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We evaluate the neutron electric dipole moment j~dN j using lattice QCD techniques. The gauge
configurations analyzed are produced by the European Twisted Mass Collaboration using Nf ¼ 2þ 1þ 1

twisted mass fermions at one value of the lattice spacing of a≃ 0.082 fm and a light quark mass
corresponding to mπ ≃ 373 MeV. Our approach to extract the neutron electric dipole moment is based on
the calculation of theCP-odd electromagnetic form factor F3ðQ2Þ for small values of the vacuum angle θ in
the limit of zero Euclidean momentum transfer Q2. The limit Q2 → 0 is realized either by adopting a
parametrization of the momentum dependence of F3ðQ2Þ and performing a fit or by employing new
position space methods, which involve the elimination of the kinematical momentum factor in front of
F3ðQ2Þ. The computation in the presence of a CP-violating term requires the evaluation of the topological
charge Q. This is computed by applying the cooling technique and the gradient flow with three different
actions, namely the Wilson, the Symanzik tree-level improved and the Iwasaki action. We demonstrate that
cooling and gradient flow give equivalent results for the neutron electric dipole moment. Our analysis

yields a value of j~dN j ¼ 0.045ð6Þð1Þθ̄e · fm for the ensemble with mπ ¼ 373 MeV considered.

DOI: 10.1103/PhysRevD.93.074503

I. INTRODUCTION

The discrete symmetries of parity P, charge conjugation
C and time-reversal T play an important role in the allowed
phenomenology described by the Standard Model of
particle physics. An experimental observation of a non-
vanishing electric dipole moment on the neutron would
directly signal violation of both P and T symmetries.
Violations of P and T can occur in both strong and
electroweak sectors of the Standard Model.
So far, a nonvanishing neutron electric dipole moment

(nEDM) has not been reported and current bounds are still
several orders of magnitude above what one expects from
CP violation induced by weak interactions [1], making,
thus, nEDM investigations an interesting probe for beyond
the Standard Model physics [2]. Several experiments are

under way to improve the upper bound on the nEDM, ~dN ,
with the best experimental upper limit being [3–5]

j~dN j < 2.9 × 10−13e · fm ð90% C:L:Þ: ð1Þ

This result has been extracted at the Institut Laue-Langevin
(ILL) reactor in Grenoble by storing “ultracold” neutrons
and measuring the change in the neutron spin precession
frequency in a weak magnetic field when a strong, parallel
background electric field is reversing its own sign.

To examine theoretically how a nEDM may arise, we
start with the CP-conserving QCD Lagrangian density,
which in Euclidean space is given by

LQCDðxÞ ¼
1

2g2
Tr½GμνðxÞGμνðxÞ�

þ
X
f

ψ̄fðxÞðγμDμ þmfÞψfðxÞ; ð2Þ

where ψf denotes a fermion field of flavor f with bare mass
mf and Gμν is the gluon field tensor. Equation (2) is
invariant under P and T transformations and, thus, cannot
lead to a nonvanishing nEDM. The QCD Lagrangian can
be generalized by including an additional CP-violating
interaction (Chern-Simons) term given by

LCSðxÞ≡ −iθqðxÞ: ð3Þ
The so-called θ parameter controls the strength of the CP
breaking and qðxÞ is the topological charge density, which
in Euclidean space is defined as

qðxÞ ¼ 1

32π2
ϵμνρσTr½GμνðxÞGρσðxÞ�; ð4Þ

where ϵμνρσ is the totally antisymmetric tensor. Although
the CP-violating term in Eq. (3) does not modify the
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equations of motion since it can be expressed as a total
divergence, it has observable consequences. In particular, it
leads to a nonzero value for the nEDM. In this work, we
consider a quantum field theory described by the C-even
Lagrangian density

LðxÞ ¼ LQCDðxÞ þ LCSðxÞ; ð5Þ
with θ taken as a small continuous parameter enabling us to
perturbatively expand in terms of θ and only keep first
order contributions.
CP violation in the electroweak sector is observed in K

and Bmeson decays and is accounted for by the phase of the
Cabibbo-Kobayashi-Maskawa matrix. However, this CP-
violating phase alone cannot explain the baryon asymmetry
of the Universe suggesting that there may be additional
sources of CP violation. If one considers the electroweak
sector of the Standard Model, the Lagrangian in Eq. (5) gets
a contribution from the quark mass matrix M, arising from
Yukawa couplings to the Higgs field,

ψ̄R
f1
ðxÞMf1f2ψ

L
f2
ðxÞ þ ψ̄L

f1
ðxÞM†

f1f2
ψR
f2
ðxÞ; ð6Þ

with ψL
f and ψ

R
f being the left- and right-handed quark fields

with flavor indices f. If one performs a Uð1ÞA chiral
transformation an additional ϵμνρσTr½GμνGρσ� contribution
is introduced because of the chiral anomaly. Hence, the
parameter θ shifts to θ̄ ¼ θ þ arg detM, where now θ̄
describes theCP-violating parameter of the extended strong
and electroweak symmetry. In addition to the experimental
investigations that give an upper bound in the nEDM, several
model studies [6–15], as well as more recent effective field
theory calculations [16–25], have attempted to provide a
value for the nEDM. They report values in the range of

j~dN j ∼ θ̄ ·Oð10−2–10−4Þe · fm: ð7Þ
Using the experimental upper bound [Eq. (1)] and the
above prediction we obtain a bound of the order θ̄≲
Oð10−9–10−11Þ. Hence, according to these models, θ̄ is
indeed very small and possibly zero, with the latter resulting
in a vanishing value of the nEDM.
Therefore, either θ and arg detM are small or they cancel

each other out at a level that the experimental upper bound
on the nEDM is satisfied. No matter which one of these two
cases holds, one needs to be able to explain why nature
chooses such a small value for θ̄. This is what is referred to
as the “strong CP problem.” Attempts to explain the
smallness of the nEDM invoke new physics as for instance
the Peccei-Quinn mechanism [26,27], which requires the
existence of the axion that to date has not been observed.
For the purposes of this work we assume that θ is small and
keep only leading order contributions in what follows.
The effective Lagrangian giving rise to the nEDM at

leading order in θ̄ can be written as [2,28]

−θ̄
F3ðQ2Þ
4mN

ūNðpfÞσμνγ5uNðpiÞFμν ð8Þ

in Euclidean space. We denote by uNðpÞ the nucleon
spinor and by Fμν the electromagnetic field tensor, while
σμν ¼ ½γμ; γν�=2 and pfðpiÞ is the final (initial) momentum.
mN denotes the mass of the neutron, Q2 ¼ −q2 the four-
momentum transfer in Euclidean space (q ¼ pf − pi) and

F3ðQ2Þ is the CP-odd form factor. The nEDM, ~dN is then
given by [2,28]

j~dN j ¼ θ̄ lim
Q2→0

jF3ðQ2Þj
2mN

; ð9Þ

to leading order in θ̄. In a theory with CP violation we can,
therefore, calculate the electric dipolemoment by evaluating
the zeromomentum transfer limit of theCP-odd form factor.
This provides the framework onwhich our investigationwill
be based. As will be explained in Sec. VI, the CP-violating
nucleon matrix element, decomposes to QkF3ðQ2Þ (k ¼ 1,
2, 3) and not F3ðQ2Þ alone, hindering a direct extraction of
F3ð0Þ. We adopt two approaches to determine F3ð0Þ: the
first one that is commonly applied in lattice QCD compu-
tations of form factors is to take a suitable parametrization of
the Q2 dependence. We take a dipole form for the Q2

dependence ofF3ðQ2Þ and perform a fit to extract its value at
Q2 ¼ 0. The second approach is a newmethod that we have
recently developed to compute form factors directly at
Q2 ¼ 0, extracted from matrix elements that involve a

multiplicative kinematical factor of ~Q [29]. To this end
we use two techniques, the so-called “application of the
derivative to the ratio” as well as the “elimination of the
momentum in the plateau region” both yielding F3ð0Þ
without any model assumption on its Q2 dependence.
In order to compute the CP-violating matrix element and

extract the CP-odd form factor F3ðQ2Þ one needs the
evaluation of the topological charge, Q. In this work we
employ the field theoretic definition and use cooling and
the gradient flow to smooth the gauge links and obtain a
well-defined, renormalization-free topological charge [30].
We consider the Wilson, the Symanzik tree-level improved
and the Iwasaki actions for the cooling and the gradient
flow. Smoothing with different actions leads to observables,
such as the nEDM, with potentially different lattice artifacts
due to the fact that the topological charge between different
actions differs only by lattice artifacts [31]. The results on
the nEDM arising from these different definitions of the
topological charge are compared and found compatible,
demonstrating that lattice artifacts in the definition of the
topological charge are small. In Fig. 1 we show our final
result for F3ð0Þ=ð2mNÞ as well as results from other lattice
investigations with dynamical quarks that have been
obtained using θ as a real parameter in the QCD
Lagrangian, keeping the comparison within a similar lattice
methodology where lattice systematics are expected to be
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similar. We note that results obtained using formulations
with an imaginary θ such as those by Guo et al. [32] are in
agreement with our value. However, in Fig. 1 and in what
follows we choose to compare results using a setup with a
real value of θ. We also do not show results obtained in the
quenched approximation [33]. Our value displayed in
Fig. 1 is the weighted average of the values obtained using
different methods for extracting F3ð0Þ (see Sec. VIII),
while for the topological charge, we employ the Iwasaki
action for its definition, which is the same as the gauge
action used in the simulations. For the data shown in Fig. 1
we use gradient flow for the computation of the topological
charge, which are, however, equivalent to the ones using
cooling results (see Sec. VII). We also include, for
comparison, the value of the nEDM arising from a recent
chiral perturbation theory analysis at next to leading
order [20].

The article is organized as follows. In Sec. II we discuss
the lattice formulation used for the production of configu-
rations, as well as the parameters of the ensemble analyzed.
Subsequently, in Sec. III, we give the decomposition of the
nucleon matrix elements in the presence of a CP-violating
term in the Lagrangian. In Secs. IV, Vand VI we explain the
computation of correlation functions and the extraction of
the form factor F3ðQ2Þ in lattice QCD, including the
techniques used to obtain F3ð0Þ. In Sec. VII, we discuss
the computation of the topological charge using both the
cooling and the gradient-flow methods. Finally, in Sec. VIII
we present our results for the nEDM and in Sec. IX we
provide our conclusions.

