. In Table 2, the parameters
relevant to our analysis are reported. 	e mass splittings are

labeled by ��2 and Δ�2. 	e former is measured through
the observation of solar neutrino oscillations, while the latter
comes from atmospheric neutrino data. 	e de
nitions of
these two parameters are the following:��2 ≡ �2

2 − �2
1,

Δ�2 ≡ �2
3 − �2

1 + �2
22 . (33)

Practically, ��2 regards the splitting between ]1 and ]2, whileΔ�2 refers to the distance between the ]3 mass and the mid-
point of ]1 and ]2 masses.

	e sign of ��2 can be determined by observing matter
enhanced oscillations as explained within the MSW theory
[125, 126]. It turns out, a�er comparing with experimental

data, that ��2 > 0 [127]. Unfortunately, determining the sign

of Δ�2 is still unknown and it is not simple to measure it.
However, it has been argued (see, e.g., [128]) that, by carefully
measuring the oscillation pattern, it could be possible to

distinguish between the two possibilities, Δ�2 > 0 andΔ�2 < 0. 	is is a very promising perspective in order to
solve this ambiguity, which is sometimes called the “mass
hierarchy problem.” In fact, standard names for the twomen-
tioned possibilities for the neutrinomass spectra are “Normal
Hierarchy” (NH) for Δ�2 > 0 and “Inverted Hierarchy”

(IH) for Δ�2 < 0.
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Table 2: Results of the global 3] oscillation analysis, in terms of best

t values and allowed 1% range for the 3] mass-mixing parameters
relevant for our analysis as reported in [35]. 	e last column is our
estimate of the % while assuming symmetric uncertainties.

Parameter Best 
t 1% range %symmetric

NH

sin2([12) 3.08 ⋅ 10−1 (2.91–3.25) ⋅ 10−1 0.17 ⋅ 10−1
sin2([13) 2.34 ⋅ 10−2 (2.16–2.56) ⋅ 10−2 0.22 ⋅ 10−2
sin2([23) 4.37 ⋅ 10−1 (4.14–4.70) ⋅ 10−1 0.33 ⋅ 10−1��2 [eV2] 7.54 ⋅ 10−5 (7.32–7.80) ⋅ 10−5 0.26 ⋅ 10−5Δ�2 [eV2] 2.44 ⋅ 10−3 (2.38–2.52) ⋅ 10−3 0.08 ⋅ 10−3

IH

sin2([12) 3.08 ⋅ 10−1 (2.91–3.25) ⋅ 10−1 0.17 ⋅ 10−1
sin2([13) 2.39 ⋅ 10−2 (2.18–2.60) ⋅ 10−2 0.21 ⋅ 10−2
sin2([23) 4.55 ⋅ 10−1 (4.24–5.94) ⋅ 10−1 1.39 ⋅ 10−1��2 [eV2] 7.54 ⋅ 10−5 (7.32–7.80) ⋅ 10−5 0.26 ⋅ 10−5Δ�2 [eV2] 2.40 ⋅ 10−3 (2.33–2.47) ⋅ 10−3 0.07 ⋅ 10−3
	e oscillation data are analyzed in [35] by writing the

leptonic (PMNS) mixing matrix |osc. in terms of the mixing
angles [12, [13, and [23 and of the CP-violating phase \
according to the (usual) representation |osc.
= ( $12$13 ^12$13 ^13e−
�−^12$23 − $12^13^23e
� $12$23 − ^12^13^23e
� $13^23^12^23 − $12^13$23e
� −$12^23 − ^12^13$23e
� $13$23,) , (34)

where ^
�, $
� ≡ sin [
�, cos [
�. Note the usage of the samephase
convention and parameterization of the quark (CKM)mixing
matrix even if, of course, the values of the parameters are
dierent. With this convention, it is possible to obtain (29)
by de
ning ≡  |osc. ⋅ diag (e−
�1/2, e−
�2/2, e
�−
�3/2) . (35)

Table 2 shows the result of the best 
t and of the 1%
range for the dierent oscillation parameters. It can be noted
that the values are slightly dierent depending on the mass
hierarchy. 	is comes from the dierent analysis procedures
used during the evaluation, as explained in [35]. 	erefore,
throughout this work. the two neutrino mass spectra are
treated dierently from one another, since we used these
hierarchy-dependent parameters. 	e uncertainties are not
completely symmetric around the best 
t point, but the devi-
ations are quite small, as claimed by the authors themselves
in the reference. In particular, the plots in the paper show
Gaussian likelihoods for the parameters determining���. In
order to later propagate the errors, we decided to neglect the
asymmetry, which has no relevant eects on the presented
results. We computed the maximum between the distances
of the best 
t values and the borders of the 1% range (fourth
column of Table 2) and we assumed that the parameters
�uctuate according to aGaussian distribution around the best

t value, with a standard deviation given by that maximum.

Table 3: Flavor composition of the neutrino mass eigenstates. 	e
two cases refer to the values for the CP-violating phase\ = 0 and\ =1.39E (1.31E), best 
t value in case ofNH (IH) according to [35].

Eigenstate
NH IH

(\ = 0) (\ = 1.39E) (\ = 0) (\ = 1.31E)
]1
]e .676 .676 .675 .675

]� .254 .160 .252 .141

]� .070 .164 .073 .184

]2
]e .301 .301 .301 .301

]� .331 .425 .322 .432

]� .368 .274 .378 .267

]3
]e .023 .023 .024 .024

]� .415 .415 .426 .426

]� .562 .562 .550 .550

	anks to the knowledge of the oscillation parameters, it
is possible to put a 
rst series of constraints on ���. How-
ever, as already recalled, since the complex phases of the
mixing parameters in (29) cannot be probed by oscillations,
the allowed region for ��� is obtained letting them vary
freely. 	e expressions for the resulting extremes (i.e., the��� maximum and minimum values due to the phase varia-
tion) can be found in Appendix A. We adopt the graphical
representation of ��� introduced in [129] and re
ned in
[18, 130]. It consists in plotting ��� in bilogarithmic scale
as a function of the mass of the lightest neutrino, for both
the cases of NH and IH. 	e resulting plot is shown in
Figure 6(a). 	e uncertainties on the various parameters are
propagated using the procedures described in Appendix B.
	is results in a wider allowed region, which corresponds to
the shaded parts in the picture.

4.2.1. Mass Eigenstates Composition. 	e standard three-flavor
oscillations involve three massive states that, consistently
with (28), are given by the following (note that in this case
we are in the ultrarelativistic limit; see Section 2.3):@@@@]
⟩ = ∑

ℓ=e,�,�
 ℓ
 @@@@]ℓ⟩ . (36)

	us, it is possible to estimate the probability of 
nding the
component ]ℓ of each mass eigenstate ]
. 	is probability
is just the squared module of the matrix element  ℓ
, since
the matrix is unitary. 	e result is graphically shown in
Figure 7. As already mentioned, since hierarchy-dependent
parameters were used, the �avor composition of the various
eigenstates slightly depends on themass hierarchy. It is worth
noting that the results also depend on the possible choices
of \, while they do not depend on the eventual Majorana
phases. Table 3 reports the calculation for the cases \ = 0
and \ = 1.39E (1.31E) and best 
t value for the NH (IH)
according to [35].
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Figure 6: Updated predictions on ��� from oscillations as a function of the lightest neutrino mass (a) and of the cosmological mass (b) in
the two cases ofNH andIH.	e shaded areas correspond to the 3% regions due to error propagation of the uncertainties on the oscillation
parameters. Figure from [124].
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Figure 7: Graphic view of the probability of 
nding one of the �avor
eigenstates if the neutrino is in a certain mass eigenstate. 	e value\ = 0 for the CP-violating phase is assumed.

4.3. Cosmology and Neutrino Masses

4.3.1. �e Parameter Σ. 	e three-light neutrino scenario is
consistent with all known facts in particle physics including
the new measurements by Planck [34]. In this assumption,
the physical quantity probed by cosmological surveys, Σ, is
the sum of the masses of the three light neutrinos:Σ ≡ �1 + �2 + �3. (37)

Depending on the mass hierarchy, is it possible to expressΣ as a function of the lightest neutrino mass � and of the
oscillation mass splittings. In particular, in the case of NH,
one gets �1 = �,�2 = √�2 + ��2,

�3 = √�2 + Δ�2 + ��22 ,
(38)

while, in the case ofIH,

�1 = √�2 + Δ�2 − ��22 ,
�2 = √�2 + Δ�2 + ��22 ,
�3 = �.

(39)

It can be useful to compute the mass of the lightest
neutrino, given a value ofΣ.	is can be convenient in order to
compute��� as a function of Σ instead of� (in Appendix C,
an approximate (but accurate) alternative method for the
numerical calculation needed to make this conversion is
given). In this way,��� is expressed as a function of a directly
observable parameter.

	e close connection between the neutrino mass mea-
surements obtained in the laboratory and those probed
by cosmological observations was outlined long ago [131].
Furthermore, the measurements of Σ have recently reached
important sensitivities, as discussed in Section 7.

In Figure 6(b), an updated version of the plot (��� versusΣ) originally introduced in [132] is shown. Concerning the
treatment of the uncertainties, we use again the assumption
of Gaussian �uctuations and the prescription reported in
Appendix B.
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Figure 8: Evolution of some signi
cant values for Σ as indicated by
cosmology, based on well-known works [133–136]. Since the error
for the 
rst value is not reported in the reference, we assumed
an error of 50% for the purpose of illustration. 	e yellow region
includes values ofΣ compatiblewith theNH spectrum, but notwith
theIH one. 	e gray band includes values of Σ incompatible with
the standard cosmology and with oscillation experiments.

4.3.2. Constraints fromCosmological Surveys. 	e indications
for neutrino masses from cosmology have kept changing
for the last 20 years. A comprehensive review on the topic
can be found in [137]. In Figure 8 the values for Σ given
in [133–136] are shown. 	e scienti
c literature contains
several authoritative claims for a nonzero value for Σ but,
being dierent among each other, these values cannot be all
correct (at least) and this calls us for a cautious attitude in
the interpretation. Referring to the most recent years, two
dierent positions emerge: on one side, we 
nd claims that
cosmology provides us with a hint for nonzero neutrino
masses; on the other, we have very tight limits on Σ.

In the former case, it has been suggested [135, 138] that
a total nonzero neutrino mass around 0.3 eV could allevi-
ate some tensions present between cluster number counts
(selected both in X-ray and by Sunyaev-Zeldovich eect)
and weak lensing data. A sterile neutrino particle with mass
in a similar range is sometimes also advocated [139, 140].
However, evidence for nonzero neutrino masses in either
the active or sterile sectors seems to be claimed in order to

x the signi
cant tensions between dierent data sets (cos-
mic microwave background (CMB) and baryonic acoustic
oscillations (BAOs) on one side and weak lensing, cluster
number counts, and high values of the Hubble parameter on
the other).

