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The uncertainties in neutron star radii and crust properties due to our limited knowledge of the equation of

state are quantitatively analyzed. We first demonstrate the importance of a unified microscopic description for the

different baryonic densities of the star. If the pressure functional is obtained matching a crust and a core equation

of state based on models with different properties at nuclear matter saturation, the uncertainties can be as large

as ∼30 % for the crust thickness and 4% for the radius. Necessary conditions for causal and thermodynamically

consistent matchings between the core and the crust are formulated and their consequences examined. A large

set of unified equations of state for purely nucleonic matter is obtained based on twenty-four Skyrme interactions

and nine relativistic mean-field nuclear parametrizations. In addition, for relativistic models fifteen equations of

state including a transition to hyperonic matter at high density are presented. All these equations of state have in

common the property of describing a 2M⊙ star and of being causal within stable neutron stars. Spans of ∼3 and ∼4

km are obtained for the radius of, respectively, 1.0M⊙ and 2.0M⊙ stars. Applying a set of nine further constraints

from experiment and ab initio calculations the uncertainty is reduced to ∼1 and 2 km, respectively. These residual

uncertainties reflect lack of constraints at large densities and insufficient information on the density dependence

of the equation of state near the nuclear matter saturation point. The most important parameter to be constrained

is shown to be the symmetry energy slope L. Indeed, this parameter exhibits a linear correlation with the stellar

radius, which is particularly clear for small mass stars around 1.0M⊙. The other equation-of-state parameters do

not show clear correlations with the radius, within the present uncertainties. Potential constraints on L, the neutron

star radius, and the equation of state from observations of thermal states of neutron stars are also discussed. The

unified equations of state are made available in the Supplemental Materials and via the CompOSE database.
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I. INTRODUCTION

Simultaneous measurements of the masses and radii of
neutron stars (NS), if sufficiently precise, will impose strong
constraints on the equation of state (EOS) of dense matter
significantly above (standard) nuclear (baryon number) density
n0 = 0.16 fm−3. The value of n0 is a suitable unit to measure
the baryon (number) density in NS cores. In fact, the two
most massive pulsars PSR J0348+0432 and PSR J1614−2230
alone, with a mass close to 2M⊙ [1–3], already put quite
stringent constraints on the EOS in the 5n0–8n0 density range.
These mass measurements are particularly relevant to assess
the possible existence of exotic phases of dense matter in the
cores of massive NS.

Significant effort has been put into the determination of the

radii of NS, but presently there is still a large uncertainty

associated with this quantity; see the discussion in [4–6].

Particularly interesting is the measurement of radii for the

stellar mass range 1.3M⊙–1.5M⊙, where on the one hand

many precise NS mass measurements exist, and on the other

hand dense matter theories predict a nearly constant value

of R (albeit different for various dense matter theories). We

expect that up to 2n0–3n0 NS matter involves nucleons only

and therefore that the radius for the “canonical” NS mass

1.4M⊙, denoted usually as R1.4, characterizes the EOS in

*Corresponding author: fortin@camk.edu.pl

the nucleon segment. Recently, a new constraint has been

added to this discussion. According to Ref. [7], an EOS with

Mmax > 2M⊙ should produce R1.4 � 10.7 km in order to avoid

being noncausal at highest NS densities.

We expect that future simultaneous determinations of the

mass and radius of a NS with a 5% precision will be possible

through the analysis of the x-ray emission of NS, thanks to

the forthcoming NICER [8], Athena [9] and LOFT-like [10]

missions. It is therefore important to be able to quantify the

uncertainties introduced in the NS mass and radius calculations

simultaneously by the approximations used when constructing

the complete EOS for stellar matter, by the scarcely available

constraints on the EOS at high densities and large isospin

asymmetries, and by the lack of information about the possible

exotic states of the matter existing in the interior of a NS.

In the present work we aim to understand how the

calculation of the NS radii are affected by the EOS of the

crust, having in mind that the EOS constructed to describe NS

matter are typically non-unified, i.e., built piecewise starting

from different models for each sector of NS matter. This is

to be contrasted with unified EOS, where all segments (outer

crust, inner crust, liquid core) are calculated starting from the

same nuclear interaction. In practice, for a NS crust with n �
10−4n0 one uses experimental nuclear masses. For higher crust

densities, where the relevant experimental nuclear masses are

not available, they should be calculated theoretically. Usually,

one employs an effective nuclear Hamiltonian (or Lagrangian)
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and a many-body method that makes the calculation feasible

(e.g., the Thomas-Fermi approximation or the compressible

liquid-drop model). It should be mentioned that some minor

matching problems exist already at the transition between the

experimentally based low-density segment of the EOS and

that obtained with an effective nuclear interaction, if the latter

does not fit perfectly experimental nuclear masses. However,

examples in the present paper show that resulting uncertainty in

R is very small. The calculated EOS for the crust will depend

on the assumed effective nuclear interaction, but the phase

transition between the inner crust (including a possibility of a

bottom layer with nuclear pastas) and the liquid core will be

described correctly. The EOS is then continuous through the

whole NS core, and yields a unique R(M) for each effective

interaction, with negligible residual model dependence.

