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Neutron scattering study of the classical

antiferromagnet MnF2: a perfect hands-on

neutron scattering teaching course1

Z. Yamani, Z. Tun, and D.H. Ryan

Abstract: We present the classical antiferromagnet MnF2 as a perfect demonstration system for teaching a remarkably

wide variety of neutron scattering concepts. The nature of antiferromagnetism and the magnetic Hamiltonian in this classi-

cal antiferromagnet are discussed. The transition temperature to the Neel state, the value of magnetic moment in the or-

dered state, the critical scattering close to the phase transition, spin waves associated with the ordering of the moments, as

well as their dispersion and temperature dependences are determined experimentally. Parameters such as the Neel transi-

tion temperature and exchange coupling constants obtained from the experiments agree reasonably well with the previously

published data. In addition, details of how an inelastic neutron scattering experiment is performed by means of triple-axis

spectroscopy are provided.

PACS Nos: 72.10.Di, 71.70.Ej, 71.70.Gm, 78.70.Nx

Résumé : Nous présentons l’antiferromagnétique MnF2 comme un exemple pédagogique parfait pour montrer une foule de

concepts en diffusion de neutrons. Nous analysons la nature de l’antiferromagnétisme et le hamiltonien magnétique de ce

spécimen antiferromagnétique. Nous déterminons expérimentalement la température de transition de Néel, la valeur du mo-

ment magnétique dans l’état ordonné, la diffusion critique près de la transition de phase, les ondes de spin associées à la

mise en ordre des moments, aussi bien que leur dispersion et leur dépendance en température. Les paramètres obtenus ici,

comme la température de transition de Néel et les constantes du couplage d’échange sont en assez bon accord avec les va-

leurs déjà publiées. De plus, nous présentons de façon détaillée la diffusion de neutrons à l’aide d’un spectrographe à trois

axes.

[Traduit par la Rédaction]

1. Introduction

This article is an outcome of a graduate level course of-
fered by the Physics Department of McGill University on
experimental techniques in condensed matter physics. As
one of the modules of the course, the students travel to
Chalk River for a hands-on demonstration experiment at
NRU, studying a single crystal of MnF2. The topics that
will be touched upon in the article are the ones that the stu-
dents are exposed to during the experiment, and the data
presented here were taken by the graduate students who at-
tended the course.

This article is not meant to be a full account of any of

these topics. Rather, it is intended to convey the breadth of
the topics we manage to cover within this 3-day crash
course, and thus demonstrate the educational aspect of
NRU, one of the functions this 50+ year-old reactor contin-
ues to provide for the benefit of Canada.

1.1 Neutron scattering

Condensed matter physics has benefited tremendously
from both elastic and inelastic neutron scattering techniques,
almost from the beginning of neutron scattering more than
half a century ago. These techniques were developed in
1940s and the 1950s by C. Shull at Oak Ridge and B.
Brockhouse at Chalk River, who shared the 1994 Nobel
Prize in physics for their groundbreaking work. Since then,
neutron scattering has been used to study a wide variety of
materials.

The main reasons for wide application of neutron scatter-
ing arise from the unique physical properties of the neutron
itself. It has zero electric charge hence does not interact with
the electrons in a way that electromagnetic radiation does.
Neutrons interact with the atomic nuclei in matter via the
nuclear force, which is extremely short-ranged. Hence, neu-
trons only weakly perturb the system under study; i.e., neu-

Received 27 August 2010. Accepted 4 October 2010. Published
on the NRC Research Press Web site at cjp.nrc.ca on
3 November 2010.

Z. Yamani2 and Z. Tun. National Research Council, Canadian
Neutron Beam Centre, Chalk River, ON K0J 1J0, Canada.
D.H. Ryan. Department of Physics and Centre for the Physics of
Materials, McGill University, 3600 University Street, Montreal,
QC H3A 2T8, Canada.

1Special issue on Neutron Scattering in Canada.
2Corresponding author (e-mail: zahra.yamani@nrc.gc.ca).

771

Can. J. Phys. 88: 771–797 (2010) doi:10.1139/P10-081 Published by NRC Research Press



trons are both nondestructive and highly penetrating. This
allows an investigation of the interior of materials and ob-
taining the bulk response of the system. Since neutrons with
wavelengths similar to interatomic distances are readily
available, structural measurements over distances from the
shortest hydrogen bonds to macromolecules are possible.
Also, since the energies of the neutrons with such wave-
lengths match the energy scales of many condensed matter
systems, it is possible to use them to probe the dynamics of
the system. Excitations that can be studied via neutron scat-
tering range in energy from a few milli-electron volts (meV)
to a fraction of an electron volt. In addition, since the neu-
tron has a magnetic moment, it interacts with unpaired elec-
trons in solids. By coincidence, the cross-sections for the
magnetic and nuclear interactions are of similar magnitudes.
Thus, the neutron is the probe of choice for investigating
magnetic materials, as it often provides crucial information
about the magnetic properties of the system that cannot be
obtained by other techniques.

The description of magnetic neutron scattering presented
here is necessarily brief. For a more extensive introduction
to the general techniques see refs. 1 and 2. Polarized neutron
methods have been discussed by Williams [3], while Love-
sey provides a more comprehensive theoretical text [4].
References 5 and 6 are excellent detailed texts on the exper-
imental aspects of neutron scattering. Other useful texts on
different aspects of neutron scattering are listed in refs. 7–
11.

The very first concept the students are introduced to is the
following: In a neutron scattering experiment, the quantity
we ultimately measure is the time and spatial Fourier trans-
form of the correlation function of the objects that cause
scattering, the so-called scattering function, S(Q, u). For
magnetic neutron scattering, this quantity is the Fourier
transform of the time-dependent correlation function of
magnetic moments (either due to spin only or to the total
angular momentum). The partial differential cross-section,
d2s/(dU dEf), per solid angle U, per unit energy E, is given
by

d2s

dU dEf

¼
kf

ki
e�2WðQÞ

X

ab

ðdab � bQa
bQbÞS

ab
magðQ;uÞ ð1Þ
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b
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with the summation over Cartesian directions, gn = 1.913 is
the gyromagnetic ratio of the neutron, r0 is the classical
electron radius, g (*2) Lande factor, ki (kf) is the incident
(scattered) neutron wavevector, Q = ki – kf the momentum
transfer in the scattering process, u is the energy transfer
(assuming the reduced Planck constant Z ¼ 1), f(Q) is the
magnetic form factor, discussed in more detail in Sect. 1.3,
e–2W(Q) is the Debye–Waller factor (DWF)3, and Smag

ab (Q, u)

is the magnetic scattering function, the space and time Four-
ier transform of the time-dependent correlation function of
magnetic moments. The ðdab � bQa

bQbÞ term in the cross-sec-
tion indicates that only the components of spin perpendicu-
lar to the momentum transfer Q are probed by neutrons. In
other words, the measured intensity is proportional to sin2a,
where a is the angle between the magnetic moment and the
momentum transfer, as depicted in Fig. 1.

The magnetic scattering function Smag
ab (Q, u) is also re-

lated to the imaginary part of the generalized dynamical
spin susceptibility c’’(Q, u), through the fluctuation-dissipa-
tion theorem [12],

SabmagðQ;uÞ / ½nðuÞ þ 1�c00
abðQ;uÞ ð3Þ

where

½nðuÞ þ 1� ¼
1

1� e�Zu=kBT

accounts for the Bose factor, where kB is the Boltzmann
constant.

We will now give a brief description of magnetic order
and magnetic excitations. To keep our discussion simple,
we will only consider a special class of materials known as
co-linear magnets.

In the lowest energy state of a long-range ordered magnet,
the magnetic moments of all ions point along a specific di-
rection (let us assume this direction is along z-axis), which
is defined by the magnetic structure of the lattice. In an anti-
ferromagnet (more common in nature than ferromagnets),
orienting the nearest-neighbour moments anti-parallel to
each other leads to the lowest-energy configuration, while
the parallel configuration is favoured in a ferromagnet. In
general, the magnetic moment of an ion is derived from
both the spin and the orbital angular momenta of its un-
paired electrons. Here we consider magnetic order in MnF2,
where the situation is simpler: the moment is due solely to

Fig. 1. The magnetic intensity is zero when the magnegtic moment

and the scattering vector (momentum transfer in a scattering event)

are parallel to each other. The diagram shows the condition for

elastic scattering.

3 The Debye–Waller factor e–2W(Q) is used to describe attenuation of the neutron scattering signal due to thermal motion of the atoms. When
a material is heated, the atoms vibrate around their equilibrium positions. This thermal motion results in a reduced intensity for the mea-
sured neutron scattering signal. DWF depends [1] on the absolute value of wavevector transfer, 2W(Q) = < (Q.u)2 >, where u is the dis-
placement of the atom from its equilibrium position.
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the spin-angular momentum of unpaired electrons, as dis-
cussed in the next section.

One might expect that the first excited state would be cre-
ated by reversing the sign of a single magnetic moment, but
this simple configuration turns out to be highly energetic
since it involves the breaking of two antiferromagnetic
bonds (see the lower part of Fig. 2a). For a relatively high
spin ion such as Mn2+, excited states with much lower en-
ergy can be constructed by having the spins at each site
lower their Sz component by one unit, while acquiring an
xy-component (clearly not possible in a spin-1/2 system).
However, it is more energetically favourable that the change
in spin angular momentum is shared by all of the spins; i.e.,
instead of one moment reversing its sign, with the newly ac-
quired xy-components it is now possible for all the moments
to precess about their equilibrium positions at an angular
frequency establishing a spin wave with a repeat distance of
several lattice spacings, as shown in Fig. 2b. For a system of
N ions, each ion carries a share of Z=N in the reduction of Sz.
These quantized spin waves are called magnons, the quanti-
zation arising from the fact that Sz can only change by inte-
gral multiples of Z. In the absence of easy axis anisotropy,
magnons have exceedingly small energies in the limit of in-
finite wavelengths. Such excitations are called Goldstone
modes. In the presence of anisotropy (e.g., as is the case for
MnF2), an energy gap will develop at the zone centre of the
magnetic Brillouin zone.

A neutron scattering experiment can be performed, meas-
uring the scattered neutrons either elastically or inelastically,
to investigate the nature of magnetic order. In an elastic ex-
periment, the incident and scattered neutron energies are set
to be equal to each other, and we measure S(Q, u = 0).
Thereby, as a consequence of the time Fourier transform,
the correlations we probe correspond to infinite time, i.e.,
the static property of the sample. From the observed mag-
netic scattering pattern, the (time-independent) magnetic
structure can then be determined. In addition, as seen from
(1), since the observed scattering is only nonzero when the
magnetic moment has a component perpendicular to the
scattering wavevector, one can often gain information about
the orientation of the magnetic moment in the system under
study. For a system where the magnetic moments are or-
dered into a long-range periodic pattern, the scattering will
appear as delta functions at the wavevectors corresponding
to magnetic Bragg reflections. For a system where only
short magnetic correlation exist, the observed peaks will
have a finite width. For such systems, the spatial extent of
the correlations can be investigated by measuring the peak
width in reciprocal space, as the correlation length is inver-
sely proportional to the width, after deconvolving the intrin-
sic resolution function of the instrument (see Sect. 2.6).

In an inelastic experiment, the incident and scattered neu-
tron energies are different, and hence one is able to study
the spin dynamics of the system from such measurements.
In a long-range magnetically ordered system, the collective
magnetic excitations are spin waves, as explained above.
These excitations and their dependence on wavevector can
easily be measured by neutrons. From the observed depend-
ence of the excitation energy on wavevector (dispersion re-
lations), information about fundamental properties of the
magnetic interactions, such as exchange coupling constants

and their anisotropy, can be determined. Furthermore, infor-
mation about the lifetime of magnetic excitations can be ob-
tained from a study of the energy width of the observed
excitation peaks. Such elastic and inelastic information is
often crucial in studying microscopic magnetic structures
and the magnetic fluctuations that underpin macroscopic
magnetic phenomena in materials.