In the latter case, the limit onΣ is so stringent that it better
agreeswith theNH spectrum, rather thanwithIH one (see
the discussion in Section 7.1) (actually, it has been shown in
[141] that the presence in the nuclear medium of �-violating
four-fermion interactions of neutrinos with quarks from a
decaying nucleus could account for an apparent incompat-
ibility between the 0]�� searches in the laboratory and the
cosmological data; in fact, the net eect of these interactions
(not present in the latter case) would be the generation of an
eective “in-medium” Majorana neutrino mass matrix with
a corresponding enhancement of the 0]�� rate). 	e tightest
experimental limits on Σ are usually obtained by combining

Table 4: Tight constraints on Σ obtained in 2015, by analyzing
the data on the CMB by Planck Collaboration [34], polarization
included, along with other relevant cosmological data probing
smaller scales.

Upper bound on Σ (2% CL) Included dataset

153meV [34]a SNe, BAO,"0 prior

120meV [43] Lyman-d
126meV [44] BAO,"0, < priors, Planck SZ clusters

177meV [45] BAO

110meV [46] BAO, galaxy clustering, lensing
aResults as reported in http://wiki.cosmos.esa.int/planckpla2015, page 311.

CMB data with the ones probing smaller scales. In this way,
their combination allows a more eective investigation of
the neutrino induced suppression in terms of matter power
spectrum, both in scale and redshi�. Quite recently, a very
stringent limit, Σ < 146meV (2% CL), was set by Palanque-
Delabrouille and collaborators [136]. New tight limits were
presented a�er the data release by the Planck Collaboration
in 2015 [34]. Some of the most signi
cant results are reported
in Table 4. 	e bounds on Σ indicated by these post-Planck
studies are quite small, but they are still larger than the 
nal
sensitivities expected, especially thanks to the inclusion of
other cosmological data sets probing smaller scales (see, e.g.,
[142, 143] for review works). 	erefore, these small values
cannot be considered surprising and, conversely, margins of
further progress are present.

In our view, this situation should be considered as favor-
able since more proponents are forced to carefully examine
and discuss all the available hypotheses. In view of this
discussion, in Section 7, we consider two possible scenarios
and discuss the implications from the cosmological investi-
gations for the 0]�� in both cases.

4.4. Other Nonoscillations Data. For the sake of complete-
ness, we mention other two potential sources of information
on neutrinos masses. 	ey are

(i) the study of kinematic eects (in particular of super-
nova neutrinos),

(ii) the investigation of the eect of mass in single beta
decay processes.

	e 
rst type of investigations, applied to SN1987A, pro-
duced a limit of about 6 eV on the electron antineu-
trino mass [144, 145]. 	e perspectives for the future are
connected to new detectors, or to the existence of antineu-
trino pulses in the 
rst instants of a supernova emis-
sion. 	e second approach, instead, is presently limited to
about 2 eV [146, 147], even having the advantage of being
obtained in controlled conditions, that is, in laboratory. Its
future is currently in the hands of new experiments based

on a 3H source [148] and on the electron capture of 163Ho
[149–151], which have the potential to go below the eV in sen-
sitivity.
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4.5. �eoretical Understanding. 	eorists have not been very
successful in anticipating the discoveries on neutrino masses
obtained by means of oscillations. 	e discussion within
gauge models clari
ed that it is possible or even likely to have
neutrinomasses in gaugemodels (compare with Section 2.4).
However, a large part of the theoretical community focused
for a long time on models such as “minimal SU(5)”, where
the neutrino masses are zero, emphasizing the interest in
proton decay search rather than in neutrino mass search. On
top of that, we had many models that aimed to predict, for
example, the correct solar neutrino solution or the size of [13
before the measurements, but none of themwere particularly
convincing. More speci
cally, a lot of attention was given to
the “small mixing angle solution” and the “very small [13
scenario” that are now excluded from the data.

Moreover, it is not easy to justify the theoretical position
where neutrino masses are not considered along the masses
of other fermions. 	is remark alone explains the di�culty
of the theoretical enterprise that theorists have to face. For
the reasons mentioned in Section 2.4, the SO(10) models
are quite attractive to address a discussion of neutrino
masses. However, even considering this speci
c class of
well-motivated Grand Uni
ed groups, it remains di�cult to
claim that we have a complete and convincing formulation
of the theory. In particular, this holds for the arbitrariness
in the choice of the representations (especially that of the
Higgs bosons), for the large number of unknown parameters
(especially the scalar potential), for the possible role of
nonrenormalizable operators, for the uncertainties in the
assumption concerning low scale supersymmetry, for the lack
of experimental tests, and so forth. Note that, incidentally,
preliminary investigations on the size of ��� in SO(10) did
not provide a clear evidence for a signi
cant lower bound
[152]. Anyway, even the case of an exactly null eective
Majorana mass does not increase the symmetry of the
Lagrangian and thus does not forbid the 0]��, as remarked
in [153].

Here, we just consider one speci
c theoretical scheme,
for illustration purposes. 	is should not be considered a
full �edged theory, but rather it attempts to account for the
theoretical uncertainties in the predictions. 	e hierarchy
of the masses and of the mixing angles has suggested the
hypothesis that the elements of the Yukawa couplings and
thus of the mass matrices are subject to some selection rule.
	e possibility of a  (1) selection rule has been proposed in
[154] and, since then, it has become very popular.

Immediately a�er the 
rst strong evidences of atmo-
spheric neutrino oscillations (1998) speci
c realizations for
neutrinos have been discussed in various works (see [155] for
references). 	ese correspond to the neutrino mass matrix7neutrino = � × diag (g, 1, 1) 
 diag (g, 1, 1) , (40)

where the �avor structure is dictated by a diagonalmatrix that
acts only on the electronic �avor and suppresses the matrix
elements 7e�, 7e�, and 7ee (twice). 	e dimensionful

parameter (the overall mass scale) is given by Δ ≡ √Δ�2
atm ≈50meV.We thus have amatrix of coe�cients
with elements
ℓℓ� = O(1) that are usually treated as random numbers of

the order of 1 in the absence of a theory. A choice of g that
suggested values of [12 and [13 in the correct region (before

their measurement) is g = [� or√��/�� [155]. Within these

assumptions, the matrix element in which we are interested
is ��� = @@@@@�g2O (1)@@@@@ ≈ (2–4) meV. (41)

Finally, we note that the SM renormalization of the elements
of the neutrino mass matrix is multiplicative. 	e eect of
renormalization is therefore particularly small for ��� (see,
e.g., equation (17) of [156] and the discussion therein). In
other words, the value ��� = 0 (or values close to this one)
should be regarded as a stable point of the renormalization
�ow.

Let us conclude repeating that, anyway, there are many
reasons to consider the theoretical expectations with detach-
ment, and the above theoretical scheme is not an exception
to this rule. It is very important to keep in mind this fact in
order to properly assess the value of the search for the 0]��
and to proceed accordingly in the investigations.

5. The Role of Nuclear Physics0]�� is 
rst of all a nuclear process. 	erefore, the transition
has to be described properly, taking into account the relevant
aspects that concern nuclear structure and dynamics. In
particular, it is a second-order nuclear weak process and it
corresponds to the transition from a nucleus (�, �) to its
isobar (�, � + 2) with the emission of two electrons. In
principle, a nucleus (�, �) can decay via double beta decay as
long as the nucleus (�, �+2) is lighter.However, if the nucleus
can also decay by single beta decay, (�, � + 1), the branching
ratio for the 0]�� will be too di�cult to be observed due
to the overwhelming background rate from the single beta
decay. 	erefore, candidate isotopes for detecting the 0]��
are even-even nuclei that, due to the nuclear pairing force, are
lighter than the odd-odd (�, � + 1) nucleus, making single
beta decay kinematically forbidden (Figure 9). It is worth
noting that, since the 0]�� candidates are even-even nuclei,
it follows immediately that their spin is always zero.

	e theoretical expression of the half-life of the process in
a certain nuclear species can be factorized as

[�1/2]−1 = G0] |M|2 @@@@l (�
,  e
)@@@@2 , (42)

where G0] is the phase space factor (PSF), M is the nuclear
matrix element (NME), and l(�
,  e
) is an adimensional
function containing the particle physics beyond the SM that
could explain the decay through the neutrino masses�
 and
the mixing matrix elements  e
.

In this section, we review the crucial role of nuclear
physics in the expectations, predictions, and eventual under-
standing of the 0]��, also assessing the present knowledge
and uncertainties. We are mainly restricted to the discussion
of the light neutrino exchange as the candidate process for
mediating the 0]�� transition, but the mechanism of heavy
neutrino exchange is also considered.
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Figure 9: Nuclear mass as a function of the atomic number � in the case of an isobar candidate with � even (a) and � odd (b).

In the former case (� ≲ 100MeV, see (19)), the factor l
is proportional to���:

l (�
,  e
) ≡ ����e

= 1�e

@@@@@@@@@@@ ∑�=1,2,3 2
e���

@@@@@@@@@@@ , (43)

where the electron mass �e is taken as a reference value. In
the scheme of the heavy neutrino exchange (� ≳ 100MeV),
the eective parameter is instead

l (�
,  e
) ≡ �p ⟨7−1
� ⟩ = �p

@@@@@@@@@@@ ∑�=heavy
 2
e�
17�

@@@@@@@@@@@ , (44)

where the proton mass �p is now used, according to the
tradition, as the reference value.

5.1. Recent Developments on the Phase Space Factor Calcula-
tions. 	e
rst calculations of PSFs date back to the late 1950s
[157] and used a simpli
ed description of the wave functions.
	e improvements in the evaluation of the PSFs are due to
always more accurate descriptions and less approximations
[158–160].

Recent developments in the numerical evaluation of
Dirac wave functions and in the solution of the 	omas-
Fermi equation allowed calculating accurately the PSFs for
both single and double beta decay. 	e key ingredients are
the scattering electron wave functions. 	e new calculations
take into account relativistic corrections, the 
nite nuclear
size, and the eect of the atomic screening on the emitted
electrons.	emain dierence between these calculations and
the older ones is of the order of a small percent for light nuclei
(� = 20), about 30% for Nd (� = 60), and a rather large one,
90%, for U (� = 92).

In [95, 161, 162], the most up to date calculations of the
PSFs for 0]�� can be found. 	e results obtained in these
works are quite similar. 	roughout this paper, we use the
values from the 
rst reference.

