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ABSTRACT

Context. Few unified equations of state for neutron star matter, in which core and crust are described using the same nuclear model,
are available. However the use of non-unified equations of state with simplified matching between the crust and core has been shown
to introduce uncertainties in the radius determination, which can be larger than the expected precision of the next generation of X-ray
satellites.
Aims. We aim to eliminate the dependence of the radius and mass of neutron stars on the detailed model for the crust and on the
crust-core matching procedure.
Methods. We solved the approximate equations of the hydrostatic equilibrium for the crust of neutron stars and obtained a precise
formula for the radius that only depends on the core mass and radius, the baryon chemical potential at the core-crust interface, and at
the crust surface. For a fully accreted crust one needs, additionally, the value of the total deep crustal heating per one accreted nucleon.
Results. For typical neutron star masses, the approximate approach allows us to determine the neutron star radius with an error
∼0.1% (∼10 m, equivalent to a 1% inaccuracy in the crust thickness). The formalism applies to neutron stars with a catalyzed or a
fully accreted crust. The difference in the neutron star radius between the two models is proportional to the total energy release due to
deep crustal heating.
Conclusions. For a given model of dense matter describing the neutron star core, the radius of a neutron star can be accurately
determined independent of the crust model with a precision much better than the ∼5% precision expected from the next generation
of X-ray satellites. This allows us to circumvent the problem of the radius uncertainty that may arise when non-unified equations of
state for the crust and core are used.
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1. Introduction

The interior of a neutron star (NS) consists of two main parts: the
liquid core and solid crust. While the core is uniform (homoge-
neous), the crust is non-uniform and composed of nuclear clus-
ters. Consequently, calculating the crust equation of state (EOS)
is much less straightforward than for the core, which explains the
smaller number of crust EOS available compared to those for the
core. In particular, few unified EOS, i.e., those based on the same
nuclear model for the crust and core, have been developed; see,
for example, Douchin & Haensel (2001), Fantina et al. (2013),
Pearson et al. (2014), Sharma et al. (2015), Fortin et al. (2016).
Therefore non-unified EOS are often used, assuming different
nuclear interaction models for the crust and core. As shown in
Baldo et al. (2014), Fortin et al. (2016), for masses of astrophys-
ical interest (M > 1 M⊙) the use of non-unified EOS can in-
troduce an uncertainty on the radius determination on the or-
der of 5%, which is as large as the precision expected from the
next generation of X-ray telescopes: NICER (Arzoumanian et al.
2014), Athena (Motch et al. 2013), and potential LOFT-like mis-
sions (Feroci et al. 2012).

The solid crust of a NS with a mass M > 1 M⊙ contains
only about one percent of the total mass of the star. How-
ever, the crust is believed to play an important role in many
NS phenomena, such as pulsar glitches, X-ray bursts, gamma-
ray flares of magnetars, torsional oscillations of NS, cooling of
isolated NS, and cooling of X-ray transients (for review see,
e.g., Chamel & Haensel 2008). A standard model of NS crust

assumes that it is built of matter in nuclear equilibrium, the ther-
mal corrections are negligibly small, and at a given baryon num-
ber density n, the crust matter is in a state of minimum energy per
nucleon, E. In such a state, which defines the ground state (GS)
of matter, the matter is called catalyzed. As the density n (or the
mass-energy density ρ) can undergo discontinuous jumps inside
the NS, a more suitable independent variable is the pressure P,
which is strictly monotonous within the star. The thermodynamic
potential is then the Gibbs free energy (the baryon chemical po-
tential) µ = E +P/n, which replaces E. In the strict GS of matter
both P and µ are continuous and monotonously increasing with
the density when going toward the NS center.

The GS approximation is expected to be good for isolated NS
born in core-collapse supernovae. However, a significant num-
ber of NS remains for 108−109 yr in low-mass X-ray binaries
(LMXB), where they undergo a phase of accretion of matter
from its evolved companion star. During the LMXB stage the
NS is spun-up to millisecond periods; this is the so-called pulsar
recycling. In such accreting NS the original crust has been re-
placed (fully or partially) by an accreted crust. In what follows
we consider only a fully accreted crust, i.e., we assume that the
NS has accreted matter with an integrated rest mass larger than
the rest mass of the original GS crust.

