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Abstract We demonstrate that radiative breaking of confor-
mal symmetry (and simultaneously electroweak symmetry)
in the standard model with right-chiral neutrinos and a min-
imally enlarged scalar sector induces spontaneous breaking
of lepton number symmetry, which naturally gives rise to
an axion-like particle with some unusual features. The cou-
plings of this ‘axion’ to standard model particles, in particu-
lar photons and gluons, are entirely determined (and com-
putable) via the conformal anomaly, and their smallness
turns out to be directly related to the smallness of the masses
of the light neutrinos.

1 Introduction

It has been known for some time that classically unbroken
conformal symmetry may provide a possible mechanism for
explaining the stability of the weak scale with respect to the
Planck scale [1]. In such a scheme all observed mass scales
must arise from a single scale via the quantum mechanical
breaking of conformal invariance induced by the Coleman–
Weinberg (CW) effective potential [2]. In [3] (see [4, 5] for
an earlier, but different proposal, and also [6, 7] for subse-
quent work along these lines), we have recently shown that
a minimal extension of the standard model (SM) with right-
chiral neutrinos and one extra scalar can realize this possi-
bility, provided that [3, 8]:

• There are no intermediate mass scales between the weak
scale and the Planck scale MP.

• The RG evolved couplings exhibit neither Landau poles
nor instabilities over this whole range of energies.

While the first point concerns an issue that must be de-
cided experimentally, the second assumption is motivated
by the expectation that any extension of the SM (with
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or without supersymmetry) that stays within the frame-
work of quantum field theory will eventually fail, and
that the main task is therefore to delay the onset of this
breakdown to the Planck scale, where a proper theory of
quantum gravity is expected to replace quantum field the-
ory. This requirement leads to important restrictions on
the SM parameters, which can in principle be tested at
LHC.

We study an extension of the model [3] with the usual
Higgs doublet Φ(x), and one extra (weak singlet) scalar
field φ(x), but with the main difference that this extra scalar
field is now taken to be complex. Writing

φ(x) = ϕ(x) exp

(
ia(x)√

2μ

)
, (1)

with real fields ϕ(x) and a(x), we will show that ϕ(x)

can acquire a non-vanishing vacuum expectation value via
radiative corrections. The field a(x) then gives rise to a
(pseudo-) Goldstone particle associated with the sponta-
neous breaking of a new global U(1)L (modified lepton
number) symmetry. A major new result of the present
work is that this boson, commonly referred to as the ‘ma-
joron’ [9], shares many properties with the axion [10–12].
We here explore some of these features, which are mainly
due to ‘neutrino mediation’, especially the effective cou-
plings of this ‘axion’ to photons and gluons. The latter
may have important implications with regard to the po-
tential suitability of the axion as a dark matter candidate
and for solving the strong CP problem. Details concern-
ing such phenomenological applications will be given else-
where.

Apart from its compatibility with the known SM phe-
nomenology, and its implications for the hierarchy prob-
lem, the main virtue of the present proposal is that it pro-
vides a single source of explanation for axion couplings
and neutrino masses via the conformal anomaly, thereby ty-
ing together in a most economical manner features of the
SM previously thought to be unrelated. If it should turn
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out that there are indeed no new scales beyond the weak
scale it could thus offer an attractive and economical alter-
native to MSSM-type models, because low energy super-
symmetry may not be needed to stabilize the weak scale
with regard to the Planck scale if the two conditions stated
above are met [8] (see also [5] for a very similar point of
view).

2 Lagrangian

We refer to [13, 14] for the basic properties of the SM, and
here only quote the relevant interaction terms in the (classi-
cally conformal) Lagrangian, viz.