1.2 Antiferromagnetism in MnF2

MnF2 is a classical antiferromagnetic insulator with a
Neel transition to an AF state at TN& 67 K [13–15]. Similar
to other transition metal difluorides, MnF2 has [16] a tetrag-
onal structure (space group P42/mnm) with lattice constants
a = b = 4.873 Å, and c = 3.130 Å. The tetragonal structure has
a large compression along the c-axis with c/a of about two
thirds. The Mn2+ ions occupy the body centre positions at
(0, 0, 0) and (0.5, 0.5, 0.5). The F ions are located in non-
centrosymmetric positions between the Mn2+ ions at
(x, x, 0), (–x, –x, 0), (0.5+x, 0.5–x, 0.5), and (0.5–x, 0.5+x, 0.5)
with x& 0.3 (see Table 1). The MnF2 unit cell is shown in
Fig. 3.

MnF2 contains Mn2+ and F– ions. Mn2+ is a transition
metal ion with the half-filled electronic configuration 3d5.
Many properties of compounds made of transition metal
ions, including magnetic ordering and their colour, are due
to the partially filled d-orbitals of these ions [18–20]. Since
the fluoride ion is in the full 2p6 electronic state, it does not
have any unpaired electrons, and hence it does not directly
participate in the magnetic state of the compound, and the
transition to an AF state below TN is due to the Mn2+ ion.

The electronic configuration of the ground state of a free
ion can be predicted by the Hund’s rules [21]. According to
these rules, the equivalent electrons of the last shell of a free
ion fill available orbitals in that shell such that first the total
spin angular momentum, S =Sisi (sum over all electrons), is
maximized as allowed by the Pauli principle, then the total
orbital angular momentum L =Sili is maximized. And fi-
nally, J, the total angular momentum is defined as J = |L – S|
for a half-filled or less, and J = L + S for a shell that is more

Fig. 2. (a) In the lowest state, all moments are pointing along a

specific direction (antiparallel to one another in an antiferromag-

net). The first excited state is when the total spin is reduced by one.

This can be achieved by the reversal of only one moment as shown

in (a). However, it is more energetically favourable if the change is

shared by all the moments, i.e., all the moments precess about their

equilibrium positions, as shown in (b).
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than half-filled. Hund’s rules can be understood by consider-
ing the Coulomb repulsion between the electrons and the
Pauli exclusion principle, which states that two electrons
with the same spin state are forbidden to occupy the same
orbital. Since the total spin angular momentum S has to be
maximal, electrons first occupy separate orbitals, while hav-
ing the same spin state. This way, the Coulomb repulsion is
minimized since electrons will be as far as possible from
one another. For the Mn2+ ion, according to Hund’s rules,
each of the five d-orbitals is occupied with one of the five
electrons. The spins of all five electrons are aligned in the

same direction, thus leading to a high spin state of S = 5/2
for this ion. Since there is an electron in each of the five d-
orbitals (l = –2, –1, 0, 1, 2), the total orbital angular momen-
tum is zero, L = 0, and therefore J = 5/2 for the ground state.
This indicates that the magnetic moment of the Mn2+ ion is
due solely to its spin angular momentum. This is in fact ex-
perimentally verified, since the observed magnetic moment
and the spin magnetic moment are identical.

The magnetic properties of materials cannot be under-
stood in terms of free-ion properties alone, and the interac-
tion of the ions with one another and their surrounding
environment needs to be included [12, 21]. Here, we first
briefly consider the interaction of the ion with the electric
field generated by the neighbouring ions in the crystal
(crystal field) and then consider the magnetic interaction be-
tween the ions.

The atomic levels of a metallic ion when surrounded by
negatively charged ions (ligands) in a crystal depend on the
local environment around the ion. A free ion has spherical
symmetry, and its d-orbitals all have the same energy (they
are degenerate); in a crystal, the spherical symmetry of the
ion is broken, thus the degeneracy of the d-orbitals is lifted.
The symmetry of the local environment determines the pat-
tern of splitting, whereas the size of the splitting depends on
the type of ligand.

The angular dependence of the five d-orbitals is shown in
Fig. 4. In an octahedral crystal field (where the magnetic ion
is at the centre of an octahedron made by the six surround-
ing ligands, as is the case with Mn in MnF2), electronic or-
bitals of Mn2+ (three t2g orbitals) that have smaller overlap
with the orbitals from the ligands, will have a lower energy
than the orbitals (two eg orbitals) with lobes directed to-
wards the ligands, as shown in Fig. 4. This is due to the
Coulomb repulsion between the electrons from the ligands
and the magnetic ion. For this local symmetry, the amount
of energy shift is calculated to be –2D/5 and 3D/5 for the
t2g and the eg orbitals, respectively, where D is the splitting
of the d-orbitals in an octahedral field [12, 18–20]. For com-
pounds with weak (strong) crystal field, the ground state of

Table 1. The atomic positions in the MnF2 nuclear unit cell (space group

P42/mnm) with lattice constants a = b = 4.873 Å, and c = 3.130 Å [16].

The nuclear scattering length for Mn is –3.73 fm and for F is 5.56 fm

[17].

x y z Atoms per unit cell

Mn 0 0 0 1/8

Mn 0 0 1 1/8

Mn 0 1 0 1/8

Mn 0 1 1 1/8

Mn 1 0 0 1/8

Mn 1 0 1 1/8

Mn 1 1 0 1/8

Mn 1 1 1 1/8

Mn 0.5 0.5 0.5 1

F 0.305 0.305 0 1/2

F 0.305 0.305 1 1/2

F 0.695 0.695 0 1/2

F 0.695 0.695 1 1/2

F 0.805 0.195 0.5 1

F 0.195 0.805 0.5 1

Fig. 3. The tetragonal nuclear unit cell of MnF2 is shown. The

manganese ions (small red spheres; dark grey in the print version)

are located at the corners and the body centre positions. The fluor-

ide ions (large blue spheres; light grey) are located at non-centro-

symmetric positions between the Mn2+ ions. The unpaired electrons

of Mn2+ ions, ordered antiferromagnetically, are shown with red ar-

rows. The AF magnetic structure can be described by two sublat-

tices (both shown as outlines) of Mn2+ ions (Mn1 and Mn2) with

their moments pointing along the c-axis and antiparallel to one an-

other. The arrangement of the fluoride ions around each Mn2+ ion

is identical but rotated by 908 about the c-axis. The crystal field at

each Mn2+ ion is mainly octahedral.
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the magnetic ion will have a high (low) spin, since the en-
ergy shift due to the crystal field splitting is small (large)
compared with the energy required for pairing two electrons
with opposite spins in the same orbital. In a weak crystal
field environment, such as in MnF2, the three t2g and two eg

orbitals are each occupied by one electron of the Mn2+ ion
five electrons. Hence, an algebraic cancellation of the in-
creased and decreased energies of the orbitals occurs, and
to a good approximation the ground state remains unaffected
by the crystal field. For an exact solution, however, one
needs to take into account that the octahedron formed by
fluoride ions is distorted due to different equatorial and axial
distances between the Mn and F ions. In addition, the sym-
metry is further reduced from the octahedral, since the fluo-
ride ions do not form a square, and as a result the Mn
orbitals do not point directly toward the fluoride ions.

In MnF2, the ground state moment has no orbital compo-
nent and so it arises entirely from the half-filled 3d shell
with the effective spin S = 5/2. It is the interactions between
these spins that gives rise to the magnetic properties of the
compound. These interactions include dipole-dipole, ex-
change and superexchange.4 The type of magnetic ordering
in a compound is generally determined by the relative
strength of these magnetic interactions. The dipole–dipole
interactions between spins are usually too weak, m0m

2/

a3& 1 K (where a is the distance between the interacting
moments m) to explain the magnetic ordering at high tem-
peratures, such as TN& 70 K in MnF2.

The exchange interaction stems from the Coulomb repul-
sion between the electrons and the fact that they have to
obey the Pauli principle. Since electrons are fermions, their
wave function needs to be antisymmetric with respect to the
exchange of any two electrons. The wave function is the
product of the spatial and spin wave functions (ignoring the
spin–orbit interaction). The Coulomb interaction dictates the
symmetry of the spatial part of the wave function to mini-
mize the repulsion between the electrons in the ground state.
Thus, considering that the total wave function is required to
be antisymmetric, the symmetry of the spin part of the wave
function is also determined. The exchange interaction can
lead to ferromagnetism or antiferromagnetism, depending
on the type of orbitals involved. For many interacting elec-
trons, the exchange interaction is usually expressed in terms
of the total ionic spins, Si > j Jij Si.Sj, where the sum is over
all pairs of spins and Jij are orbital overlap integrals between
ions. This Hamiltonian is called the Heisenberg exchange
Hamiltonian.

In MnF2, the nearest neighbours of a Mn2+ ion are along
the <001> axes; the direct exchange between the nearest-
neighbour Mn2+ ions, J1, turns out to be ferromagnetic and

Fig. 4. The angular dependence of the d-orbitals. The three similar orbitals (of symmetry t2g) dxy, dyz, and dxz consist of four lobes of high

electron density in between the principal axes in the corresponding planes; e.g., dxy has lobes normal to z, with maxima at 458 to x and y.

The other orbitals dx2�y2 and dz2 are of symmetry eg. The dx2�y2 orbital also has four lobes of high electron density, but along the principal

axes x and y. The dz2 orbital consists of two lobes along the z-axis with a ring of high electron density in the xy-plane. The fivefold degen-

eracy of the d-orbitals in the free ion is lifted in an octahedral symmetry.

4 For a magnetic ion with a non-zero orbital angular momentum, the spin-orbit interaction should also be included.
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small, hence cannot explain the observed antiferromagnet-
ism. The next-nearest-neighbour Mn2+ ions are along
the <111> axes; the electronic wave functions of the next-
nearest neighbours do not have any overlap so that direct
exchange between these ions is excluded. However, since
the wave function of Mn2+ ions are strongly admixed with
the intervening fluoride ion wave functions, there is an indi-
rect coupling between their wave functions, called the super-
exchange interaction. In MnF2, this superexchange
interaction J2 is antiferromagnetic and much stronger than
J1 (by about a factor of five). Finally, the exchange interac-
tion between the third-nearest neighbours (the third-nearest
neighbours lie along the <100> and <010> directions) is al-
most negligible.

The origin of the superexchange interaction is schemati-
cally shown in Fig. 5 (see [12], [18–20] for more details).
Since the wave functions of the fluoride and manganese ions
overlap, an electron from the fluoride ion can jump over to
one of the close-by manganese ions and create a Mn+ excited
state while leaving an unpaired electron on the fluoride site.
This unpaired electron can then enter into an antiferromag-
netic exchange coupling with the other manganese ion. The
effective exchange (superexchange) between manganese ions
is obtained in a perturbation calculation of the total energy of
the system by using such excited states [12].

Although the superexchange and exchange interactions
between the next-nearest and nearest neighbouring Mn2+

ions can explain many of the observed properties of MnF2,
they cannot explain the orientation of the magnetic moments
in the ordered state. In magnetic materials, the anisotropy
interaction is usually responsible for the preferred alignment
of the spins with respect to the crystallographic axes (dif-
ferent from relative alignment of the spins with respect to
one another) in the ordered phase. The anisotropy energy
arises mainly from classical magnetic dipole–dipole interac-
tions (single-ion anisotropy) and the crystal field. For a
Mn2+ ion with L = 0, the anisotropy due to the crystal field
is very small. It is the long-range anisotropic dipole–dipole
interaction between the magnetic Mn2+ ions, even though
weak, that mainly determines [22] the alignment of the
magnetic moments along the c-axis. The single-ion
anisotropy depends on the symmetry of the crystal structure.
For MnF2, due to its tetragonal structure, the anisotropy is
uniaxial and can be expressed [22] as Hd–d = –Dd–d Si(Si,z)2.