II. SIMULATION

A. Formulation

We discuss here the formulation used for the production
of the gauge configurations analyzed in this work. For the
gluonic action we use the Iwasaki improved action given by
[36]

SG ¼ β

3

X
x

�
c0

X4
μ;ν¼1
μ<ν

f1 − ReTrðU1×1
x;μ;νÞg

þ c1
X4
μ;ν¼1
μ≠ν

f1 − ReTrðU1×2
x;μ;νÞg

�
; ð10Þ

where β ¼ 6=g2, U1×1
x;μ;ν is the plaquette and U1×2

x;μ;ν rectan-
gular (1 × 2) Wilson loops. The Symanzik coefficients are
set to c0 ¼ 3.648 and c1 ¼ −0.331 and obey the normali-
zation c0 þ 8c1 ¼ 1, ensuring that the Iwasaki action tends
to the right Yang-Mills action in the continuum limit. For the
discretization of the fermionic actionwe consider the twisted
mass formulation of lattice QCD [37,38]. Although we are
extracting P-odd quantities, all expectation values involve
P-even operators and, thus, this formulation provides
automatic OðaÞ improvement at maximal twist [39]. In
addition it provides infrared regularization of small eigen-
values and allows for efficient simulations with dynamical
fermions. For the mass-degenerate doublet of light quarks
we use the action

SðlÞF ½χðlÞ; χ̄ðlÞ; U� ¼ a4
X
x

χ̄ðlÞðxÞðDW ½U� þm0;l þ iμlγ5τ3ÞχðlÞðxÞ; ð11Þ

where τ3 is the third Pauli matrix acting in the flavor space,m0;l the bare untwisted light quark mass and μl the bare twisted
light quark mass. The massless Wilson-Dirac operator is given by

DW ½U� ¼ 1

2
γμð ~∇μ þ ~∇�

μÞ −
ar
2

~∇μ
~∇�
μ; ð12Þ

with

FIG. 1. F3ð0Þ=ð2mNÞ versus the pion mass squared (m2
π).

Results using Nf ¼ 2þ 1þ 1 twisted mass fermions (this work)
are shown with a red asterisk. We also show results for
Nf ¼ 2þ 1 domain wall fermions [34] at a≃ 0.11 fm where
the CP-odd F3ðQ2Þ was evaluated and F3ð0Þ was determined by
fitting its Q2 dependence (blue squares). Results obtained with
Nf ¼ 2 clover fermions at a≃ 0.11 fm using a background
electric field method are shown with downward green triangles
[35]. All errors shown are statistical. A value determined in chiral
perturbation theory at next to leading order is shown with the
black triangle [20].
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~∇μψðxÞ ¼
1

a
½UμðxÞψðxþ aμ̂Þ − ψðxÞ� and ~∇�

μψðxÞ ¼ −
1

a
½U†

μðx − aμ̂Þψðx − aμ̂Þ − ψðxÞ�; ð13Þ

the forward and backward covariant derivatives, respectively. The action is written in terms of the fields in the “twisted
basis,” χðlÞ, which are related to the fields in the physical basis, ψ ðlÞ, at maximal twist through the transformations

ψ ðlÞðxÞ ¼ 1ffiffiffi
2

p ð1þ iτ3γ5ÞχðlÞðxÞ and ψ̄ ðlÞðxÞ ¼ χ̄ðlÞðxÞ 1ffiffiffi
2

p ð1þ iτ3γ5Þ: ð14Þ

Apart from the doublet of light quarks, we also include a twisted heavy mass-split doublet χðhÞ ¼ ðχc; χsÞ for the strange and
charm quarks [40]. The associated action is

SðhÞF ½χðhÞ; χ̄ðhÞ; U� ¼ a4
X
x

χ̄ðhÞðxÞðDW ½U� þm0;h þ iμσγ5τ1 þ τ3μδÞχðhÞðxÞ; ð15Þ

withm0;h being the bare untwisted quark mass for the heavy doublet, μσ the bare twisted mass along the τ1 direction and μδ
the mass splitting in the τ3 direction. The heavy quark fields in the twisted basis are related to those in the physical basis at
maximal twist through

ψ ðhÞðxÞ ¼ 1ffiffiffi
2

p ð1þ iτ1γ5ÞχðhÞðxÞ and ψ̄ ðhÞðxÞ ¼ χ̄ðhÞðxÞ 1ffiffiffi
2

p ð1þ iτ1γ5Þ: ð16Þ

Unless otherwise stated, in what follows we used the quark
fields in the physical basis. The fermionic action in Eq. (11)
breaks parity and isospin at nonvanishing lattice spacing
with the latter inducing a cutoff effect of Oða2Þ [38].
The reader can find more details on the twisted mass

fermion action in Ref. [41]. Simulating a charm quark may
give rise to concerns regarding cutoff effects. The observables
in this work cannot be used to check for finite lattice spacing
effects induced by heavy sea quarks. However, analyses in
Refs. [42–44] show that such cutoff effects are small.

B. Simulation details

A number of new techniques are implemented for the
extraction of the nEDM using gauge configurations pro-
duced with Nf ¼ 2þ 1þ 1 twisted mass fermions [45]. To
explore these techniques we analyze a single ensemble for
which a large number of gauge configurations are available,
allowing us to reach the required accuracy to reliably

benchmark the various methods. Although this is a calcu-
lation using a single ensemble, previous studies have
shown that finite lattice spacing effects on, e.g., the nucleon
mass for a < 0.1 fm are smaller than our statistical errors
of about ∼3% and we expect this to hold also here. The
ensemble is the so-called B55.32 in the notation of
Ref. [45], which has a lattice spacing of a≃ 0.082 fm
determined from the nucleon mass, pion mass 373MeVand
a spatial lattice extent of L=a ¼ 32. The parameters of the
ensemble are given in Table I.

III. NUCLEON MATRIX ELEMENTS
IN THE PRESENCE OF THE θ-TERM

A precise determination of the neutron electric dipole
moment from first principles may provide a valuable input
for future experiments seeking to observe a nonvanishing
nEDM. It has been recognized for many years that lattice
QCD provides an ideal framework for a nonperturbative
investigation of the nEDM, with first attempts to evaluate it
dating back nearly three decades [46]. This first pioneering
work was based on the introduction of an external electric
field and the measurement of the associated energy shift.
Although for the following ten years there was not much
progress, during the last decade the study of nEDM has
been revived [35,47–52], with new approaches being
developed. These new methods involve the calculation
of the CP-odd F3ðQ2Þ form factor by treating the θ
parameter perturbatively [33,34,47–49] or simulating the
theory with an imaginary θ [32,52]. Alternative definitions
of the topological charge were also considered as, for
example, replacing the topological charge operator with the

TABLE I. Input parameters (β; L; aμ) of our lattice calculation
(B55.32 ensemble) including the lattice spacing, a, determined
from the nucleon mass. Both the neutron (mN) and pion (mπ)
masses are given in lattice and physical units.

β ¼ 1.95, a ¼ 0.0823ð10Þ fm, r0=a ¼ 5.710ð41Þ
323 × 64, L ¼ 2.6 fm aμ 0.0055

No. of confs 4623
amπ 0.15518(21)(33)
Lmπ 4.97
mπ 0.373 GeV
amN 0.5072(17)
mN 1.220(5) GeV
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flavor-singlet pseudoscalar density employing the axial
chiral Ward identities [47,48].
Despite the recent progress, a lattice determination of the

nEDM is inherently difficult and still remains a challenging
task. The expectation value of an operator O in a theory
with nonconserving CP symmetry can, in principle, be
obtained by using the path integral formulation, with the
Lagrangian given in Eq. (5). Thus, the expectation value is
given by

h Oðx1;…; xnÞiθ
¼ 1

Zθ

Z
d½U�d½ψf�d½ψ̄f� Oðx1;…; xnÞe−SQCDþiθ

R
d4xqðxÞ;

ð17Þ
where SQCD ¼ R

d4xLQCD and LQCD is defined in Eq. (2).
In what follows, we will use the notation h…iθ to indicate
expectation values in the CP nonconserving theory, where
the Chern-Simons term, LCS, is included. However, the
numerical determination of the expectation value given in
Eq. (17) suffers from the well-known sign problem due to
the imaginary character of LCS. Therefore, it is not feasible
to produce gauge configurations with the Lagrangian
density of Eq. (5) and carry out an adequate sampling of
the gauge field configuration space. We can overcome this
obstacle by treating the Chern-Simons contribution pertur-
batively assuming that θ is a small parameter,

eiθ
R

d4xqðxÞ ≡ eiθQ ¼ 1þ iθQþOðθ2Þ: ð18Þ
Thus, to leading order in θ, we obtain

h Oðx1;…; xnÞiθ
¼ h Oðx1;…; xnÞiθ¼0

þ iθ

�
Oðx1;…; xnÞ

�Z
d4xqðxÞ

��
θ¼0

þOðθ2Þ;

ð19Þ
where

Q ¼
Z

d4xqðxÞ ð20Þ

is the topological charge. This expansion becomes our
starting point for the calculation of the CP-odd form factor
F3ðQ2Þ and, consequently, of the nEDM.
In the remaining part of this section we present the

methodology of our work in order to extract F3, based on
the linear response of the CP-violating strength parameter,
θ. We adopt the formulation introduced in Ref. [49] as
summarized below.
In order to extract the CP-violating electric dipole form

factor F3ðQ2Þ we consider the nucleon matrix element of
the electromagnetic current, given as

Jemμ ¼
X
f

efψ̄fγμψf; ð21Þ

where ef denotes the electric charge of the quark field ψf.
The nucleon matrix element of the electromagnetic oper-
ator in the θ vacuum can be written as

θhNð~pf; sfÞjJemμ jNð~pi; siÞiθ ¼ ūθNð~pf; sfÞWθ
μðQÞuθNð~pi; siÞ;

ð22Þ

where pf (pi) and sf (si) are the momentum and spin of the
final (initial) spin-1=2 nucleon state N. According to parity
arguments, Wθ

μðQÞ is decomposed into an even and an odd
part. Up to order θ, this has the form

Wθ
μðQÞ ¼ Weven

μ ðQÞ þ iθWodd
μ ðQÞ: ð23Þ

The even part Weven
μ ðQÞ can be written in terms of the CP-

conserving Pauli and Dirac form factors F1ðQ2Þ and
F2ðQ2Þ, respectively:

Weven
μ ðQÞ ¼ γμF1ðQ2Þ − i

F2ðQ2Þ
2mN

Qνσνμ; ð24Þ

while the odd partWodd
μ ðQÞ is written in terms of the electric

dipole F3ðQ2Þ and the anapole FAðQ2Þ form factors:

Wodd
μ ðQÞ ¼ −i

F3ðQ2Þ
2mN

Qνσνμγ5 þFAðQ2ÞðQμQ− γμQ2Þγ5:

ð25Þ

In the absence of the θ term in the action, only the even part
remains. The additional form factors that arise in the odd part
for a nonzero value of θ is the CP-violating form factor,
F3ðQ2Þ, which gives the electric dipole moment according
toEq. (9), and theP-violating, butT-preserving, form factor,
FAðQ2Þ, which measures the anapole moment of the
nucleon. Hence, the anapole form factor is C violating.
Since the action is C preserving, such a form factor is zero
and, thus, will not be considered here.
One approach to study the electric dipole moment is to

generate gauge configurations including the θ term in the
action by considering an imaginary θ [32]. We instead use a
real value of θ and expand the matrix elements to leading
order in θ. This allows us to make use of the gauge
configurations generated without the θ term to evaluate the
appropriate expectation values, according to Eq. (19). We
first examine the expressions with the θ term in the action
before we perform the expansion to leading order in θ. We
are interested in the three-point function given by

Gμ;ðθÞ
3pt ð~q; tf; t; tiÞ≡ hJNð~pf; tfÞJemμ ð~q; tÞJ̄Nð~pi; tiÞiθ; ð26Þ

where J̄Nð~pi; tiÞ and JNð~pf; tfÞ are the interpolating
operators at the space-time of the source and the sink,
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respectively. Thus, according to our notation the nucleon is
created at time ti with momentum ~pi, it couples with the
electromagnetic current at some later time t, and then is
annihilated at time tf having momentum ~pf. The momen-

tum transfer is thus ~Q ¼ ~q ¼ ~pf − ~pi. The subscript θ in

Eq. (26) implies that the expectation value is taken with
respect to the action including the CP-violating
term [Eq. (17)].
Inserting a complete set of states in the three-point

function of Eq. (26) one obtains

Gμ;ðθÞ
3pt ð~q; tf; ti; tÞ≃ e−E

f

Nθ ðtf−tÞe−E
i
Nθ ðt−tiÞ

×
X
sf;si

hJN jNð~pf; sfÞiθθhNð~pf; sfÞjJemμ jNð~pi; siÞiθθhNð~pi; siÞjJ̄Ni; ð27Þ

with Ef
Nθ≡Ef

Nθð~pfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2
f þm2

Nθ

q
and Ei

Nθ≡Ei
Nθð~piÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2
i þm2

Nθ

q
. The nucleon states for a nonzero θ term are denoted

as jNiθ, and are normalized as

hJN jNð~p; sÞiθ ¼ Zθ
Nu

θ
Nð~p; sÞ and θhNð~p; sÞjJ̄Ni ¼ ðZθ

NÞ�ūθNð~p; sÞ: ð28Þ

The spinors uθNð~p; sÞ and ūθNð~p; sÞ satisfy the Dirac equation

ðipþmNθe−i2αðθÞγ5ÞuθNð~p; sÞ ¼ ūθNð~p; sÞðipþmNθe−i2αðθÞγ5Þ ¼ 0; ð29Þ

with the phase e−i2αðθÞγ5 appearing in the mass term due to the CP breaking in the θ vacuum. This requirement suggests that
αðθÞ is odd in θ, while mNθ and Zθ

N are even. In the presence of the θ term, the spinor sum takes a phase in the mass term,
becoming

ΛðθÞ
1=2ð~pÞ ¼

X
s

uθNð~p; sÞūθNð~p; sÞ ¼
−ipþmNθei2αðθÞγ5

2ENθ

: ð30Þ

For small values of the θ parameter we can expand the above expressions, and to leading order in θ, we obtain

αðθÞ ¼ α1θ þOðθ3Þ; mNθ ¼ mN þOðθ2Þ and Zθ
N ¼ ZN þOðθ2Þ: ð31Þ

Upon substituting the above expressions in Eq. (27) one obtains

Gμ;ðθÞ
3pt ð~q; tf; ti; tÞ ¼ jZN j2e−E

f
Nðtf−tÞe−Ei

Nðt−tiÞ
−ipf þmNð1þ 2iα1θγ5Þ

2Ef
N

× ½Weven
μ ðQÞ þ iθWodd

μ ðQÞ�−ipi þmNð1þ 2iα1θγ5Þ
2Ei

N
þOðθ2Þ; ð32Þ

up to linear terms in θ. When combined with the leading order of Eq. (19), the above equation contains all the information
needed for the evaluation of F3ðQ2Þ. The advantage of this method is that the Green’s functions of the theory in the presence
of the CP-violating term can be expressed in terms of expectation values obtained using the gauge configurations generated
with the action with θ set to zero. For the three-point function, this gives

Gμ;ðθÞ
3pt ð~q; tf; ti; tÞ ¼ hJNð~pf; tfÞJemμ ð~q; tÞJ̄Nð~pi; tiÞiθ ð33Þ

¼ Gμ;ð0Þ
3pt ð~q; tf; ti; tÞ þ iθGμ;ð0Þ

3pt;Qð~q; tf; ti; tÞ þOðθ2Þ; ð34Þ

where

Gμ;ð0Þ
3pt ð~q; tf; ti; tÞ ¼ hJNð~pf; tfÞJemμ ð~q; tÞJ̄Nð~pi; tiÞi; ð35Þ

Gμ;ð0Þ
3pt;Qð~q; tf; ti; tÞ ¼ hJNð~pf; tfÞJemμ ð~q; tÞJ̄Nð~pi; tiÞQi: ð36Þ
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We now equate Eq. (34) to Eq. (32) and express Gμ;ð0Þ
3pt and Gμ;ð0Þ

3pt;Q through the Weven
μ ðQÞ and Wodd

μ ðQÞ parts, respectively:

Gð0Þ
3ptð~q; tf; ti; tÞ ¼ jZN j2e−E

f
Nðtf−tÞe−Ei

Nðt−tiÞ
−ipf þmN

2Ef
N

Weven
μ ðQÞ−ipi þmN

2Ei
N

; ð37Þ

Gð0Þ
3pt;Qð~q; tf; ti; tÞ ¼ jZN j2e−E

f
Nðtf−tÞe−Ei

Nðt−tiÞ
�
−ipf þmN

2Ef
N

Wodd
μ ðQÞ−ipi þmN

2Ei
N

þ 2α1mN

2Ef
N

γ5Weven
μ ðQÞ−ipi þmN

2Ei
N

þ −ipf þmN

2Ef
N

Weven
μ ðQÞ 2α

1mN

2Ei
N

γ5

�
: ð38Þ

A similar analysis can be carried out for the case of the two-point functions. In the presence of the θ-term of Eq. (5) the
relevant two-point function is given by

GðθÞ
2ptð~q; tf; tiÞ≡ hJNð~q; tfÞJ̄Nð~q; tiÞiθ ¼ jZθ

N j2e−ENθ ðtf−tiÞ −iQþmNθei2αðθÞγ5

2ENθ

: ð39Þ

By treating the Chern-Simons term perturbatively one obtains

GðθÞ
2ptð~q; tf; tiÞ ¼ Gð0Þ

2ptð~q; tf; tiÞ þ iθGð0Þ
2pt;Qð~q; tf; tiÞ þOðθ2Þ; ð40Þ

where

Gð0Þ
2ptð~q; tf; tiÞ ¼hJNð~q; tfÞJ̄Nð~q; tiÞi ¼ jZN j2e−ENt

−iQþmN

2EN
; ð41Þ

Gð0Þ
2pt;Qð~q; tf; tiÞ ¼hJNð~q; tfÞJ̄Nð~q; tiÞQi ¼ jZN j2e−ENt

2α1mN

2EN
γ5: ð42Þ

From the two-point function Gð0Þ
2pt;Q one can extract the

parameter α1, which enters in the decomposition of the
nucleon matrix element to leading order in θ. This will be
further discussed in Sec. V.
Using Eq. (42) in conjunction with Eqs. (37) and (38)

one can obtain F3ðQ2Þ from the leading order in θ. To
summarize, this approach requires: (i) the evaluation of
two- and three-point functions using gauge configurations
simulated by setting θ ¼ 0, (ii) the computation of the
topological chargeQ that will be explained in Sec. VII and
(iii) choosing appropriate projectors in order to extract
F3ðQ2Þ using suitable ratios of correlation functions, as
will be explained in Sec. VI.

IV. CORRELATION FUNCTIONS

Taking into account the Dirac structure of the matrix
elements the two- and three-point functions are expressed
as

G2ptð~q; tf; ti;Γ0Þ≡ jZN j2e−ENðtf−tiÞΓ0
αβ½Λ1=2ð~qÞ�αβ; ð43Þ

G2pt;Qð~q; tf; ti;Γ5Þ≡ jZN j2e−ENðtf−tiÞΓ5
αβ

�
α1mN

EN
γ5

�
αβ

;

ð44Þ

Gμ
3ptð~q; tf; ti; t;ΓkÞ ¼ jZN j2e−E

f
Nðtf−tÞe−Ei

Nðt−tiÞΓαβ
k ½Λ1=2ð~pfÞWeven

μ ðQÞΛ1=2ð~piÞ�αβ; ð45Þ

Gμ
3pt;Qð~q; tf; ti; t;ΓkÞ ¼ jZN j2e−E

f
Nðtf−tÞe−Ei

Nðt−tiÞΓαβ
k

�
Λ1=2ð~pfÞWodd

μ ðQÞΛ1=2ð~piÞ

þ α1mN

Ef
N

γ5Weven
μ ðQÞΛ1=2ð~piÞ þ Λ1=2ð~pfÞWeven

μ ðQÞ α
1mN

Ei
N

γ5

�
αβ

: ð46Þ
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Note that we dropped the θ superscript on the two- and
three-point functions, since from now on we consider
expectation values with θ ¼ 0. Also we define Λ1=2 that
is given in Eq. (30) by setting θ ¼ 0 and Γj is an
appropriate projector acting on the Dirac structure of the
two- and three-point functions. For the three-point function
we choose the three projectors given by

