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ABSTRACT: Charge collection properties of depleted CMOS pixel detector prototypes produced 

on p-type substrate of 2 kΩcm initial resistivity (by LFoundry 150 nm process) were studied using 
Edge-TCT method before and after neutron irradiation. The test structures were produced for 

investigation of CMOS technology in tracking detectors for experiments at HL-LHC upgrade. 

Measurements were made with passive detector structures in which current pulses induced on 

charge collecting electrodes could be directly observed.  Thickness of depleted layer was 

estimated and studied as function of neutron irradiation fluence. An increase of depletion 

thickness was observed after first two irradiation steps to 1·1013 n/cm2 and 5·1013 n/cm2 and 

attributed to initial acceptor removal. At higher fluences the depletion thickness at given voltage 

decreases with increasing fluence because of radiation induced defects contributing to the 

effective space charge concentration. The behaviour is consistent with that of high resistivity 

silicon used for standard particle detectors. The measured thickness of the depleted layer after 

irradiation with 1·1015 n/cm2 is more than 50 µm at 100 V bias. This is sufficient to guarantee 

satisfactory signal/noise performance on outer layers of pixel trackers in HL-LHC experiments. 

KEYWORDS: Solid state detectors; CMOS pixel detectors; Radiation damage evaluation methods; 

Radiation-hard detectors; 
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1. Introduction 

The possibility to use active pixel detectors (with signal amplification within the pixel cell) [1] 

produced in a commercial CMOS process [2] in the environment of general purpose experiments 

after the upgrade of LHC to the HL-LHC foreseen in the next decade [3] received a lot of attention 

in the particle physics community. Active detectors in commercial CMOS technology offer many 

advantages over the “classical” hybrid detector used in present LHC experiments [4-7]. Some of the 

most important are: higher granularity and therefore resolution, less material in the tracking volume 

reducing scattering and showers, significantly lower cost, availability of multiple large volume 

vendors etc. 

Monolithic CMOS detectors have been successfully used before for detection of charged particles 

[8-10] but the charge collection in these detectors rely on diffusion which makes them too slow and 

too sensitive to radiation for HL-LHC. In [11] it was shown that depleted active pixel sensors can be 

made in a commercial HV CMOS technology which allows application of higher bias voltages 

resulting in larger depleted depths and therefore significant charge collection from drift of charge 

carriers which is necessary for HL-LHC environment. This was followed by several other 

developments in various flavours of CMOS processes resulting in prototypes of active pixel detectors 

with significant depleted thickness [12-14] which can be commonly named as depleted CMOS pixels 

[15].  

Recent irradiation study of depleted CMOS pixels irradiated with reactor neutrons up to HL-LHC 

fluence was published in [16]. The study was performed on test structures produced on p-type wafers 

with two initial resistivities. Chip HV2FEI4 [17] was produced in the AMS180 process on 10 Ωcm 

wafer and CHESS-1 chip [18] was made in AMS350 process and initial resistivity 20 Ωcm. It was 

found that removal of initial acceptors by neutron irradiation plays an important role up to relatively 

high neutron fluences. This is different than in the case of high resistivity materials usually used for 

charged particle detectors but not surprising given the orders of magnitude different concentrations 

of initial acceptors. Results of another more recent study with samples produced in AMS180 process 

[19] support the findings from [16]. 

Very promising and extensively studied depleted CMOS pixel detectors were produced by LFoundry 

[14] in a 150 nm CMOS process on a p-type substrate of ~2 kΩcm resistivity – a material more 

typical for ionizing particle detectors. More details about the process, design and performance of 
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LFoundry detector prototypes can be found in [14,20,21]. In this paper we report about measurements 

of charge collection properties using the Edge-TCT method with LFoundry detector samples 

irradiated with reactor neutrons up to 1 MeV equivalent fluences of Φeq = 8·1015 n/cm2. 