In summary, the magnetic interactions described above
for MnF2 can be expressed [5, 23] in terms of the following
effective Hamiltonian:

H ¼
1

2
J2
X

i;m

Si � Sm �
1

2
J1
X

i;n

Si � Sn � Dd�d

X

i

ðSi;zÞ
2 ð4Þ

where the sum is over all magnetic ions i, and their next-
nearest neighbours m, and nearest neighbours n, for the
superexchange and exchange interactions, respectively. The
presence of the J1 exchange interaction leads to an aniso-
tropy in the spin-wave dispersion observed for the <001>
and <100> directions. The negative sign before the J1 term
in (4) is indicative of the ferromagnetic nature of the direct
exchange between the nearest-neighbour Mn2+ ions. The sin-
gle-ion anisotropy Dd–d leads to a spin gap in the spin-wave
dispersion. The dispersion is given [5] by,

Zuq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZu2 þ zqÞ

2 � ðZu2gqÞ
2

q
ð5Þ

where

zq ¼ Dd�d þ 2Zu1 sin
2 qzc

2

� �
ð6Þ

gq ¼ cos
qxa

2
cos

qya

2
cos

qzc

2
ð7Þ

where Zui ¼ 2SziJi, z1 = 2 is the number of nearest neigh-
bours, z2 = 8 is the number of second-nearest neighbours,
and a and c are lattice constants. The exchange constants,
J2 and J1, as well as the single ion-anisotropy energy Dd–d

can be determined by means of inelastic neutron scattering
measurements, where the energy of the magnetic excitations
(spin waves) is determined as a function of momentum
transfer and compared with (5).

1.3 Neutron scattering study of antiferromagnetism in
MnF2

It is easier to study the magnetic properties of a MnF2 sin-
gle crystal if the crystal is aligned in the (h0l) plane. This is
because the magnetic and nuclear Bragg peaks do not over-
lap in this scattering plane. The condition for the nuclear
Bragg reflections can be easily obtained from the nuclear
structure factor [1],

FNðhklÞ ¼
X

j

bj e
½2piðhxjþkyjþlzjÞ� ð8Þ

where the sum is over all the elements in the unit cell, Q =
(hkl) is the scattering vector in the reciprocal lattice, and bj

and (xj, yj, zj) are nuclear scattering length and atomic coor-
dinates of the jth element in the cell, respectively. Using
the atomic coordinates of Mn and F and their corresponding
scattering lengths (see Table 1), one can show that the nu-
clear Bragg reflection condition is given by h + l = even in
the (h0l) plane.

The reflection condition for magnetic Bragg peaks is de-

Fig. 5. The electronic configuration of (top) the ionic ground state

and (bottom), an intermediate excited state of MnF2 [12].

776 Can. J. Phys. Vol. 88, 2010

Published by NRC Research Press



termined from the magnetic scattering function Smag(Q, u).
In general, the time-independent part of the scattering func-
tion, i.e., the ensemble average that remains nonvanishing as
time approaches infinity, gives rise to elastic scattering. It
can be shown that for elastic scattering the magnetic scatter-
ing function is given by,

SmagðQÞ ¼ jFmagðQÞj2 ð9Þ

where Fmag(hkl) is the magnetic structure factor,

FmagðQÞ ¼
X

j

pj e
½2piðhxjþkyjþlzjÞ� ð10Þ

where pj is the magnetic scattering length of the jth ion in
units of 10–15 m, given by [1, 4]

pj ¼
gnr0

2

� �
mjfjðQÞ ð11Þ

In this equation, gnr0/2 = 2.695 in units of 10–15 m/mB
2 ,

mj ¼ gJJj ¼ Lj þ 2Sj ð12Þ

is the effective magnetic moment of the atom in units of mB,
with spin Sj and orbital Lj, and gJ is the Lande factor. The
fj(Q) in (11) is the magnetic form factor of the atom at the
magnetic reciprocal lattice vector Q. One might ask why the
magnetic intensity has this extra term compared woth nu-
clear scattering, where no such dependence exists. The an-
swer lies in the fact that nuclear scattering occurs via the
strong nuclear forces with the nucleus. The radius of the nu-
cleus is much smaller than the typical neutron wavelengths
used in a neutron scattering experiment, and hence the nu-
clear interaction potential may be considered to be a delta
function. However, magnetic scattering occurs via an elec-
tromagnetic interaction between the neutron spin and the
electron cloud in an open shell around the nucleus. Since
the extent of the electron cloud is comparable with the wa-
velength of the neutrons used in the experiment, the Fourier
transform of this extended interaction leads to the extra
magnetic form factor. The magnetic form factor f(Q) de-
scribes the momentum dependence of the magnetic scatter-
ing amplitude from a single ion and can be calculated from
first principles [4] if the ground state of the ion, and hence,
the magnetic atomic orbitals are known. However, in the
limit of small momentum transfer (the size of the electronic
cloud is much smaller than the inverse of the momentum
transfer), simple estimates can be obtained using a dipole
approximation. In this approximation, the magnetic form
factor does not depend on the direction of the scattering vec-
tor, since the electron density is treated as spherical, and only
the lowest order spherical harmonics (s-waves) are used to
describe the shape of the ion. The f(Q) is then given by

f ðQÞ ¼< j0ðQÞ > þ 1�
2

gJ

� �
< j2ðQÞ > ð13Þ

where < jl(Q) > are integrals that describe the radial distri-
bution of electrons in the open shell,

< jlðQÞ >¼

Z1

0

U2ðrÞjlðQrÞ4pr
2 dr ð14Þ

where jl is the lth order spherical Bessel function and U(r) is
the radial wave function of the atom. These integrals vary
significantly from ion to ion and are calculated using ab in-
itio methods such as Hartree–Fock calculations. There are
several references [24] where one can look up the values of
the integrals for different ions. For Mn2+, L = 0, resulting in
gJ = 2, hence the magnetic form factor is equal to <j0(Q) >.
Figure 6 shows the wavevector dependence of f(Q) and f(Q)2

for Mn2+.

Since only Mn2+ ions have a magnetic moment in MnF2,
the sum in (10) is carried over only Mn2+ ions, ignoring F
ions, in the unit cell, and the reflection condition for mag-
netic Bragg peaks is obtained as h + l = odd in the (h0l)
plane. Generally, the observed scattering is the superimposi-
tion of the magnetic and nuclear scattering. However, con-
sidering the nuclear and magnetic reflection conditions in
the (h0l) plane, at the magnetic peaks positions there is no
nuclear contribution. The same is also true for nuclear Bragg
reflections. Hence, in the (h0l) plane, the condition for nu-
clear and magnetic Bragg peaks leads to pure nuclear and
magnetic scattering. This separation of the nuclear from
magnetic reflections is shown in Fig. 7, where the (h0l) scat-
tering plane of the reciprocal space for MnF2 is depicted. In
addition, as seen, the orientation of the magnetic moments
can be determined by comparing the measured intensities at
(h00) and (00l) type magnetic reflections. This will be dis-
cussed further in Sect. 4.

The amplitude of the magnetic moment can also be deter-
mined in a neutron scattering experiment by calibrating the
observed intensities using nuclear Bragg peaks, since the
structure factor is calculated precisely with the known nu-
clear scattering lengths [17]. In a diffraction experiment, the
scale factor is obtained by rocking the crystal around the
nominal position of several nuclear Bragg reflections. The
integrated intensity of such a rocking curve at a given nu-
clear Bragg reflection at a reciprocal lattice vector,
Q = (hkl), is given [1] by

INðQÞ ¼ F0ðqÞ
Vl3

2v20ma

e�2W jFNðQÞj2

sinf

¼ CðQÞ
jFNðQÞj2

sinf
¼

jFobs
N ðQÞj2

sin f
ð15Þ

where F0(q) is the incident flux on the sample at Bragg an-
gle q, V is the scattering volume of the crystal, v0 is the unit-
cell volume, e–2W is the DWF, l is the neutron wavelength
used, ma is the absorption length, |FN(Q)| is the calculated
nuclear structure factor, and finally sinf is the Lorentz fac-
tor for a rotating crystal, where f is the scattering angle
(equal to 2q for elastic scattering). One can collect all the
constants and unknown factors, including the DWF in C(Q).
In general, the Lorentz factor in a triple-axis experiment
must be modified as the ratio of the integrated intensity
measured with a double-axis instrument to that measured
with a triple-axis spectrometer will depend on the type of
the scan performed and the mosaic of the sample. It is
shown (see pp. 170–172 of ref. 5 and [25]) that for a q–2q
scan measured with a triple-axis spectrometer and typical
crystal mosaic of less than one degree, the simple Lorentz
factor of (15) remains valid.
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Similarly, the integrated intensity of a magnetic Bragg re-
flection can be written as

ImagðQÞ ¼ CðQÞsin 2a
jFmagðQÞj2

sinf

¼ sin 2a
jFobs

magðQÞj2

sin f
ð16Þ

where sin 2a ¼ 1� ðbQ � bmÞ2 and bQ and bm are the unit vec-
tors defining the reciprocal lattice vector where the magnetic
scattering is observed and the direction of the moment (in
the case of MnF2, bm ¼ ð001Þ), respectively. The calculated
magnetic structure factor Fmag is given in (10) and (11),
with the magnetic moment the only unknown parameter.

2. Experiment: triple-axis spectroscopy

To study excitations in materials, a measurement of the
scattering as a function of energy and momentum transfer is
required. This type of measurement is called neutron spec-
troscopy. There are essentially two methods for discerning
the energy of the neutrons: one is by Bragg scattering from
a single crystal, known as triple-axis spectroscopy (TAS),
usually performed at a reactor source, and the other is by
measuring the time it takes for neutrons to travel a certain
distance, known as time-of-flight spectroscopy (TOF), usu-
ally performed at a pulsed source. Each of these methods is
most useful in studying a particular type of problem. Tradi-
tionally, TAS has been the preferred method for studying
single crystals. This is because for a single crystal the crys-
tal symmetry reduces the region of interest in (Q, u) space,
and the necessary information (i.e., dispersion relations) can
be obtained by simply measuring the excitations at specific
points or lines of high symmetry in reciprocal space in a tri-
ple-axis experiment. On the other hand, if the scattering is
expected to have no Q-dependence, as is the case for inco-
herent excitations, for example, TOF spectroscopy is pre-
ferred. With this technique one can also quickly obtain a
survey of excitations in a rather extended region of (Q, u).
Hence, the TOF method is advantageous for studying com-
pounds with very large unit cells or systems with reduced
dimensionality. The main disadvantage of this technique,
compared with the TAS method, has been the fact that the
measurements cannot necessarily be performed along a spe-
cific direction in reciprocal lattice. However, more modern
TOF instruments are specifically designed for performing
experiments on single crystals, and it is becoming routine to
perform TOF measurements at multiple rotation angles and
then take slices and cuts along the specific directions. Here,
we only consider the TAS spectroscopy including the details
of a conventional TAS spectrometer and issues associated
with this method that an experimenter should be aware of.
There are several additional configurations for a triple-axis
spectrometer, including multi-analyzer and (or) the use of a
position sensitive detector that will not be considered here.
Such configurations allow a measurement of a much larger
area in (Q, u) space simultaneously and hence reduce the
data collection time significantly. These types of configura-
tions are employed at BT7 [26] and more recently at MACS
[27] spectrometers at the NIST Centre for Neutron Research.
Other examples of such modern spectrometers include: flat-
cone [28], UFO [29], and IMPS [30] at ILL, PUMA [31] at
FRM-II, as well as at RITA [32] at SINQ’s continuous spal-
lation neutron source. Further details on these advances in
triple-axis spectrometry can be found at references provided
in ref. 33.

TAS is perhaps the most versatile neutron scattering tech-
nique. It was invented by Brockhouse in the mid 1950s at
Chalk River [34]. Although there have been many improve-
ments, the principle behind this technique has not changed
from that originally developed by Brockhouse. A schematic
diagram of a triple-axis spectrometer is shown in Fig. 8. The
term ‘‘triple-axis’’ derives from the fact that neutrons are
scattered from three crystals as they travel from the source
to the detector. The monochromator crystal (first axis) se-
lects neutrons with a certain energy from the white neutron
beam emanating from the reactor. The monochromatic beam

Fig. 6. Magnetic form factor and magnetic form factor squared

versus wavevector transfer for Mn2+. The < j0(Q) > integral is cal-

culated using the parameters given in [24].

Fig. 7. The (h0l) scattering plane of MnF2. The nuclear Bragg re-

flections (h + l = even) are shown with blue (light grey in print)

circles. The magnetic Bragg peaks (h + l = odd) are shown with red

(dark) circles. The magnetic moment is parallel to the c-direction.