Γk ¼
i
4
ð1þ γ0Þγ5γk ðk ¼ 1; 2; 3Þ; ð47Þ

which can disentangle the four form factors. Using three
projectors (one for each spatial direction) instead of
summing over k increases the computational cost, since
separate sequential inversions are required for each pro-
jector. We use inexact deflation [53,54] to speed up the
inversions. In total we do three inversions for the projectors
and four for each sink-source time separation. The use of
inexact deflation brings a factor of 3 speedup enabling us to
do 12 inversions for the cost of four [55]. The use of the
three projectors is needed for the application of the position
space methods for the extraction of F3ð0Þ, as discussed in
Sec. VI B 2.
Two projectors are employed in the evaluation of the

two-point functions, namely

Γ0 ¼
1

4
ð1þ γ0Þ; Γ5 ¼

γ5
4
; ð48Þ

with the projector Γ5 needed in order to access the
parameter α1.
In the actual computation, we employ the proton

interpolating operators, which in the physical basis read

JNðxÞ ¼ ϵabcuaα½uðxÞ⊤bCγ5dðxÞc�; ð49Þ
where C is the charge conjugation matrix. Since we employ
degenerate up and down quarks, the proton Green’s
functions are equivalent to those of the neutron. Our
framework preserves isospin so the proton and neutron
electric dipole moments are the same up to a sign. We use
Gaussian smeared quark fields [56,57] to increase the
overlap with the neutron state and decrease the overlap
with excited states. The smeared interpolating fields are
given by

qasmearðt; ~xÞ ¼
X
~y

Fabð~x; ~y;UðtÞÞqbðt; ~yÞ;

F ¼ ð1þ aGHÞNG;

Hð~x; ~y;UðtÞÞ ¼
X3
i¼1

½UiðxÞδx;y−{̂ þU†
i ðx − {̂Þδx;yþ{̂�: ð50Þ

In addition, we apply array processor experiment (APE)
smearing to the gauge fieldsUμ entering the hopping matrix
H. The parameters for the Gaussian smearing aG andNG are
optimized using the nucleon ground state [58]. Different
combinations of NG and aG have been tested in previous
work and it was found that combinations of NG and aG that
give a root mean square radius of about 0.5 fm are optimal
for suppressing excited states in the nucleon case. The
results of this work have been produced with NG ¼ 50,
aG ¼ 4, NAPE ¼ 20, aAPE ¼ 0.5.
Besides the connected three-point function depicted in

Fig. 2 there is a disconnected diagram that can contribute to
the nucleon matrix element of the electromagnetic current.
However, from a previous study [55], we found for σπN a
maximum disconnected contribution of about 10% of the
connected while for the electromagnetic form factors at the
lowest available Q2 contributions are less than 1%. Hence,
although disconnected contributions to F3 have not yet
been studied, we expect them to be of similar magnitude as
the other nucleon form factors. Since the nEDM is a rather
noisy observable we neglect the disconnected contribution
in the present computation. Hence, the correlators of
Eqs. (45) and (46) are calculated using the connected
diagram only. For the computation of the connected three-
point function we employ sequential inversions through
the sink.
In our computation we take the nucleon creation operator

at a fixed position ~xi ¼ ~0 (source) with momentum ~pi. The
nucleon annihilation operator at a later time tf (sink) carries
zero momentum, i.e. we set ~pf ¼ 0. The electromagnetic
current Jemμ couples to a quark at an intermediate time t
(insertion) and carries momentum ~q while translation
invariance enforces ~q ¼ −~pi. At a fixed sink-source time
separation, tsep ¼ tf − ti, we obtain results for all possible
momentum transfers and insertion times t with one set of

FIG. 2. Diagrammatic representation of the connected three-point function (left panel) and two-point function (right panel).
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sequential inversions per choice of tf. We consider three
values of tsep in order to check for ground state dominance.

V. EXTRACTION OF α1

The α1 parameter can be determined from a ratio of two-
point functions with the appropriate projectors. Although
there is more than one choice for extracting α1, we find that
the optimal choice with respect to the resulting signal-to-
noise ratio is given by

R2ptðα1; tf; tiÞ ¼
G2pt;Qð0; tf; ti;Γ5Þ
G2ptð0; tf; ti;Γ0Þ

; ð51Þ

with the two-point functions defined in Eqs. (43) and (44).
For the extraction of α1 no momentum is required and we
thus set ~q ¼ 0. By taking the large tsep limit Eq. (51) results
in a time-independent quantity (plateau)

Π2ptðα1Þ ¼ lim
tsep→∞

R2ptðα1; tf; tiÞ ¼ α1; ð52Þ

which can be fitted to a constant yielding α1. The
determination of α1 requires the evaluation of the
topological charge, as indicated by the subscript Q on

the two-point function of Eq. (51). The dependence of α1

on the definition of Q is investigated in Sec. VIII A.

VI. EXTRACTION OF F3ðQ2Þ
Before we discuss the calculation of the topological

charge Q needed for both the evaluation of α1 and F3ðQ2Þ
we first explain our methods to extract F3ðQ2Þ at Q2 ¼ 0
using the three- and two-point functions mentioned in the
previous section.
Our calculation proceeds by evaluating the diagrams of

Fig. 2. In order to cancel all unknown overlaps and the
exponential time dependence we take appropriate ratios
using the two- and three-point functions of Eqs. (43) and
(46). Specific linear combinations for three-point functions
given in Eq. (45) are also constructed in order to eliminate
the dominant form factors F1 and F2, as explained below.
When the insertion-source and sink-insertion time separa-
tions are large enough so that contamination from higher
excitations is small we obtain a time-independent quantity
(plateau) to which we fit to extract F3ðQ2Þ. The traces of
Eqs. (43)–(46) are calculated using Dirac trace algebra,
which is implemented with a symbolic analysis package in
Mathematica (see, e.g., Ref. [59]). For the evaluation of F3

we consider the following ratio:

Rμ
3pt;Qð~q; tf; ti; t;ΓkÞ ¼

Gμ
3pt;Qð~q; tf; ti; t;ΓkÞ
G2ptð~q; tf − ti;Γ0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2ptð~q; tf − t;Γ0ÞG2ptð~0; t − ti;Γ0ÞG2ptð~0; tf − ti;Γ0Þ
G2ptð~0; tf − t;Γ0ÞG2ptð~q; t − ti;Γ0ÞG2ptð~q; tf − ti;Γ0Þ

vuut ; ð53Þ

for each one of the three projectors given in Eq. (48). For sufficiently large separations tf − t and t − ti these ratios become
time independent (plateau region),

Πμ
3pt;QðΓkÞ ¼ lim

tf−t→∞
lim

t−ti→∞
Rμ
3pt;Qð~q; tf; ti; t;ΓkÞ; ð54Þ

where μ is the current index. Using Eqs. (43) and (46), carrying out the Dirac algebra and simplifying using our kinematics,
we obtain the following expressions:

Π0
3pt;QðΓkÞ ¼ iCQk

�
α1F1ðQ2Þ

2mN
þ ðEN þ 3mNÞα1F2ðQ2Þ

4m2
N

þ ðEN þmNÞF3ðQ2Þ
4m2

N

�
; ð55Þ

Πj
3pt;QðΓkÞ ¼ C

�ðEN −mNÞα1δk;jF1ðQ2Þ
2mN

þQkQjF3ðQ2Þ
4m2

N
þ α1F2ðQ2Þðð2ENmN − 2m2

NÞδk;j þQkQjÞ
4m2

N

�
j ¼ 1; 2; 3;

ð56Þ

where C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2
N

ENðENþmNÞ

q
.

The presence of the CP-even form factors in Eqs. (55) and (56) requires the values of F1ðQ2Þ and F2ðQ2Þ. We can
eliminate F1 and F2 by substituting them with the appropriate CP-even ratios in a large time limit [60]. These ratios are
given by

QiF1ðQ2Þ ¼ 1

CðEN þmNÞ
½4im2

NΠi
3ptðΓ0Þ þmNðEN −mNÞϵijkΠj

3ptðΓkÞ�; ð57Þ
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QiF2ðQ2Þ ¼ 1

CðEN þmNÞ
½−4im2

NΠi
3ptðΓ0Þ þ 2m2

Nϵ
ijkΠj

3ptðΓkÞ�; ð58Þ

where a summation over the spatial indices j, k is implied. Thus, we can extract F3 from the following combination:

QiF3ðQ2Þ ¼ 1

CðEN þmNÞ
½4m2

NΠ0
3pt;QðΓiÞ − α12mNð4im3

NΠi
3ptðΓ0Þ þmNðEN −mNÞϵijkΠj

3ptðΓkÞÞ

− α1ðEN þ 3mNÞð−4im2
NΠi

3ptðΓ0Þ þ 2m2
Nϵ

ijkΠj
3ptðΓkÞÞ�; ð59Þ

where, instead of F1 and F2, we substitute Eqs. (57) and
(58) into Eq. (55), allowing us to extract F3ðQ2Þ. We first
calculate α1 and then take the linear combination of
Π0

3pt;QðΓkÞ, Πi
3ptðΓ0Þ and Πj

3ptðΓkÞ from which the plateau

value directly yields QiF3ðQ2Þ. An analysis using sepa-
rately the ratios involving F1, F2 and F3 [Eqs. (55), (57),
(58)] has also been carried out using singular value
decomposition, which gave consistent numerical results
for F3ðQ2Þ. Although Eqs. (55) and (56) both involve F3,
we use Eq. (55), which results in a better signal-to-noise
ratio. Moreover, the absence of the momentum factor Qi in
front of F1 and F2 in Eq. (56) does not allow the usage of
Eqs. (57) and (58) to eliminate them in favor of F3. The
case j ≠ k does not allow access to the lowest momentum
transfer making the extrapolation to Q2 ¼ 0 less reliable.
A more convenient, but equivalent, procedure is to

introduce the electric and magnetic Sachs form factors,
GE and GM, instead of the Dirac and Pauli. These are
related via

GEðQ2Þ ¼ F1ðQ2Þ − Q2

4m2
N
F2ðQ2Þ; ð60Þ

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ: ð61Þ

Employing an appropriate choice of projectors and inser-
tion indices we find

Πj
3ptðΓ0Þ ¼ −C

i
2mN

QjGEðQ2Þ; ð62Þ

Πj
3ptðΓkÞ ¼ −C

1

2mN
ϵjikQiGMðQ2Þ; ð63Þ

with the indices i, j, k being spatial. By combining
Eqs. (62) and (63) with Eq. (55) we extract the following
linear combination of ratios:

Πk
F3

¼ −iΠ0
3pt;QðΓkÞ þ iα1Πk

3ptðΓ0Þ þ α1
1

2

X3
i;j¼1

ϵjkiΠ
j
3ptðΓiÞ

¼ CðEN þmNÞ
4m2

N
QkF3ðQ2Þ; ð64Þ

for which the decomposition only depends on the desired
form factor F3ðQ2Þ.
As can be seen from Eq. (55), the appearance of the

momentum transfer as a multiplicative factor in front of
F3ðQ2Þ does not allow the calculation of F3ðQ2 ¼ 0Þ
directly in momentum space. We explain below three
different techniques that allow us to extract F3ð0Þ.