5.2. Models for the NMEs. Let us suppose that the decay pro-
ceeds through an ^-wave. Since we have just two electrons in
the 
nal state, we cannot form an angular momentum greater
than one. 	erefore, usually only 0]�� matrix elements to

nal 0+ states are considered. 	ese can be the ground state,0+1 , or the 
rst excited state, 0+2 . Of course, we consider as
a starting state just 0+ state, since the double beta decay is
possible only for (�, �) even-even isobar nuclei.

	e calculation of the NMEs for the 0]�� is a di�cult
task because the ground andmany excited states of open-shell
nuclei with complicated nuclear structure have to be con-
sidered. 	e problem is faced by using dierent approaches
and, especially in the last few years, the reliability of the
calculations improved a lot. Here, a list of themain theoretical
models is presented. 	e most relevant features for each of
them are highlighted.

(i) Interacting Shell Model (ISM) [164, 165]. In the ISM only
a limited number of orbits around the Fermi level is con-
sidered, but all the possible correlations within the space are
included and the pairing correlations in the valence space are
treated exactly. Proton and neutron numbers are conserved
and angular momentum conservation is preserved. A good
spectroscopy for parent and daughter nuclei is achieved.

(ii) Quasiparticle Random Phase Approximation (QRPA) [163,
166]. 	e QRPA uses a large valence space and thus it cannot
comprise all the possible con
gurations. Typically, single
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Figure 10: Most updated NMEs calculations for the 0]�� with the
IBM-2 [96], QRPA-Tü [163], and ISM [164] models. 	e results
somehow dier among the models but are not too far away. Figure
from [96].

particle states in aWoods-Saxonpotential are considered.	e
proton-proton and neutron-neutron pairings are taken into
account and treated in the BCS approximation (proton and
neutron numbers are not exactly conserved).

(iii) Interacting Boson Model (IBM-2) [96]. In the IBM, the
low-lying states of the nucleus are modeled in terms of
bosons. 	e bosons are in either ^ boson (� = 0) or �
boson (� = 2) states. 	erefore, one is restricted to 0+ and2+ neutron pairs transferring into two protons. 	e bosons
interact through one- and two-body forces giving rise to
bosonic wave functions.

(iv) Projected Hartree-Fock Bogoliubov Method (PHFB) [167].
In the PHFB, the NME are calculated using the projected-
Hartree-Fock-Bogoliubov wave functions, which are eigen-
vectors of four dierent parameterizations of a Hamiltonian
with pairing plus multipolar eective two-body interaction.
In real applications, the nuclearHamiltonian is restricted only
to quadrupole interactions.

(v) Energy Density Functional Method (EDF) [168]. 	e EDF
is considered to be an improvementwith respect to the PHFB.
	e state-of-the-art density functional methods based on
the well-established Gogny D1S functional and a large single
particle basis are used.

	e most common methods are ISM, QRPA, and IBM-
2. In Figure 10, a comparison among the most recent NME
calculations computed with these three models is shown. It
can be seen that the disagreement can be generally quanti
ed
in some tens of percents, instead of the factors 2–4 of the
past. 	is can be quite satisfactory. As it will be discussed in
Section 5.3, the main source of uncertainty in the inference
does not rely on the NME calculations anymore, but on the
determination of the quenching of the axial vector coupling

constant. For this reason, in the subsequent discussion, we
will be restricted to one of the considered models, namely,
the IBM-2 [96], without signi
cant loss of generality.

5.3. �eoretical Uncertainties

5.3.1. Generality. Following (42), an experimental limit on
the 0]�� half-life translates into a limit on the eective
Majorana mass:

��� ≤ �e

M√G0]�1/2 . (45)

From the theoretical point of view, in order to constrain���, the estimation of the uncertainties both on G0] and
M is crucial. Actually, the PSFs can be assumed to be quite
well known, the error in their most recent calculations being
around 7% [95].

A convenient parametrization for theNMEs is the follow-
ing [169]:

M ≡ N2�M0]

= N2�(7(0])
GT − (N�N�)27(0])

� +7(0])
� ) , (46)

where N� and N� are the axial and vector coupling constants

of the nucleon, 7(0])
GT is the Gamow-Teller (GT) operator

matrix element between initial and 
nal states (spin-spin

interaction),7(0])
� is the Fermi contribution (spin indepen-

dent interaction), and 7(0])
� is the tensor operator matrix

element. 	e form of (46) emphasizes the role of N�. Indeed,
M0] mildly depends on N� and can be evaluated bymodeling
theoretically the nucleus. Actually, it is independent of N� if
the same quenching is assumed both for the vector and axial
coupling constants, as we do here for de
niteness, following
[170].

5.3.2. Is the Uncertainty Large or Small? 	e main sources
of uncertainties in the inference on ��� are the NMEs. A
comparison of the calculations from 1984 to 1998 revealed
an uncertainty of more than a factor 4 [130]. A similar point
of view comes out from the investigation of [171], where the
results of the various calculations were used to attempt a
statistical inference.

An important step forward was made with the 
rst
calculations of M0] that estimated also the errors; see [172,
173]. 	ese works, based on the QRPA model, assessed a
relatively small intrinsic error of ∼20%. 	e validity of these
conclusions have been recently supported by the (indepen-
dent) calculation based on the IBM-2 description of the
nuclei [95, 96], which assesses an intrinsic error of 15% on
M0]. However, the problem in assessing the uncertainties
in the NMEs is far from being solved. Each scheme of
calculation can estimate its own uncertainty, but it is still hard
to understand the dierences in the results among themodels
(Figure 10) and thus give an overall error. Notice also that
when a process “similar” to the 0]�� is considered (single
beta decay, electron capture, and 2]��) and the calculations
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are compared with the measured rates, the actual dierences
are much larger than 20% [170]. 	is suggests that it is not
cautious to assume that the uncertainties on the 0]�� are
instead subject to such a level of theoretical control.

Recently, there has been a lively interest in a speci
c
and important reason of uncertainty, namely, the value of
the axial coupling constant N�. 	is has a direct implication
on the issue that we are discussing, since any uncertainty
on the value of N� re�ects itself into a (larger) uncertainty
factor on the value of the matrix element M. We will
examine these arguments in greater detail in the rest of this
section.

It is important to appreciate the relevance of these
considerations for the experimental searches. If the value of
the axial coupling in the nuclear medium is decreased by a
factor �, namely, N� → N� ⋅ (1 − �), the expected decay
rate and therefore the number of signal events t will also

decrease, approximatively as t ⋅ (1 − �)4. 	is change can
be compensated by increasing the time of data taking or
the mass of the experiment. However, the 
gure of merit,

namely, t/√�, which quanti
es the statistical signi
cance of
the measurement, changes only with the square root of the
time or of the mass, in the typical case in which there are
also background events �. For instance, if we have a decrease
by � = 10 (20)% of the axial coupling, we will obtain the
same measurement a�er a time that is larger by a factor of1/(1 − �)8 = 2.3 (6). In other words, an eect that could
be naively considered small has instead a big impact for the
experimental search for the 0]��.
5.3.3.�e Size of the Axial Coupling. It is commonly expected
that the value N� ≃ 1.269measured in the weak interactions
and decays of nucleons is “renormalized” in the nuclear
medium towards the value appropriate for quarks [172, 173,
175]. It was argued in [170] that a further modi
cation
(reduction) is rather plausible.	is is in agreement with what
was stated some years before in [176], where the possibility
of a “strong quenching” of N� (i.e., N� < 1) is actually
favored. 	e same was also con
rmed by recent study on
single beta decay and 2]�� [177]. It has to be noticed that,
within the QRPA framework, the dependence of M uponN� is actually milder than quadratic, because the model
is calibrated through the experimental 2]�� decay rates
using also another parameter, the particle-particle strengthNpp [178].

	ere could be dierent causes for the quenching of N�.
It was found that it can be attributed mainly to the following
issues [170, 179]:

(i) 	e limited model space (i.e., the size of the basis of
the eigenstates) in which the calculation is done. 	is
problem is by de
nition model dependent and it was
extensively investigated in light nuclei in the 1970s
[180–183], when it was argued that N� ∼ 1. In heavy
nuclei, the question of quenching was 
rst discussed
in [180]. In this case, N� was found to be even lower
than 1, thus stimulating the statement that massive
renormalization of N� occurs.

(ii) 	e contribution of nonnucleonic degrees of free-
dom. 	is eect does not depend much on the
nuclear model adopted, but rather on the mechanism
of coupling to nonnucleonic degrees of freedom. It
was extensively investigated theoretically in the 1970s
[184–186]. Recently, it has been investigated again
within the framework of the chiral Eective Field
	eory (EFT) [187]. It turns out that it may depend
on momentum transfer and that it may lead in some
cases to an enhancement rather than a quenching.

(iii) 	e renormalization of the GT operator due to two-
body currents. 	e 
rst calculations for GT transi-
tions for the 0]�� operator based on the chiral EFT
[187] showed the importance of two-body currents
for the eective quenching of N�. 	is was later con-

rmed in independent works [188, 189] and, more
recently, by the use of a no-core-con
guration-inter-
action formalismwithin the density functional theory
[179].

It is still not clear if the quenching in both the transitions
(0]�� and 2]��) is the same. One argument which suggests
that this is not unreasonable consists in noting that the 2]��
can occur only through a GT (1+) transition. Instead, the0]�� could happen through all the possible intermediate
states, so it is possible to argue that the transitions through
states with spin parity dierent from 1+ can be unquenched
or even enhanced. Incidentally, it turns out that the dominant
multipole in the 0]�� transition is the GT one, thus making
the hypothesis that the quenching in 2]�� and 0]�� is the
same quite solid. Following [96], we adopt this as a working
hypothesis in our discussion, however keeping in mind that
some indications that the quenching might be dierent in
the 0]�� and 2]�� transitions are present in other models
[164, 189].

It would be extremely precious if these theoretical ques-
tions could be answered by some experimental data. It has
been argued that the experimental study of nuclear transi-
tionswhere the nuclear charge is changed by twounits leaving
the mass number unvaried, in analogy to the 0]�� decay,
could give important information. Despite the fact that the
Double Charge Exchange reactions and 0]�� processes are
mediated by dierent interactions, some similarities between
the two cases are present. 	ese could be exploited to assess
eectively the NME for the 0]�� (and, more speci
cally, the
entity of the quenching of N�). In the near future, a new
project will be started at the Laboratori Nazionali del Sud
(Italy) [190] with the aim of getting some inputs to deepen
our theoretical understanding of this nuclear process.