 

2. Samples and irradiation 

Measurements were made with passive detector structures on CCPD_LF chips [20,21]. The schemes 

of the structures used for this work are shown in Figures 1 and 2. There is no CMOS circuitry 

implemented in the passive detector therefore it has a structure similar to a standard diode detector.  

Devices were produced on a ~ 700 µm thick substrate which could be biased through the common 

p-type ring surrounding all test structures. Selection of samples was thinned to 300 µm or 100 µm 

and back plane was implanted and metalized allowing electrical connection and therefore biasing the 

substrate through the back plane. The test structures are surrounded by an n-type ring which can be 

contacted separately to better define the active volume of the investigated structure.  Maximal bias 

voltage before breakdown was about 100 V and it increased to 150 V after irradiation.  

Connecting the highly doped n-type implant to an electrical potential higher than that of the substrate 

contact forms a depleted region in the substrate. Charge carriers released in the depleted region by 

passage of charged particle or by a laser pulse move in the electric field in the depleted region 

inducing the transient current on the electrodes which can be observed on the oscilloscope using a 

high bandwidth amplifier – this is the so called Transient Current Technique (TCT) [22]. 

 

                  

                      
 

Figure 1. Layout of the passive device comprised of five 50 µm x 250 µm pixels consisting of n-type 

implants (red) separated by p-type implants (blue, see also the legend in Figure 2). Drawing on the 

right shows the cross section across the narrow side of the pixel. The five n-type implants are 

connected together and can be contacted with one wire bond. The n-type ring can be contacted 

separately. The ring has the asymmetric shape due to the layout of the device on the chip. Direction 

of laser beam in E-TCT measurements is indicated in the drawing. The p-type substrate containing 

the implanted structure is not coloured in drawing on the right. 
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Figure 2. Drawing of 3x3 array of 33 µm x 125 µm pixels. The arrow shows the direction of laser 

beam in E-TCT. The scheme of the cross section across the narrow side of one pixel is shown below 

with legend of the colours showing deep n-wels (nw), n-isolation layer (niso), deep n-well (dnw), p-

wells (pw), metal (M1), poly silicon resistors (poly-Si) and substrate (psub). The p-type substrate 

containing the implanted structure (below the line) is not coloured. The pixels (deep n-wells) can be 

contacted with two separate wire bonds, one for the central pixel and one for the surrounding 8 pixel 

connected together.  

 

If the side of the device is illuminated with short pulses (< 300 ps, repetition rate 500 Hz) of narrow 

(FWHM ≤ 10 µm) beam of infra-red (λ = 1064 nm) light directed parallel to the surface then this is 
called the Edge-TCT or E-TCT method [23]. The investigated device is positioned in the beam with 

sub-micron precision by movable stages so the depth of the substrate at which the charge carriers are 

released along the laser beam is known [23]. The scheme of the setup and connection scheme of the 

detector is shown in Figure 3.  
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Figure 3. Scheme of the TCT setup and the detector connection scheme. The substrate can be 

contacted either through the p-type ring implanted on top of the device (not shown in the scheme) or 

through the back plane for thinned samples with processed back plane. 

 

Irradiations were done in the TRIGA reactor in Ljubljana [24]. Detectors were irradiated with 

neutrons to fluences ranging from 1·1013 to 8·1015 of 1 MeV NIEL equivalent neutrons per cm2. 

During irradiation to fluences 1·1014 n/cm2 and larger the reactor power was set to 250 kW which 

corresponds to neutron flux of 1.7·1012 neq/cm2/s. For lower fluences the reactor power was set to 25 

kW reducing the neutron flux by a factor of ten to increase irradiation time. Fluences were monitored 

with standardised measurements of leakage current increase in dedicated diodes [25]. Temperature 

in irradiation tube is about 20°C however it should be noted that during irradiation detectors are 
heated to over 40 °C by high background radiation [26]. After each irradiation step detectors were 
kept in the freezer except for few hours needed for transport, mounting and during E-TCT 

measurements when detectors were at room temperature. Before the first measurement the detectors 

were at room temperature for max ~ 3 hours. After first measurement detectors were annealed for 80 

minutes at 60 °C and measurements were repeated.  
Not thinned and 300 µm thick devices were irradiated in steps and after each irradiation step 

measurement and annealing procedure were repeated while in the case of 100 µm devices different 

samples were irradiated to different fluences. The study was done with two un-thinned chips, two 

300 µm thick devices with processed back plane and twelve 100 µm thick devices, two for each 

fluence step. 