A. Extraction of F3ð0Þ through a dipole fit

The first approach is the commonly used parametrization
of the Q2 dependence of F3ðQ2Þ extracted from Eq. (55)
followed by a fit to extract F3ð0Þ treating it as a fitting
parameter. We use a dipole ansatz [33] for Q2 dependence
of F3ðQ2Þ of the form

F3ðQ2Þ ¼ F3ð0Þ
ð1þ Q2

m2
F3

Þ2
; ð65Þ

where F3ð0Þ and mF3
are fit parameters.

B. Position space methods

The other approach that was recently developed and
applied in the study of the Pauli form factor F2ðQ2Þ [29] is
based on removing the momentum factor in front of
F3ðQ2Þ by employing the so-called position space meth-
ods. There are two ways to accomplish this: the first is to
apply a continuumlike derivative to the ratio and the second
is to first determine the plateau values in momentum space,
then take the Fourier transform to coordinate space and
finally transform back to momentum space using a con-
tinuous Fourier transform in such a way that the hindering
momentum factor is avoided in the final result. In what
follows we will refer to the first position space method as
“application of the derivative to the ratio” whereas to the
second as “elimination of the momentum in the plateau
region.”We briefly explain these techniques in the next two
subsections.

1. Application of the derivative to the ratio technique

Assuming continuous momenta one can formally
remove the Qk dependence in front of F3ðQ2Þ in
Eq. (64) by applying a derivative with respect to Qj:
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lim
Q2→0

∂
∂Qj

Πk
F3
ð ~QÞ ¼ CðEN þmNÞ

4m2
N

δkjF3ð0Þ: ð66Þ

For simplicity we explicitly show the application of the
derivative to the ratio in Eq. (53), which leads to the first
term in Eq. (64); the generalization on the other two ratios
is straightforward. This gives

lim
Q2→0

∂
∂Qj

Rμ
3pt;Qð~q; tf; ti; t;ΓkÞ

¼ lim
Q2→0

∂
∂Qj

Gμ
3pt;Qð~q; tf; ti; t;ΓkÞ

G2ptð~q; tf; ti;Γ0Þ
; ð67Þ

¼ 1

G2ptð~0; tf; ti;Γ0Þ
·

XL=2−a
xj¼−L=2þa

×

�XL−a
xi¼0
i≠j

ixjG
μ
3pt;Qð~x; tf; ti; t;ΓkÞ

�
; ð68Þ

where in the second line the three-point function
Gμ

3pt;Qð~x; tf; ti; t;ΓkÞ is expressed in position space. The
derivative only acts on the three-point function since any
derivatives acting on the two-point functions in the above
expression vanish exactly when setting Q2 ¼ 0. In finite
volume this expression approximates the derivative of a δ
distribution in momentum space,

a3
XL=2−a

xj¼−L=2þa

0
@XL−a

xi¼0
i≠j

ixjG
μ
3pt;Qð~x;tf;ti;t;ΓkÞ

1
A

¼ 1

V

X
~k

0
@a3

XL=2−a
xj¼−L=2þa

0
@XL−a

xi¼0
i≠j

ixjexpði~k~xÞ
1
A
1
A

×Gμ
3pt;Qð~k;tf;ti;t;ΓkÞ;

⏤⏤→
L→∞ 1

ð2πÞ3
Z

d3~k
∂
∂kjδ

ð3Þð~kÞGμ
3pt;Qð~k;tf;ti;t;ΓkÞ: ð69Þ

For a finite L this implies a residual t dependence
Gμ

3pt;Qð~q; tf; ti; t;ΓkÞ ∼ exp ð−ΔENtÞ with ΔEN ¼ ENð~qÞ−
mN . Only, for L → ∞, we have ΔEN → 0.
According to the above formulation, the basic building

blocks for this technique are the standard two-point
functions and the derivativelike three-point functions
∂Gμ

3pt;Qð~q; tf; ti; t;ΓkÞ=∂Qj. In the actual lattice computa-
tion this involves the calculation of the full three-point
function in position space before multiplying by xj, taking
the Fourier transformation and forming the ratio of
Eq. (68). Additionally, this technique requires a large
enough lattice extent L for the summation in Eq. (69) to
approximate the δ function.

In order to extract F3ð0Þ from the decomposition in
Eq. (64) one performs the derivative on the other two
three-point functions following the same procedure as
outlined above. Namely, one needs the derivatives
∂Gμ

3pt;Qð~q; tf; ti; t;ΓkÞ=∂Qj, ∂Gk
3ptð~q; tf; ti; t;Γ0Þ=∂Qj as

well as ∂Gk
3ptð~q; tf; ti; t;ΓiÞ=∂Qj. The residual t depend-

ence that may remain in Eq. (66) of the form exp ð−ΔENtÞ
is expected to vanish only as L → ∞.

2. The elimination of the momentum in the
plateau region technique

This method was originally developed for the nucleon
isovector magnetic moment or equivalently F2ð0Þ [29] and
allows to extract F3ð0Þ in a model-independent way
without the residual time dependence of the previous
method. In principle, it is not restricted to the case of a
simple momentum prefactor, but can be used to remove any
kinematic structure that would otherwise prevent the
extraction of a form factor at zero momentum without
making a fit ansatz. In the following we discuss the
application of this method for F3ð0Þ. We want to stress
that a key element in the extraction of F3ðQ2Þ using this
method is the use of the projectors of Eq. (47) without
summing over the index k.
Our starting point is Eq. (64), which as explained is

obtained by combining the corresponding expression for
the CP-odd ratio in Eq. (55) with Eqs. (62) and (63). As far
as the Qk dependence is concerned Eq. (64) is now similar
to the one for the magnetic form factor in Eq. (63).
Therefore, we adopt the elimination of the momentum in
the plateau region technique as discussed in Ref. [29] for
this particular linear combination of ratios to obtain a
continuous curve for F3ðQ2Þ from which the value of
F3ð0Þ, and consequently the nEDM, can be extracted. In
the following we briefly outline the basic idea behind the
elimination of the momentum in the plateau region tech-
nique, referring the reader to Ref. [61] for more details.
While for the application of the derivative to the ratio

approach the time dependence is only fitted after applying
the derivative in position space, the elimination of the
momentum in the plateau region technique aims at remov-
ing any time dependence before applying the derivative.
For now we restrict ourselves to on-axis momenta, e.g.,
~q ¼ ð�Q1; 0; 0ÞT (and all permutations thereof). After
forming the combination of ratios in Eq. (64) we average
over all momentum directions, taking only index combi-
nations into account that give a nonzero contribution for a
given Q1 value. The resulting, averaged ratios are denoted
by ΠðQ1Þ.
Applying a Fourier transform on ΠðQ1Þ gives the

corresponding ratio ΠðyÞ in position space, which satisfies
ΠðyÞ ≈ −Πð−yÞ up to statistical fluctuations. Note that in
an actual lattice simulation the Fourier transform requires
an additional cutoff Q1max, because the calculation of
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ΠðQ1Þ will be restricted to a limited number of lattice
momenta due to noise. Typically this cutoff is much smaller
than the maximally allowed lattice momentum. Since we
have

ΠðyÞ¼
	þΠðnÞ; n¼0;…;N=2;

−ΠðN−nÞ; n¼N=2þ1;…;N−1;N¼L=a;

ð70Þ

where n ¼ y=a, we can average over positive and negative
values of y, yielding an exactly antisymmetric expression
Π̄ðnÞ. The most crucial part of this method is to transform
Π̄ðnÞ back in a way that allows us to introduce continuous
momenta. This can be achieved by rewriting the corre-
sponding Fourier transform in the following way:

ΠðkÞ ¼ ½expðiknÞΠ̄ðnÞ�n¼0;N=2 þ
XN=2−1

n¼1

expðiknÞΠ̄ðnÞ

þ
XN=2þ1

n¼N−1
expðikðN − nÞÞΠ̄ðnÞ;

¼ ½expðiknÞΠ̄ðnÞ�n¼0;N=2

þ 2i
XN=2−1

n¼1

Π̄ðnÞ sin
�
k
2
· ð2nÞ

�
; ð71Þ

and defining k̂≡ 2 sinðk
2
Þ and Pnðk̂2Þ ¼ Pnðð2 sinðk2ÞÞ2Þ ¼

sinðnkÞ= sinðk
2
Þ, leading to

Πðk̂Þ − Πð0Þ ¼ i
XN=2−1

n¼1

k̂ Pnðk̂2ÞΠ̄ðnÞ: ð72Þ

The function Pnðk̂2Þ is related to Chebyshev polynomials
of the second kind and hence analytic in ð−∞;þ1Þ,
allowing us to evaluate Πðk̂Þ at any intermediate value.
Dropping the factor k̂ in the above expression, we obtain
the desired expression for the neutron electric dipole form
factor without explicit momentum factors,

F3ðk̂2Þ
2mN

¼ i
XN=2−1

n¼1

Pnðk̂2ÞΠ̄ðnÞ; ð73Þ

where we assume that all suppressed kinematic factors have
been included in Π̄ðnÞ. This expression can be computed
exactly on the lattice—up to the aforementioned, additional

cutoff in the initial Fourier transform—for any reasonable
value of k̂2, resulting in a smooth curve for F3ðQ2Þ.
Consequently, taking the statistical errors of the input data
into account via resampling yields a smooth error band for
the form factor, as we will demonstrate in Sec. VIII B 3.
It is now straightforward to extend the approach to

arbitrary sets of off-axis momentum classes:

MðQ1; Q2
offÞ ¼ f~qj~q ¼ f�Q1; Q2; Q3g; Q2

2 þQ2
3 ¼ Q2

offg;
ð74Þ

where f�Q1; Q2; Q3g denotes all permutations of�Q1,Q2

and Q3. However, to combine the results for F3ðQ2Þ for
different Q2

off classes as a function of continuous Euclidean
momenta Q2 ¼ Q2ðk̂; Q2

offÞ, we need to consider an ana-
lytic continuation for classes with Q2

off > 0 to reach zero
total momentum, i.e. Q2 ¼ 0. For our case this amounts to
replacing k → iκ and k̂ → iκ̂ ¼ −2 sinhðκ

2
Þ in the derivation

outlined above. Note that this also affects Pn, i.e.
Pnðκ̂2Þ ¼ sinhðnκÞ= sinhðκ

2
Þ. In order to obtain the final

result we combine the results from several sets of momen-
tum classes MðQ1; Q2

offÞ by taking the error weighted
average of the separate results.
Finally, we remark that, in principle, Eq. (56) could also

be used instead of (55) to calculate F3ð0Þ. However, in this
case, not all of the terms share the same momentum
prefactor and one expects the signal from this decompo-
sition to be weaker than the one from Eq. (55) due to the
additional momentum prefactor for F3ðQ2Þ. Moreover,
from a technical point of view the removal of the double
momentum factor QjQk is more involved. Therefore, we
restrict ourselves to the combination of current and pro-
jection indices given in Eq. (55).