In contrast, in the standard case of a non-unified EOS model,

the resulting R(M) depends on the procedure of matching the

crust and core EOS segments. As an example, in [11] it is

proposed that the Baym-Pethick-Sutherland (BPS) EOS [12]

be chosen to describe the crust and a matching of the crust

EOS to the core one is performed at 0.01 fm−3, while the core

is described within a relativistic mean field (RMF) approach

allowing for fitting several parameters of nuclear matter at

saturation. Similarly a parametrization of the high-density

equation of state based on piecewise polytropes is presented

in [13] and allows one to systematically study the effect of

observational constraints on the EOS of cold stellar matter.

Although for the high density range several models have

been considered, for low densities a single EOS, the one

of Douchin and Haensel [14] based on a specific Skyrme

interaction, namely SLy4 [15], is used. In an equivalent way,

the authors of [5] have studied constraints on the NS structure

by considering two classes of EOS models, and in both the

BPS EOS was taken for the low density EOS, alone or

supplemented by the Negele-Vautherin EOS [16]. Both of

these models are based on old energy functionals which do

not fulfill present experimental nuclear physics constraints. In

all these examples, one can wonder by how much the simplified

choice for the subnuclear density EOS affects the conclusions

obtained from experimental and observational constraints on

the EOS. In fact, in [17] it has been argued that, depending

on the assumed properties of the low density EOS, it is

possible to obtain pressures at the crust-core transition large

enough to explain the large Vela glitches, even considering the

entrainment effect. This indicates that a proper description of

the crust and the crust-core transition as well as a sensitivity

study and a systematic uncertainty evaluation are required.

In the present paper, we will first study how the matching of

the crust EOS with the core one affects the NS radius and the

crust thickness, when models that describe the crust and the

core EOS are not the same. In order to reduce the uncertainties

introduced on the calculation of the star structure, some general

indications will be presented on how to build a non-unified

EOS.

Next we will take a set of unified EOS obtained in the

framework of the RMF models and Skyrme interactions. For

both frameworks we restrict ourselves to EOS that are able to

describe a 2M⊙ star and remain causal; a nontrivial condition

for the second set of nonrelativistic models.

In the case of the RMF models one can consider also

their extensions allowing for the presence of hyperons. Vector-

meson couplings to hyperons are obtained assuming the SU(6)

symmetry. Repulsion in the hyperon sector associated with

their coupling to a hidden-strangeness vector-isoscalar meson

φ allows for M > 2M⊙. We also study how adding the hidden-

strangeness scalar-isoscalar meson σ ⋆ to get a weak ��

attraction softens the EOS. In principle the same exercise could

be done for the nonrelativistic models. However, the present

uncertainties in the hyperon-nucleon and hyperon-hyperon

interactions are such that the introduction of hyperon degrees

of freedom is still extremely model dependent. In particular,

the most sophisticated many-body approaches available in

the literature [18] either did not yet succeeded in producing

2M⊙ stars, or cannot deal with the full baryonic octet [19].

However even in the case of RMF, strong uncertainties are

associated to the couplings. We make all the EOS used here

available in the Supplemental Material and via the CompOSE

database [20].

Within our large set of unified EOS we will study the

dependence of the NS radius and the thickness of the crust

on the mass in order to pin down the residual uncertainties

due to our imperfect knowledge of the EOS parameters. As

we remind in Sec. II, the EOS of nuclear matter near n0

and for small neutron excess is constrained by the semi-

empirical evaluations of nuclear matter parameters extracted

from nuclear physics data. We will seek the correlations

between theoretically calculated nuclear matter parameters

near n0 and NS structure. We will specifically show that the

best correlation is obtained between the radius of light NS

with M � 1.4M⊙ and the symmetry energy slope L. This

confirms that indeed the L parameter is the most important

one to be constrained from laboratory experiments and/or ab

initio calculations. A most crucial constraint could potentially

come from the threshold density above which the direct Urca

(DUrca) process operates. Indeed the interval of L which is

compatible with terrestrial constraints largely overlaps with the

one for which the nucleonic DUrca process does not operate

in massive NS. In turn, the presence of nucleonic DUrca

appears to be needed in order to explain the thermal states

of accreting neutron stars [21]. This means that combining

radii measurements with observations of thermal states of NS

might constitute a very stringent test for the EOS.