Lint = (
L

i
ΦYE

ij Ej + Q
i
ΦYD

ij Dj + Q
i
εΦ∗YU

ij Uj

+ L
i
εΦ∗Y ν

ijN
j + φNiT C−1YM

ij Nj + h.c.
)

− λ1

4

(
Φ†Φ

)2 − λ2

2

(
Φ†Φ

)(
φ†φ

) − λ3

4

(
φ†φ

)2
. (2)

Here Qi and Li are the left-chiral quark and lepton doublets,
Ui and Di the right-chiral up- and down-like quarks, while
Ei are the right-chiral electron-like leptons, and Ni ≡ νi

R

the right-chiral neutrinos. As in [3] we suppress all in-
dices except the family indices i, j = 1,2,3. One can use
global redefinitions of the fermion fields to transform the
Yukawa matrices YE

ij , YU
ij and YM

ij to real diagonal ma-

trices. Furthermore, YD = KDMD , where KD is a CKM
matrix and MD is real diagonal. Using the remaining free-
dom we can then set Y ν = KνMνUN , where Kν is a CKM-
like matrix (i.e., with three angles and one phase), Mν is
real diagonal and UN is a unitary matrix with detUN =
1.

Besides the standard (local) SU(3)c × SU(2)w × U(1)Y
symmetries, the Lagrangian (2) admits two global U(1)
symmetries. One is the standard baryon-number symmetry
U(1)B ,

Qi → eiβQi, Ui → eiβUi, Di → eiβDi; (3)

the other is the modified lepton-number symmetry U(1)L:

Li → eiαLi, Ei → eiαEi,

Ni → eiαNi, φ → e−2iαφ
(4)

with associated Noether current

J μ
L = L

i
γ μLi + E

i
γ μEi + N

i
γ μNi − 2iφ†

↔
∂μ φ. (5)

Notice that the first three terms add up to a purely vector-
like current of the standard form = ēiγ μei + ν̄iγ μνi . An
important feature is that the scalar field φ also carries lep-
ton charge, which can thus ‘leak’ from the fermions via the
last term in (5); see e.g. [15] and references therein for a
discussion of this issue.

3 Minimization of effective potential

While the classical potential (2) does not induce sponta-
neous symmetry breaking, the effective one-loop poten-
tial computed from (2) can develop non-vanishing vacuum
expectation values for the scalar fields. This potential is
given by the sum of (3) (now with N = 4 and M = 2)
and (6) of [3], to which we also add the contribution from
the SU(2)w gauge fields which was not taken into account
in [3]; explicitly,

Veff(H,ϕ) = λ1H
4

4
+ λ2H

2ϕ2

2
+ λ3ϕ

4

4

+ 9

16
α2

wH 4 ln

[
H 2

v2

]

+ 3

256π2

(
λ1H

2 + λ2ϕ
2)2 ln

[
λ1H

2 + λ2ϕ
2

v2

]

+ 1

256π2

(
λ2H

2 + λ3ϕ
2)2 ln

[
λ2H

2 + λ3ϕ
2

v2

]

+ 1

64π2
F 2+ ln

[
F+
v2

]
+ 1

64π2
F 2− ln

[
F−
v2

]

− 6

32π2
g4

t H
4 ln

[
H 2

v2

]

− 1

32π2
Y 4

Mϕ4 ln

[
ϕ2

v2

]
, (6)

where αw ≡ g2
2/4π and H 2 ≡ Φ†Φ . v is the mass para-

meter required by dimensional regularization (which breaks
conformal invariance). Also, we have defined

F±(H,ϕ)

:= 3λ1 + λ2

4
H 2 + 3λ3 + λ2

4
ϕ2

±
√[

3λ1 − λ2

4
H 2 − 3λ3 − λ2

4
ϕ2

]2

+ λ2
2ϕ

2H 2. (7)

As a further simplification, only the contributions from the
top quark (with coupling gt ) and one massive neutrino
(with coupling YM ) have been included in (6). Next we
perform the numerical minimization subject to the require-
ments stated in the Introduction. As in [3], the numerical
search shows that there exists a (small) subset of parame-
ter space compatible with our requirements and, in par-
ticular, allowing for the following exemplary set of val-
ues:

λ1 = 3.77, λ2 = 3.72, λ3 = 3.73,

gt = 1, Y 2
M = 0.4

(8)

(the approximate O(6) symmetry of the scalar self-couplings
is accidental and is not preserved by quantum corrections;
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cf. (13) below). One should note that the natural expansion
parameters in the loop expansion are λi/(4π2), so that the
scalar couplings are not very large. For these values, the
minimum is located at