3. Measurements of charge collection profiles of the passive device 

Measurement and analysis techniques used for this study are similar to E-TCT measurements with 

CMOS samples described in [16] and the reader may find additional clarifications in that document.  

The investigated structures are shown in Figures 1 and 2. The structure shown in Figure 1 is an 

approximation of a pad detector and measurements presented in this paper were made with this type 

of devices unless otherwise noted. Figure 2 shows a 3x3 pixel array and the main goal of 

measurement with these structures was to explore their response in the region between neighbouring 

pixels.  

The devices under test were moved in the laser beam in x and y direction (see Fig 3) in 5 µm steps 
and at each position 100 pulses were recorded and averaged by a digital oscilloscope. Examples of 

induced current pulses recorded with laser beam directed at different depths (y coordinate) of the 
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unirradiatied detector with x positioned at the middle of the pixel are shown in Figure 4a. The pulses 

are the result of the current induced by the drift of carriers in the weighting field of the detector 

convoluted with the transfer function of the system and the shape of the laser pulse. It can be seen in 

Figure 4a that at low depth, close to the surface electrode, the pulse rises steeper and it is shorter than 

deeper in the detector. In E-TCT the laser pulse releases all carriers at the same depth in the detector 

so the induced current immediately after the laser pulse is proportional to the sum of carrier velocities 

at this depth and therefore it reflects the electric field profile in the detector [23]: electric field is 

higher close to the p-n junction and decreases with the depth in the substrate.  

 

a)                                                                          b) 

  
             c)                                                                        d) 

   

              e)                                                                        f) 

                                     

 

Figure 4: a) current pulses with laser beam at different depth (y). The values of coordinate y are 

relative to the surface electrode, b) charge (integral of the induced current pulse in 25 ns) as a function 

of laser beam depth. The surface of the chip is at y ~ 40 µm. The charge vs. depth is shown for 
devices with (triangular symbols) and without (round symbols) back plane contact at different bias 
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voltages. Full symbols are measured with n-ring floating, empty symbols and dashed lines are 

measurements with n-ring biased. The measurements were taken with x at the centre of the device. 

Figure c) shows the charge collection profile in two dimensions at 100 V with n-ring floating, chips 

surface is at about y ~ 40 µm, centre of 250 µm wide pixel is at about x ~ 130 µm. Figure d) shows 

the charge collection profile at 40 V with n-ring connected. Measurements were made before 

irradiation with structure shown in Fig. 1. The side edges of devices were not polished. Drawing e) 

sketches the shape of charge collecting region consistent with measurement with n-well ring floating 

and f) with n-well ring connected.  

 

In this work the integral of the current pulse from 0 to 25 ns is representative of the collected charge. 

Figure 4b shows the charge collection profiles: the charge as a function of depth across the centre of 

device. Profiles are shown for different bias voltages for un-thinned device without processed back 

plane and for the device thinned to 300 µm biased through the back plane. Measurements up to 100 