The plan of the paper is as follows. In Sec. II we

give a very general overview of nuclear matter in NS. We

also establish notations for nuclear matter and its relation

to the semi-empirical nuclear-matter parameters. Section III

describes the different techniques that are used to match the

crust and core EOS, and the resulting uncertainty associated

with the star radius and the crust thickness. The relativistic

and nonrelativistic unified EOS employed for this work are

described in Sec. IV, and the corresponding M(R) relations

are given. Section V contains the main results of this work.

The predictions for the radius and crust thickness are given,

the correlation between the radius and the EOS parameters

is discussed, and the different unified EOS are compared

to the terrestrial constraints. Potential constraints from the

necessity of DUrca processes to explain low-luminosity NS

are presented. Finally Sec. VI concludes the paper.
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II. NUCLEAR MATTER IN NEUTRON STARS

AND SEMI-EMPIRICAL PARAMETERS

Consider the NS interior from the very basic point of view

of nuclear matter states relevant for each main NS layer. The

T = 0 approximation can be used since the Fermi energy of

the nucleons is much larger than the thermal energy associated

with the temperatures of ∼107–109 K expected inside NS.

The outer core consists of a lattice of nuclear-matter droplets

permeated by an electron gas. The inner crust is made of a

lattice of nuclear-matter droplets coexisting with a neutron gas.

With increasing pressure, droplets can become unstable with

respect to merging into infinite nuclear matter structures (rods,

plates) immersed in a neutron gas. The plates of nuclear matter

then glue together leaving tubes filled with neutron gas, then

the tubes break into bubbles of neutron gas in nuclear matter.

Both the inner crust and the (possible) mantle of nuclear pastas

form inhomogeneous two-phase states of nucleon matter.

At the edge of the outer core, inhomogeneous nucleon

matter coexists with uniform homogeneous nuclear matter.

To model it, we consider a mixture of strongly interacting

neutrons and protons, with Coulomb interactions switched

off. Let us define the baryon number density n = nn + np and

the neutron excess parameter δ = (nn − np)/n. The energy

per nucleon (excluding the nucleon rest energy) is E
NM

(n,δ).

Theoretical models of nuclear matter give E
NM

(n,δ) and yield a

set of parameters that characterize the EOS near the saturation

point (minimum of E
NM

) and for small δ. For a given model,

the minimum of energy per nucleon, Es, is reached at the

saturation density n = ns and for δ = 0.

The difference between the calculated values for the

saturation density ns and the commonly used normal nuclear

density n0 defined in the first sentence of Sec. I deserves a

comment. The values of ns are model dependent and vary

between 0.146 and 0.154 fm−3 for the RMF models (Table II)

and between 0.151 and 0.165 fm−3 for the Skyrme models

(Table IV). The use of a precise value of ns is crucial for the

correct calculation of the EOS. In contrast, n0 is just a chosen

baryon number density unit.

Let us define the so-called symmetry energy,

Esym(n) =
1

2

(

∂2E
NM

∂δ2

)

δ=0

, (1)

and its value at saturation,

J = Esym(ns). (2)

Two additional parameters related to the first and second

derivatives of the symmetry energy at the saturation point are,

respectively, the symmetry-energy slope parameter L,

L = 3ns

(

dEsym

dn

)

ns

, (3)

and the symmetry incompressibility Ksym,

Ksym = 9n2
s

(

d2Esym

d2n

)

ns

. (4)

Finally, the incompressibility at saturation K is

K = 9n2
s

(

∂2E
NM

∂n2

)

ns,δ=0

. (5)

Knowledge of parameters {ns,Es,K,J, . . . ,} is sufficient

to reproduce theoretical EOS of nuclear matter near the

saturation point, a situation characteristic of laboratory nuclei.

However, after being fine-tuned at the saturation point, the

energy-density functionals are actually extrapolated up to n ∼
8ns ≃ 8n0 and δ ≃ 1, characteristic of the cores of massive

NS. Therefore, making {ns,Es,K,J, . . . ,} consistent with the

semi-empirical evaluations of these parameters obtained, using

a wealth of experimental data on atomic nuclei, yields con-

straints on the corresponding EOS of NS, and consequently,

NS models, and in particular NS radii.