Hence, no magnetic scattering is observed at the (001) magnetic

Bragg position.
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Fig. 8. (a) A schematic layout of a TAS is shown. A white beam is extracted from the reactor. A single crystal monochromator (1st axis)

selects neutrons with a specific wavelength from this white beam. The monochromated beam is shone onto the sample (2nd axis) where it

interacts with the sample via both nuclear and magnetic interactions. The neutrons scattered by the sample are Bragg reflected from the

single crystal analyzer (3rd axis) to determine their final energy. Finally, neutrons reflected by the analyzer are detected by the neutron

detector. The angular divergence of the beam is controlled by the collimators placed at different locations in the neutron path (and also

indirectly by the mosaic of monochromator, analyzer, and sample). Different types of filters are used to cut the fast neutron background

(sapphire filter in the main beam in front of monochromator) and higher harmonics (PG-filter for thermal neutrons and Be or BeO filters for

cold neutrons). (b) A schematic of the N5 triple-axis spectrometer at Canadian Neutron Beam Centre is shown.
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is then scattered off from the sample (second axis). The neu-
trons scattered by the sample can have a different energy
from those incident on the sample. The energy of these scat-
tered neutrons is then determined by the analyzer crystal
(third axis). Below, we describe in detail each component
of a triple-axis spectrometer.

2.1 Neutron monochromators and analyzers

Neutrons produced through the fission process in a reactor
could have energies up to 10 MeV. The energy of these fast
neutrons is reduced to thermal energies by a moderator (with
large scattering and low absorption cross-sections and a low
molecular mass). The flux distribution of the neutrons in
thermal equilibrium with the moderator at a temperature T
follows [1, 6, 35] the Maxwell–Boltzmann distribution

/ v3nexp ð�mnv
2
n=2kBTÞ, where vn and mn are the neutron ve-

locity and mass, respectively. Figure 9 shows the flux distri-
butions for T = 30 K, 333 K, and 3000 K moderator
temperatures. At the NRU reactor at Chalk River Laborato-
ries, heavy water at a temperature of 60 8C (333 K) is used
as the moderator. To produce neutrons with a long wave-
length distribution, cold liquids of lightweight atoms such
as liquid hydrogen (NIST reactor) are used, whereas neu-
trons with short wavelength distributions could be produced
by a block of hot graphite (ILL reactor), for example.

To perform a triple-axis experiment, neutrons with a spe-
cific wavelength from the Maxwellian distribution must be
chosen. For this purpose a crystal monochromator is used to
select neutrons with a specific wavelength. Neutrons with
this wavelength interact with the sample and are scattered
off at a similar (elastic) or different wavelength (inelastic).

In a triple-axis experiment, the energy of the neutrons both
incident on and scattered from the sample is determined by
Bragg reflection from the monochromator and analyzer crys-
tals, respectively. For a specific Bragg plane (hkl) character-
ized by an interplanar spacing dhkl, the crystal is rotated
about a vertical axis, i.e., an axis perpendicular to the plane
in which the TAS operates (usually horizontal). At a given
angle between the incident beam and the Bragg plane, only
neutrons with a specific wavelength are scattered off of the
crystal at a particular angle (Bragg angle = q). The wave-
length is given by the Bragg law,

2dhkl sin q ¼ nl ð17Þ

where n is a nonzero integer. For elastic scattering, the
Bragg angle is half of the scattering angle f at which the
scattering is observed, i.e., f = 2q. The Bragg-scattered neu-
trons from the crystal then proceed to the next component of
the spectrometer. With the wavelength of neutron known,
the neutron energy can then be simply determined from
E = h2/2mnl

2 where h is the Planck constant and mn is the
neutron mass. Note that we do not need to invoke relativistic
effects in describing the neutron kinetics as the speed of
thermal neutrons is, at most, tens of kilometers per second.
From (17), one can also see that the energy resolution DE
is directly proportional to energy E and also depends on the
Bragg angle,

DE ¼ 2E cot qDq ð18Þ

where Dq is the angular divergence of the beam.5 Hence at
higher energies, the energy resolution becomes worse both
because of the direct dependence on energy and the cot q
term, since q is smaller at higher energies.

The success of a neutron scattering experiment depends
on the strength of the scattered signal. Hence it is essential
to have as high neutron flux on the sample as possible. This
means that the choice of monochromator and analyzer crys-
tals is quite important. A good crystal should have a large
coherent cross-section, which together with a small unit cell
gives a high neutron reflectivity, and both very low incoher-
ent (to reduce the background) and absorption cross-sections
[7]. Its mosaic should also be optimized for the highest re-
flectivity and the desired resolution (because of the term Dq

in (18)). A commonly used material is highly oriented pyro-
lytic graphite (HOPG). Graphite has a layered hexagonal
structure with the c-axis perpendicular to the layers
(c = 6.71 Å). HOPG has a highly ordered c-axis, while it is
disordered in the basal ab-plane. For energies below
*35 meV, usually the HOPG (002) reflection is used. The
reflectivity of a crystal is inversely proportional to the neu-
tron energy, leading to a reduction in reflectivity at high en-
ergies. The energy resolution also becomes worse at high
energies as the Bragg angle for PG (002) becomes smaller.
Hence other types of monochromators with smaller d-spac-
ing, such as Be, are often used at high energies. Table 2
shows a comparison of d-spacings of a few useful mono-
chromators.

One common method for increasing the neutron flux is to

Fig. 9. The Maxwellian distribution of neutron flux (proportional to

vn
3exp(–mnvn

2/2kBT), where vn is the neutron velocity) for infinitely

large moderators at 30 K (cold), 333 K (thermal), and 3000 K (hot).

The distribution at each temperature is normalized to have the same

integrated area.

5 The angular divergence of the beam Dq depends both on the mosaic of the monochromator bm as well as the collimations used before

(ac2) and after (ac1) the monochromator given [11] by Dq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
c1
a2
c2
þa2

c1
b2mþa2

c2
b2m

a2
c1
þa2

c2
þ4b2m

r
.
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utilize focusing monochromator and analyzer crystals. Given
that high vertical resolution for the scattering vector is usu-
ally not required, vertical focusing is more common than
horizontal focusing (intensity gain with not much price in
resolution). Figure 10 shows a vertically focusing PG mono-
chromator used at the Canadian Neutron Beam Centre.
Since horizontal focusing results in a poor wavevector reso-
lution in the horizontal plane, it is usually used only if it is
expected that the scattering does not have a sharp wavevec-
tor dependence.

2.2 Higher order neutron filters

One of the problems with the TAS method is the possible
presence of higher harmonics in the neutron beam. Higher
harmonics arise from higher order (hkl) in Bragg’s law (17).
This means that if the monochromator (analyzer) crystal is
set to reflect neutrons with a wavelength of l from a given
(hkl) plane, it will also reflect neutrons with wavelength l/n

from the (nh, nk, nl) plane in the same direction. This leads
to the appearance of several types of spurious peaks in the
observed signal. As they are the results of fortuitous match-
ing of higher order energies, these peaks tend to be very
sharp in energy and hence are known colloquially as spuri-
ons (see below). To avoid spurions, shorter wavelength neu-

Table 2. Comparison of a few crystals useful for monochromators or analyzers. PG is pyro-

lytic graphite, while He is the Heusler alloy Cu2MnAl, commonly used as a polarizing crys-

tal.

Crystal d-spacing (Å)

PG 002 3.35 High reflectivity

Be 002 1.79 Small d-spacing, high energies

Be 110 1.14 Small d-spacing, high energies

Cu 220 1.28 Small d-spacing, high energies

Ge 111 3.27 No l/2, lower refl. than PG

He 111 3.44 Polarizer

Fig. 10. A vertically focusing PG monochromator used at the Ca-

nadian Neutron Beam Centre.

Fig. 11. (a) The transmission of a 10.16 cm sapphire filter at 300

and 80 K as a function of neutron wavelength. Data are taken from

[36]. The solid lines are fit to a function given in [37], which ac-

counts for multiphonon scattering and anharmonic effects. (b) The

transmission of a 15.24 cm beryllium filter at 300 and 80 K. Data

are taken from [36]. As seen, the transmission of a beryllium filter

is reduced by half at room temperature compared with that at 80 K.

(c) The transmission of 5 cm highly oriented pyrolithic graphite

HOPG (002). The data are taken from [38]. A HOPG filter is ef-

fective in eliminating both the second and third harmonics of neu-

trons with the main harmonic wavelength equal to 2.37 Å, due to a

strong suppression of the transmission at wavelengths of 1.185 and

0.79 Å.
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trons from these higher order harmonics should be removed
from the neutron beam if possible. The challenge is to
achieve this while maintaining the neutron flux at the main
harmonic (n = 1) wavelength.

Several methods exist for filtering out the higher harmon-
ics. These include utilizing a special filter material in the
neutron path (see Fig. 11), a special type of crystal for the
monochromator, or a velocity selector. The choice of filter
material depends on the main harmonic wavelength. For
cold neutrons (lT4 Å) polycrystalline Be or BeO is often
used. This type of filtering utilizes the fact that there is no
coherent elastic scattering if the neutron wavelength is larger
than 2dmax, where dmax is the largest d-spacing between the
Bragg planes in a material, hence for neutrons with wave-
length greater than this wavelength (lcutoff = 2dmax), the ma-
terial becomes transparent. Be and BeO are two common
materials with cut-off wavelngths of 4 and 4.7 Å, respec-
tively, for this type of filtering. To achieve a high transmis-
sion for cold neutrons, these filters are required to be cooled
to liquid nitrogen temperatures, where scattering of neutrons
from lattice vibrations is reduced, and therefore a higher
transmission can be achieved. Figure 11b shows the trans-
mission of a Be filter at 300 and 80 K as a function of wave-
length. For thermal neutrons (l(4 Å), HOPG is used with
its c-axis along the beam. It has a very good transmission in
a narrow wavelength range around 2.37 and 2.44 Å (and to
a lesser extent around 1.41 and 1.64 Å), while it scatters
neutrons with higher harmonics out of the beam (although
not completely). The filtering mechanism for HOPG can be
understood by considering Bragg’s law. When the c-axis is
parallel to the neutron beam, neutrons with wavelengths
that satisfy 2dhkl sin (908 –jhkl) =l, where jhkl is the angle
between the reciprocal lattice vector d�hkl and c-axis, are
Bragg scattered out of the beam. The transmission of a
HOPG filter is shown in Fig. 11b as a function of wave-
length. As seen, a HOPG filter is effective in eliminating
both the second and third harmonics of neutrons with the
main harmonic wavelength equal 2.37 Å, due to a strong
suppression of the transmission at wavelengths of 1.185 and
0.79 Å. The HOPG filter is also used at a neutron wave-
length of 1.64 Å, although it is less effective in cutting the
second and third harmonics compared with that at 2.37 Å.

Since the removal of the higher order harmonics is not
complete, sometimes other measures will be required to de-
termine whether the observed intensity is due to the first
harmonic. For example, another PG filter can be added. If
the intensity of the signal drops drastically (much more than
20%–30% expected reduction of the flux due to the absorp-
tion of neutrons by the filter itself), then the signal has a
contribution from higher harmonics. In addition, the temper-
ature dependence of the signal can be used. For example, in
the case of a magnetic signal that should appear below a
transition temperature, the higher harmonics will contribute
a temperature-independent component that can be measured
above the transition temperature and be subtracted from the
signal observed below the transition temperature.

The use of a special type of monochromator (analyzer)
crystal with a specific crystal structure can also be effective
in eliminating some higher order contamination. For exam-
ple, using Ge or Si (311) reflection eliminates the second
harmonic since the (622) reflection is forbidden for dia-

mond-type crystal structures. A velocity selector with a
large bandwidth can also be used to eliminate the higher or-
der neutrons [39].