The composition of an accreted crust (AC) is expected to be
very different from that of a crust built of catalyzed matter in the
GS. However, the neutron drip, dividing the whole crust into the
outer (nuclei in electron gas) and inner (nuclei in neutron gas
and electron gas) crusts is found at similar density for the GS
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and AC cases. Chamel et al. (2015) have found, using up-to-date
energy density functionals and the Hartree-Fock-Bogoliubov

method for solving the nuclear many-body problem, ρ
(GS)

ND
=

4.3−4.4 × 1011 g cm−3. For an accreted crust they have found
some dependence on the energy density functional model and

on the initial composition of ashes of X-ray bursts, ρ
(AC)

ND
=

2.8−6.1 × 1011 g cm−3.
The accreted crust is, in contrast to the GS crust, a reser-

voir of the nuclear energy. This energy can be steadily released
mainly at some 300–500 m below the NS surface, during the ac-
cretion phase, leading to deep crustal heating (Haensel & Zdunik
1990; Brown et al 1998). The EOS of an AC is stiffer than
that for the GS crust, particularly for densities 5 × 1011−5 ×
1012 g cm−3. Consequently, the thickness of an AC is larger
(Zdunik & Haensel 2011).

We present an approximate description to the NS crust struc-
ture in terms of the function relating chemical potential and pres-
sure. Within the one-component plasma model, in Sect. 2 we de-
rive a formula for the thickness of any layer of the crust. This
formula is highly accurate and does not require any knowledge
of the EOS except the values of the chemical potential at the
boundaries of a given layer in the crust. The approach is then
extended to describe a GS crust and we obtain formulas for the
NS radius, the crust thickness and mass that only depend on the
mass and radius of the NS core. Their accuracy and the depen-
dence on the choice of the location of the core-crust transition
are studied in Sect. 3. In particular it is shown that the radius and
mass of a neutron star, the crust thickness, and its mass can be
determined with an error smaller than 0.1%, 0.3%, 1%, and 5%,
respectively. In Sect. 4 we extend the approximated approach to
the case of an accreted crust, and we obtain a simple formula for
the difference in the thickness of the AC and GS crusts. This only
involves the total (integrated) energy release from deep crustal
heating, and the mass and radius of a NS with a GS crust and is
extremely accurate (<1 m). We present conclusions and perspec-
tives in Sect. 5.

2. Crust structure: an approximation

The approximate approach to the macroscopic properties of
the NS crust, based on the separation of the TOV equa-
tion into two factors dependent on stellar properties (mass
and radius) and the EOS of dense matter, was discussed
in Lattimer & Prakash (2007), Zdunik (2002), Zdunik et al.
(2008), Zdunik & Haensel (2011).

The Tolman-Oppenheimer-Volkoff (TOV) equation of hy-
drostatic equilibrium in general relativity is

dP

dr
= −

(

ρ +
P

c2

)

(

1 −
2Gm

rc2

)−1 (

Gm

r2
+ 4πGr

P

c2

)

, (1)

with m = m(r) the gravitational mass enclosed in a sphere of
radius r, P the pressure, and ρ the mass-energy density.

The mass of the crust Mcrust is small compared to the total
mass M of the NS and thus one can assume within the crust
m ≈ M. The term 4πr3P/mc2 is on the order of P/ρc2 at the bot-
tom of the inner crust, but is three orders of magnitude smaller
than P/ρc2 at the neutron drip point. For this reason, we keep the
factor 1 + P/ρc2 while neglecting the term 4πr3P/mc2 as com-
pared to one. Consequently Eq. (1) can be rewritten, in the crust,
as follows:

dP

ρ + P/c2
= −GM

dr

r2(1 − 2GM/rc2)
· (2)

Let Pcc, ncc and µcc = µ(Pcc) be the pressure, baryon density,
and chemical potential at the core-crust interface, respectively.
Within the crust, i.e., for 0 < P < Pcc, we define a dimensionless
function of the local pressure,

χ(P) =

∫ P

0

dP′

ρ(P′)c2 + P′
· (3)

The function χ(P) is determined solely by the EOS of the crust.
The integral of the right-hand side of Eq. (2) then becomes

χ [P (r)] =
1

2
ln

[

1 − rg/R

1 − rg/r

]

, (4)

where rg ≡ 2GM/c2. Defining a = 1 − rg/R, we obtain r within
the crust as a function of χ,

r = rg/
(

1 − ae−2χ
)