5.3.4. Quenching as a Major Cause of Uncertainty. In view of
the above considerations, we think that currently the value ofN� in the nuclear medium cannot be regarded as a quantity
that is known reliably. It is rather an important reason of
uncertainty in the predictions. In a conservative treatment, we
should consider at least the following three cases:

N� = {{{{{{{
Nnucleon = 1.269Nquark = 1Nphen. = Nnucleon ⋅ �−0.18, (47)
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where the last formula includes phenomenologically the
eect of the atomic number�. It represents the worst possible
scenario for the 0]�� search. 	e Nphen. parametrization
as a function of � comes directly from the comparison
between the theoretical half-life for 2]�� and its observation
in dierent nuclei, as reported in [170]. From the comparison
between the theoretical half-life for the process and the
experimental value it was possible to extract an eective
value forN�, thus determining its quenching.	e assumption
that N� depends only upon the atomic number � is rather
convenient for a cursory exploration of the potential impact
of unaccounted nuclear physics eects on 0]��, but most
likely it is also an oversimpli
cation of the truth, as suggested
by the residual dierence between the calculated 2]�� rates.
Surely, it cannot replace an adequate theoretical modeling,
that in the light of the following discussion has become rather
urgent. Anyway, we stress that this is just a phenomenological
description of the quenching, since the speci
c behavior is
dierent in each nucleus and it somewhat diers from this
parametrization [170].

	e question of which is the “true value” ofN� is still open
and introduces a considerable uncertainty in the inferences
concerningmassive neutrinos.	e implications are discussed
in Sections 6.6 and 6.7.

5.4. �e Case of Heavy Neutrino Exchange. As already dis-
cussed in Section 3, it is possible to attribute the 0]��
decay rate to the same particles that are added to the SM
spectrum to explain oscillations, for example, heavy neutri-
nos. In this context one can assume that the exchange of7� > 100MeV saturates the 0]�� decay rate, also repro-
ducing the ordinary neutrinomasses. Heavy neutrinomasses
and mixing angles, compatible with the rate of 0]��, depend
on the NMEs of the transition (compare, e.g., [105, 106]).
	us, nuclear physics has an impact also on the limits that
are relevant to a direct search for heavy neutrinos with
accelerators. Each scheme of nuclear physics calculation can
estimate its intrinsic uncertainty. 	is is usually found to
be small in modern computations (about 28% for heavy
neutrino exchange [96]). In a conservative treatment, this
uncertainty plus the already discussed unknown value of N�
should be taken into account. It has to be noticed that if the0]�� is due to a point-like (dimension-9) operator, as for
heavy neutrino exchange, two nucleons are in the same point.
	erefore, the eect of a hard core repulsion, estimated for
modeling the “short-range correlations,” plays an important
role in the determination of the uncertainties. A signi
cant
step forward has been recently made, pushing down this
source of theoretical error of about an order of magnitude
[96].

	emost updated NMEs for the 0]�� via heavy neutrino
exchange are evaluated within the frames of the IBM-2 [96]
and QRPA [174] models. A comparison between these results
is shown in Figure 11. It can be seen that the values obtained
within theQRPAmodel are always larger than those obtained
with the IBM-2. 	e dierence is quite big for many of the
nuclei and might be due to the dierent treatment of the
intermediate states. Also, in this case, we use the NMEs
evaluated with the IBM-2 model. 	is allows us to keep
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Figure 11: Most updated NMEs calculations for the 0]�� via heavy
neutrino exchange with the IBM-2 [96] and QRPA-Tü [174] models.
In both cases, the value N� = Nnucleon for the axial coupling constant
and the Argonne parametrization for the short-range correlations
are assumed. 	e results show a continuous overestimation of the
QRPA estimations over the IBM-2 ones.

a more conservative approach by getting less stringent limits.

Considering, for example, the case of 76Ge, we have

M0] (Ge) = {{{
104 ± 29 N� = Nnucleon22 ± 6 N� = Nphen.. (48)

From the experimental point of view, the limits on 0]��
indicate that the mixings of heavy neutrinos | e�|2 are small.
Using the current values for the PSF, NME, and sensitivity for
the isotope [84], we get@@@@@@@@@@∑�  

2
e�7�

@@@@@@@@@@ < 7.8 ⋅ 10−8�p

⋅ [ 104
M0] (Ge)]

⋅ [3 ⋅ 1025 yr<0]1/2 ]1/2 , (49)

where �p is the proton mass and the heavy neutrino masses7� are assumed to be ≳GeV.
Figure 12 illustrates the case of a single heavy neutrino

mixingwith the light ones andmediating the 0]�� transition.
In particular, the plot shows the case of the mixing for
76Ge assuming that a single heavy neutrino dominates the
amplitude. 	e two regimes of heavy and light neutrino
exchange arematched as proposed in [191].	e colored bands
re�ect the dierent sources of theoretical uncertainty.

As it is clear from Figure 12, the bound coming from0]�� searches is still uncertain. It weakens by one order of
magnitude if the axial vector coupling constant is strongly
quenched in the nuclear medium.
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and a single heavy neutrino from the combination of bounds
obtained with Ge 0]�� experiments [77] using the representation
introduced in [191]. 	e bands correspond to the uncertainties
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	epotential of the 0]�� sensitivity to heavy neutrinos is
therefore weakened and very sensitive to theoretical nuclear
physics uncertainties. For some regions of the parameter
space, even the limits obtained more than 15 years ago
with accelerators are more restrictive than the current limits
coming from 0]�� search.

6. Experimental Search for the 0]��
	e process described by (1) is actually just one of the forms
that 0]�� can assume. In fact, depending on the relative
numbers of the nucleus protons and neutrons, four dierent
mechanisms are possible:(�, �) �→ (�,� + 2) + 2e− (�−�−) ,(�, �) �→ (�,� + 2) + 2e+ (�+�+) ,(�, �) + 2e− �→ (�,� − 2) (EC EC) ,(�, �) + e− �→ (�,� − 2) + e+ (EC �+) .

(50)

Here, �− (�+) indicate the emission of an electron (positron)
and EC stands for electron capture (usually a K-shell electron
is captured).

	e explicit violation of the number of electronic leptons
e, e, ]e, or ]e appears evident in each process in (50). A large
number of experiments has been and is presently involved in
the search for these processes, especially of the 
rst one.

In this section, we introduce the experimental aspects
relevant to the 0]�� searches and we present an overview of
the various techniques. We review the status of the past and
present experiments, highlighting the main features and the

Total electron energy
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Figure 13: Schematic view of the 2]�� and the 0]�� spectra.

sensitivities. 	e expectations take into account the uncer-
tainties coming from the theoretical side and, in particular,
those from nuclear physics. 	e requirements for future
experiments are estimated and 
nally the new constraints
from cosmology are used as complementary information to
that coming from the 0]�� experiments.

6.1. �e 0]�� Signature. From the experimental point of
view, the searches for a 0]�� signal rely on the detection of
the two emitted electrons. In fact, the energy of the recoiling
nucleus being negligible, the sum of kinetic energy of the two
electrons is equal to the &-value of the transition. 	erefore,
if we consider these as a single body, we expect to observe a
monochromatic peak at the &-value (Figure 13).

Despite this very clear signature, because of the rarity of
the process, the detection of the two electrons is complicated
by the presence of background events in the same energy
region, which can mask the 0]�� signal. 	e main contri-
butions to the background come from the environmental
radioactivity, the cosmic rays, and the 2]�� itself. In particu-
lar, the last contribution has the problematic feature of being
unavoidable in presence of 
nite energy resolution, since it is
originated by the same isotope which is expected to undergo0]��.

In principle, any event producing an energy deposition
similar to that of the 0]�� decay increases the background
level and hence spoils the experiment sensitivity. 	e capa-
bility of discriminating the background events is thus of great
important for this kind of search.

6.2. �e Choice of the Isotope. 	e choice for the best isotope
to look for 0]�� is the 
rst issue to deal with. From one
side, the background level and the energy resolution need
to be optimized. From the other, since the live-time of the
experiment cannot exceed some years, the scalability of the
technique, that is, the possibility to build a similar experiment
with enlargedmass and higher exposure, is also fundamental.
	is translates in a series of criteria for the choice of the
isotope.

(i) High &-Value (&��). 	is requirement is probably the
most important, since it directly in�uences the background.
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Table 5: Isotopic abundance and &-value for the known 2]��
emitters [68].

Isotope Isotopic abundance (%) &�� [MeV]

48Ca 0.187 4.263
76Ge 7.8 2.039
82Se 9.2 2.998
96Zr 2.8 3.348
100Mo 9.6 3.035
116Cd 7.6 2.813
130Te 34.08 2.527
136Xe 8.9 2.459
150Nd 5.6 3.371

	e 2615 keV line of 208Tl, which represents the end-point
of the natural gamma radioactivity, constitutes an important
limit in terms of background level. &�� should not be lower

than ∼2.4MeV (the only exception is 76Ge, due to the
extremely powerful detection technique (see Section 6.4)).
	e ideal condition would be to have it even larger than

3270 keV, the highest energy beta among the 222Rn daughters

(238U chain), coming from 214Bi.

(ii) High Isotopic Abundance. 	is is a fundamental require-
ment to have experiments with su�ciently large mass. With

the only exception of the 130Te, all the relevant isotopes have
a natural isotopic abundance < 10%. 	is practically means
that the condition translates into ease of enrichment for the
material.

(iii) Compatibility with a Suitable Detection Technique. It has
to be possible to integrate the isotope of interest in a working
detector.	e source can either be separated from the detector
or coincide with it. Furthermore, the detector has to be
competitive in providing results and has to guarantee the
potential for the mass scalability.

	is results in a group of “commonly” studied isotopes
among all the possible candidate 0]�� emitters. It includes
48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 130Te, 136Xe, and 150Nd.
Table 5 reports the &-value and the isotopic abundance for
the mentioned isotopes.

From the theoretical side, referring to (42), one should
also try to maximize both the PSF and the NME in order
to get more strict bounds on ��� with the same sensitivity
in terms of half-life time. However, as recently discussed in
[197], a uniform inverse correlation between the PSF and the
square of the NME emerges in all nuclei (Figure 14). 	is
happens to be more a coincidence than something physically
motivated and, as a consequence, no isotope is either favored
or disfavored for the search for the 0]��. It turns out that all
isotopes have qualitatively the same decay rate per unit mass
for any given value of���.
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Figure 14: Geometric mean of the squaredM0] considered in [197]
versus the speci
c G0]. 	e case N� = Nquark is assumed. Adapted
from [197].

In recent time, also another criterion is becoming more
andmore relevant.	is is simply the availability of the isotope
itself in view of the next generations of 0]�� experiments,
which will have a very large mass. In fact, once the 0]��
isotope mass for an experiment will be of the order of
some tons, a nonnegligible fraction of the annual world
production of the isotope of interest could be needed. 	is
is, for example, the case of 136Xe, where the requests from the0]�� experiments also “compete” with those from the new
proposed dark matter ones. 	e consequences are a probable
price increase and a long storage for the isotope that needs to
be taken into account.