〈H 〉 = 2.74 · 10−5v, 〈ϕ〉 = 1.51 · 10−4v. (9)

These values are such that the logarithmic corrections in
the potential are of the same order of magnitude as the
tree-level contributions—as must be the case if the min-
imum is to be shifted away from zero. In assessing the
reliability of this result one must therefore ensure that
the higher-order corrections remain small over the relevant
range of energies in spite of ‘large logarithms’. Generi-
cally, the latter might invalidate conclusions based on the
minimization of the one-loop potential, but as we show in
a separate publication [16], the minimum can nevertheless
be stable if there are cancellations among the couplings
of the theory ensuring its survival up to very large ener-
gies – as is the case for our model (by construction!). To
set the scale for v, and thereby for all other dimension-
ful quantities in the model, we impose 〈H 〉 = 174 GeV.
Hence,

〈H 〉 = 174 GeV, 〈ϕ〉 = 958 GeV,

v = 3.65 · 104〈H〉. (10)

After symmetry breaking, three degrees of freedom of
Φ are converted into longitudinal components of W±
and Z0, so we are left with one real scalar field H and
the complex field (1). Defining (at the potential mini-
mum)

H ′ = H cosβ +ϕ sinβ, ϕ′ = −H sinβ +ϕ cosβ, (11)

the numerical analysis yields the following values (slightly
different from [3]):

mH ′ = 207 GeV, mϕ′ = 477 GeV, sinβ = 0.179,

(12)

while the Goldstone field a(x) stays massless. Note that only
the components along H of the mass eigenstates couple to
the usual SM particles. This leads to a clear and testable
prediction of the present model: the decay amplitudes of H ′
and ϕ′ into SM particles are both proportional to the cor-
responding decay amplitudes of the usual SM Higgs par-
ticle with mass values set equal to mH ′ and mϕ′ , respec-
tively [3].

The effective coupling constants are calculated numeri-
cally as the respective fourth-order derivatives of the effec-
tive potential at the minimum (now with the factors 1/(4π2)

appearing in the loop expansion):

λeff
1

4π2 = 0.03665,
λeff

2
4π2 = 0.01641,

λeff
3

4π2 = 0.02206.

(13)

Checking the consistency of our basic assumptions now
amounts to evolving all couplings according to their RG
equations, with (13) and the known SM couplings at the
weak scale as the initial values. Performing the steps de-
scribed in [3], and also taking into account the contribu-
tions of the weak SU(2)w coupling αw in the RG evolutions,
we have verified that for the values indicated above there
are indeed no Landau poles or instabilities up to the Planck
scale.

Although the numbers (12) do not constitute a defini-
tive prediction of our model, it turns out that the ‘window’
left open by our requirements is fairly small for mH ′ . Pre-
liminary estimates give an approximate range 200 GeV <

mH ′ < 220 GeV, whereas mϕ′ can vary over a larger
range of values, >O (400 GeV), such that the mixing angle
β decreases with increasing mϕ′ . The comparatively large
value for mH ′ distinguishes the present model from other
proposals, and in particular from MSSM-type models pre-
dicting mH ′ < O (135 GeV) [17].

4 Neutrino propagators

The new effects reported in this Letter all depend cru-
cially on the mixing of the neutrino degrees of freedom
for each neutrino species. Inspection of the explicit ex-
pressions for the propagators given below in (16) shows
that this mixing is maximal in the sense that any neu-
trino degree of freedom can oscillate into any other. Be-
cause the results would take a much more cumbersome form
in terms of 4-spinors, we temporarily switch to SL(2,C)

spinor notation, see e.g. [18] for details and conventions,
which proves also more convenient for the computation
of loop diagrams. With νL ≡ 1

2 (1 − γ 5)ν ≡ ν̄α̇ and νR ≡
1
2 (1 + γ 5)ν ≡ Nα , the relevant (free) part of the Lagrangian
reads

L = i

2

(
να/∂αβ̇ ν̄β̇ + Nα/∂αβ̇N̄ β̇

) + c.c.