V were made with n-ring (see Figure 1) floating because in this configuration the current was much 

smaller and higher bias voltages could be applied. With biased n-ring measurements could be done 

only up to 40 V and are shown in Figure 4b to show how the n-ring affects the profile. When the 

laser beam is above the surface of the sample (at y < 30 µm) the charge is zero. The sharp transition 
(within 10 µm) from low to high charge is consistent with ~ 10 µm wide laser beam entering the 
device. At bias of 100 V significant charge is measured from y ~ 40 µm up to about y ~ 200 µm 

which means about 160 µm deep in the substrate. Initial effective acceptor concentration of p-type 

silicon with 2 kΩcm resistivity is 6.5·1012 cm-3 therefore at 100 V bias the depleted depth in a planar 

detector should be around 150 µm (see eq. 1) in agreement with the measured depth. Measured curves 

in figure 4b were aligned offline so that the rising edges of the profiles are at the same y. Charge 

values were scaled to correct for differences in laser beam intensity, edge quality etc... so that the 

maximal values are about the same at bias of 100 V and the same scaling was used for other bias 

voltages. There are no significant differences between the charge collection profiles with and without 

processed backplane. The minor differences in the profile shapes could be a consequence of various 

sources like surface quality of the edge of the device since it wasn’t polished etc. 

Figures 4c and 4d show the collected charge in two dimensions with definition of coordinates from 

Figure 3. Figure 4c shows measurement with floating n-ring and Figure 4d with n-ring connected to 

the same potential as the readout electrode (but not to the amplifier). It can be seen that n-ring affects 

the shape of the charge collecting volume below the readout electrode. If n-ring is floating the charge 

collection region extends laterally also outside of the 250 µm wide n-well and it is “rounded” and so 

narrower deeper in the substrate. With connected n-ring the charge collecting region matches the 

electrode size near the electrode and it “stretches” deeper in the oxide. These shapes are similar also 

in the direction of E-TCT laser beam which reflects in the charge collection profiles. Drawings in 

figures 4e and 4f qualitatively explain the measured shapes of profiles in Figure 4: collected charge 

is proportional to the length of laser beam inside the charge collecting region. If n-ring is floating 

this length is shorter deeper in the substrate while with connected n-ring it initially rises with depth. 

Due to these effects the measured charge collection profiles deviate from those expected in one 

dimensional approximation of abrupt junction with uniform space charge concentration in the 

depleted bulk where the profile would be flat with symmetric transitions on both sides when the laser 

beam enters (leaves) the area with electric field. 

Charge collection profiles measured at 100 V bias with un-thinned and 300 µm thick devices after 
irradiation are shown in Figure 5a.  The profiles in figure 5a are narrower than device thicknesses 

i.e.  the devices are not fully depleted. One can notice a separate narrow charge collection region at 
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y ~ 330 µm for the devices with processed back plane. This is due to the electric field formed at the 
transition between the substrate and the thin highly doped layer at the back plane. It can be seen in 

Figure 5a that with increasing fluence the charge collection profiles get narrower. This is the 

consequence of radiation induced increase of effective acceptor concentration and therefore narrower 

depleted region (eq. 1). Measurements were made up to the fluence of 8·1015 neq/cm2 and even at this 

very high fluence the depleted region can clearly be seen. There is no significant difference observed 

with this experimental method between devices with no back plane processing and the 300 µm 
samples with processed back plane.  

In Figure 5b profiles are shown for 100 µm samples at 70 V bias. At this bias voltage it is expected 
that devices will be fully depleted. Comparing the charge profile shapes with those in Figure 5a one 

can clearly see that the transition from high to low charge is sharper, symmetric and it appears at 100 

µm from the surface which matches the thickness of the device. As mentioned above, rising edges 
of profiles were aligned offline which caused somewhat larger spread at the falling edge. The devices 

remain fully depleted up to the fluence of 1·1014 neq/cm2 while at the two highest fluence steps the 

charge profiles start to decrease before the laser beam reaches the back plane. Measurements with 

two devices at each fluence are shown in Figure 5b except for Ф = 1013 n/cm2 where only one 

measurements is shown because the laser beam was not well focused during measurement with 

second device. 