6.3. Sensitivity. In the fortunate event of a 0]�� peak showing
up in the energy spectrum, starting from the law of radioac-
tive decay, the decay half-life can be evaluated as

�1/2 = ln 2 ⋅ ' ⋅ g ⋅ ����peak

, (51)

where ' is the measuring time, g is the detection e�ciency,��� is the number of �� decaying nuclei under observation,
and �peak is the number of observed decays in the region of
interest. If we assume to know exactly the detector features
(i.e., the number of decaying nuclei, the e�ciency, and the

time of measurement), the uncertainty on �1/2 is only due to
the statistical �uctuations of the counts:��1/2�1/2 = ��peak�peak

. (52)

It seems reasonable to suppose Poisson �uctuations on�peak.
Since the expected number of events is “small,” the Poisson
distribution diers in a nonnegligible way from the Gaussian.
In order to quantify this discrepancy, we consider two values
for �peak, namely, �peak = 5 and �peak = 20. In Table 6
we show the con
dence intervals at 1% for the counts both
considering a purely Poisson distribution (with mean equal
to�peak) and a Gaussian one (with mean�peak and standard

deviation√�peak). Notice that, even if the number of counts

is just 5, the Poisson and Gaussian distributions give almost
the same relative uncertainties.
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Table 6: 1% ranges for both Gaussian and Poisson distributions
for two dierent values of �peak. In the former case, we assumed a

standard deviation equal to√�peak. To compute the error columns,

we halved the total width of the range and divided it by�peak.

Distribution �peak Range Relative error (%)

Gauss
5 2.8–7.2 44.7

20 15.5–24.5 22.4

Poisson
5 3.1–7.6 45.0

20 15.8–24.8 22.5

If no peak is detected, the sensitivity of a given 0]��
experiment is usually expressed in terms of “detector factor

of merit,” t0] [25]. 	is can be de
ned as the process half-life
corresponding to the maximum signal that could be hidden
by the background �uctuations �� (at a given statistical CL).

To obtain an estimation for t0] as a function of the experiment
parameters, it is su�cient to require that the 0]�� signal
exceeds the standard deviation of the total detected counts
in the interesting energy window. At the con
dence level � ,
this means that we can write��� ≥ � √��� + ��, (53)

where ��� is the number of 0]�� events and Poisson statistics
for counts is assumed. If one now states that the background
counts scale linearly with the mass of the detector (this is
reasonable since, a priori, impurities are uniform inside the
detector but, of course, this might not be always the case; e.g.,
if the main source of background is removed with volume

ducialization), from (51) it is easy to 
nd an expression fort0]:

t0] = ln 2 ⋅ ' ⋅ g ⋅ ���� ⋅ ��
= ln 2 ⋅ g ⋅ 1� ⋅ ����

M�
⋅ √7 ⋅ '� ⋅ Δ ,

(54)

where � is the background level per unit mass, energy,
and time, 7 is the detector mass, Δ is the FWHM energy
resolution, � is the stoichiometric multiplicity of the element
containing the �� candidate, � is the �� candidate isotopic
abundance, �� is the Avogadro number and, 
nally, M� is
the compound molecular mass. Despite its simplicity, (54)
has the advantage of emphasizing the role of the essential
experimental parameters.

Of particular interest is the case in which the background
level � is so low that the expected number of background
events in the region of interest along the experiment life is
of order of unity: 7 ⋅ ' ⋅ � ⋅ Δ ≲ 1. (55)

	is is called the “zero background” experimental condition
and it is likely the experimental condition that next gen-
eration experiments will face. Practically, it means that the
goal is a great mass and a long time of data taking, keeping

the background level and the energy resolution as little as
possible.

In this case, �� is a constant, (54) is no more valid, and
the sensitivity is given by

t0]0� = ln 2 ⋅ ' ⋅ g ⋅ ���� ⋅ �� = ln 2 ⋅ g ⋅ ����
M�

⋅ 7'�S

. (56)

	e constant�S is now the number of observed events in the
region of interest.

6.4. Experimental Techniques. 	e experimental approach
to search for the 0]�� consists in the development of a
proper detector, able to reveal the two emitted electrons
and to collect their sum energy spectrum (see Section 6.1)
(additional information (e.g., the single electron energy or
the initial momentum) can also be provided sometimes).	e
desirable features for such a detector are thus as follows.

(i) Good Energy Resolution. 	is is a fundamental require-
ment to identify the sharp 0]�� peak over an almost �at
background, as shown in Figure 15, and it is also the only
protection against the (intrinsic) background induced by the
tail of the 2]�� spectrum. Indeed, it can be shown that the
ratio �0]/2] of counts due to 0]�� and those due to 2]�� in
the peak region can be approximated by [199]

�0]/2] ∝ (&��Δ )6 �1/22]�1/20]
. (57)

	is expression clearly indicates that a good energy resolution
is critical. But it also shows that the minimum required value
actually depends on the chosen isotope, considered a strong

dependence of (57) upon the 2]�� half-life �1/22] .

(ii) Very Low Background. Of course 0]�� experiments
have to be located underground in order to be protected
from cosmic rays. Moreover, radio-pure materials for the
detector and the surrounding parts, as well as proper passive
and/or active shielding are mandatory to protect against
environmental radioactivity.	e longest natural radioactivity

decay competing with 0]�� is of the order of (109-1010) yr
versus lifetimes ≳1025 yr.
(iii) Large Isotope Mass. Present experiments have masses of
the order of some tens of kg up to a few hundred kg. Tons will
be required for experiments aiming to cover theIH region
(see Section 6.7).

It has to be noted that it is impossible to optimize the listed
features simultaneously in a single detector.	erefore, it is up
to the experimentalists to choose which one to privilege in
order to get the best sensitivity.

	e experiments searching for the 0]�� of a certain
isotope can be classi
ed into two main categories: detectors
based on a calorimetric technique, in which the source
is embedded in the detector itself, and detector using an
external source approach, in which source and detector are
two separate systems (Figure 16).
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Figure 15: Signal and background (red and gray stacked histograms, resp.,) in the region of interest around&�� for 3MonteCarlo experiments

with the same signal strength (50 counts) and background rate (1 count keV−1), but dierent energy resolution: (a) 1% FWHM; (b) 3.5%
FWHM; (c) 10% FWHM.	e signal is distributed normally around &��, while the background is assumed �at. Figure from [198].

6.4.1. Calorimetric Technique. 	e calorimetric technique
has already been implemented in various types of detectors.
	e main advantages and limitations for this technique can
be summarized as follows [25]:

(+) large source masses are achievable thanks to the
intrinsically high e�ciency of the method. Experi-
ments with masses up to ∼200 kg have already proved
to work and ton-scale detectors seem possible.

(+) very high resolution is achievable with the proper
type of detector (∼0.1% FWHM with Ge diodes and
bolometers).

(−) severe constraints on detector material (and thus on
the isotope that can be investigated) arise from the
request that the source material has to be embedded
in the structure of the detector. However, this is not
the case for some techniques (e.g., for bolometers and
loaded liquid scintillators).
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Figure 16: Schematic representation of the two main experimental
categories for the 0]�� search: calorimetric technique (source ≡
detector) and external source approach (source ̸= detector).

(−) the event topology reconstruction is usually di�cult,
with the exception of liquid or gaseous Xe TPC.
However, the cost is paid in terms of a lower energy
resolution.

Among the most successful examples of detectors using
the calorimetric technique, we 
nd the following:

(i) Ge Diodes. 	e large volume, high-purity, and high
energy resolution achievable make this kind of detec-
tor suitable for the 0]�� search, despite the low &��
of 76Ge.

(ii) Bolometers. Macrocalorimeters with masses close to
1 kg, very good energy resolution (close to that of
Ge diodes), are now available for many compounds
including 0]�� emitters. 	e most signi
cant case is

the search for the 0]��of 130TewithTeO2 bolometers.

(iii) Xe Liquid and Gaseous TPC.	e lower energy resolu-
tion is “compensated” by the capability of reconstruct-
ing the event topology.

(iv) Liquid Scintillators Loaded with the 0]�� Isotope.
	ese detectors have a poor energy resolution. How-
ever, a huge amount of material can be dissolved
and, thanks to the puri
cation processes, very low
backgrounds are achievable. 	ey are ideal detectors
to set very stringent limits on the decay half-life.

6.4.2. External Source Approach. Also in the case of the
external source approach, dierent detection techniques have
been adopted, namely, scintillators, solid state detectors, and
gas chambers. 	e main advantages and limitations for this
technique can be summarized as follows:

(+) the reconstruction of the event topology is pos-
sible, thus making in principle the achievement
of the zero background condition easier. However,

the poor energy resolution does not allow distin-
guishing between 0]�� events and 2]�� events with
total electron energy around &��. 	erefore 2]��
represent an important background source.

(−) the energy resolutions are low (of the order of 10%).
	e limit is intrinsic and it is mainly due to the elec-
tron energy deposition in the source itself.

(−) large isotope masses are hardly achievable due to self-
absorption in the source. Up to now, only masses of
the order of some tens of kg have been possible, but
an increase to about 100 kg target seems feasible.

(−) the detection e�ciencies are low (of the order of 30%).

So far, the most stringent bounds come from the calori-
metric approach which, anyway, remains the one promising
the best sensitivities and it is therefore the chosen technique
for most of the future projects. However, the external source
detector type has provided excellent results on the studies of
the 2]��. Moreover, in case of discovery of a 0]�� signal, the
event topology reconstruction could represent a fundamental
tool for the understanding of the mechanism behind the0]��.
6.5. Experiments: A Brief Review. 	e
rst attempt to observe
the 0]�� process dates back to 1948 [200, 201]. Actually, the
old experiments aiming to set a limit on the double beta
decay half-lives did not distinguish between 2]�� and 0]��.
In the case of indirect investigations through geochemical
observation, this was not possible even in principle.

However, the importance that the 0]�� was acquiring
in particle in physics provided a valid motivation to con-
tinuously enhance the eorts in the search for this decay.
On the experimental side, the considerable technological
improvements allowed increasing the half-life sensitivity of
several orders of magnitude (2]�� was 
rst observed in the

laboratory in 82Se in 1987 [202] and inmany other isotopes in
the subsequent years; see [68] for a review on 2]��).	e long
history of 0]��measurements up to about the year 2000 can
be found in [203–205]. Here, we concentrate only on a few
experiments starting from the late 1990s.

Table 7 summarizes the main characteristics and perfor-
mances of the selected experiments. It has to be noticed that,
due to their dierent speci
c features, the actual comparison
among all the values is not always possible. We tried to
overcome this problem by choosing a common set of units
of measurement.