VII. THE TOPOLOGICAL CHARGE

As already demonstrated in the previous section the
evaluation of the F3ðQ2Þ form factor requires the compu-
tation of the topological charge, the Q defined in Eq. (20).
In practice, any valid lattice discretization of qðxÞ leading
to the right continuum expression of the charge density
given in Eq. (4) could be used for the evaluation ofQ on the
lattice. Here we choose an improved definition:

qðxÞ ¼ c0qclovL ðxÞ þ c1qrectL ðxÞ; ð75Þ

with

qclovL ðxÞ ¼ 1

32π2
ϵμνρσTrðCclov

μν Cclov
ρσ Þ and qrectL ðxÞ ¼ 2

32π2
ϵμνρσTrðCrect

μν Crect
ρσ Þ; ð76Þ

where
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ð77Þ

In order to remove the discretization error at tree level, we
use the coefficients c0 ¼ 5=3 and c1 ¼ −1=12. The lattice
operator used for the evaluation of the topological charge
on thermalized configurations suffers from ultraviolet
fluctuations of the gauge configurations, hence leading
to noninteger results. It is thus customary to use a
smoothing technique, which damps these fluctuations by
minimizing the action locally, without destroying the
underlying topological structure.
Such techniques include cooling and the more recently

introduced gradient flow [30,62]. It was shown recently
[63] that both techniques provide similar results on topo-
logical observables, such as the average action and the
topological susceptibility when smoothing is done with the
ordinary Wilson action. In Ref. [31] we show that this is
also true for actions that include a rectangular term such as
the Iwasaki and the Symanzik tree-level improved action.
The equivalence is realized by the leading order perturba-
tive rescaling [31]

τ≃ nc
3 − 15c1

; ð78Þ

where τ, the gradient-flow time, and nc, the number of
cooling steps, are the smoothing scales for gradient flow
and cooling, respectively.
We apply both techniques, namely cooling and gradient

flow, on the configurations of the B55.32 ensemble using
the naive Wilson, the Symanzik tree-level improved and the
Iwasaki action. Regarding the gradient flow we investigate
how the elementary integration step ϵ affects our results and
find that setting ϵ ¼ 0.02 is a safe option; as a matter of fact
we observe that smaller elementary integration steps give
indistinguishable results.
While cooling, we measure the improved definition of

the topological charge for every cooling step. Since the
gradient flow is more expensive, we avoid taking mea-
surements for every integration step, but instead we
compute the topological charge every Δτ ¼ 0.1; this
corresponds to five integration steps. We cover in total
80–100 cooling steps while for gradient flow we fix the
maximum gradient-flow time according to the perturbative
expression of Eq. (78), taking for nc the maximum number
of cooling steps. The cooling/gradient-flow rescaling fac-
tors are given in Table II.
According to Ref. [30] one reads an observable, whose

value depends on the topological charge, at a fixed value of

ffiffiffiffi
8t

p ¼ Oð0.1 fmÞ. The gradient-flow time t is chosen such
that it is large enough that the relevant observable has small
discretization effects, but at the same time small enough
that the topological content of the fields is preserved. The
observable under consideration here is F3=2mN and it
should be scale invariant and, thus, show a plateau as a
function of τ and nc at the fixed value of

ffiffiffiffi
8t

p
within the

plateau region. For practical reasons we choose a value of τ
that satisfies

ffiffiffiffi
8t

p
≈ 0.6 fm and corresponds to the rounded

value of nc taken in steps of ten; the associated values of nc
as well as τ can be found in Table II. In Ref. [31] we
demonstrate in more detail that topological quantities on
the same ensemble, for the three smoothing actions,
become equal after a small number of nc and the equivalent
gradient-flow time; as a matter of fact for

ffiffiffiffi
8t

p
≈ 0.6 fm the

equality between the smoothing procedures of the gradient
flow and cooling is satisfied. In Fig. 3 we present the time
history of the topological charge Q obtained with cooling
using nc ¼ 50 and the gradient flow at τ ¼ 6.3 using the
Iwasaki action. This plot demonstrates that the topological
charge does not suffer from large autocorrelations along the
sampling time line with an integrated autocorrelation time
of τint ¼ 2.6ð1Þ and there is a high correlation of 94% [31]
between results obtained using cooling and the gradient
flow. The latter is a result of the equivalence between the
two procedures. Additionally, in Fig. 3, we provide the
associated histograms of the topological charge for both
cooling and gradient flow, which is found to be approx-
imately Gaussian (according to Anderson-Darling test
[64]). These observations suggest that for both smoothing

TABLE II. The first and second columns give the values of the
parameters c0 and c1 entering in gauge action and the third gives
the ratio for nc=τ extracted using Eq. (78). The fourth column
gives the leading order perturbative rescaling between the number
of cooling steps and the gradient-flow time such that the two
smoothing techniques are equivalent, the fifth column gives the
value of the cooling step which corresponds to fixing

ffiffiffiffi
8t

p
≈

0.6 fm and the sixth column the associated gradient-flow time.

Smoothing action c0 c1 nc=τ ncð
ffiffiffiffi
8t

p
≈ 0.6 fmÞ τ ðncÞ

Wilson 1 0 3 20 6.7

Symanzik
tree-level
improved

5
3

− 1
12

4.25 30 7.1

Iwasaki 3.648 −0.331 7.965 50 6.3
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approaches the sampling of the topological charge is
adequately good. Similar results are also obtained for the
Wilson and Symanzik tree-level improved actions. These
are the basic requirements that the topological charge
should obey in order to give reliable results for the nEDM.

VIII. RESULTS

In this section, we present our results on the CP-odd
form factor limQ2→0F3ðQ2Þ, with our main focus being the
extraction of the nEDM, using the three approaches
discussed in Sec. VI. Namely we use a dipole ansatz to
perform an extrapolation to Q2 ¼ 0, as well as the two
position space techniques. For all three approaches we need
the evaluation of α1, which enters into the determination of
F3ð0Þ, as shown in Eq. (64). Hence, we first discuss the
determination of α1.

A. Calculation of α1

To extract α1 we calculate the two-point function
G2pt;Qð~q; tf;Γ5Þ, which involves the topological charge
Q, as well as the usual two-point function G2ptð~q; tf;Γ0Þ.
Note that the argument ti has been omitted, since in our
calculation we shift the source point to ti ¼ 0. We form the
ratio of these two-point functions according to Eq. (51) at

zero momentum transfer, ~q ¼ ~0. The topological charge is
computed using both cooling and the gradient-flow method
employing the three gauge actions, Wilson, Symanzik tree-
level improved and Iwasaki. For the calculation of the α1

parameter we use a large statistical sample of a total of
36720 two-point functions (2295 configurations, each with
16 source positions). This allows us to decrease signifi-
cantly the statistical errors on α1. As a consequence, the
bins on which α1 is computed do not coincide with those of
F3, and thus we need an alternative procedure to jackknife
for the computation of the statistical errors on the nEDM.
This will be discussed in Sec. VIII B.

The ratio R2ptðα1; tfÞ is shown in Fig. 4 as a function of
tf=a, for which the topological charge is measured using
the gradient flow with the Iwasaki action at τ ¼ 6.3. As can
be seen, for tf=a > 8 the ratio becomes time independent
yielding Π2ptðα1Þ. By fitting to a constant in the plateau
region within the time interval 9–20 we extract the value of
α1 ¼ −0.217ð18Þ. We have checked to see that by modi-
fying both the starting and ending time slices in the fit
within the region tf=a ¼ 7 to 22 we get compatible results.
An example is shown in Fig. 4 for the range tf=a ¼ 10 to
17, which gives the green band.
The final result on α1 should not depend on the

smoothing scale; in other words there should be a plateau
for some region of the smoothing scale nc or equivalently τ.

FIG. 3. The time history of the topological charge (left panel) and its associated distribution (right panel). The charge has been
obtained via cooling (red) and gradient flow (blue) with an Iwasaki action with black nc ¼ 50 and τ ¼ 6.3, respectively.

FIG. 4. The ratio R2ptðα1; tfÞ as a function of tf=a (ti was set
to 0). A constant fit between the time slices 9–20 gives the solid
line α1 ¼ −0.217ð18Þ with χ2=d:o:f ¼ 0.51 and the red band is
the associated statistical uncertainty. The green band corresponds
to the fit range 10–17 with χ2=d:o:f ¼ 0.29, which is fully
compatible with the red one. The employed topological charge
Q is extracted via the gradient flow at τ ¼ 6.3 using the Iwasaki
action.
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This is demonstrated in Fig. 5 where we plot the value of α1

as a function of nc and the gradient-flow time τ rescaled
according to Eq. (78) for all three gauge actions. As can be
seen, the α1 parameter remains unchanged after nc ≥ 20
cooling steps or the equivalent gradient-flow time τ. This is
in perfect agreement with fixing

ffiffiffiffi
8t

p
≈ 0.6 fm. Therefore,

setting nc according to the fifth column in Table II or fixing
it to the corresponding flow time for the gradient flow both
yield a consistent value for α1. We will employ the value
α1 ¼ −0.217ð18Þ, obtained using the gradient flow at τ ¼
6.3 for the Iwasaki action in order to determine F3ðQ2Þ. We
also observe that for all gauge actions the values of α1

extracted when using cooling or the gradient flow to
determine the topological charge are in agreement, reflect-
ing the equivalence between the two procedures. The
results shown in Fig. 5 use the topological charge obtained
for every Δnc ¼ 10 starting from nc ¼ 10 while cooling
and for the corresponding gradient-flow time τ when
smoothing via the gradient flow. The same computation
of the topological charge is also used in the evaluation of
the three-point function. For the determination of the errors
we use jackknife with a bin size of 5; larger bin sizes give
consistent results.