III. NON-UNIFIED EQUATIONS OF STATE

AND CORE-CRUST MATCHING

In the present section we will discuss the problem of the

core-crust matching of the EOS when a non-unified EOS is

used to describe stellar matter. The use of a non-unified EOS

will be shown not to affect the determination of the NS mass

but to have a significant influence on the radius calculation.

A. Different procedures for core-crust matching

The determination of the mass and radius of a NS is

possible from the integration of the Tolman-Oppenheimer-

Volkoff (TOV) equations for spherical and static relativistic

stars [22], given the EOS of stellar matter P (ρ), where P is

the pressure and ρ the energy density. The EOS for the whole

NS is generally obtained by the matching of three different

segments: the first one for the outer crust, the second one for

the inner crust, and the last one for the core. The EOS for

the outer crust, which extends from the surface to the neutron

drip density, requires knowledge of the masses of neutron-rich

nuclei [12,23–25]. This information comes from experiments

or, when no information exists, from some energy-density

functional calculations. The inner crust corresponds to a

nonhomogeneous region between the neutron drip and the

crust-core transition. This region may include nonspherical

nuclear clusters, generally known as pasta phases [26], and has

been described within several approaches [27–34]. Finally the

core formed by a homogeneous liquid composed of neutrons,

protons, electrons, muons, and possibly exotic matter, in β

equilibrium, extends from the crust-core transition to the center

of the star. It should be pointed out, however, that in addition

to exotic phases which can possibly appear at high densities,

matter may also be nonhomogeneous in the core, e.g., in the

form of a mixed hadron-quark phase [35]. In the present work

we consider a homogeneous core.

Since the core accounts for most of the mass and radius

of the star, authors frequently work with a non-unified EOS,

and match the core EOS to one for the crust, in particular the

Baym-Pethick-Sutherland (BPS) [12] together with the Baym-

Bethe-Pethick (BBP) [36], the Negele-Vautherin (NV) [16],

or the Douchin-Haensel (DH) [14]. The matching is generally

done so that the pressure is an increasing function of the energy
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FIG. 1. Mass versus radius (left) and crust thickness lcr versus

mass (right) for the relativistic mean field model GM1, using different

matching procedures (see text).

density. This condition still leaves a quite large freedom in

the matching procedure. In principle the matching procedures

done at a specific density should be performed using a Maxwell

construction, i.e., at constant baryonic chemical potential, so

that the pressure is an increasing function of both the density

and the chemical potential.

In the following a non-unified EOS is built from two

different EOS. The one for the crust defined by Pcr, ρcr, ncr is

used up to P1, ρ1, n1, while another one for the core, Pco, ρco,

nco, is considered above P2, ρ2, n2. The matching is performed

in the region of pressure P1 � P � P2, and if P1 �= P2 a linear

interpolation between (P1,ρ1) and (P2,ρ2) is considered. The

pressures P1 and P2 are generally defined at a reference density

such as the neutron drip density nd, the crust-core transition

density nt, the saturation density n0, and the density nc where

the two EOS cross.

In Fig. 1 we plot the radius-mass curves (left) and the crust

thickness (right) versus the star mass obtained with the GM1

parametrization [37] with a purely nucleonic core obtained for

different gluing procedures:

(1) Unified: by unified we mean an EOS built with the

DH EOS for the outer crust (n � 0.002 fm−3) and the

inner crust and core obtained within the same model,

here GM1. The inner crust was calculated within a

Thomas-Fermi calculation of the pasta phase [38] and

the core EOS matches the inner crust at the crust-core

transition density nt;

(2) n1 = 0.01 fm−3: the crust BPS+BBP EOS is glued to

the core EOS at 0.01 fm−3 as indicated in [11];

(3) n1 = nc: the gluing is done at the density where the

DH EOS and the core EOS cross as in [13];

(4) n1 = nt: the DH EOS is considered for the crust and

homogeneous matter EOS for n > nt.

(5) n1 = n0: the DH EOS is used for n < n0 and the core

EOS above the saturation density n0.

(6) n1 = 0.5n0, n2 = n0: DH EOS is used for n < 0.5n0,

the homogeneous matter EOS is used above n0.

TABLE I. NS radii R1 and R1.4 (in km) and crust thicknesses

lcr
1 and lcr

1.4 (in km) for masses of 1.0M⊙ and 1.4M⊙ for different

matchings between the core and the crust. 
x (in %) for a given

quantity x corresponds to the relative difference between the value of

x for unified EOS and the one for a given matching. Three functionals

are considered: NL3, NL3ωρ, and GM1.