6.5.1. �e Claimed Observation. In 2001, a�er the publica-
tion of the experiment 
nal results [74], a fraction of the
Heidelberg-MoscowCollaboration claimed to observe a peak

in the spectrum, whose energy corresponded to the 76Ge0]�� transition&-value [206]. A�er successive reanalysis (by
fewer and fewer people), the 
nal value for the half-life was

found to be �1/2 = (2.23+0.44−0.31) ⋅ 1025 yr [207]. 	is claim and
the subsequent papers by the same authors aroused a number
of critical replies (see, e.g., [24, 130, 208, 209]). Many of the
questions and doubts still remain unanswered. To summa-
rize, caution suggests that we disregard the claim, made in
[74, 206, 207], that the transition was observed.
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Table 8: Lower bounds for ��� for
76Ge, 130Te, and 136Xe. 	e sensitivities were obtained by combining the most stringent limits from the

experiments studying the isotopes. References [95] and [96] were used for the PSFs and for the NME, respectively. 	e dierent results
correspond to dierent values of N� according to (47).

Experiment Isotope t0](90% CL) [10
25 yr]

Lower bound for��� [eV]Nnucleon Nquark Nphen.
IGEX + HdM + GERDA-I [84] 76Ge 3.0 0.25 ± 0.02 0.40 ± 0.04 1.21 ± 0.11

Cuoricino + CUORE-0 [73] 130Te 0.4 0.36 ± 0.03 0.58 ± 0.05 2.07 ± 1.05

EXO-200 + KamLAND-ZEN [81] 136Xe 3.4 0.15 ± 0.02 0.24 ± 0.03 0.87 ± 0.10
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Figure 17: 	e colored regions show the predictions on ��� from oscillations as a function of the lightest neutrino mass with the relative3% regions. 	e horizontal bands show the experimental limits with the spread due to the theoretical uncertainties on the NME [96] and
PSF [81, 95]. (a) Combined experimental limits for the three isotopes: 76Ge [84], 130Te [73], and 136Xe. 	e case N� = Nnucleon. (b) Combined
experimental limit on 136Xe for the three dierent values for N�, according to (47).

Anyway, to date, the limit on the 76Ge 0]�� half-life is
more stringent than the reported value [84].

6.6. Present Sensitivity on���. Once the experimental sensi-

tivities are known in terms of t0], by using (45), it is possible
to correspondingly 
nd the lower bounds on���.

Figure 17 shows the most stringent limits up to date.	ey

come from 76Ge [84], 130Te [73], and 136Xe [81]. In particular,
the combined sensitivity from the single experimental limits
is taken from the corresponding references.

In Figure 17(a), the case N� = Nnucleon (unquenched value)
is assumed.	e uncertainties onNME and PSF are taken into
account according to the procedure shown in Appendix B,
and they result in the broadening of the lines describing the
limits. As the plot shows, the current generation of experi-
ments is probing the quasi degenerate part of the neutrino
mass spectrum.

	e eect of the quenching of N� appears evident in

Figure 17(b): the sensitivity for the same combined 136Xe
experiment in the two cases of Nnucleon and Nphen. diers by
a factor ≳5. It is clear from the 
gure that this is the biggest
uncertainty, with respect to all the other theoretical ones.

	e single values for the examined cases are reported in
Table 8.

6.7. Near and Far Future Experiments. It is also possible to
extract the bounds on ��� coming from the near future
experiments starting from the expected sensitivities and
using (45). 	e results are shown in Table 9. It can be seen
that the mass region below 100meV will begin to be probed
in case of unquenched value for N�. But still we will not enter
the IH region. In case N� is maximally quenched, instead,
the situation is much worse. Indeed, the expected sensitivity
would correspond to values of��� whichwe already consider
probed by the past experiments.

Let us now consider a next generation experiment (call it
a “mega” experiment) and a next-to-next generation one (an
“ultimate” experiment) with enhanced sensitivity. To de
ne
the physics goal we want to achieve, we refer to [124].

	e most honest way to talk of the sensitivity is in terms
of exposure or of half-life time that can be probed. From the
point of view of the physical interest, however, besides the
hope of discovering the 0]��, the most exciting investigation
that can be imagined at present is the exclusion of the IH

case. 	is is the goal that most of the experimentalists are
trying to reachwith future 0]�� experiments (see, e.g., [210]).
For this reason, we require a sensitivity ��� = 8meV. 	e
mega experiment is the one that satis
es this requirement in
the most favorable case, namely, when the quenching of N�
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Table 9: Lower bounds for ��� for the more (upper group) and less (lower group) near future 0]�� experiments. References [95] and [96]
were used for the PSFs and for the NME, respectively. 	e dierent results correspond to dierent values of N� according to (47).

Experiment Isotope t0](90% CL) [10
25 yr]

Lower bound for��� [eV]Nnucleon Nquark Nphen.
CUORE [83] 130Te 9.5 0.073 ± 0.008 0.14 ± 0.01 0.44 ± 0.04

GERDA-II [84] 76Ge 15 0.11 ± 0.01 0.18 ± 0.02 0.54 ± 0.05

LUCIFER [85] 82Se 1.8 0.20 ± 0.02 0.32 ± 0.03 0.97 ± 0.09

MAJORANA D. [86] 76Ge 12 0.13 ± 0.01 0.20 ± 0.02 0.61 ± 0.06

NEXT [88] 136Xe 5 0.12 ± 0.01 0.20 ± 0.02 0.71 ± 0.08

AMoRE [89] 100Mo 5 0.084 ± 0.008 0.14 ± 0.01 0.44 ± 0.04

nEXO [90] 136Xe 660 0.011 ± 0.001 0.017 ± 0.002 0.062 ± 0.007

PandaX-III [91] 136Xe 11 0.082 ± 0.009 0.13 ± 0.01 0.48 ± 0.05

SNO+ [92] 130Te 9 0.076 ± 0.007 0.12 ± 0.01 0.44 ± 0.04

SuperNEMO [93] 82Se 10 0.084 ± 0.008 0.14 ± 0.01 0.41 ± 0.04

Table 10: Sensitivity and exposure necessary to discriminate between NH and IH: the goal is ��� = 8meV. 	e two cases refer to the
unquenched value of N� = Nnucleon (mega) and N� = Nphen. (ultimate).	e calculations are performed assuming zero background experiments
with 100%detection e�ciency and no 
ducial volume cuts.	e last column shows themaximum value of the product�⋅Δ in order to actually
comply with the zero background condition.

Experiment Isotope t0]0� [yr] Exposure (estimate)7 ⋅ ' [ton⋅yr] � ⋅ Δ (zero bkg) [counts kg
−1 yr−1]

mega Ge 76Ge 3.0 ⋅ 1028 5.5 1.8 ⋅ 10−4
mega Te 130Te 8.1 ⋅ 1027 2.5 4.0 ⋅ 10−4
mega Xe 136Xe 1.2 ⋅ 1028 3.8 2.7 ⋅ 10−4
ultimate Ge 76Ge 6.9 ⋅ 1029 125 8.0 ⋅ 10−6
ultimate Te 130Te 2.7 ⋅ 1029 84 1.2 ⋅ 10−5
ultimate Xe 136Xe 4.0 ⋅ 1029 130 7.7 ⋅ 10−6

is absent. Instead, the ultimate experiment assumes that N�
is maximally quenched. We chose the 8meV value because,
even taking into account the residual uncertainties on the
NME and on the PSF, the overlap with the allowed band for��� in the IH is excluded at more than 3%. Notice that we
are assuming that at some point the issue of the quenching
will be sorted out.	rough (45), we obtain the corresponding

value of �1/2 and thus we calculate the needed exposure to
accomplish the task.

Referring to (56), if we suppose g ≃ 1 (detector e�ciency
of 100% and no 
ducial volume cuts) and � ≃ � ≃ 1 (all
the mass is given by the candidate nuclei) and we assume one
observed event (i.e.,�S = 1) in the region of interest, we get
the simpli
ed equation:

7 ⋅ ' = M� ⋅ t0]
ln 2 ⋅ ��

. (58)

	is is the equation we used to estimate the product 7 ⋅ '
(exposure), and thus to assess the sensitivity of the mega and
ultimate scenarios.	e key input is, of course, the theoretical

expression of �1/2. 	e calculated values of the exposure are

shown in Table 10 for the three considered nuclei: 76Ge, 130Te,
and 136Xe. 	e last column of the table gives the maximum
allowed value of the product � ⋅ Δ that satis
es (55).

Figure 18 compares (in a schematic view) the masses

of 76Ge and 136Xe corresponding to the present sensitivity
[81, 84] to those of the “mega” and “ultimate” experiments
assuming, for all three cases, the zero background condition
and 5 years of data acquisition.

7. Interplay with Cosmology

Here, we want to assess the possibility of taking advantage of
the knowledge about the neutrino cosmologicalmass tomake
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136Xe

76Ge

Figure 18: Masses corresponding to present, mega, and ultimate
exposures, assuming zero background condition and 5 years of data
acquisition. 	e cubes represent the amount of 76Ge, the (150 bar =
15MPa) bottles, and the one of 136Xe.	e smallest masses depict the
present exposure, while the biggest bottle is out of scale.

inferences on some 0]�� experiment results (or expected
ones). In particular, we follow [211]. As already discussed in
Section 4.3.2, we consider two possible scenarios. Firstly, we
assume only upper limits on both Σ and ���, without any
observation of 0]��. Later, we imagine an observation of0]�� together with a nonzero measurement of Σ (in both
cases, we consider the unquenched value N� = Nphen. for the
axial vector coupling constant).