. (5)

In thermodynamic equilibrium one can define the baryon chem-
ical potential µ = dρ/dn. Thus, the first law of thermodynamics
at T = 0 implies

µ =
P + ρc2

n
, (6)

which leads to the relation

dP

ρc2 + P
=

dP

dµ

dµ

ρc2 + P
=

dµ

µ
· (7)

The function χ is then given by exp(χ) = µ(P)/µ0, where µ0 =

µ(P = 0) = m0c2 is the energy per baryon at NS surface.
This allows us to determine the thickness of any shell of the

crust located between two radii, r1 and r2, corresponding to the
pressure P1 and P2, respectively,

√

1 − 2GM/r1c2

√

1 − 2GM/r2c2
= exp (χ1,2)=

µ2

µ1

· (8)

A similar approach presented by Lattimer & Prakash (2007) re-
lies on the replacement of µ in the denominator of Eq. (7) by its
value at the NS surface µ0, leading to an exponential dependence
in Eq. (8).

2.1. Approximate formula for the radius and crust thickness

Let Rcore be the radius of the core, i.e., at the core-crust interface,
where µ = µcc. In Eq. (8), taking r1 = R and r2 = Rcore, one can
obtain a formula relating R(M) to Rcore(M) as follows:

√

1 − 2GM/Rc2

√

1 − 2GM/Rcorec2
=
µcc

µ0

· (9)

The latter is equivalent to

2GM

Rc2
=

2GM

Rcorec2
−













µ2
cc

µ2
0

− 1













(

1 −
2GM

Rcorec2

)

, (10)

which expresses the compactness of the whole star in terms of
the core compactness. In this formula, the EOS of the crust enters
through the ratio µcc/µ0.

From Eq. (10) we find that the radius is given by

R =
Rcore

1 − (α − 1)(Rcorec2/2GM − 1)
, (11)
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where

α = exp (2χ) =

(

µcc

µ0

)2

· (12)

Then the crust thickness lcrust = R − Rcore is

lcrust = φRcore

1 − 2GM/Rcorec2

1 − φ(1 − 2GM/Rcorec2)
, (13)

where

φ ≡
(α − 1)Rcorec2

2GM
· (14)

It should be noted that φ defined by Eq. (14) is a nonrelativistic
quantity and can be approximated for α→ 1 by

φ ≃
δµRcore

GMm0

δµ = µcc − µ0. (15)

The numerical formula then is written as

φ ≃ 7.27 × 10−3
(

δµ

MeV

) (

Rcore

10 km

)

(

M

M⊙

)−1

· (16)

The leading term in the expansion of the right-hand-side of
Eq. (13) in powers of the parameter φ gives an approximate for-
mula for the thickness of the crust proportional to δµ,

lcrust ≃ 1.82 km ·
(

1 −
2GM

Rcorec2

)

(

δµ

25 MeV

)

×
(

Rcore

10 km

)2
(

M

M⊙

)−1

, (17)

where δµ is normalized to the “typical” value for the NS crust
(∼25 MeV, see Table 1). It should be mentioned, however, that
for astrophysically relevant NS parameters (M ∼ 1−2 M⊙,
Rcore ∼ 10−12 km) one gets φ on the order of 0.15−0.25. There-
fore, φ cannot be considered a very small number. Thus the ac-
curacy of the expansion given by Eq. (17) is ∼20% (see Fig. 6)
and one should instead use formula in Eq. (13) to determine the
thickness of the crust with a high accuracy (<1%).

2.2. Approximate formula for the mass of the neutron-star
crust

The crust contributes to the total mass of a NS. However the
role of the mass of the crust for the total stellar mass is one or-
der of magnitude smaller than the importance of the crust thick-
ness for the radius of a NS. To estimate the total mass of a NS
with an accuracy similar to that obtained using the approxima-
tion in Eq. (11) for the radius, we can safely use the following
very crude approximation for the crust mass:

dP

dm
= −

GM

4πr4(1 − 2GM/rc2)
, (18)

which is obtained from the TOV equation by neglecting the P/c2

terms.
The mass of the crust is given by the formula

Mcrust =
4πPccR4

core

GMcore

(

1 −
2GMcore

Rcorec2

)

(19)

and is proportional to the pressure at the bottom of the crust Pcc.
The total mass of the star is then M = Mcrust + Mcore.