2.3 Fast neutron filters–shields, and collimators

In any neutron scattering experiment it is important to re-
duce the background. One source of background is the pres-
ence of fast neutrons (epithermal and high-energy neutrons
mostly propagating along the beam channels but also arriv-
ing at the detector from other directions). Placing single
crystals of special materials such as sapphire, quartz, bis-
muth, lead, and silicon along the beam channels has been
long known to reduce the fast neutron background. These
filter materials have a wavelength-dependent cross-section
that is low for thermal neutrons but increases strongly at
fast neutron energies. The strong attenuation at high ener-
gies is due to a large inelastic cross-section (single phonon
and multiphonon processes). To reduce the variation of
transmission at low energies, a perfect single crystal of filter
material is used. A sapphire crystal with c-axis parallel to
the beam seems to be the most effective filter and has the
advantage that it can be used at room temperature without a
significant loss of transmission for thermal neutrons [36].
Figure 11a shows the transmission of a sapphire filter at
300 and 80 K as a function of wavelength. High-energy neu-
trons can also be filtered out by using materials with strong
nuclear resonances, such as Pu and Eu. The presence of
high-energy filters also helps eliminate higher order contam-
ination, since there will be a lower flux of higher energy
neutrons onto the monochromator to begin with.

The number of fast neutrons in a neutron scattering ex-
periment can be further reduced by adding appropriate
shielding around the spectrometer. To eliminate a fast neu-
tron background, it is first necessary to slow them down to
thermal energies. The absorption cross-sections of most iso-
topes tends to 1/vn, where vn is the neutron velocity, so that
the probability of capture is greatly increased if the neutrons
are slowed down. Fast neutrons can be slowed down by
scattering (moderating) in a hydrogenous material, such as
polyethylene or wax. It is then possible to eliminate them
by absorbtion in materials such as boron or cadmium. Mate-
rials such as boron-loaded epoxy that combine both hydro-
gen (to slow down) and boron (to absorb) are commonly
used around spectrometers. Shielding around the monochro-
mator is also designed to reduce the gamma rays both in the
beam itself and those produced as a result of neutron inter-
action with materials in the beam path. Hence, for mono-
chromators, a large amount of lead is also used in addition
to massive amounts of hydrogenous and neutron-absorbing
materials. This usually results in a large monochromator
drum. For the analyzer and detector drum, the shielding
does not need to be as heavy as that for the monochromator
since it is further away from the reactor wall, located on the
scattered side and usually not in line with the incident beam.
Hence, detector drums are usually much more compact than
monochromator drums. In a TAS experiment, the fast neu-
tron background is usually measured by rotating the ana-
lyzer from its Bragg condition by several degrees so that
only stray fast neutrons can reach the detector.

Another method of reducing the overall background is the
use of collimation to reduce the angular divergence of the
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beam. More importantly, the collimations used in an experi-
ment also largely control the resolution (see below). Each
TAS spectrometer has a natural collimation (see Fig. 12a)
that depends on the size of the beam and distances between
different components. This type of collimation is called dis-
tance collimation. The beam size at different location of the
neutron path can be controlled by slits. Highly neutron-ab-
sorbing materials are used as slits that can be adjusted in
two orthogonal directions with respect to the beam direction
to define the beam size (Fig. 12b).

However, since in most instruments there are limitations

on how far distances between different components can be
adjusted, it is desirable to have another type of collimation
that can be easily varied to provide additional flexibility in
achieving the desired resolution and background reduction.
For this purpose, Soller collimators are commonly used. A
Soller collimator consists of transparent slots that are sepa-
rated by neutron-absorbing blades (Figs. 12c, 12d). An effi-
cient collimator should have blades made of a very high
neutron-absorbing material with uniform blade spacing and
a very small blade thickness to reduce the dead space. This
can be achieved for example by positioning stretched mylar
films that are painted with Gd2O3 oxide, a highly neutron-
absorbing material, at specific distances from one another.
Figure 12d shows a photograph of such a collimator used at
the Canadian Neutron Beam Centre. The angular divergence
of the collimator in the horizontal plane ac is then given by

tan
ac

2

� �
¼

Wc=2

Lc
ð19Þ

where Wc is the distance between the blades, and Lc is the
length of the blades, which to a good approximation is
ac = Wc/Lc. To control the angular divergence of the beam
incident on and scattered from the sample, the use of Soller
collimators before and after the sample is particularly impor-
tant.

The effective overall collimation between each compo-
nent of the spectrometer is a convolution of the distance col-
limation with the Soller collimation. In a TAS experiment, it
is usually sufficient to use only horizontal collimation (i.e.,
to control the horizontal angular divergence). Vertical colli-
mation is used in special cases where scattering by excita-
tions out of the horizontal plane is observed. Even though
tighter collimation leads to better resolution, the flux
changes inversely with a relatively high power of the overall
resolution, so it is quite important to optimize the collima-
tion used in an experiment, i.e., to find an appropriate com-
promise between resolution and intensity.

2.4 Monitoring and detecting neutrons

To be able to monitor the neutron flux incident on the
sample, a low-efficiency neutron counter monitor is usually
placed before the sample. Such a monitor is required so that
flux variation caused by, for example, the reactor power
fluctuations and the change in reflectivity of the monochro-
mator with neutron wavelength can be automatically cor-
rected for. The use of a monitor also permits convenient
intensity comparisons between different experiments, as one
can simply normalize the observed counts by the monitor
used. If the monitor is placed before the monochromator, it
is called a main beam monitor, whereas if placed after the
monochromator, it is called a diffracted beam monitor. A
monitor should be a low sensitivity (usually less than 0.1%)
neutron detector so that it does not attenuate the incident
neutron flux. This can be achieved by using a 235U fission
counter [6]. The fission counter is made of an aluminum
box coated with uranium (for a main beam monitor, natural
uranium is used, while enriched uranium is used for a dif-
fracted beam monitor) on one side and filled with a mixed
argon and methane gas. As neutrons pass through the moni-
tor they are absorbed by uranium through a fission reaction.
The charged products released because of the fission process

Fig. 12. (a) Natural collimation, divergence increases as distance

decreases. (b) Pinhole collimation, divergence is determined by the

slit size. (c) Soller collimation, the distance and length of the clo-

sely packed absorbing blades determines the collimation. (d) A

Soller collimator box used at the Canadian Neutron Beam Centre.
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create an electronic pulse, due to ionization of the gas, that
can be easily detected. Monitors without any uranium, using
nitrogen gas as the neutron absorbing material, have also
been developed. The monitor efficiency depends on the neu-
tron energy. In addition, the inelastic data should be cor-
rected for contamination of the incident beam monitor by
higher wavelength harmonics [5]. Without this correction,
the low-energy response would be underestimated.

Unlike the low-efficiency requirement for a neutron mon-
itor, a very high efficiency is desirable for a neutron detec-
tor as the signal counter [40]. 3He gas detectors are
commonly used as neutron detectors, where 3He gas is the
neutron absorber material (sa (3He) = 5333 barn). A gas de-
tector is usually made of a metal tube (cathode) and a wire
at the middle of the tube that is kept at high voltage and iso-
lated from the the cathode (see Fig. 13). Neutrons passing
through the gas are absorbed by the gas in a nuclear reaction
n + 3He? 1H (proton) + 3H (triton) + 0.76 MeV. This nuclear
reaction produces charged particles, electrons, and gamma
rays. The gas is then ionized by these products. The result-
ing intense electronic pulse is measured by the anode wire.
The voltage across the wire is kept high to allow the elec-
trons released in the initial fission and ionization processes
to cause further ionization of the gas (electron avalanche) to

produce a more intense pulse. In any neutron experiments,
gamma rays are also present, which can potentially cause
ionization of the gas and hence produce an electronic pulse.
However, they can be discriminated against in the elec-
tronics as they deposit much less energy in the detector and
so yield smaller pulses than the fission events do. The effi-
ciency of the detector is determined mainly by the neutron
absorption cross-section of the gas sa, number density (Nd),
which for a gas means pressure in a tube, and the thickness
of the detector dd, given by hd & 1 – exp(–Nd sa dd). In
practice, the efficiency of a 3He detector is about 90%. De-
tector efficiency depends inversely on the neutron velocity,
since for faster moving neutrons there is less chance of
being absorbed.

Gas-filled ionization detectors have an inherent recovery
or ‘‘dead’’ time following the detection of an event. During
this dead time, the detector is unable to respond correctly to
a real event, and the electronics may fail to register the de-
tection of a neutron. This sets an upper limit to the usable
count rate for the detector. If the neutron flux exceeds the
saturation limit of the detector, the neutron count will be
underestimated. Hence, the saturation rate of a detector
should be determined and signals beyond the saturation level
should either be avoided or the incoming flux must be atte-
nuated (for example by adding a neutron-absorbing mate-
rial), so that the detector can count correctly.

In some cases (where a tight resolution is not required), it
is beneficial to use a multiwire detector with several wires
separated by a specific distance to count neutrons within a
certain angular divergence to increase the signal (see the
bottom panel of Fig. 13 for a photograph of the interior of
such a detector). There are also other types of detectors
such as scintillation and two-dimensional, position-sensitive
detectors [40].

2.5 Scattering triangle and dynamical range

Although the ability to choose a specific momentum and
energy transfer to perform the measurement makes TAS
unique, for inelastic neutron scattering there are fundamental
and physical limits to the range of momentum and energy
transfers that can be accessed. The physical limitation is set
by how far different components of the spectrometer can ro-
tate and is in addition to any fundamental limits. If neutrons
with a wavevector ki interact with the sample and scatter at
an angle f with a wavevector kf, then the momentum trans-
fer (scattering vector) Q is given by

Q ¼ ki � kf ¼ Ghkl þ q ð20Þ

where Ghkl is a reciprocal lattice vector, and q is the reduced
momentum transfer from the lattice point associated with
Ghkl. The scattering triangles for neutron energy loss (kf < ki)
and neutron energy gain (kf > ki) are shown in Fig. 14. The
energy transfer in a scattering event is given by

Zu ¼ Ei � Ef ¼
Z
2

2mn

ðk2i � k2f Þ ð21Þ

The relation between Q, ki, kf, and the scattering angle
can be easily derived from the scattering triangle ((20) and
Fig. 14) to be,

Fig. 13. A schematic of a 3He gas neutron detector is shown in the

top panel. The pulse created by the ionization of the gas is mea-

sured by the wire, kept at a high voltage. The electrons and posi-

tively charged particles produced in the initial fission process move

in opposite directions. At high voltages, both these initial products

can further cause ionization of the gas (electron avalanche), result-

ing in an intense pulse. With the same concept, one can build a

multiwire detector where neutron detection can be made simulta-

neously at different scattering angles set by the separation between

the wires. The bottom panel shows the interior of such a multiwire

detector built at the Canadian Neutron Beam Centre.
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Q2 ¼ k2i þ k2f � 2kikf cosf ð22Þ

Using (21), for a constant Ef, this can be rewritten as

Z
2Q2

2mn

¼ 2Ei � Zu� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EiðEi � ZuÞ

p
cosf ð23Þ

The fundamental limit of the dynamical range that can be
accessed in an inelastic experiment is determined by (23).
This means that even though for a given value of Q and u,
measurements can be performed by using a range of incident
and scattered neutron energies Ei and Ef, and scattering an-
gles f, there is only a limited range of Q and u that can be
accessed. The range of (Q, u) that is accessible with a fixed
final energy Ef for different scattering angles is shown in
Fig. 15.

There are many ways that scattering at a specific (Q, u)
can be measured using a TAS spectrometer. One can fix the
energy transfer at a specific value (by fixing both incident

and scattered neutron energies) and measure the scattering
as a function of scattering vector (momentum transfer). This
type of scan is called constant-energy scan. On the other
hand, a scan during which the momentum transfer is kept
constant and the scattering is measured as a function of en-
ergy transfer is called constant-Q scan. The latter is the pre-
ferred method in determining the dispersion of magnetic
excitations. In constant-Q scans, it is common to fix the fi-
nal energy and measure the scattering by varying the inci-
dent energy. This is mainly because it requires no
correction for the variation in reflectivity of the analyzer
with final energy. In addition, there is no kf/ki correction
(1), as the scattered wavevector kf is constant and the de-
pendence on ki cancels since the monitor efficiency changes
as 1/vi & 1/ki. However, the correction of the monitor count
for the presence of higher harmonics in the incident beam is
still required. Figure 16 shows how ki varies during a con-
stant-Q scan.