B. Results for F3ð0Þ
1. F3ð0Þ via extrapolation in Q2

We first discuss the determination of F3ð0Þ extracted by
fitting the Q2 dependence of F3ðQ2Þ to the dipole ansatz
given in Eq. (65). F3ðQ2Þ has been computed for a
sequence of values of the momentum transfers,
Q2 ¼ 2mN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN −mN

p
, with the momentum chosen such

that the spatial components Qi take all possible

combinations of Qi=ð2π=LÞ ∈ ½0;�4� (and all permuta-
tions thereof). We perform the calculation at three values of
the source-sink separation, namely tsep ¼ 10a, tsep ¼ 12a
and tsep ¼ 14a, with the statistics being 2357 for
tsep ¼ 10a, and 4623 for tsep ¼ 12a, 14a.
In Fig. 6 we show the results for the combination of

ratios leading to the extraction of F3ðQ2Þ according to
Eq. (64). The ratio of F3 is plotted for three source-sink
time separations: 10a, 12a, 14a corresponding to
0.82,1.0,1.15 fm, respectively. As can be seen the results
at the three sink-source time separations are consistent. The
ratio shown corresponds to the lowest nonzero momentum

FIG. 5. The value of α1 as a function of nc or 3 × τ (left panel), 4.25 × τ (center panel) and 7.965 × τ (right panel) for Wilson,
Symanzik tree-level improved and Iwasaki smoothing actions, respectively. Data obtained by cooling are shown by the red squares,
while data extracted via the gradient flow are shown by the blue circles and have been shifted horizontally to be more visible.

FIG. 6. The ratio leading to F3 [Eq. (64)] for the first nonzero
momentum transfer (Q2 ≃ 0.17 GeV2) as a function of the
insertion time ðt − tf=2Þ=a. Green squares, red circles and blue
triangles correspond to source-sink separation of tf=a ¼ 10, 12,
14, respectively. The topological charge is evaluated using the
gradient flow at τ ¼ 6.3 with the Iwasaki action.
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transfer, that is, Q2 ≃ 0.17 GeV2, upon averaging over the
data for the two spatial components Qi=ð2π=LÞ ¼
ð�1; 0; 0Þ and three permutations. In what follows we will
use tsep ¼ 12a, which yields a better statistical accuracy
and is fully consistent with the results obtained for
tsep ¼ 14a. For tsep ¼ 12a, a plateau can be identified in
the range t=a ∈ ½3; 9�, from which we extract F3ðQ2 ≃
0.17 GeV2Þ (the solid line in Fig. 6). However, for a proper
computation of the error we cannot use jackknife since, as
mentioned in Sec. VIII A, the α1 parameter is computed on
2295 configurations with multiple source positions, while
F3 is computed using 4623 configurations with a single

source position, which does not allow us to combine the bin
values of α1 and F3. We thus use the following procedure to
take into account the statistical error of α1 in the evaluation
of the error on F3. We first compute F3 and the associated
jackknife error, dF3, by employing the mean value for α1.
We then recompute F3 using α1max ¼ α1 þ dα1, where dα1

is the jackknife error of α1. We denoted the difference in the
values obtained using the mean value of α1 and α1max by
ΔF3. The final error on F3 is computed by combining ΔF3

due to the variation in α1 with the jackknife error dF3 in
quadrature, namely

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔF3Þ2 þ ðdF3Þ2

p
. In Fig. 6 we show

the final error on F3 with a red band. This procedure of
taking into account the error on the α1 parameter is
compatible with the error using a resampling procedure.
For the latter we first generate samples for α1 that are
Gaussian distributed with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ns − 1

p
dα1, where Ns denotes

the number of jackknife samples in our analysis. These
samples are then used in our jackknife analysis together
with the actual jackknife samples for the remaining
quantities.
Once again, we stress that no separate calculation of

F1ðQ2Þ and F2ðQ2Þ is needed, since F3ðQ2Þ is extracted
from a combination of ratios leading to Eq. (64), upon
substituting the expressions for GEðQ2Þ and GMðQ2Þ
[Eqs. (62) and (63)] at the level of the time-dependent
ratios. In addition, the value of the nucleon mass, mN ,
enters in Eq. (64), which is calculated using the nucleon
two-point function on the same configurations analyzed for
F3ðQ2Þ and in the same bin. The value of amN in lattice
units is presented in Table I.
After determining F3ðQ2Þ by identifying the correspond-

ing plateau at each value of Q2 we perform a fit using the

FIG. 7. F3ðQ2Þ versus Q2 for the same parameters as in
Fig. 6 for tsep ¼ 12a. The band is the resulting dipole fit using
the form given in Eq. (65) to F3ðQ2Þ and data for Q2 < 1 GeV2.
The fit gives F3ð0Þ ¼ −0.509ð144Þ, amF3

¼ 0.469ð133Þ
with χ2=d:o:f ¼ 0.54.

FIG. 8. The nEDM in lattice units as a function of nc or 3 × τ (left panel), 4.25 × τ (center panel) and 7.965 × τ (right panel) for
Wilson, Symanzik tree-level improved and Iwasaki gauge actions, respectively. The results are obtained using a fit to the dipole form of
Eq. (65) with a cutoff Q2 < ð1 GeVÞ2. Data obtained by cooling (gradient flow) are shown by red squares (blue circles). Gradient-flow
results have been shifted horizontally to improve visibility.
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dipole form of Eq. (65), treating F3ð0Þ as a fitting
parameter. In Fig. 7 we show the resulting fit when the
Iwasaki smoothing action and gradient flow with τ ¼ 6.3
are used in the calculation of the topological charge. The fit
is performed forQ2 < 1 GeV2. To check for fit stability we
vary the upper limit of the fit range, Q2

max, from 0.8 to
1.5 GeV2, and found consistent results for F3ð0Þ.
In Fig. 8 we present F3ð0Þ=ð2amNÞ as a function of the

number of cooling steps nc and the corresponding gradient-
flow time. These results clearly confirm that the value of the
nEDM obtained via cooling agrees with the one extracted
via the gradient flow corroborating the equivalence of
cooling and gradient flow also on the level of the nEDM. In

addition, we observe that j~dN j=θ̄ [Eq. (9)] is adequately
stable for nc ≥ 20 and the corresponding gradient-flow
time. By looking at the nEDM as a function of τ and nc for
the gradient flow and cooling, respectively, we observe that
fixing

ffiffiffiffi
8t

p
≈ 0.6 fm is in the plateau region and suggests

that the value of F3ð0Þ=ð2mNÞ can be taken for nc ¼ 20, 30
and 50 cooling steps or at the corresponding gradient-flow

times for Wilson, Symanzik tree-level improved and
Iwasaki actions, respectively. The results for
F3ð0Þ=ð2mNÞ extracted using the dipole fit and the above
cooling steps or the corresponding gradient-flow times are
collected in Table III. As can be seen, the values obtained
for tsep ¼ 14a are consistent with those obtained using
tsep ¼ 12a, albeit with larger errors. We use data obtained
for tsep ¼ 12a to determine our final result due to their
better statistical accuracy compared to the results obtained
for tsep ¼ 14a. In addition we stress that we do not attempt
to make an extrapolation to infinite volume, i.e. tsep → ∞,
and determine the corresponding systematic error.

2. F3ð0Þ via the application of the derivative
to the ratio technique

In this section we discuss the results on F3ð0Þ
using the application of the derivative to the ratio method.
As explained in Sec. VI B 1, this requires the construction
of the derivativelike three-point functions expressed asPL=2−a

xj¼−L=2það
P

L−a
xi¼0;i≠j ixjG

μ
3pt;Qð~x;tf;ti;t;ΓkÞÞ,

PL=2−a
xj¼−L=2þa

ðPL−a
xi¼0;i≠j ixjGk

3ptð~x; tf; ti; t; Γ0ÞÞ and
PL=2−a

xj¼−L=2þa

ðPL−a
xi¼0;i≠j ixjG

k
3ptð~x; tf; ti; t;ΓiÞÞ as well as the two-point

functionG2ptð~q; tf; 0;Γ0Þ inorder toformtheright ratios.The
three derivativelike three-point functions are computed by
taking the Fourier transformation according to Eq. (69). As
previously mentioned, we use a source-sink separation of
tsep ¼ 12aandshift thesource timeslice to ti ¼ 0.Oncemore
wecheckforgroundstatedominancebyextractingthenEDM
for tsep ¼ 10a and tsep ¼ 14a. In addition, we average over
the spatial direction j ¼ 1, 2, 3 as this appears inEq. (66).We
fit the ratio to a constant in the plateau region to extract the
quantity given in Eq. (66) and use the procedure explained in
Sec. VIII B 1 by employing the mean value for α1 as well as

TABLE III. F3ð0Þ=ð2mNÞ extracted from fitting to the dipole
ansatz of Eq. (65). We include results for both tsep ¼ 12a and
tsep ¼ 14a at nc ¼ 20, nc ¼ 30 and nc ¼ 50 as well as at the
corresponding gradient-flow times given in Table II for the
Wilson, Symanzik tree-level improved and Iwasaki actions,
respectively.

F3ð0Þ=ð2mNÞ (e.fm)

Cooling Gradient flow
Gauge action tsep ¼ 12a tsep ¼ 14a tsep ¼ 12a tsep ¼ 14a

Wilson −0.035ð09Þ −0.056ð45Þ −0.039ð10Þ −0.065ð42Þ
Symanzik −0.036ð10Þ −0.072ð50Þ −0.046ð12Þ −0.076ð40Þ
Iwasaki −0.035ð10Þ −0.049ð22Þ −0.041ð12Þ −0.053ð23Þ

FIG. 9. Results for the nEDM in lattice units using the application of the derivative to the ratio as a function of nc or 3 × τ (left panel),
4.25 × τ (center panel) and 7.965 × τ (right panel). The notation is the same as in Fig. 8.
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α1max ¼ α1 þ dα1 in order to compute the associated statis-
tical error on F3. As discussed in Sec. VI B 1 there can be a
residual time dependence in Eq. (66) of the form
∼ exp ðaðENð~qÞ −mNÞt=aÞ. Hence, in addition to the con-
stant fitwealsoperformanexponential fit inorder toprovidea
systematic error. We take the difference between the value
determined from the constant fit and that extracted when we
include the exponential time dependence as the systematic
error. We note that the resulting systematic error is compa-
rable to our statistical error, making this approach useful.
In Fig. 9 we show the results for F3ð0Þ=ð2amNÞ in lattice

units. The derivativelike three-point functionPL=2−a
xj¼−L=2það

P
L−a
xi¼0;i≠j ixjG

μ
3pt;Qð~x; tf; ti; t;ΓkÞÞ uses the

topological charge extracted from cooling and the gradient
flow for the Wilson, Symanzik tree-level improved and
Iwasaki smoothing actions as a function of the cooling
steps or the flow time τ. Similar to Fig. 8, the value of the
nEDM is stable for the smoothing scales used to define the
topological charge. Namely, this justifies our choice of

fixing
ffiffiffiffi
8t

p
≈ 0.6 fm, thus results in using nc ¼ 20, 30 and

50 as well as to the corresponding gradient-flow times for
Wilson, Symanzik tree-level improved and Iwasaki
smoothing actions, respectively.
In Fig. 10 we show results for the combination of

continuumlike derivatives of ratios leading to the extraction
of F3ð0Þ according to Eq. (66). The results are produced
with topological charge extracted using the gradient flow
for a total of τ ¼ 6.3 with the Iwasaki action. A plateau can
be identified and fitted in the range t=a ∈ ½4; 8�, yielding a
value of F3ð0Þ ¼ −0.52ð09Þ. The statistical error is com-
puted using the method explained in the previous sub-
section and is represented by the red band. In addition we
provide the exponential fit with its statistical uncertainty
resulting from the residual exponential time dependence in
the three-point function. The fit is done in the range
t=a ∈ ½4; 8�, yielding a value of F3ð0Þ ¼ −0.55ð13Þ. As
can be seen, the two bands yield consistent results.
In Table IV we give the results for F3ð0Þ=ð2mNÞ for the

three gauge smoothing actions using our standard param-
eters for nc and τ. We provide the statistical as well as the
systematic error induced by the residual exponential time
dependence in the three-point function [see Eq. (69)].