Fig. 1. NS radius R and thickness of the crust lcrust (inset) for the DH
and NL3ωρ EOS as a function of the baryon density nc at the center
of the star. Solid black curves indicate the exact solution calculated for
the unified EOS (i.e., including the crust EOS), blue curves indicate
the radius of the core (above Pcc), and dashed red lines indicate the
approximation based on Eq. (11), which were obtained using the core
EOS alone.

Table 1. Crust-core boundary for the two considered EOS DH and
NL3ωρ.

EOS ncc [fm−3] Pcc [MeV fm−3] µcc [MeV]

Real crust-core location

DH 0.077 0.335 953.3

NL3ωρ 0.084 0.522 954.6

Artificial crust-core location

DH1 0.09 0.477 955.0

DH2 0.11 0.793 958.2

DH3 0.13 1.245 961.9

DH4 0.16 2.243 968.8

Notes. The crust parameters for these EOSs are presented in Figs. 1–3.
The bottom part of the table presents the artificial locations of the crust-
core boundary used to test the accuracy of the approximate approach in
Figs. 4, 5.

Numerically,

Mcrust ≃ 7.62 × 10−2 M⊙ ·
(

Pcc

MeV fm−3

)

×
(

1 −
2GMcore

Rcorec2

)

(

Rcore

10 km

)4
(

Mcore

M⊙

)−1

· (20)

3. Neutron star parameters for a catalyzed crust

3.1. Mass and radius of a neutron star from µcc/µ0

The approximate formulas presented in the previous section al-
low us to determine the main parameters of a NS (total mass,
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Fig. 2. NS mass M and mass of the crust Mcrust (inset) for the DH
and NL3ωρ EOS as a function of the baryon central density nc. Solid
black curves indicate the exact solution calculated for the unified EOS
(including the crust EOS), blue curves indicate the mass of the core
(P > Pcc), and dashed (red) lines indicate the approximation based on
Eq. (19), which were obtained using the core EOS alone.

radius, crust thickness, and mass) solely on the basis of the prop-
erties of its core, i.e., using only an EOS P(ρ) for nuclear matter
below the crust-core interface (for P > Pcc). The only additional
information required is the chemical potential at zero pressure
µ0. For cold catalyzed matter, the minimum energy is obtained
for iron 56Fe, i.e., m0c2 = µ0 = 930.4 MeV (Haensel et al. 2007).

First, for a given central density nc (or equivalently pressure
Pc, given by the core EOS), and a chosen location of the core-
crust transition at a density ncc or pressure Pcc, the relation be-
tween the mass and radius of the NS core Mcore(Rcore) is obtained
by integrating the TOV equations outward from the center of a
star with P = Pc down to Pcc. Then the mass of the crust Mcrust

is determined using Eq. (19) and, consequently, so is the total
mass of the star M. Using Eq. (11) the canonical M(R) relation
between the mass and radius of the NS is reconstructed. The
thickness of the crust is finally given by Eq. (13).

In Figs. 1 and 2 we present the result of such a procedure
for two models of dense matter that fulfill the observational
constraint on the maximum allowable mass Mmax > 2 M⊙: the
nucleonic DH from Douchin & Haensel (2001) and the stiffer
hyperonic NL3ωρ, corresponding to the EOS labeled “Y” in
Fortin et al. (2016). The approximate solution (dashed lines) is
almost undistinguishable from the exact solution except in the
region of relatively small central density. We obtained simi-
lar conclusions for the parameters of the crust (thickness and
mass) presented in the insets. In Fig. 3 various relations between
masses and radii are presented. The black solid lines are the
M(R) relations that are obtained when solving the TOV equa-
tions in the whole NS (core and crust) with a unified EOS, i.e.,
when the same nuclear models for the crust and core are used.
The blue solid lines correspond to the dependence Mcore(Rcore)
and are obtained by solving the TOV equations in the core, i.e.,
from the center at pressure Pc outward to the pressure at core-
crust interface Pcc. The red dashed lines are obtained using the

Fig. 3. M(R) dependence for the exact solution of the TOV equations
obtained using a unified EOS and for our approximate approach, for
the DH and NL3ωρmodels of dense matter. Solid black curves indicate
the M(R) calculated with a unified EOS, solid blue curves indicate the
Mcore(Rcore) relation, dashed red lines indicate the M(R) approximation
based on Eqs. (11), (12), and the black lines indicate the exact solution
of the TOV equation.