2.6 Resolution effects

The observed intensity at a given (Q0,u0) depends not
only on the scattering process from the sample but also on
the spectrometer resolution. This is because, even though
the spectrometer is set to measure neutrons at (Q0, u0), the
spectrometer components are not perfect and beam diver-
gence is also present (perfect mosaic and zero divergence
would result in no signal!), so there is a finite probability
that neutrons with scattering vector and energies spread
over a small region (Q0 +DQ, u0 +Du) around (Q0, u0) can
also reach the detector. The probability, called the resolution
function R(Q – Q0,u –u0), depends on the experimental con-
figuration, such as the final energy, mosaic of monochorma-
tor, and analyzer (mosaic of the sample should also be taken
into account), as well as the collimation used in the setup

Fig. 14. Scattering triangle for scattering of incident neutrons with

wavevector ki scattered off at an scattering angle of f with a wave-

vector kf, superimposed on a scattering plane (h0l) in reciprocal

space. The top panel shows the scattering process for energy loss

(kf < ki), and the bottom panel shows the process for energy gain

(kf > ki). For an elastic process, kf = ki.

Fig. 15. Kinematic range accessible with a fixed final energy (Ef)

for different scattering angles. The regions outside of the lines for

scattering angles between 08 and 1808 are inaccessible. Hence,

these lines indicate the limit of the measurement in reciprocal space

and energy transfer. A larger range of (Q, u) is available for neu-

tron energy loss measurements (creation of an excitation) than for

neutron energy gain measurements (annihilation of an excitation).

Neutrons cannot lose more than their initial energy.
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[41–43]. The measured intensity is then the convolution of
this resolution function with the scattering function from the
sample,

IðQ0;u0Þ � ki
R
RðQ�Q0;u� u0Þ

d2sðQ;uÞ

dU dEf

dQ du ð24Þ

Although the integration in this equation is four-dimensional
(three for dQ and one for du), it is often sufficient to only
consider a three-dimensional integration, i.e., only include
the two components of dQ in the horizontal plane. The reso-
lution function has a maximum at (Q0,u0), decreases for
(Q,u), points away from the (Q0,u0), and is zero for values
outside (Q0 +DQ,u0 +Du). In discussing resolution of a
spectrometer it is usually customary to refer to the resolu-
tion ellipsoid: constant amplitude contours of the resolution
function in (Q,u) space. In measuring the dispersion rela-
tions, a scan can be visualized as rastering the resolution el-
lipsoid through the dispersion surface.

In many neutron scattering experiments, taking into ac-
count the resolution effects is crucial in determining the in-
trinsic correlation lengths and the lifetime of excitations, for
example. Several computer programs [44] are available
nowadays that can easily perform the convolution of the res-
olution function for a specific experimental configuration
with a model, fit the result to the data, and finally give the
model parameters, such as the intrinsic correlations.
Although such programs are quite successful in taking the
effects of resolution into account, simple estimates that are
useful in planning the experiment can also be easily ob-
tained. Each component of the spectrometer with a given
collimation and crystal mosaic has a contribution to the
overall resolution. After an estimate is made for the contri-
bution of each component, the overall resolution can be de-
termined by the square root of the sum of the squares of
these contributions (assuming an independent Gaussian
transmission function for each component). Here we give a

simple example of a collimator with acceptance ac and a
monochromator with mosaic bm. To illustrate the contribu-
tions from collimation and mosaic spread separately, we
first assume that the monochromator is perfect, i.e., has a
zero mosaic, and that the incident collimation is set to ac.
This is schematically shown in Fig. 17a. Next we assume
the beam has zero divergence and the crystal has a mosaic
bm (Fig. 17b). And finally the effects of both collimation
and mosaic are considered (Fig. 17c).

If the neutrons incident on the sample have a wavevector
ki, the spread in ki from the finite collimation Dki

col, and the
spread in ki from the mosaic of the crystal Dki

mos, then the
total spread in wavevector is given Dki =Dki

col +Dki
mos. If

the scattering from the crystal is measured at a scattering an-
gle f = 2qs, then it can be easily shown that

jDkcoli j ¼ ac ki cosec qs

and

jDkmos
i j ¼ bmki cot qs

are the amplitude of the spread of incident wavevector along
ki and perpendicular to Q, respectively [45]. Similar argu-
ments can be employed for the scattered neutrons. Hence,
for a specific spectrometer configuration and sample mosaic,
the spread and the orientation of the resolution ellipsoid de-
pends on the specific (Q0,u0) at which the measurement is
being performed.

2.7 Focusing–defocusing conditions

The resolution ellipsoid is usually more elongated along
Dki

col since Dkmos/Dkcol & 0.2 to 0.4. This elongation is the
basis for the focusing condition of the spectrometer as the
widths of the observed peaks depend on the orientation of
the ellipsoid with respect to the dispersion surface. For the
focused condition, the long axis of the ellipsoid is parallel
to the dispersion curve, hence the observed peaks will be
more intense and narrower compared with the defocused
condition. This is shown schematically in Fig. 18, for an up-
ward dispersion curve.

The focusing condition can be determined from the spec-
trometer configuration. For example, when measuring an ex-
citation close to a nuclear Bragg reflection Ghkl that has
positive dispersion for both longitudinal and transverse
modes, there are two possible choices for momentum trans-
fer, Ghkl ± ql and Ghkl ± qt for each of the longitudinal and
transverse modes, as shown in Fig. 19. It is assumed that the
spectrometer is right-handed (monochromator scatters the
neutrons to the right), similar to the spectrometer shown in
Fig. 8b, and that the measurement is done with a constant
final energy. Let us first consider only the resolution effect
due to the spread in the scattered wavevector kf. As seen in
Fig. 19a, for the longitudinal mode the measurement at
Ghkl – ql provides a focusing condition, since as one moves
towards this point, the value of the scattered wavevector de-
creases, whereas it increases as one moves towards Ghkl + ql.
Since ki is kept constant, this means that the energy transfer
increases for the former and decreases for the latter case, re-
spectively. An increase in energy with changing momentum
transfer provides a positive slope for the resolution, and
hence results the focusing condition as the slope for the dis-

Fig. 16. A schematic constant Ef energy scan at a fixed point in re-

ciprocal space. In such a scan, the scattered neutron wavevector is

kept constant, whereas to achieve a constant Q the initial neutron

wavevector must change. As seen, the tip of the incident ki moves

on a circle centred at the desired Q and with a radius equal to kf.
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persion is also positive. Similar arguments can be applied
for the transverse mode and when the effects of the wave-
vector spread in incident wavevector ki are considered, as
shown in Fig. 19b. Ultimately the focusing condition is de-
termined by the balance between the spread of wavevectors
in the incident and scattered sides. For example, in the case
shown in Fig. 19, the focused condition for the transverse
mode is similar due to the spread in both the incident and
scattered sides, whereas it differs for the longitudinal mode.

2.8 Spurions

When performing neutron scattering experiments, one
should also be aware of so-called ‘‘spurions’’ (spurious
peaks), which are not intrinsic features of the scattering
function of the sample, and hence can lead to some confu-
sion even when they are quite weak. These peaks could
have different origins, such as coming from the material in
the beam other than the sample (e.g., sample holder, sample
environment, etc.), accidental Bragg scattering, resolution
function artifacts, or from higher order harmonics. Let us
first consider the spurions due to the higher harmonics. If
the monochromator and analyzer crystals are set to scatter
neutrons with energies Ei and Ef, respectively, it will then
be also possible to have neutrons with energies n2Ei and
m2Ef scattered in the same direction as the main harmonic
neutrons from the (nh, nk, nl) and (mh, mk, ml) scattering
planes of monochromator and analyzer crystals. When the

condition n2Ei ¼ m2Ef ¼ m2ðEi � ZuÞ is satisfied due to the

elastic incoherent scattering by the sample, for example, a
spurion is observed, which could be attributed to an intrinsic
creation or annihilation excitation. The origin of such sus-
pected peaks can be investigated by repeating the measure-
ments with a different incident or final energy. If the peak
disappears, then it was indeed a spurion peak. Accidental
Bragg scattering can be observed because of weak incoher-
ent scattering by either the monochromator or analyzer crys-
tals. If the spectrometer is set to measure scattering at a
specific energy transfer, when the scattering geometry is
such that the elastic scattering from the sample at a recipro-
cal lattice point will be at the same direction of either ki or
kf, then, because of weak incoherent scattering from either
the monochromator or the analyzer, neutrons that are elasti-
cally scattered by the sample can reach the detector together
with the inelastically scattered neutrons. Details about other
spurious effects and the techniques for spotting such peaks
can be found in ref. 5.

Fig. 17. The wavevector is spread over a range determined by the angular divergence of the beam. Both the mosaic of the crystals used at

different parts of the spectrometer (monochromator, analyzer, and sample), as well as the beam collimation affect the beam divergence. The

effects of beam collimation alone are shown in (a) where it is assumed the crystal is perfect, i.e., has zero mosaic spread. The scattered

beam will have a spread, Dkcol in the direction perpendicular to the Bragg reflection wavevector dhkl. The effects of the crystal mosaic are

shown in (b), where it is assumed that the collimation is perfect. The crystal mosaic causes a spread in the scattered wavevector Dkmos in

the direction parallel to the scattering vector. The combined effect of both collimation and mosaic in the spread of the scattered wavevector

is shown in (c). The extent of the spread in wavevector (the shape of the ellipsoid) will depend on how the two components compare.

Concepts are adopted from ref. 45.

Fig. 18. (a) The focusing condition is shown schematically for an

upward dispersion curve. q|| and q\ denote two perpendicular di-

rections defining the scattering plane. The focused condition is ob-

tained when the long axis of resolution ellipsoid is parallel to the

dispersion curve.
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2.9 Spectrometer alignment

Before an experiment can be performed, the various com-
ponents of the spectrometer must be aligned. This includes
the alignment of the centre line of the Soller collimators
with the centre of rotation of the monochromator, alignment
of the sample and analyzer axes, and alignment of the
monochromator and analyzer crystals. These alignments are
usually done in several steps and in a way that correlated
errors can be avoided. For example, the monochromator is
aligned, the analyzer crystal rotated away from its Bragg re-
flection so that it is not in the reflective mode, and the de-
tector is rotated to 08 scattering angle (f = 0) to directly
measure the neutrons scattered by the monochromator. This
will prevent systematic errors in the alignment of the ana-
lyzer from affecting the alignment of the monochromator.
Several Bragg reflections from a reference powder sample
with strong coherent scattering and well-known lattice pa-

rameters such as aluminium or germanium are used for
monochromator alignment and calibrating the scattering an-
gle. This is usually done in iterative manner to ensure both
the incident wavelength and the scattering angle are cali-
brated properly. After the calibration of the wavelength and
the scattering angle is completed, one then needs to align
the analyzer crystal. For this, the analyzer is put back into
reflective mode and the detector is set at the proper angle
for the final energy transfer. Incoherent scattering from a
standard sample with strong incoherent scattering, such as
vanadium, is then used to calibrate the analyzer crystal and
detector angles. Incoherent scattering is used so that system-
atic errors in the definition of the scattering angle are not
propagated into the calibration of the analyzer position.

The sample can then be placed at the sample position and
aligned. Any accessible reflection in the scattering plane can
be used to preset the sample angle. The sample must be
positioned at the centre of the beam. This is done by a trans-
lation stage placed under the sample. It is also important to
ensure that the intended scattering plane lies in the horizon-
tal plane. This is achieved by two sets of orthogonal goni-
ometers placed under the sample allowing rotation of the
sample along two orthogonal reflections out of the horizon-
tal plane. The lattice constants for the orthogonal directions
of the scattering plane are determined by measuring the
scattering angle for a Bragg reflection along each direction.
Having already calibrated the wavelength, by measuring the
angle of diffraction of peaks from the sample and using
Bragg’s Law, the lattice parameters of the sample can be de-
termined.

3. N5 triple-axis spectrometer

Elastic and inelastic scattering measurements on a MnF2

single crystal were performed using the N5 triple-axis spec-
trometer at NRU reactor (Fig. 8b) at the Canadian Neutron
Beam Centre. The sample was aligned in the (h0l) plane co-
incident with the horizontal plane, mounted in a closed-
cycle displex refrigerator, and cooled to temperatures as
low as 10 K. Neutrons with a given initial energy were se-
lected using either the (111) or (311) reflections of a Si or
Ge monochromator, or the (002) reflection of a HOPG
monochromator. Similarly, either a Si, Ge, or HOPG crystal
was used as the analyzer that was set at a final energy of
14.6 meV. A liquid-nitrogen cooled sapphire filter was used
in the main beam ahead of the monochromator to reduce the
fast neutron background. A graphite filter was used on the
scattered side to eliminate higher order harmonics from the
beam. No Soller collimator was placed ahead of the mono-
chromator. To achieve an energy resolution of about 1 meV
at zero energy transfer, Soller collimators were placed ahead
of and beyond the sample and in front of the detector. As
many different configurations have been used for the teach-
ing experiments over the past ten years, the type of mono-
chromator and analyzer as well as the collimations used are
specified in the inset of the data plots presented in this sec-
tion.