+ m
(
ναNα + ν̄α̇N̄ α̇

) + M

2

(
NαNα + N̄α̇N̄ α̇

)
, (14)

with the Dirac and Majorana mass parameters m = Y ν〈H 〉
and M = YM 〈ϕ〉, respectively. For simplicity, we here con-
sider only one neutrino generation; in the general case the
formulas below will contain additional factors of Y νY−1

M Yν ,
or traces over family indices (which may alter our estimates
below). Rather than diagonalize the fields with respect to
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these mass terms, we prefer to work with non-diagonal
propagators, leaving the fields as they are in the interac-
tion vertices. The poles of the propagators are obtained via
the standard seesaw formula [19–21]

μ2± = m2 + 1

2
M2 ± 1

2
M2

√
1 + 4m2

M2
, (15)

whence μ+ ≈ M and μ− ≈ m2/M ≡ mν for m � M

(so that, assuming |Yν | < 10−5 and substituting the val-
ues (12) found above, we get mν < 1 eV [3]). Defining
D(p) := [(p2 − M2)(p2 − m2

ν)]−1 we obtain the propaga-
tors (in momentum space)

〈νανβ〉 = im2MD(p)εαβ,

〈ναν̄β̇〉 = i
(
p2 − M2 − m2)D(p)/pαβ̇

,

〈NαNβ〉 = iMp2 D(p)εαβ,

〈NαN̄β̇〉 = i
(
p2 − m2)D(p)/pαβ̇

,

〈ναNβ〉 = im
(
p2 − m2)D(p)εαβ,

〈ναN̄β̇〉 = −imMD(p)/pαβ̇
,

(16)

together with their complex conjugate components (where,
as usual, /pαβ̇

≡ pμσ
μ

αβ̇
and εαβ is the SL(2,C) invariant

tensor [18]). It will be essential for the UV finiteness of the
diagrams to be computed below that some of these propaga-
tors fall off like ∼p−3, unlike the standard Dirac propaga-
tor.

5 Neutrino triangles and ‘axion’ vertices

With the above propagators we can now proceed to compute
various couplings involving the ‘axion’ a, which are medi-
ated by neutrino mixing via two- or three-loop diagrams.
In order to extract the new vertices from (2) (and to have
canonically normalized kinetic terms for these scalar fields),
we set μ = 〈ϕ〉 in (1) and expand

φ(x) = 〈ϕ〉 + 1√
2

(
ϕ(x) + ia(x)

) + · · · . (17)

We here only present results for the axion–photon cou-
pling aF F̃ , whose lowest-order contribution is given by

the two-loop diagram depicted in Fig. 1. Because par-
ity is (in fact, maximally) broken, there are also ‘dila-
tonic’ couplings of type aFF , whose determination will
require in addition the consideration of diagrams with
photons emanating from the internal W -line. To simplify
the calculation we first compute the ‘blob’ in Fig. 1,
which is proportional to the integral (after a Wick rota-
tion)

∫
d4l

(2π)4

/l αβ̇

(l2 + M2)[(l + q)2 + M2]l2[(l + p1)2 + m2
W ]

+ (p1 ↔ p2), (18)

where mW is the W -boson mass, and where we set m =
mν = 0 in order to simplify the integrand (a valid approxi-
mation, because m,mν � mW,M). Here we are interested
in the result for small axion momentum qμ = p

μ
1 + p

μ
2 .

Putting in all factors and reverting back to 4-spinor notation,
the ‘form factor’ for the electron–axion vertex for large p1

and p2 is well approximated by

F (q,p1) = mνYMαw

8π

1 + γ 5

2
/q

p2
1 + m2

W

(19)

(modulo terms of order O(M2/p2
1) and O(m2

W/p2
1)), where

now /q ≡ γ μqμ. This formula makes obvious one of our
main assertions, namely that the effective axionic couplings
are proportional to the light-neutrino masses and vanish in
the limit mν → 0. The complete expression for the effective
axion–electron vertex at small qμ will be given elsewhere.
Inter alia: the above vertex would also determine the rate
of energy loss through radiation of ‘axions’ from charged
plasma in the Sun’s core.