M(Rcore) relations in Eq. (11). In this case, we do not need any
information about the crust EOS except the chemical potentials
at zero pressure µ0 and at the bottom of the crust µcc in order
to determine the total radius of the star. For a chosen value of
the density at the core-crust transition (see Sect. 3.2), µcc can be
calculated from Eq. (6) using the core EOS.

The approximate formula Eq. (11) works very well for astro-
physically interesting masses of NS, i.e., M > 1 M⊙. For the
sake of completeness, we mention that for masses as small as
0.2 M⊙ the validity of the formula breaks down because the con-
dition Mcrust ≪ M is then obviously not fulfilled. For the NL3ωρ
EOS, the difference between the exact and approximate radii is
20 m (1.0 M⊙), 8 m (1.5 M⊙), and 3 m (2.0 M⊙). Therefore, for
M > 1 M⊙ the relative error is less than 0.15% of the radius of
a star (or less than 1% of the thickness of the crust). The accu-
racy of the approximate approach is even better for the DH EOS.
For the estimation of the mass of the crust, we use the simplest
approximations in Eq. (20). This equation is accurate up to 6%
for M > 1 M⊙ and, therefore, results in a very small error in the
total mass determination (less than 0.3%).

3.2. Choice of the core-crust transition

At the core-crust interface the ground state of neutron star mat-
ter changes from a lattice of spherical nuclei in the solid crust
to homogeneous matter in the liquid core. Some models predict
the appearance of so-called pasta phases when the most stable
shape of nuclei is no longer a sphere but, as the density increases,
a rod or a slab immersed in the neutron gas (Ravenhall et al.
1983). Various approaches have been developed to determine
the density of the core-crust transition, ncc; these include the
study of thermodynamic spinodal or dynamical spinodal sur-
faces, Thomas-Fermi calculations or the random phase approxi-
mation. However for β-equilibrated matter, the values of ncc that
are obtained have been shown to be similar (see, for example,
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Fig. 4. Baryon chemical potential µ as a function of the pressure for
the DH EOS. The points denote the value of the chemical potential at
various assumed locations for the core-crust boundary used in Eqs. (11),
(12) and presented in Table 1. The lowest point (DH) corresponds to the
real core-crust interface in the DH model.

Horowitz & Shen 2008; Avancini et al. 2010, 2012; Pais et al.
2016, and references therein).

The transition density is inversely proportional to the slope of
the symmetry energy L (Horowitz & Piekarewicz 2001) and for
typical values of 30 ≤ L ≤ 120 MeV, Ducoin et al. (2011) find
for a large set of EOS based on two nuclear approaches to the
many-body problem (Skyrme models and relativistic mean field
calculations) 0.06 ≤ ncc ≤ 0.10 fm−3 or 0.38 ≤ ncc/n0 ≤ 0.63.
Consequently, if for a given core EOS no calculation of the core-
crust transition density is available, taking ncc = 0.5n0 appears
reasonable.

In this subsection we discuss the accuracy of our approxi-
mate approach to calculate the main parameters of a NS for dif-
ferent given locations of the crust-core boundary, using the DH
model of dense matter as an example. In this model the “real”
crust-core boundary is located at ncc = 0.077 fm−3, i.e., at about
half nuclear matter density. To test the dependence of our ap-
proximations on ncc we artificially redefine the location of the
core boundary to 0.09, 0.11, 0.13, 0.16 fm−3 (models DH1-DH4
in Table 1). The size of the core, which is defined by the pres-
sure Pcc, decreases with increasing Pcc and is smallest (at given
central pressure Pc) for the DH4 model. Consequently the re-
gion of the star described by the approximate formulas (outer
part P < Pcc) is larger for larger Pcc, and for the DH4 model
(with ncc ≃ n0) the mass of the crust is about 0.1 M⊙, which is
much larger than the mass of the real crust (unified DH EOS,
<0.02 M⊙).

Figure 4 shows the baryon chemical potential µ as a function
of the pressure P for the DH EOS of the core. The dots corre-
spond to the considered crust-core location (see Table 1). The
lowest value is the real density of the crust-core interface for the
(unified) DH model.