7.1. Upper Bounds Scenario. 	e tight limit on Σ in [136]
was obtained by combining Planck 2013 results [140] with
the one-dimensional �ux power spectrum measurement of
the Lyman-d forest extracted from the BAO Spectroscopic
Survey of the SloanDigital Sky Survey [212]. In particular, the
data from a new sample of quasar spectra were analyzed and
a novel theoretical framework which incorporates neutrino
nonlinearities self-consistently was employed.

	e authors of [136] computed a probability forΣ that can
be summarized to a very a good approximation by

Δ	2 (Σ) = (Σ − 22meV)2(62meV)2 . (59)

Starting from the likelihood function L ∝ exp − (Δ	2/2)
with Δ	2 as derived from Figure 7 in the reference, one can
obtain the following limits:

Σ < 184meV (1% CL)
Σ < 146meV (2% CL)
Σ < 208meV (3% CL)

(60)

which are very close to those predicted by the Gaussian Δ	2
of (59). In particular, it is worth noting that, even if this
measurement is compatible with zero at less than 1%, the
best 
t value is dierent from zero, as expected from the
oscillation data and as evidenced by (59). We want to remark
that, despite the impact, relative impact of systematic versus
statistical errors on the estimated �ux power is considered
anddiscussed [212]; it is anyway advisable to take these results
from cosmology with the due caution.

	e plot showing ��� as a function of Σ, which was
already shown in Figure 6(b), is again useful for the discus-
sion. A zoomed version of that plot (with linear instead of
logarithmic scales for the axis) is presented in Figure 19(a).
As already mentioned, the extreme values for ��� a�er
variation of the Majorana phases can be easily calculated (see
Appendix A). 	is variation, together with the uncertainties
on the oscillation parameters, results in a widening of the
allowed regions. It is also worth noting that the error on Σ
contributes to the total uncertainty. Its eect is a broadening
of the light shaded area on the le� side of the minimum
allowed value Σ (� = 0) for each hierarchy. In order to
compute this uncertainty, we considered Gaussian errors on
the oscillation parameters; namely,

�Σ = √( �Σ���2 % (��2))2 + ( �Σ�Δ�2 % (Δ�2))2. (61)

It is possible to include the new cosmological constraints
on Σ from [136] considering the following inequality:

(A − ��� (Σ))2(�% [��� (Σ)])2 + (Σ − Σ (0))2(Σ! − Σ (0))2 < 1, (62)

where ���(Σ) is the Majorana eective mass as a function
of Σ and %[���(Σ)] is the 1% associated error, computed
as discussed in [124]. Σ! is the limit on Σ derived from
(59) for the CL � = 1, 2, 3, . . .. By solving (62) for A, it is
thus possible to get the allowed contour for��� considering
both the constraints from oscillations and from cosmology.
In particular, the Majorana phases are taken into account
by computing A along the two extremes of ���(Σ), namely,�max
�� (Σ) and�min

�� (Σ), and then connecting the two contours.
	e resulting plot is shown in Figure 19(b).

	e most evident feature of Figure 19 is the clear dier-
ence in terms of expectations for both ��� and Σ in the two
hierarchy cases. 	e relevant oscillation parameters (mixing
angles and mass splittings) are well known and they induce
only minor uncertainties on the expected value of���.	ese
uncertainties widen the allowed contours in the upper, lower,
and le� sides of the picture. 	e boundaries in the rightmost
regions are due to the new information from cosmology and
are cut at various con
dence levels. It is notable that, at 1%,
due to the exclusion ofIH, the set of plausible values of���
is highly restricted.
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Figure 19: (a) Allowed regions for ��� as a function of Σ with constraints given by the oscillation parameters. 	e darker regions show
the spread induced by Majorana phase variations, while the light shaded areas correspond to the 3% regions due to error propagation of
the uncertainties on the oscillation parameters. (b) Constraints from cosmological surveys are added to those from oscillations. Dierent
CL contours are shown for both hierarchies. Notice that the 1% region for the IH case is not present, being the scenario disfavored at this
con
dence level. 	e dashed band signi
es the 95% CL excluded region coming from [136]. Figure from [211].

	e impact of the new constraints onΣ appears to be even
more evident by plotting��� as a function of the mass of the
lightest neutrino. In this case, (62) becomes

(A − ��� (�))2(�% [��� (�)])2 + �2�(Σ!)2 < 1. (63)

	e plot in Figure 20 globally shows that the next generation
of experiments will have small possibilities of detecting a
signal of 0]�� due to light Majorana neutrino exchange.
	erefore, if the new results from cosmology are con
rmed
or improved, ton or even multi-ton-scale detectors will be
needed [124].

On the other hand, a 0]�� signal in the near future could
either disprove some assumptions of the present cosmologi-
cal models or suggest that a dierent mechanism other than
the light neutrino exchange mediates the transition. New
experiments are interested in testing the latter possibility by
probing scenarios beyond the SM [118, 122, 213].

7.2. Measurements Scenario. Here we consider the implica-
tions of the following nonzero value of Σ [135]:Σ = (0.320 ± 0.081) eV. (64)

We focus on the light neutrino exchange scenario and assume
that 0]�� is observed with a rate compatible with

(1) the present sensitivity on ���; in particular, we use

the limit coming from the combined 136Xe-based
experiments [81]; we refer to this as to the “present”
case;

(2) a value of��� that will be likely probed in the next few
years; in particular, we use the CUORE experiment
sensitivity [83], as an example of next generation of

0]�� experiments; we refer to this as to the “near
future” case.

For the sake of completeness, it is useful to recall a few
de
nitions and relations. 	e likelihood of a simultaneous
observation of some values for Σ and��� (resp., with uncer-

tainties %(Σmeas) and %(�meas
�� ) and distributed according to

Gaussian distributions) can be written as follows:

L

∝ exp[−(Σ − Σmeas)22% (Σmeas)2 ] exp[[[−
(��� − �meas

�� )22% (�meas
�� )2 ]]] .

(65)

Recalling the relation between 	2 and the likelihood, namely,

L ∝ e−"
2/2, we obtain

	2 = (Σ − Σmeas)2% (Σmeas)2 + (��� − �meas
�� )2% (�meas

�� )2 (66)

which represents an elliptic paraboloid. Since we are dealing

with a two-parameter 	2, we need to 
nd the appropriate
prescription to de
ne the con
dence intervals. At the desired
con
dence level, we get

CL = ∬
"2<"20

�� �A 12E%%# e−2/2 2�−#2/2 2� (67)

and thus 	20 = −2 ln (1 − CL) . (68)

	is de
nes the value for 	2 correspondent to the con
dence
level CL.
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Figure 20: Constraints from cosmological surveys are added to
those from oscillations in the representation of ��� as a function
of the lightest neutrino mass. 	e dotted contours represent the 3%
regions allowed considering oscillations only.	e shaded areas show
the eect of the inclusion of cosmological constraints at dierent
CL. 	e horizontal bands correspond to the expected sensitivity for
future experiments. Figure from [211].

In order to write down the likelihood we need to evaluate
the standard deviations both on Σ and on ���. While the
error on Σ comes directly from the cosmological measure-
ment, the one on ��� has to be determined. It has two
dierent contributions: one is statistical and comes from the
Poisson �uctuations on the observed number of events (see
Section 6.3), while the other comes from the uncertainties on
the nuclear physics (see Section 5.3). Actually, a greater eect
would rise if we took into account the error on N�, but here
we assume the quenching is absent.

For a fewobserved events, let us say less than 10 events, the
global error is dominated by the statistical �uctuations. 	e
error on the nuclear physics becomes the main contribution
only if many events (more than a few tens) are detected.
Using the described procedure and for the present case, we

nd an uncertainty on ��� of about 31meV for 5 observed
events, which reduces to 24meV for 10 events. If we neglect
the statistical uncertainty, for example, we put �events, the
uncertainty becomes 14meV. 	is means that the Poisson
�uctuations eect is not negligible at all. Similarly, repeating
the same work for the near future case, we obtain an
uncertainty of 17meV for 5 events, 13meV for 10 events, and
8meV for�events.

Let us now concentrate on the case of 5 0]�� observed

events. If we cut the 	2 at the 90% CL and we consider
the data previously mentioned, we obtain the bigger, solid
ellipses drawn in Figure 21. 	is shows that, in the near
future case, a detection of 0]�� would allow saying nothing
about the mass hierarchy or about the Majorana phases.
Interestingly, if 0]�� were actually discovered with a ���
a little bit lower than the one probed in the present case,
some conclusions about the Majorana phases could be
carried out. In any case, in order to state anything precise
about ��� and the Majorana phases, even assuming the
discovery of 0]��, the uncertainty on the quenching of
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Figure 21: 	e plots show the allowed regions for��� as a function
of the neutrino cosmological mass Σ. 	e ellipses show the 90% CL
regions in which a positive observation of 0]�� could be contained,
according to the experimental uncertainties and 5 (solid) and 20
(dashed) actually observed events. In particular, the upper ellipse
assumes the present limit from the combined 136Xe experiments [81].
	e lower one assumes the sensitivity of CUORE [83].

the axial vector coupling constant has to be dramatically
decreased.

If we repeat the same exercise assuming an observed
number of events of 20, we obtain the smaller, dashed ellipses
of Figure 21. In this case, an hypothetical observation coming
from the present case is highly disfavored while, in the future
case, even if nothing can be said about the hierarchy, some
conclusions could be carried out regarding the Majorana
phases.

	is simple analysis shows that, thanks to the great eorts
done in the NME and PSF calculations, it is most likely
that the biggest contribution to the error will come from the
statistical �uctuations of the counts. However, the theoretical
uncertainty from the nuclear physics could make the picture
really hard to understand because, up to now, it is a source of
uncertainty of a factor 4–8 on���.

7.3. Considerations on the Information from Cosmological
Surveys. 	e newest results reported in Table 4 con
rm and
strengthen the cosmological indications of upper limits onΣ, and it is likely that we will have soon other substantial
progress. Moreover, the present theoretical understanding
of neutrino masses does not contradict these cosmological
indications. 	ese considerations emphasize the importance
of exploring the issue of mass hierarchy in laboratory exper-
iments and with cosmological surveys. However, as already
stated, a cautious approach in dealing with the results from
cosmological surveys is highly advisable.

From the point of view of 0]��, these results show that
ton- or multi-ton-scale detectors will be needed in order
to probe the range of ��� now allowed by cosmology.
Nevertheless, if next generation experiments see a signal, it
will likely be a 0]�� signal of new physics dierent from the
light Majorana neutrino exchange.
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8. Summary

In this review, we analyzed the 0]�� process under many
dierent aspects. We assessed its importance to test lepton
number, to determine the nature of neutrino mass, and to
probe its values. Various particle physics mechanisms that
could contribute to the 0]�� were examined, although with
the conclusion that from the theoretical point of view the
most interesting and promising remains the light Majorana
neutrino exchange. We studied the current experimental
sensitivity, focusing on the critical point of determining the
uncertainties in the theoretical calculations and predictions.
In view of all these considerations, the prospects for the
near future experimental sensitivity were presented and the
main features of present, past, and future 0]�� experiments
were discussed. Finally, we stressed the huge power of
cosmological surveys in constraining neutrino masses and
consequently the 0]�� process.

Appendix

A. Extremal Values of ���

Recalling the de
nition of (27) for the Majorana eective
mass: ��� = @@@@@@@@@@ 3∑
=1 2

e
�


@@@@@@@@@@ , (A.1)

it is possible to demonstrate that the extreme values assumed
by this parameter due to free variations of the phases are (the
proof shown here is based on the work reported in [129]) as
follows:�max

�� = 3∑

=1

@@@@@ 2
e

@@@@@ �
 (A.2)

�min
�� = max {2 @@@@@ 2

e

@@@@@ �
 − �max

�� , 0} � = 1, 2, 3. (A.3)

A.1. Formal Proof. Regarding the 
rst assertion, it is obvious
that the sum of � complex numbers has the biggest allowed
module when those numbers have aligned phases. Since

the physical quantities depend on �2
��, without any loss of

generality, it is possible to choose the 
rst term ( 2
e1�1) to be

real. It thus follows that also the other two termsmust be real:
this is equivalent to considering the sumof themodules of the
single terms.