4. Results and discussion

4.1 Elastic scattering

As described in Sect. 1.3, the nuclear and magnetic Bragg

Fig. 19. Scattering triangles for measuring longitudinal and trans-

verse modes with a right-handed spectrometer and fixed final en-

ergy. The focused point for measuring each mode is shown

considering (a) the spread in kf and (b) in ki. Note that the magni-

tude of q compared with Q is exaggerated.
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reflections in the (h0l) plane of MnF2 are separated, since
the conditions for nuclear and magnetic reflections are
h + l = even and h + l = odd, respectively. Nuclear Bragg re-
flections (200) and (002) were used to fine-tune the align-
ment of the sample in the (h0l) scattering plane. The
sample was mounted on a goniometer with two orthogonal
arcs, so that the (200) and (002) reflections were both paral-
lel to an arc. Using these nuclear Bragg peaks, the arcs were
adjusted appropriately to ensure both (h00) and (00l) direc-
tions are in the horizontal plane. Figure 20 shows scans
around (200) and (002) Bragg peaks, measured after the ad-
justment of the arcs. The observed peaks are fitted by a
Gaussian curve and a single background parameter to ac-
count for any variation in the background, since the scans
were measured at different scattering angles. From the fits,
a ratio of peak intensities, I(200)/I(002) = 2.45 ± 0.12 is
found, close to the expected value from the structure factor
calculation equal to 2.89. Different amounts of neutron ab-
sorption at these nuclear peaks (due to different neutron
paths in the sample), extinction effects, as well as slight
misalignment could explain the difference between the ob-
served and calculated ratios.

Magnetic elastic scattering in MnF2 can be investigated
using any reflection with h + l = odd. By comparing the ob-
served intensities for such reflections, one can then deter-
mine the magnetic moment orientation. For this purpose,
(100) and (001) reflections were chosen. The scans meas-

ured along (h00) and (00l) reciprocal lattice directions
around (100) and (001) reciprocal lattice points at 10 K,
well below the magnetic ordering temperature, are shown in
Fig. 21. An intense, resolution-limited peak is observed at
(100), whereas the intensity at (001) is almost zero. Since
the intensity of magnetic scattering is proportional to sin2a,
where a is the angle between the direction of the magnetic
moment and the scattering vector, the lack of intensity at
(001) indicates that the magnetic moment in MnF2 is ori-
ented along the c-axis (Fig. 1) (1). The observed intensity at
(001) is 1/1000th of that seen at (100). This small intensity
observed at (001) is attributed to the nuclear scattering from
(002) due to a small l/2 feed-through. Confirmation of this
assignment comes from a comparison of the measured (001)
intensity at low temperatures with that measured above TN,
where only nuclear contributions are present (see below).

To obtain an estimate of the magnetic moment in the or-
dered phase of MnF2, we measured q–2q scans at the (200)
and (002) nuclear Bragg reflections. The results are shown
in Fig. 22a. From the measured integrated intensities, we
are able to obtain the observed structure factors using (15).
The scale factor then is deduced from a fit of the calculated
structure factors of these nuclear Bragg peaks versus the ob-
served structure factors to

jFobs
N ðQÞj2 ¼

AjFNðQÞj2

1þ BjFNðQÞj2
ð25Þ

where A is the scale factor and B is to include secondary ex-
tinction effects [46]. Figure 22b shows a fit to this equation.

Fig. 20. Elastic scans around nuclear peaks (200) shown on the top

panel and (002) shown in the bottom panel. The ratio of the ob-

served intensities I(200)/I(002) = 2.45 ± 0.12, compared with the

calculated value of 2.89. Note that the data shown are collected

using a multiwire detector and are the sum of the counts observed

by 20 wires.

Fig. 21. Elastic scans at 10 K around magnetic peaks (a) (100) and

(b) (001) on the same scale. The inset in panel (b) shows the small

intensity observed at (001) due to a small l/2 feed-through of the

(002) nuclear scattering.
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From the scale factor, the observed integrated intensity of
the magnetic Bragg peak (100), (10), (11), (16) and the cal-
culated value of the magnetic form factor squared (13) at
Q100 = 1.28 Å–1, we determine a magnetic moment equal
to 4.6 ± 0.1mB per Mn2+ ion. This value is within 10% of
the calculated value of 5 mB for a free ion. This agreement
was obtained despite ignoring absorption effects, by using
only two nuclear Bragg peaks, and by calibrating the mag-
netic scattering using nuclear peaks that lie at very different
scattering angles. In deriving a scale factor using nuclear
Bragg peaks, choosing peaks that occur at scattering angles
as close as possible to the magnetic Bragg reflections helps
reduce errors due to absorption effects, Debye–Waller fac-
tors, and geometry corrections.

Using elastic scans, one can also determine the transition
temperature into the AF state. For this purpose, h-scans were
performed around (100) magnetic Bragg reflection. To iso-
late the magnetic scattering, the amount of any feed-through
of nuclear scattering, present because of high harmonics in
the beam, must be determined. The contribution of the nu-
clear scattering is measured at 110 K, a temperature well
above TN. At this temperature, there is no long-range mag-
netic order, and therefore no magnetic Bragg scattering.
The intensity of the nuclear scattering is assumed to be con-
stant above and below TN. This intensity is subtracted from
the total intensity measured below TN. This method of back-
ground subtraction is justified, since, as shown in Fig. 23,
measurements at temperatures close to 110 K indicate that
no further change with temperature occurs at such high tem-
peratures, and hence the observed intensity at 110 K is only
due to feed-through of nuclear scattering. Figure 24 shows
the measured scattering at (100) at 10 and 70 K and after
subtracting the nuclear feed-through.

Data collected at different temperatures were similarly
corrected for background, as shown in Fig. 24. The back-
ground-subtracted data were then fitted to a Voigt func-
tion — a convolution of the Gaussian instrumental
resolution function with a Lorentzian, taken as reflecting
the intrinsic magnetic scattering from the sample — to de-
scribe the observed peak shapes. The magnetic scattering
from the sample in reciprocal space is considered to have a
Lorentzian form, since the correlations fall off exponentially
in real space. The overall resolution is approximated with a
Gaussian function, since it is the result of the convolution of
different components, such as collimators, with the mosaic
of the monochromator and analyzer crystals. The mosaic
distribution of a crystal made up of grains that are randomly
oriented can be described by a Gaussian distribution around
a mean value bm, the mosaic of the crystal [47].

The nuclear scattering observed at 110 K was used to esti-

Fig. 22. From a comparison of the observed integrated intensities of

nuclear Bragg peaks, the strength of the magnetic moment can be

determined. (a) The q–2q scans of two nuclear reflections (002) and

(200) are shown together with that of the magnetic (100) peak. (b)

A scaling factor is obtained by comparing the observed nuclear

structure factor (see text for the details) to the calculated nuclear

structure factor. The scaling factor is then used to put the observed

magnetic intensity on absolute scale resulting a magnetic moment

of 4.6 ± 0.1 mB per ion. Note that the data shown are collected using

a multiwire detector and are the sum of the counts observed by 20

wires.

Fig. 23. Measurements at high temperatures (at *107 K and *110

K) indicate that no further change occurs with increasing tempera-

ture. Hence, one can use the data at such temperatures for subtract-

ing any nuclear contribution that feeds through at the (100)

magnetic reflection at lower temperatures.
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mate the Gaussian width, i.e., the resolution at (100). The
temperature dependence of the magnetic scattering at (100),
obtained after high-temperature background subtraction, is
shown in Fig. 25a. To obtain the transition temperature
from the observed temperature dependence, the data are fit-
ted to a (TN – T)2b power law relation. From such fits, a
TN = 66.90 ± 0.02 K is obtained, which is close to the pre-
vious reports [48]. Small temperature gradients between the
temperature sensor and the sample, as well as the possibility
that the measurements were performed with the sample not
at thermal equilibrium, could explain the deviation from the
previously reported value of TN.

Figure 25b shows the temperature dependence of the Lor-
entzian peak width, which is proportional to the inverse of
the correlation lengths. As can be seen from both the tem-
perature dependence of the scattering amplitude and the
peak width, the correlations start to build up at temperatures
above TN and grow on cooling to TN, below which the cor-
relation lengths becomes infinite, i.e., long-range order is es-
tablished. At temperatures higher than TN, in the critical
region, the moments fluctuate in all directions in space and
only short-range and short-time correlations exist. One
should note [48] that to obtain the true critical correlation
lengths parallel and perpendicular to the magnetic moment
orientation in the ordered phase, one must measure the ob-
served scattering along both (100) and (001) directions.
Since in the current experiment, scattering was measured
only along (100), the Lorentzian widths plotted in Fig. 25
are only an average of the inverse correlation lengths in the
critical region.

The scattering amplitude observed in the critical region
(Fig. 25b) can be fit with a power law with an exponent
b= 0.29 ± 0.01. The obtained exponent is close to the value
of 0.333 predicted for a three-dimensional Ising antiferro-
magnet [49]. The mean-field approximation with a b = 0.5
fails to fit the data, indicating that MnF2 is a three-dimen-
sional Ising-like Heisenberg antiferromagnet.

4.2 Inelastic scattering

To determine the spin-wave energies, and hence disper-
sion relation, energy scans at constant momentum transfer
(constant-Q) and with a fixed final energy were performed.
Spin waves can be observed by performing inelastic neutron
scattering at wavevectors close to a magnetic Bragg peak.
The observed elastic magnetic scattering is zero at (001), as
the magnetic moment orientation being parallel to this direc-
tion. (001) is ideal for determining the magnon dispersion,
because one can easily measure the inelastic intensity at
wavevectors close to the magnetic reciprocal lattice point
(magnetic zone centre) without being affected by a nearby,
large Bragg peak. Spin waves can be detected around (001),
even though the magnetic moment is parallel to this direc-
tion, because the precession of the magnetic moments about
their average orientation creates spin components that are
perpendicular to (001), thereby allowing a nonzero inelastic
scattering amplitude.

To confirm the periodicity of the dispersion relation, con-
stant-Q measurements were taken at wavevectors spanning
two Brillouin zones. The measurements were performed in
the focused condition where the resolution ellipsoid was par-

Fig. 24. The observed intensities at (100) at (a) 10 K and (c) 70 K compared with the nuclear feed-through at 110 K. Panels (b) and (d) show

the data at 10 and 70 K, respectively, in which the feed-through has been subtracted.
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allel to the dispersion curve. As can be seen in Fig. 26, it is
important to perform the measurements in the focused con-
dition since the observed peaks in the defocused condition
are broad and weak, making it more difficult to precisely
determine the peak location.

In comparing the intensity of excitations occurring at dif-
ferent energies (for example, for spin waves measured at
different wavevectors), one must correct the observed inten-
sities for the presence of higher harmonics in the incident
beam. The PG filters placed downstream of the sample elim-
inate the higher harmonic neutrons from the scattered beam.
However, if higher harmonics are present in the incident
beam, the monitor count rate is incorrect as the monitor de-
tects all harmonics. Any normalization of the data to the
monitor count that does not take this into account will be in-
correct. To avoid this problem, one can either use a mono-
chromator that has a forbidden second harmonic, such as
Ge or Si (111), or measure the higher harmonics to correct
the observed intensities in the incident beam [5]. In Fig. 27,
we have shown data as collected with a fixed final energy of

14.6 meV at (0 0 1.1) and (0 0 1.4) with a PG (002) mono-
chromator. Since PG also reflects higher harmonics, the
monitor value requires a correction to compare the inten-
sities of spin waves measured at different energies. Using
the effective moderator temperature at NRU reactor of
60 8C, the correction factor,

C ¼
X1

n¼1
n2 exp �

ðn2 � 1ÞEi

kBT

� �

Fig. 25. (a) Temperature dependence of the elastic intensity mea-

sured at the (100) magnetic Bragg reflection. Fits to a (TN – T)2b

relation reveals a TN = 66.90 ± 0.02 K. (b) The observed magnetic

intensity and an estimate of the inverse correlation length in the

critical region. See text for the details of how these parameters

were determined.