In Fig. 5 we present the results of our approximate approach
given by Eqs. (11), (12) for the mass-radius relation for the DH
EOS. For the real value of ncc the difference between the ex-
act and approximate results is 30 m at M = 0.5 M⊙, 10 m at

Fig. 5. M(R) dependence for the exact solution of the TOV equa-
tions obtained using a unified EOS and the approximate approach for
the DH EOS. Different values of ncc are used (from left to right;
0.16, 0.13, 0.11, 0.09, 0.077 fm−3, see Table 1 for details). The value
ncc = 0.077 fm−3 corresponds to the “real” crust-core boundary for the
DH model. The solid blue curves show the M(Rcore) relation, the dashed
red curves show the M(R) approximation based on Eqs. (11), (12), and
the black curve shows the exact solution of the TOV equation.

M = 1 M⊙, and less than 4 m at M = 1.5−2 M⊙. Even for an
unrealistically high value of ncc = n0 = 0.16 fm−3 (DH4), the
approximation gives a high accuracy with the uncertainty on R
decreasing from ∼100 m at 1 M⊙ down to 30 m at 1.5 M⊙ and 5 m
at 2 M⊙.

The accuracy of the approximate approach for the thickness
and mass of the crust is presented in Fig. 6 for three different lo-
cations of the bottom of the crust (models DH, DH2, and DH4).
The thickness of the crust is determined very accurately by for-
mula (13). The relative error is less than 0.7% for DH and <3.5%
for DH4, which is equivalent to <10 m and <100 m inaccuracy
(i.e., 0.08%, 0.7% error in the radius of the star R). Although
for the presented range of masses from 1 M⊙ to Mmax the max-
imum relative error in Mcrust is 5–8%, the determination of the
total mass M of neutron star is very accurate; i.e., 1% for ncc = n0

and 0.1% for ncc = 0.5n0 at M = 1 M⊙, where the error decreases
rapidly with further increase of M.

3.3. Accuracy of the approximate approach and crust-core
matching problem

In the case of a non-unified EOS the matching of the core EOS
to the crust EOS is often performed by an artificial function P(ρ)
or P(n) (which can be linear, polytropic, . . . ). In general this
approach leads to thermodynamic inconsistency, which mani-
fests itself in a discontinuity in µ (for details see Fortin et al.
2016). This discontinuity δµ

EOS
can be as high as a few MeV,

but is usually on the order of δµ
EOS
≃ 0.5−1.5 MeV. It results

in an error in the crust thickness determination, which can be
calculated with Eq. (17). The relative error in lcrust is then pro-
portional to δµ

EOS
/∆µ, where ∆µ is the chemical potential range

in the crust (20–30 MeV). For example, for δµ
EOS
≃ 1 MeV the
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Fig. 6. Thickness lcrust (upper panel) and mass Mcrust (lower panel) of
the crust of a NS for the DH EOS and for different values of ncc (from
top to bottom; 0.16, 0.11, 0.077 fm−3). The density ncc = 0.077 fm−3

corresponds to the crust-core boundary for the DH model. Solid lines
indicate the exact results calculated for the complete EOS (including
the crust EOS), dashed (red) lines indicate approximations based on
Eq. (13) (thickness) and Eq. (19) (mass), dotted (green) lines correspond
to linearization Eq. (17) of Eq. (13).

error due to inconsistent crust-core matching is larger than the
accuracy given by our approximation for the crust thickness; for
ncc = 0.5 n0 and M = 1.4 M⊙ it is 40 m compared to the 5 m
inaccuracy of our model.

As a consequence, using the approximate formulas for
the radius (Eq. (11)), the crust thickness (Eq. (13)), and mass
(Eq. (19)), without any further knowledge about the crust EOS, is
in general more accurate than the widely used method of match-
ing in a thermodynamically inconsistent way an EOS for the
crust to a different (non-unified) EOS for the core.

4. Accreted versus catalyzed crust

A characteristic feature of the EOS for an accreted crust is the
existence of energy sources at pressures at which exothermic nu-
clear reactions are induced by the accretion of matter onto the NS
surface. As a result the µ(P) relation is a discontinuous function
with drops in µ equal to the energy release per one accreted nu-
cleon. In Fig. 7 we present an example for the Mackie & Baym
(1977) model of dense matter (Haensel & Zdunik 2008) of a

continuous µ
(GS)

(P) dependence for catalyzed matter (lower con-
tinuous curve that corresponds to the minimum value of µ at a
given pressure) and for an accreted crust (with energy sources
located at P = Pi−1, Pi, Pi+1).