In order to arrive at an estimate of the axion–photon cou-
pling, we next substitute the result (19) into the expres-
sion for the electron triangle shown in Fig. 1. Though su-
perficially similar to the diagram giving rise to the well-
known γ 5-anomaly in QED, the integral here is conver-
gent, because of the damping of the integrand due to
the ‘form factor’ (19). After some computation we ob-
tain

Laγ γ

eff = 1

4fa

aFμνF̃μν, fa = 2π2m2
W

αwαemmνYM

. (20)

Substituting values, we find fa = O (1015 GeV), which is
outside the range of existing or planned experiments [22].

Fig. 1 Axion–photon–photon
effective vertex
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Fig. 2 Axion–gluon–gluon effective vertex

However, apart from the simplifications introduced above
which may still affect this estimate, one must keep in mind
that the simultaneous presence of aFF couplings may sub-
stantially alter the analysis with regard to observable ef-
fects.

The gluonic couplings can be analyzed in a similar way.
For their determination we must evaluate the three-loop di-
agram shown in Fig. 2, as well as analogous diagrams that
are not shown, with Z-boson exchange and a triangle con-
sisting only of neutrino lines, and with gluons emanating
from the quark line connecting two W - or Z-bosons . This
calculation is complicated by the fact that the ‘quark box’
is dominated by small momenta, where αs is large. A very
crude estimate can be derived by replacing αem in (20) by
6αwαs/π , which yields

Lagg

eff = αs

8πga

aGμνG̃μν, ga
∼= π2m2

W

6YMα2
wmν

. (21)

This gives ga = O (1016 GeV). Summing over quark fla-
vors as well as taking into account all relevant diagrams
could bring this number down, into the range that could
make the axion a viable dark matter candidate according to
standard reasoning (see e.g. [23], p. 280 ff., but the actual
numbers are subject to large uncertainties [24]). However,
before starting the actual comparison, conventional lines of
reasoning must be re-examined in view of the fact that parity
violation now also allows for ‘dilatonic’ couplings ∝ aGG,
which may vitiate some of the accepted arguments (for in-
stance, concerning periodicity properties of the ‘axion’ po-
tential and the location of the minimum in this potential).
Similar caveats may apply to the use of our ‘axion’ for
solving the strong CP problem: although for this purpose
the precise value of ga does not matter so much, it is not
clear whether the present scenario would lead to 〈a〉 = 0, as
generally required for the solution of the strong CP prob-
lem.

6 Conclusions and outlook

In [3] it was shown that all mass scales of the SM can
be generated via radiative corrections and the conformal
anomaly from a single scale v, which is set here by the

choice of 〈H 〉 in (10). In particular, no large scales be-
yond the SM are needed to explain the smallness of neu-
trino masses, if one allows for the entries of the Yukawa
coupling matrix Y ν to assume values in the range O(1)–
O(10−5) (this is the main difference with more conven-
tional seesaw-type scenarios, for which m ≈ O (100 GeV)

and M must be assumed very large, resulting in very
large masses for the heavy neutrinos; see e.g. [25]). In
this Letter, we have extended these considerations to an-
other sector of the SM, by showing that the replacement
of the real field ϕ by the complex scalar φ makes it pos-
sible to also accommodate an axion-like degree of free-
dom in the model. Again, the relevant (large) mass scales
emerge rather naturally by radiative corrections and with-
out the need to introduce any new large mass scales by
hand.

The main novelty of the present work is the proposal
to identify the ‘majoron’ of [9] with the axion, and to do
so in conjunction with the quantum mechanical breaking
of (classical) conformal invariance. This entails several un-
usual features; for instance, the fact that our ‘axion’ cannot
be assigned a definite parity, unlike the standard axion of
[11, 12]. The crucial ingredient here is the maximal neutrino
mixing in (16), which mediates the axionic couplings (20)
and (21). Without such a neutrino mediation the latter cou-
plings would simply be absent if the lepton number symme-
try U(1)L is non-anomalous [26]. This part of our proposal
does not depend on the symmetry-breaking mechanism and
might thus also work without the assumption of classical
conformal invariance. The cosmological consequences of
this scenario (e.g. for leptogenesis in the early universe) re-
main to be explored.
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