3. F3ð0Þ with the elimination of the momentum
in the plateau region technique

The elimination of the momentum in the plateau region
method is an improved technique to remove momentum
prefactors in the form factor decomposition of a given ratio
of correlators on the lattice. The details of this method can
be found in Sec. VI B 2 and Ref. [29], where the method
was applied for the first time for the evaluation of the
nucleon anomalous magnetic moment. Similar approaches
using analytic continuation have been used in the context of
calculating hadronic vacuum polarizations [65,66]. In the
following we present the first results for the nEDM
obtained within this approach.
As in the other methods, here we also extract F3ð0Þ using

the various definitions for the topological charge (Wilson,
Symanzik tree-level improved and Iwasaki actions for both
cooling and gradient flow). The results obtained within this

FIG. 10. The ratio leading to F3ð0Þ determined using the
continuum derivative method. Green squares, red circles and
blue triangles correspond to source-sink separation of tf=a ¼ 10,
12, 14, respectively. The topological charge is evaluated using the
gradient flow at τ ¼ 6.3 with the Iwasaki action. The behavior
when using other smoothing actions to calculate the topological
charge is similar.

TABLE IV. Results for F3ð0Þ=ð2mNÞ extracted using the application of the derivative to the ratio method for
tsep ¼ 12a, 14a. Results are shown for nc ¼ 20, 30 and 50 as well as for the corresponding gradient-flow times
according to Table II for Wilson, Symanzik tree-level improved and Iwasaki actions, respectively. The error in the
first parentheses is statistical and in the second the systematic determined as discussed in the text.

F3ð0Þ=ð2mNÞ (e.fm)

Cooling Gradient flow
Gauge action tsep ¼ 12a tsep ¼ 14a tsep ¼ 12a tsep ¼ 14a

Wilson −0.044ð6Þð6Þ −0.044ð8Þð8Þ −0.046ð6Þð9Þ −0.046ð8Þð15Þ
Symanzik −0.043ð6Þð3Þ −0.043ð9Þð6Þ −0.043ð6Þð4Þ −0.042ð9Þð10Þ
Iwasaki −0.044ð7Þð4Þ −0.043ð11Þð10Þ −0.042ð7Þð3Þ −0.040ð11Þð8Þ
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approach exhibit a similar behavior as that depicted in
Figs. 8 and 9. We analyze data for two source-sink
separations, namely of tsep ¼ 12a and tsep ¼ 14a, employ-
ing a general momentum cutoff Q1 < 4 · ð2π=LÞ and
momentum classes with an off-axis momentum squared
of up to Q2

off ≤ 5 · ð2π=LÞ2 [cf. Eq. (74)]. The red bands in
both panels of Fig. 11 show the results for F3ðQ2Þ=ð2mNÞ
extracted using the momentum elimination method and
tsep ¼ 12a. It is obtained as the error weighted average
over all sets of different off-axis momentum classes
MðQ1; Q2

offÞ. As required, the band reproduces the red
points which are the results obtained using the plateau
method at each Q2 value.
The right panel of Fig. 11 contains separate bands for the

results from different values of Q2
off , which agree within

their errors. However, the errors at small values of Q2 grow
rapidly with an increasing Q2

off , such that higher off-
axis momentum classes with Q2

off ≥ 2 · ð2π=LÞ2 hardly
contribute to the nEDM at all.
The results obtained using this approach are collected in

Table V. Although using the Wilson smoothing action to

calculate the topological charge (either through cooling or
the gradient flow) we obtained lower mean values and
equivalently higher ones when using the Iwasaki action, the
results are compatible within errors. Comparing the results
for tsep ¼ 12a and tsep ¼ 14awe cannot detect excited state
contamination within statistical errors.
In addition, results obtained using the elimination of the

momentum in the plateau region technique, which does not
assume any functional form for the momentum depend-
ence, are compatible with the dipole fit results. The dipole
form fit yields correlated χ2=d:o:f ¼ 0.54, supporting a
dipole behavior, which is the approach used in other lattice
studies.

IX. CONCLUSIONS

The neutron electric dipole moment is computed using
Nf ¼ 2þ 1þ 1 twisted mass fermions simulated at a pion
mass of 373 MeV and lattice spacing of a ¼ 0.082 fm
employing a total of 4623 measurements. This high
statistics analysis enables us to extract reliable results on
the CP-violating form factor F3ð0Þ and benchmark our
techniques. Due to the multiplicative kinematical factors
appearing in front of F3ðQ2Þ it cannot be extracted directly
from the matrix element. The usual approach is to extrapo-
late FðQ2Þ to Q2 ¼ 0 by fitting itsQ2 dependence employ-
ing an ansatz for its momentum dependence. In this work,
besides this standard approach, we employ two new
techniques that explicitly eliminate the kinematical factor
yielding directly F3ð0Þ without any model assumption on
its Q2 dependence. These techniques involve the three-
point function in coordinate space and two different ways
to eliminate the kinematical factor. The behavior of the
nEDM extracted by these two techniques, as well as a

(a) (b)

FIG. 11. Results on nEDM using the momentum elimination method for source-sink separation tsep ¼ 12a. The right panel shows
separate bands for the three sets of lowest off-axis momentum classes MðQ1; Q2

offÞ.

TABLE V. Results for the neutron electric dipole moment in
physical units for two values of the source-sink separation and the
three different smoothing actions. Results are given for nc and τ,
which correspond to

ffiffiffiffi
8t

p
≈ 0.6 fm, according to Table II.

F3ð0Þ=ð2mNÞ (e.fm)

Cooling Gradient flow
Gauge action tsep ¼ 12a tsep ¼ 14a tsep ¼ 12a tsep ¼ 14a

Wilson −0.052ð17Þ −0.043ð26Þ −0.056ð17Þ −0.043ð26Þ
Symanzik −0.066ð18Þ −0.053ð28Þ −0.068ð17Þ −0.055ð28Þ
Iwasaki −0.082ð21Þ −0.076ð32Þ −0.082ð21Þ −0.073ð32Þ
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through fitting to a dipole ansatz, is demonstrated in
Fig. 12. We show results for the nEDMwith the topological
charge computed using either cooling or the gradient flow
and the Iwasaki gauge action. As can be seen, results
extracted from fitting to a dipole ansatz have a very similar
mean value to those extracted using a continuum derivative,
with the latter having smaller errors. The results extracted
from the elimination of the momentum in the plateau region
tend to be lower, with larger errors. This behavior resem-
bles the results obtained for the isovector magnetic form
factor of the nucleon at zero momentum [29], where it was
found that the results obtained using the elimination of the
momentum in the plateau region method tend to be larger
(and closer to the experimental value) than those obtained
using a dipole fit.
An additional new element of this work is the compu-

tation of the topological charge using both cooling and the
gradient-flow method. We show that the two approaches
are equivalent if the flow time and the number of cooling
steps are tuned appropriately. This agreement is demon-
strated in Figs. 12 and 13, where we show results for the
nEDMwith the topological charge computed using cooling
or the gradient-flow method. Furthermore, results using
different actions to smooth the gauge links entering the
computation of the topological charge yield consistent
results overall. The values appearing in Fig. 13 have been
obtained by taking the weighted average among the data
extracted using the dipole fit, the application of the
derivative to the ratio technique and the elimination of
the momentum in the plateau region shown in Fig. 12.
Given that the simulations used the Iwasaki action, we
present as our final value for the nEDM the value extracted
when the Iwasaki action is employed to define the
topological charge. As the systematic error we take the

difference between the mean values obtained when cooling
and the gradient flow are used to determine the topological
charge. Our final result is thus F3ð0Þ=ð2mNÞ ¼
−0.045ð6Þð1Þe · fm at a pion mass of mπ ¼ 373 MeV.
As already mentioned in the Introduction, this value is in
agreement with the value extracted using Nf ¼ 2þ 1

domain wall fermions at a pion mass of about 300 MeV
[34]. Using this value of F3ð0Þ=ð2mNÞ and the experi-

mental result j~dN j ¼ 2.9 × 10−13e · fm as an upper
bound we can extract the maximum allowed value of θ̄
displayed in Fig. 13. We find a maximum value
of θ̄ ¼ 6.4ð0.9Þð0.2Þ × 10−12.
Having investigated the nEDM using an ensemble

simulated at mπ ¼ 373 MeV we are in the process of
analyzing an ensemble with two degenerate light quarks
with mass fixed to the physical value, thus eliminating any
systematic error that may arise due to a heavier than
physical pion mass.

FIG. 12. Our results for F3ð0Þ=ð2mNÞ in physical units using
different approaches to determine F3ð0Þ. Open (filled) symbols
show results using cooling (gradient flow) for the extraction of
the topological charge. Red/blue/magenta points show results
extracted using a dipole fit/application of the derivative to the
ratio/elimination of the momentum in the plateau region ap-
proach, respectively. The topological charge has been evaluated
using the Iwasaki smoothing action.

FIG. 13. (Upper panel) Our results for F3ð0Þ=ð2mNÞ in
physical units using different methods. Open (filled) symbols
show results using cooling (gradient flow) for the evaluation of
the topological charge. Red/blue/magenta points represent the
smoothing actions Wilson/Symanzik tree-level improved/
Iwasaki. The presented results have been obtained from the
weighted averages of values for F3ð0Þ=ð2mNÞ extracted using the
dipole fit on F3ðQ2Þ, the application of the derivative to the ratio
technique and the elimination of the momentum in the plateau
region technique. As a final result we report the value of nEDM
extracted when using Q from the gradient flow with Iwasaki
action, shown with the magenta error band. (Lower panel) The
corresponding upper bounds in jθ̄j extracted using the exper-

imental result j~dN j ¼ 2.9 × 10−13e · fm [3–5].
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