4.1. Thickness of an accreted crust

In Sect. 2 we considered a catalyzed crust for which the func-
tion µ(P) is continuous and Eqs. ((6), (7)) hold. In this case for-
mula (8) can be used for the whole crust, resulting in Eq. (13).
In the case of an accreted crust, as shown in Fig. 7, µ(P) is not

continuous and each jump in the chemical potential at a fixed
pressure corresponds to an energy source. Consequently, to de-
termine the thickness of an accreted crust one has to calculate
separately the thickness of each shell located between two en-
ergy sources, for example, between Pi−1 and Pi as plotted in
Fig. 7.

Using Eq. (8) the following set of equations is obtained:

√

1 − 2GM
Rc2

√

1 − 2GM
R1c2

= exp χ1 =
µ+

1

µ0

√

1 − 2GM
R1c2

√

1 − 2GM
R2c2

= exp χ2 =
µ+

2

µ1

. . .
√

1 − 2GM
Ric2

√

1 − 2GM
Ri+1c2

= exp χi+1 =
µ+

i+1

µi

. . .
√

1 − 2GM
Rnc2

√

1 − 2GM
Rcorec2

= exp χn+1 =
µ+core

µn

,

where the subscript “core” corresponds to the convergence point
of the baryon chemical potential for accreted and catalyzed
crusts at the bottom of the crust, i.e., where the condition µ+core =

µcore = µcc is fulfilled (see Fig. 7).

Multiplying the above equations by one another we get the
final formula for the thickness of an accreted crust,

√

1 − 2GM
Rc2

√

1 − 2GM
Rcorec2

=
µ+

1

µ1

·
µ+

2

µ2

· · ·
µ+

i

µi

· · ·
µ+n

µn

·
µcore

µ0

=
µcore

µ0

·
n

∏

i=1

µ+
i

µi

, (21)

where the product is calculated over all the energy sources in the
accreted crust.

The energy release per one accreted nucleon at the pressure
Pi is given by Qi = µ

+
i
− µi. Because Qi/µi < 10−3, one can

safely approximate formula Eq. (21) by

√

1 − 2GM
Rc2

√

1 − 2GM
Rcorec2

≃
µcore

µ0















1 +

n
∑

i=1

Qi

µi















· (22)

The main energy sources for an accreted crust are located in
the inner crust at typical pressures P ∼ 0.001−0.01 MeV fm−3

(1030−1031 erg cm−3), where the chemical potential µIC ≃
942 MeV. Replacing µi in Eq. (22) by this typical value, we get

√

1 − 2GM
Rc2

√

1 − 2GM
Rcorec2

≃
µcore

µ0

(

1 +
Qtot

µIC

)

; Qtot =

n
∑

i=1

Qi, (23)

where Qtot is the total energy release in the crust.
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Fig. 7. Baryon chemical potential µ for catalyzed (lower curve) and
accreted crust (step-like curve). The Mackie & Baym (1977) model of
dense matter is used in the example (for details see Haensel & Zdunik
2008).

4.2. Thickness of a catalyzed crust versus an accreted crust

The formulas for the radius Rcat and Racc of a NS with a catalyzed
crust and an accreted one, respectively, are
√

1 − 2GM
Rcatc2

√

1 − 2GM
Rcorec2

=
µcore

µ0

, (24)

√

1 − 2GM
Raccc2

√

1 − 2GM
Rcorec2

=
µcore

µ0

·
n

∏

i=1

µ+
i

µi

· (25)

They are equivalent to
√

1 − 2GM
Raccc2

√

1 − 2GM
Rcatc2

=

n
∏

i=1

µ+
i

µi

≃ 1 +
Qtot

µIC

· (26)

Defining
√
α ≡

∏n
i=1

µ+
i

µi
, Eq. (11) holds with R and Rcore replaced

by Racc and Rcat respectively, i.e.,

Rcat

Racc

= 1 − (α − 1)

(

Rcatc
2

2GM
− 1

)

. (27)

The difference in the radii of NS with an accreted crust and with
a catalyzed crust, ∆R = Racc − Rcat, is small compared to R and
one gets the approximate relation

∆R

Rcat

≃































n
∏

i=1

µ+
i

µi















2

− 1

















(

Rcatc
2

2GM
− 1

)