To prove the second statement, let us consider the general
case��� ∼ |�1 + �2 + �3| ≡ �, where �
 are complex numbers.
We want to minimize �, by keeping |�
| 
xed. Let us de
ne�1 = @@@@�1@@@@ − @@@@z2@@@@ − @@@@�3@@@@ ,�2 = @@@@�2@@@@ − @@@@�1@@@@ − @@@@�3@@@@ ,�3 = @@@@�3@@@@ − @@@@�1@@@@ − @@@@�2@@@@ ,-1 = @@@@�1@@@@ − @@@@�2 + �3@@@@ ,-2 = @@@@�2@@@@ − @@@@�1 + �3@@@@ ,-3 = @@@@�3@@@@ − @@@@�1 + �2@@@@ .

(A.4)

It is worth noting that only one of the �
 can be positive, at
most. 	erefore, it is possible to distinguish 4 cases:

(i) �1 > 0;
(ii) �2 > 0;
(iii) �3 > 0;
(iv) �
 ≤ 0 for � = 1, 2, 3.

In the 
rst one, it is possible to show that �min = �1. In fact,
we can write� = @@@@�1 + �2 + �3@@@@ = @@@@�1 − (−�2 − �3)@@@@≥ @@@@@@@@�1@@@@ − @@@@−�2 − �3@@@@@@@@ = @@@@@@@@�1@@@@ − @@@@�2 + �3@@@@@@@@ = @@@@-1@@@@ , (A.5)

and, since-1 = @@@@�1@@@@ − @@@@�2 + �3@@@@ ≥ @@@@�1@@@@ − @@@@�2@@@@ − @@@@�3@@@@ = �1 > 0, (A.6)

we obtain � ≥ @@@@-1@@@@ ≥ -1 ≥ �1. (A.7)

Similarly, �2 > 0 ⇒ �min = �2 and �3 > 0 ⇒ �min = �3
in the second and in the third cases, respectively. In the last
case, it is necessary to observe that, if one of the �
 = 0, then�min = 0. 	erefore, only the case in which �
 < 0 ∀�must be
considered. In this case, -1 goes fromnegativewhen arg(�2) =
arg(�3) to positive when arg(�2) = − arg(�3). By continuity,
this implies that a proper phase choice such that -1 = 0must
exist. 	us, one can conclude also in this case that �min = 0
(by choosing � = |-1|).

In synthesis, the single case analysis leads to�min = max {�
, 0} . (A.8)

	is proves the original statement; since �
 = |�
|− |��|− |��|+|�
| − |�
| = 2|�
| − ∑3
$=1 |�$|, for � ̸= � ̸= �, {�, �, �} = {1, 2, 3}.

A.2. Remarks on the Case �min
�� = 0. 	e three mixing

elements | 2
e
| are constrained by the unitarity: ∑
 | 2

e
| = 1.
	is condition can be graphically pictured by using the inner
region of an equilateral triangle with unitary height, where

the distance from the �th side corresponds to the value of | 2
e
|

(see [129] for details). 	e result is displayed in Figure 22.
	e experimental constraints on the oscillation param-

eters make it possible to evaluate the elements | 2
e
| and,

therefore, to identify a point inside the triangle, which is
placed at the center of the colored bar in Figure 22. 	e
dierent colors of the bar correspond to the 1%, 2%, and 3%
regions.

At each vertex, the value of��� coincides with�min
�� and

with one of the mass eigenstates (]e ≡ ]
). 	en, the value
of�min

�� decreases moving from one vertex towards the inner

part of the triangle, until it becomes zero inside the region
delimited by the vertices de
ned by the conditions:@@@@@ 2

e1
@@@@@ �1 = @@@@@ 2

e2
@@@@@ �2 when

@@@@@ 2
e3
@@@@@ = 0, (A.9)@@@@@ 2

e1
@@@@@ �1 = @@@@@ 2

e3
@@@@@ �3 when

@@@@@ 2
e2
@@@@@ = 0, (A.10)@@@@@ 2

e2
@@@@@ �2 = @@@@@ 2

e3
@@@@@ �3 when

@@@@@ 2
e1
@@@@@ = 0. (A.11)
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Figure 22: Representation of �min
�� in the unitarity triangle. 	e

internal point in the middle of the small colored bar is identi
ed by
the constraints from the oscillation parameters.	e colored regions
correspond to 1% (red), 2% (orange), and 3% (yellow). 	e distance
from a side represents the size of the corresponding mixing element| 2

e
|. 	e inner shaded regions of the triangle enclose the areas
where �min

�� = 0 for a lightest neutrino mass that can vary from10−5 eV to the value which corresponds to a cosmological massΣ = 0.14 eV (orange, 90% CL current bound) and Σ = 0.06 eV (gray,
for purpose of illustration).

In fact, if we consider, for example, the 
rst condition, from
(A.9) we have2 @@@@@ 2

e

@@@@@ �
 − �max

�� = 2 @@@@@ 2
e

@@@@@ �
 − @@@@@ 2

e1
@@@@@ �1 − @@@@@U2

e2
@@@@@ �2− @@@@@ 2

e3
@@@@@ �3= 2 @@@@@ 2

e

@@@@@ �
 − 2 @@@@@ 2

e1
@@@@@ �1.

(A.12)

Substituting the possible values � = 1, 2, 3, and recalling that
the condition to get�min

�� is expressed by (A.3), we obtain�min
�� = max {−2 @@@@@ 2

e1
@@@@@ �1, 0} = 0. (A.13)

	e same argument can be applied also for the other two
conditions. It is therefore possible to identify a region inside
the triangle where�min

�� is zero.	e experimental constraints

on the oscillation parameters limit the possibility of�min
�� = 0,

only to the case of NH. Of course, the position and the
extension of this region depend on the lightest neutrinomass.

Instead of choosing one particular value for the lightest
neutrinomass, it is more convenient to plot the superposition
of the regions obtained for increasing values of this param-
eter. In Figure 22, in orange we show the region obtained
varying�1 from 10−5 eV, up to the 90%CLmaximum value it
can have considering the limit on Σ from [136], according to
(59).	e gray region shows the superposition obtained when�1 ∼ 0; namely, we show what happens if it turns out that the
cosmological mass is close to its lower limit (≲0.06 eV for the
NH case).

	e existence of a �min
�� = 0 region implies that,

in principle, 0]�� could be forbidden just by particular
combinations of the phases, even if the neutrino is aMajorana
particle.

B. Error Propagation

It is convenient and usually appropriate to adopt statistical
procedures that are as direct and as practical as possible. We
are interested in the following situation. For any choice of
the Majorana phases, the massive parameter that regulates0]�� can be thought of as 7(�, x). It is a function of the
parameters that are determined by oscillation experiments
up to their experimental error, �
 ± Δ�
, and of another
massive parameter �. Here a remark is necessary. When in
the literature we found maximal or systematic uncertainties,
in order to propagate their eects in our calculations, we
decided to interpret them as the semiwidths of �at distri-
butions and thus, dividing these numbers by √3, we could
get the standard deviations of those distributions. 	en, we
considered those values as standard deviations for Gaussian
�uctuations of the parameters around the given values.

For any 
xed value of �, and for the other parameters
set to their best 
t values �
, we can attach the following error
to7:

Δ7|% = √∑


(�7��
 )2 Δ�2
 . (B.1)

When we want to consider the prediction and the error for
a 
xed value of another massive parameter Σ(�, x), we have
to vary also �, keeping �Σ = �Σ/���� + �Σ/��
��
 = 0.
	erefore, in this case, we 
nd

Δ7|Σ = √∑


(�7��
 − �Σ/��
�Σ/�� �7��)2 Δ�2
 . (B.2)

Of course, we will calculate� by inverting Σ(�, x) = Σ (here,
the symbol Σ denotes the function and also its value; how-
ever, this abuse of notation is harmless in practice).

C. Σ=l(�lightest), Analytical Solution

Let us write in full generality the three-�avor relation for the
mass probed in cosmology as

Σ = � + √�2 + �2 + √�2 + £2, (C.1)

where �, Σ, �, and £ are masses, that is, nonnegative para-
meters. It is possible to obtain � as a function of Σ in the
physical range Σ ≥ � + £ (C.2)

simply by solving a quartic equation. Since we are interested
in certain speci
c cases (NH or IH) we specify the
discussion further.
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When � ≪ £, corresponding to the NH case, it is
convenient to write the quartic equation as(3�2 − 4�Σ + �2) (�2 − �2) + 4�2£2 = 0, (C.3)

where �2 ≡ Σ2 − (�2 + £2) . (C.4)

Indeed, we see that this quartic equation has spurious
solutions in this limit, for example, those for� ≈ ±�. Instead,
we are interested in the one that (for � = 0) reads

� = �NH (Σ, £) ≡ 2Σ − √Σ2 + 3£23 (C.5)

with Σ ≥ £. In the case when � ≈ £, instead, which
corresponds to the IH case, it is convenient to write the
quartic equation as(3�2 + 2�Σ − �2) (� − Σ)2 − (�2 − £2)2 = 0, (C.6)

where �2 ≡ Σ2 − 2 (�2 + £2) . (C.7)

Again, we see that this quartic equation has spurious solu-
tions in the limit � ≈ £, for example,� ≈ Σ. We are interested
in the one that in the case � = £ reads� = �IH (Σ, £) ≡ −Σ + 2√Σ2 − 3£23 (C.8)

with Σ ≥ 2£.
Finally, we discuss useful approximate formulae for the

speci
c parameterization suggested in [35]; namely,� = ��2,
£ = Δ�2 + ��22 (C.9)

for theNH case and � = Δ�2 − ��22 ,
£ = Δ�2 + ��22

(C.10)

for theIH one.
In the latter case, the approximation obtained by (C.8),

namely, � = �IH (Σ, Δ�2) , (C.11)

is already excellent, being better than 3 :eV in the whole
range of masses. Instead, (C.5) implies a maximum error that
can reach 5meV for NH. Although this is quite adequate
for the present and near future sensitivity, it is possible to
improve the approximation also in the case ofNH by using

� = �NH (Σ, Δ�2) − ��24�NH (Σ, Δ�2) . (C.12)

	is formula is obtained by linearly expanding in ��2 the
relation that links Σ and �, (C.1), around the point � =�NH(Σ, Δ�2). 	e error is remarkably small error and more
than adequate for the present sensitivity: less than 0.2meV.
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