As already mentioned, measurements were made immediately after irradiation and repeated after 

annealing for 80 minutes at 60°C. The profiles shown in Figures 5a and 5b were measured after 

annealing which increases the width of charge profiles by up to ~ 20% for not fully depleted devices 

as can be seen in Figures 5c and 5d.  

a)                                                                     b) 

 
             c)                                                                        d) 
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Figure 5. Charge vs. depth after different irradiation fluences indicated in the figure in units of 1 

MeV equivalent neutrons/cm2. Figure a) shows un-thinned sample without back plane (full symbols) 

and sample with processed back plane (empty symbols) thinned to 300 µm. Figure b) shows charge 

collection profiles of two devices at each fluence thinned to 100 µm with processed back plane. 

Figure c) shows the comparison of profiles before (empty symbols) and after annealing (full symbols) 

at different fluences for devices without back plane. Figure d) shows this comparison for 100 µm 

thick device 1. Measurements were made with the structure type shown in Figure 1. 

4. Estimation of Neff 

 

FWHM of the profile was taken as the measure of the depth of charge collection region. The FWHM 

is shown as the function of bias voltage for different irradiation fluences for un-thinned and 300 µm 
thick devices in Figure 6a and for 100 µm devices in Figure 6b. 

 

a)                                                                                     b) 

  
 
 
 

  

Figure 6. FWHM of the charge collection profile as a function of bias voltage after different 

irradiation fluences: a) for un-thinned detector without back plane (full symbols) and 300 µm sample 

with back plane (empty symbols) and figure b) for two 100 µm thick samples at each fluence. 

Function (2) is fit up to full depletion voltage (Vfd). For the measurement at Ф = 1013 n/cm2 the thin 

lines show how Vfd was estimated from their cross section. 
 

Before full depletion the scaling of depleted depth w with bias voltage can be described with equation 

(1):   
 

                                                        
bias

eff

bias V
Ne

Vw
0

02
)(


                                                            (1) 

where Neff is the effective space charge concentration, Vbias the bias voltage, e0 the elementary charge, 

ε0 the dielectric constant and ε relative permittivity of silicon. This relation is valid in planar geometry 

in approximation of abrupt junction. However, the dependence of depth of charge collection region 

on bias voltage measured with E-TCT shown in Figure 6 could not be fit well with equation (1). 

Depleted depth given by equation (1) vanishes at zero bias voltage while in measurements there is 

an offset and the measured points could be better fit if equation (1) was modified by adding a 

constant: 
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where w0 is the width of the charge collection profile at Vbias = 0 V and w(Vbias) is given by equation 

(1). Parameter w0 can be justified because an offset at low voltage is expected due to a finite laser 

beam width [16,19] and because of the charge collected by diffusion. Reflections of laser beam from 

the surface can also affect measurement at shallow depths. Also, the abrupt junction approximation 

may not be adequate at low bias voltages and linear or more complex doping profiles would be 

needed to correctly describe the behaviour. But within the precision of experiment described here 

and the scope of this work these effects can be put aside by adding the ad-hoc parameter w0. The 

model in equation (2) with w0 and Neff being free parameters fits the data well with some deviations 

at lower bias for higher fluences as can be seen in Figure 6a. In Figure 6b the measured charge 

collection width increases up to a knee at a certain voltage after which it is flat for all measurements 

except for the highest fluence. This knee occurs when the device is fully depleted and Neff  can be 

estimated from the full depletion voltage Vfd using relation (1) if w is substituted by the device 

thickness and Vbias = Vfd. The value of Vfd was estimated from Figure 6b as the intersection of 

horizontal and inclined lines. Horizontal line was a constant fit to the flat part of the measured curve. 

The inclined line was defined by the first two measured points going towards lower voltage which 

were more than 5% away from the horizontal line. Values of Neff returned by fitting (2) up to Vfd and 

those calculated from Vfd are compatible.  Up to Vfd measured charge profile widths should not depend 

on the device thickness. Comparing measurements on figure 6a and 6b this is true for fluences 1014 

n/cm2 and 1015 n/cm2 while for 5∙1014 n/cm2 there is a more significant difference. No specific cause 

for this difference was recognized so it was treated as device-to-device variation.  