. (28)

Using Eq. (26) we obtain

∆R

Rcat

≃ 2

(

Rcatc
2

2GM
− 1

) n
∑

i=1

Qi

µi

≃ 2
Qtot

µIC

(

Rcatc
2

2GM
− 1

)

(29)

Fig. 8. Mass-radius relation for the DH EOS for catalyzed (black, solid
curve) and accreted crusts (blue, solid line). The approximation given
by Eq. (30) is plotted by a dashed red curve, which can be hardly dis-
tinguished from the exact result for an accreted crust. Inset: a zoom for
masses 1−2 M⊙.

which, after normalization to typical values, becomes

∆R ≃ 144 m ·
(

Qtot

2 MeV

) (

Rcat

10 km

)2
(

M

M⊙

)−1 (

1 −
2GM

Rcatc2

)

, (30)

where we used µIC = 942 MeV. The inaccuracy of formula (30)
introduced by the approximations ((22), (23), (29)) is on the or-
der of (Qtot/940 MeV), about 0.1% in ∆R (i.e., much less than
1 m).

The accuracy of our approximation is visualized in Fig. 8.
The exact M(R) curve is obtained for the DH EOS with catalyzed
and accreted crusts based on Mackie & Baym (1977) model of
nuclei (Zdunik & Haensel 2011; Haensel & Zdunik 2008). The
difference in radii due to the formation scenario (i.e., accreted
versus catalyzed matter) is ∆R = 80 m for 1.4 M⊙ and in the
range 330−50 m for masses between 0.5 M⊙ and 1.8 M⊙, respec-
tively. For the considered model of accreted matter the total en-
ergy release is Qtot = 1.9 MeV and the M(R) dependence ob-
tained using Eq. (30) nearly coincides with the exact M(R). The
difference in R is about 1 m for M = 1.5 M⊙.

We mentioned that when deriving Eqs. ((24), (25)) we as-
sume the same value of µcore and µ0 for both an accreted crust
and a catalyzed crust. For µcore this assumption is justified; in-
deed the baryon chemical potential µ for catalyzed and accreted
crusts converges at pressures larger than ∼0.03 MeVfm−3 (see
Fig. 7). However for an accreted crust the value of µ0 actually
depends on the ashes of nuclear reactions at the surface of the
NS (as a result of the X-ray bursts, Haensel & Zdunik 2003). In

principle it is possible that µ0acc , µ0cat and the product
∏n

i=1

µ+
i

µi

should then be multiplied by µ0acc/µ0cat. In practice the differ-
ence is smaller than 0.2 MeV/nucleon (0.02%) for the ashes con-
sidered by Gupta et al. (2007), Haensel & Zdunik (2008).
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5. Conclusions

In this paper we present an approximate treatment for the crust of
a NS, which allows us to calculate the mass and radius of a NS,
crust thickness, and crust mass. Two limiting cases were consid-
ered: catalyzed (ground-state) crust and fully accreted crust. For
a catalyzed crust R, lcrust, Mcrust, and M do not depend on the spe-
cific form of the crust EOS, but only on the crust-core transition
density and EOS core. For a given core EOS and chosen density
at which the core-crust transition takes places, the relation be-
tween the core radius and mass is obtained by solving the TOV
equations. Then the mass and radius of the crust and the total
mass and radius of the star can be obtained using simple formu-
las. The accuracy of this approach is higher than 1% and 5% for
lcrust and Mcrust, respectively, for NS masses larger than 1 M⊙.
This is equivalent to the determination of global parameters of
NS (radius R and mass M) with maximum error ∼0.1−0.3%. Un-
less the transition density ncc between the core and the crust for
a given EOS of the core is available in the literature, this value
is not known in advance. However for reasonable values of the
symmetry energy usually ncc ≃ 0.5 n0. A simple and accurate
formula for the difference in the radii of a NS with a fully ac-
creted crust with respect to that with a catalyzed crust is derived.
It is proportional to the total energy release due to deep crustal
heating and, in addition, depends only on the mass and radius of
the model with a catalyzed crust.

The demonstrated high precision of the prediction of the ra-
dius of a NS makes the derived formulas of interest for theoret-
ical works in particular in relation with the next generation of
X-ray telescopes, which are expected to provide measurements
of the NS radius with a precision of few percent.
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