Fig. 26. A magnon excitation is measured for two wavevectors in

focused (circles) and defocused (squares) conditions. Measurements

of the excitations in a defocused condition result in broader and

less intense peaks, making it more difficult to determine the precise

peak position.

Fig. 27. Constant-Q scan at (0 0 1.1) and (0 0 1.4) measured with

fixed final energy and a PG (002) monochromator. Data as ob-

served is shown with empty symbols and data corrected for the

higher harmonics are shown with solid symbols. The correction be-

comes more significant at smaller energy transfers. Hence, to get an

accurate scattering intensity as a function of energy transfer, one

must implement the correction.
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can be calculated [5]. The observed data were corrected by
multiplying by this factor (Fig. 27). As can be seen, the cor-
rection becomes more significant at smaller energy transfers.
For the data collected with a Si (111) as monochromator,
which has a forbidden second harmonic, no correction for
higher harmonics was required to a first approximation.

Typical data obtained with constant-Q energy scans are
shown in Fig. 28a. These measurements were performed at
wavevectors close to (001) in the radial direction, hence pro-
viding information about longitudinal spin waves. Similar
measurements were also performed in the transverse direc-
tion to determine the dispersion relation for the transverse
spin waves. Each inelastic peak was fit with a Gaussian
curve to determine the centre of the peak in energy. The ob-
served peak positions are plotted as a function of reduced-q
in Fig. 28b. The form of the dispersion relation given by (5)
is used to fit the observed dispersion relation with the J1, J2,
and Dd–d as the fitting parameters. The resulting fits for

transverse and longitudinal spin waves are also shown in
the Fig. 28b. The exchange parameters and single-ion aniso-
tropy energy obtained from the fits are given in Table 3 in
comparison with previously published results.

So far, we have shown the spin-wave excitations observed
with neutron-energy loss, i.e., for a spin-wave creation proc-
ess. This process can be inverted so that instead of creating
a spin wave, neutrons annihilate an existing one. The result-
ing spin wave would occur at the same energy as creating
the spin wave but now with a negative energy. Typical en-
ergy scans measured at both negative (neutron energy gain)
and positive (neutron energy loss) energy transfer are shown
in Fig. 29 at a few temperatures below TN. The data were
collected at (0 0 1.15) reciprocal lattice point. From such
scans, one can obtain further details on the transition to the
antiferromagnetic ordered phase, such as amplitude of spin
waves, softening of spin waves close to the transition, and
their lifetime. The overall temperature dependence of the
observed scattering for both creation and annihilation of
spin waves is shown in Fig. 30. The figure was made using
scans similar to those shown in Fig. 29.

Spin waves, like photons, are bosons and so do not follow
the Pauli exclusion principle (unlike electrons). At any given
temperature, the number of spin waves with a certain energy

Fig. 29. Constant-Q scan at (0 0 1.15) as a function of temperature

measured with fixed final energy. Since the data were collected

with a Si (111) monochromator, no higher harmonics correction for

the monitor was performed.

Fig. 28. (a) Constant-Q scans at several radial wavevectors close to

the (001) magnetic zone centre. The data are corrected for the pre-

sence of higher harmonics in the monitor count, see text for details.

(b) Dispersion obtained from scans in (a) and similar scans in the
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is determined by Bose–Einstein distribution. This results in a
difference in the observed scattering for creation and annihi-
lation of such excitations. Since for annihilation, the excita-
tions need to be thermally excited, at low temperatures there
will be fewer excitations to annihilate, but the creation of
excitations will still be possible even at zero temperature
(the principle of detailed balance). At temperatures close to
the phase transition, the intensity of the creation and annihi-
lation processes becomes similar. Thereby, the scattering
amplitudes observed for creation and annihilation of spin
waves are related through

Ið�Q;�uÞ ¼ exp �
Zu

kBT

� �
IðQ;uÞ ð26Þ

Since reversing the sign of Q should not change the ob-
served scattering, this means,

IðQ;�uÞ ¼ exp �
Zu

kBT

� �
IðQ;uÞ ð27Þ

From a plot of the ratio of the observed intensities for an-
nihilation peaks to that of the creation peaks versus x = E/
kBT, where E ¼ Zu is the energy at which the excitation is
observed, one can determine the Boltzman factor. Such a
plot is shown in Fig. 31. The data are obtained from the en-

ergy scans collected at several wavevectors close to (001),
similar to those shown in Fig. 29. From a fit to (27), a
Boltzman factor equal to (1.01 ± 0.18)� 10–4 eV/K is ob-
tained, fully consistent with the accepted value of
0.86� 10–4 eV/K.

Figure 32 shows how the magnon energy and its inverse
peak width changes with temperature. As the temperature
increases, the magnetic moments fluctuate more, leading to
a smaller spin component in the ordering direction. Since
the moments are becoming less correlated, it takes progres-
sively less energy to create or annihilate a spin-wave excita-
tion (Fig. 32a), until eventually, at the transition
temperature, the spin-wave energies collapse. At this point
the long-range order is destroyed as the lattice of spins be-
comes ‘‘soft’’ with respect to such excitations, i.e., there is
no restoring force to them. The temperature dependence of
the position of spin waves was fitted with a power law giv-
ing an average critical temperature of 66.55 ± 0.26 K. This
result agrees well with the TN obtained from our study of
the elastic scattering (magnetic Bragg peak at (100)) versus
temperature.

The inverse of the observed widths of the spin-wave
peaks measured at two wavevectors as a function of temper-
ature is shown in Fig. 32b. The lifetime of the spin waves is
proportional to the inverse of the observed peak widths. At
temperatures close to the phase transition, the peaks have
an intrinsic width much broader than the instrumental reso-

Table 3. Fitting parameters, J1, J2, and Dd–d, obtained by fitting the observed disper-

sion in Fig. 28b to (4); the parameters are close to previously published results in

ref. 50.

Parameters (meV) Trans. fit Long. fit Published (ref. 50)

J1 0.094 0.010 0.028

J2 0.126 0.159 0.152

Dd–d 0.115 0.119 0.091

Fig. 30. The temperature dependence of both creation and annihila-

tion excitations measured at (0 0 1.15). As seen at low tempera-

tures, the observed intensity for annihilating spin waves is much

smaller than creating one. As temperature increases, there are more

spin waves by thermal activation and hence the intensity for anni-

hilating spin waves increases until the transition temperature where

it becomes equal to the creation.

Fig. 31. The ratio of the observed intensities for annihilation peaks

to the creation peaks versus x = E/kBT, where E = Zu is the energy

at which the excitation is observed. The results are fit to (27) re-

vealing a Boltzman factor equal to (1.01 ± 0.18)� 10–4 eV/K.
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lution, indicating that the spin-wave lifetime is finite (about
a few picoseconds). However as temperature decreases, the
peaks become narrower until eventually the observed width
becomes equal to the energy resolution of the instrument.
This indicates that at temperatures well below the phase
transition, the spin waves have an infinite lifetime, as their
intrinsic width approaches that of a d-function.

5. Conclusion

Magnetic order in MnF2, a classical antiferromagnet has
been investigated by means of neutron scattering. Exchange
interactions leading to an antiferromagnetic ordered ground
state in MnF2 are discussed. Details of how an inelastic neu-
tron scattering experiment is performed using triple-axis
spectroscopy are presented. It is shown that with the use of
this technique, one can determine the transition temperature
to the ordered state, the critical fluctuations close to the
transition temperature, magnetic excitations (spin waves) as-
sociated with the ordered phase as well as their temperature
dependence, all of which greatly enhance understanding of
the magnetic interactions in the system.

The series of experiments that were performed on MnF2

can be carried out in a few days by a small group of novice
graduate students. The rich hands-on experience leads to a

deep appreciation of instrument control, time management,
reciprocal space, neutron scattering, magnetic ordering, and
excitations in solids. We strongly recommend that this or
similar experiments be included in the outreach programs of
all scattering facilities, and that research departments in uni-
versities seek to take advantage of the teaching opportunities
that these facilities provide.
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List of symbols

a, b, c Lattice constants
A Scale factor
bj Nuclear scattering length of the jth atom
B Parameter representing secondary extinction effects
C Correction factor for higher harmonics in monitor

dhkl Interplanar spacing of (hkl) plane
d Interplanar spacing of Bragg planes

dd Thickness of the detector
dmax Largest d-spacing in a material
Dd–d Single-ion anisotropy energy

e–2W(Q) Debye–Waller factor
E Energy transfer

Ei, Ef Initial (incident), final (scattered) energy of the
neutron

f(Q) Magnetic form factor
Fmag,

Fmag(hkl),
Fobs
mag

Magnetic structure factor

FN, FN(hkl),
FN(Q), Fobs

N

Nuclear structure factor

g, gJ Lande factor
Ghkl Reciprocal lattice vector

h Planck constant (4.13567 � 10–15 eV sec)
(h, k, l), (hkl) Reciprocal lattice point, plane

Z Reduced Planck constant (h/2p)
Hd–d Hamiltonian for single-ion anisotropy

I Intensity
jl Spherical Bessel function
J Total angular momentum

Jij Orbital overlap integral between ions i and j
J1 Nearest-neighbour exchange interaction, direct ex-

change
J2 Next-nearest-neighbour exchange interaction,

superexchange
kB Boltzman constant (0.86 � 10–4 eV/K)

ki, kf Initial (incident), final (scattered) wavevector of
neutron

li Orbital angular momentum of the ith electron
L Total orbital angular momentum

Lc Length of the blades of a collimator
mn Mass of neutron

n, m Integer numbers
n(u) + 1 Bose factor

N Number of ions in the system
Nd Number density of gas used in detector
pj Magnetic scattering length of the jth atom
q Reduced momentum transfer (Q-Ghkl)
qt Transverse reduced momentum transfer
ql Longitudinal reduced momentum transfer

Q, Q0 Momentum transfer, scattering vector (ki-kf)

bQ Unit vector of momentum transfer
r0 Classical electron radius (e2/mec

2 = 2.8179 � 10–13

cm)
sinf Lorentz factor for a rotating crystal

si Spin angular momentum of ith electron
S Total spin angular momentum

S(Q, u) Scattering function
Smag(Q, u) Magnetic scattering function

Sz Spin component along the average direction in the
ordered phase

TN Neel transition temperature
t2g, eg d-orbital symmetry

U(r) Radial wavefunction of the atom
vn (vi) Velocity of neutron (incident neutron velocity)

v0 Volume of unit cell
V Scattering volume of the crystal

Wc Distance between the blades of a collimator
xi, yi, zi Atomic coordinates

z1 Number of nearest neighbours to a magnetic ion
z2 Number of next-nearest neighbours to a magnetic ion

< jl(Q) > Integrals describing the radial distribution of elec-
trons

a Angle between scattering vector and magnetic moment
ac, ac1, ac2 Angular acceptance of the collimator

b Power-law exponent
bm Mosaic
gn Gyromagnetic ratio of neutron (1.9132)
D Splitting of the d-orbitals

DE Energy resolution
Dkcoli Spread in ki from the finite collimation
Dkmos

i Spread in ki from the mosaic of the crystal
DQ Momentum resolution
Dq Angular divergence
hd Efficiency of detector

q, qS Bragg angle
l Wavelength of neutron

l/n nth harmonic of neutron wavelength
lcutoff Cut-off wavelength in a material (2dmax)

ma Absorption length
m0 Magnetic constant (4p � 10–7 henry per meter)
m Magnetic moment
bm Direction of magnetic moment
sa Neutron absorption cross section

Si > jJijSi.Sj Heisenberg exchange hamiltonian
f Scattering angle

F0(q) Incident flux on the sample
c’’(Q, u) Generalized dynamical spin susceptibility

jhkl Angle between d�hkl and c-axis for PG filter
u, u0 Energy transfer assuming Z ¼ 1
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