 

5. Fluence dependence of Neff 

 

Effective space charge concentration Neff as a function of neutron fluence is shown in Figure 7 

together with results of a similar study with detectors with much lower initial resistivity produced by 

AMS [16]. Points in the graph are average values measured with all devices used for this study. For 

each sample and fluence Neff was estimated by the fit of equation (2) as shown in Figure 6. Neff before 

irradiation roughly corresponds to initial resistivity of 2 kΩcm. One can see in Figure 7 that for the 
two lowest fluence points space charge concentration is lower than the initial which is explained by 

initial acceptor removal. Interaction of initial shallow acceptors (boron) with defects in silicon crystal 

lattice caused by hadron irradiation can change the properties of the boron substitutional atom [27] 

so that it doesn’t contribute to the space charge. At the same time neutron irradiation also introduces 

new deep acceptors into silicon which contribute to space charge. However, if the number of removed 

shallow acceptors is larger than the number of introduced deep acceptors the effective space charge 

concentration will decrease as a function of fluence in a certain range. 

The evolution of Neff with fluence can be described by equation (2) [16,25]: 

 

                                                                               (2) 

 

where Neff0 is the initial acceptor concentration of the substrate, Nc the concentration of the removed 

acceptors, c the removal constant and gc the introduction rate of stable deep acceptors for irradiation 

with neutrons [28]. It was assumed that the short term annealing of Neff was completed, while the 

long term annealing only takes place on much longer time scales. The free parameters were extracted 

from the fit of (2) to measurements shown in Figure 7: c = 10 · 10-14 cm2, ratio Nc/Neff0 = 0.6 and gc 

= 0.047 cm-1
 with uncertainties of around 30%. 
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Figure 7. Effective space charge concentration dependence on neutron fluence. The curves are the 

results of the fit of equation (3) to the measured points. LF are measurements presented in this work 

and HV2FEI4 and CHESS are 10 and 20 Ωcm initial resistivity samples produced by AMS from 

[16]. Zoomed view to low fluences is shown in the insert. 

 

Removal constant c is over one order of magnitude larger than the constant measured with a similar 

method on depleted CMOS pixel detector samples with 10 and 20 Ωcm initial resistivity produced 

by AMS [16]. The value is close to c = 1.98·10-13 cm2 reported in [27] from measurements with 

neutron irradiated detectors made on p-type FZ silicon wafers of similar initial resistivity and as such 

in agreement with observations from [16,29] that the acceptor removal constant is smaller for 

material with higher initial acceptor concentration. Recently reported results of similar measurements 

on CMOS samples with initial resistivities of few hundred Ωcm also fit into this picture [30,31]. 

They show the growth of depleted depth with irradiation up to fluences larger than in LF (2 kΩcm) 

but smaller than in CHESS-1 or HV2FEI4 (10 and 20 Ωcm) which would translate in the acceptor 

removal constant value between those of LF and of CHESS-1 and HV2FEI4. It is important to 

mention that at very high fluences when acceptor removal is finished Neff is similar in all materials 

regardless of initial resistivity. The choice of initial resistivity should therefore be governed by the 

expected performance of readout electronics at lower fluences.  

The mechanism behind the dependence of acceptor removal constant on initial resistivity is yet to be 

understood.  

The value of gc = 0.047 cm-1 observed in these measurements is by more than a factor of two larger 

than the value gc ~ 0.02 cm-1 measured in MCZ and FZ p-type detector material with similar or higher 

initial resistivities [28] irradiated with neutrons. But it can be seen that at very high fluence end 

measured points are departing from the fitted function and the values of Neff are more consistent with 

gc ~ 0.02 cm-1, which is the expected value of this parameter. 
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6. Measurements with pixel array 

In addition to depleted depth, the lateral dimension of the region with electric field is also very 

important for application as segmented detector. E-TCT measurements with pixel arrays are a good 

tool to explore the uniformity of charge collection near edges of the pixels. In Figure 8 a two 

dimensional E-TCT scan of a pixel array (see Figure 2) before irradiation and after irradiation to 

highest fluence can be seen. Measurements were made with all 9 pixels (pixel size: 125 µm x 33 µm) 

of the array connected to the readout amplifier. The borders of the three pixel rows can be recognized 

and are more pronounced after irradiation but there are no areas with very low charge collection 

efficiency. One can note that before irradiation the maximum charge is measured deeper in the 

substrate and not near the surface of the chip. The effect can be qualitative explained by the shape of 

the charge collecting volume below the readout electrode as discussed in section 3 (see the drawings 

in Figure 4). Measurements with pixel array were made with n-ring biased. The shape of the charge 

collecting volume is related also to the ratio between depleted depth and electrode dimension in the 

direction of the beam in E-TCT. In case of the pixel array the device dimension is ~ 100 µm (3 x 33 

µm) and depleted depth before irradiation is also about 100 µm at 40 V. After irradiation with high 

neutron fluence depleted depth is much smaller and the effect is not seen any more.  

            a)                                                                          b) 

        
 

Figure 8. Collected charge measured with E-TCT on the 3x3 pixel array. Coordinate y is the depth 

of the detector and the chip surface is at y ~ 20 µm. Figure a) shows measurement before irradiation 

at 40 V bias and b) after 8·1015 n/cm2 at 100 V.  

 

7. Conclusions 

 

In this work we presented an irradiation study on a set of passive pixel detectors (diodes) produced 

by LFoundry on p-type material with initial resistivity of 2 kΩcm. The samples were irradiated with 

reactor neutrons up to 8·1015 n/cm2. The thickness of charge collection layer was measured with 

Edge-TCT. After irradiation to 1·1013 n/cm2 and 5·1013 n/cm2 an increase of charge collection layer 

thickness was measured due to initial acceptor removal. At higher fluences the thickness at given 

voltage decreases with increasing fluence because of radiation induced defects which contribute to 

the effective space charge concentration Neff.  Neff was estimated from the voltage dependence of 

charge collection profile width. The acceptor removal parameters were extracted from dependence 

of Neff  on fluence. The behavior measured in this work is consistent with behavior of standard charged 

particle detectors produced on silicon substrates with similar initial resistivity and supports 

observations from [16,29,30] that acceptor removal parameters depend on initial resistivity. 

Effect of annealing on charge collection profiles was measured and it was found that annealing for 

80 minutes at 60°C has a beneficial effect of increasing the charge collection width by up to 20%.  
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The charge collection profiles were measured also with a pixel array. Good charge collection 

uniformity was observed without significant charge collection gaps between pixels up to highest 

fluences.  

The measurements reported in this paper confirm that depleted CMOS pixel detectors can sustain 

high radiation fluences and are therefore suitable for applications in the inner trackers of HL-LHC 

experiments. The requirement is the operation at signal-to-noise ratio of S/N ~ 20 or higher. At noise 

levels of N ~200 electrons (a typical value including threshold dispersions) the required collected 

signal charge from a passage of a MIP should amount to S ~ 4000 electrons. This corresponds to 50 

µm depleted depth which can be achieved at 100 V bias voltage up to the fluence of 1·1015 n/cm2 

and higher if higher bias can be applied (Fig. 6).  

Measurements of dependence of Neff on irradiation fluence (Fig. 7) as well as the results from [29,30] 

suggest that an optimum initial resistivity of material for depleted CMOS pixel detectors would be 

in the range between 100 and 1000 Ωcm to benefit from high signal charge at the start of operation 

and from the increase of depleted depth due to the acceptor removal at fluences below 1·1015 n/cm2 

while at at higher fluences the initial resistivity has lost in importance. 
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