R1 
R1 R1.4 
R1.4 lcr
1 
lcr

1 lcr
1.4 
lcr

1.4

GM1

unified 13.71 13.76 1.62 1.09

n = 0.01 13.86 1.09 13.86 0.73 1.78 9.88 1.19 9.17

nt 14.12 2.99 13.92 1.16 1.64 1.23 1.10 0.92

n0 13.61 −0.73 13.70 −0.44 2.04 25.93 1.36 24.77

0.5n0–n0 13.96 1.82 13.92 1.16 2.00 23.46 1.33 22.02

0.1n0–nt 14.27 4.08 14.12 2.62 2.18 34.57 1.44 32.11

Max. diff. 0.66 0.42 0.56 0.35

NL3

unified 14.54 14.63 1.91 1.30

n = 0.01 14.78 1.65 14.78 1.03 2.15 12.57 1.45 11.54

nc 14.97 2.96 14.91 1.91 2.35 23.04 1.58 21.54

nt 14.96 2.89 14.90 1.85 2.34 22.51 1.57 20.77

n0 14.00 −3.71 14.26 −2.53 2.02 5.76 1.42 9.23

0.5n0–n0 14.47 −0.48 14.57 −0.41 2.17 13.61 1.50 15.38

0.1n0–nt 15.09 3.78 14.97 2.32 2.46 28.80 1.65 26.92

Max. diff. 1.09 0.71 0.55 0.35

NL3ωρ

unified 13.42 13.75 2.02 1.43

n = 0.01 13.51 0.67 13.81 0.44 2.11 4.46 1.49 4.20

nc 13.5 1.12 13.85 0.73 2.18 7.92 1.53 6.99

nt 13.5 0.60 13.8 0.36 2.1 3.96 1.48 3.50

n0 13.49 0.52 13.8 0.36 2.1 3.96 1.48 3.50

0.5n0–n0 13.51 0.67 13.81 0.44 2.11 4.46 1.49 4.20

0.1n0–nt 13.49 0.52 13.8 0.36 2.1 3.96 1.48 3.50

Max. diff. 0.15 0.10 0.16 0.10

(7) n1 = 0.1n0, n2 = nt: a low matching of the EOS is

considered. The DH EOS is used for n < 0.1n0 and

the core EOS above nt.

If the matching is defined at a given density nm = n1, the

gluing is done imposing P2 = P1. The curves do not coincide

because the matching has been performed in different ways.

While the maximum mass allowed for a stable star is not

affected by the chosen crust-core matching, the same is not

true for the radius and crust thickness of stars with a standard

mass of ∼1.4M⊙. The two EOS considered in this example

for the crust and the core have quite different properties at

saturation density, in particular for the density dependence

of the symmetry energy; see Table II. This situation is,

however, common in the literature. In fact, the GM1 EOS was

parametrized to describe both nuclear saturation properties and

neutron star properties.

In Table I, the radius and crust thickness of 1.0 and 1.4M⊙
NS are given for three models, GM1, NL3 [39], and NL3ωρ

[40], and several matching schemes, together with relative

differences with respect to the value for the unified EOS.

As expected the crust-core matching affects more strongly

the less massive stars. Depending on the matching procedure,
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the differences in the radius and the crust thickness for a 1.0M⊙
star can be as large as ∼1 and ∼0.5 km, respectively. This

corresponds to relative differences as large as ∼4% for the

radius and ∼30% for the crust thickness. This is to be compared

with the expected precision of ∼5% on the radius measurement

from future x-ray telescopes (NICER, Athena, . . . ). Similarly

the crust thickness differs by ∼0.5 km depending on the gluing.

This quantity is particularly important for the study of the ther-

mal relaxation of accreting NS [41,42], the glitch phenomenon

[17,43,44], the torsional crustal vibrations, and the maximum

quadrupole ellipticity sustainable by the crust [45].

The differences between matchings are much smaller if

the NL3ωρ core EOS is considered, because this model has

nuclear matter saturation properties similar to the ones of the

SLy4 parametrization [15] used in the DH EOS.

B. Matching and thermodynamic inconsistency

Two basic methods can be used in order to match two EOS

for the crust and the core: the first based on the P (n) relation

and the second on the P (ρ) function.

The first method consists of treating the baryon number

density as an independent variable. Consider an EOS for the

crust, Pcr(n) and ρcr(n), and another one for the core, Pco(n)

and ρco(n).

Let us assume that the matching region lies between two

densities, n1 and n2 > n1. First let us build the matched P (n)

function. For n < n1, P (n) = Pcr(n) and for n > n2, P (n) =
Pco(n). In the matching region, one can assume a form (usually

linear or logarithmic) for the function P (n) such that P (n1) =
P1 = Pcr(n1) and P (n2) = P2 = Pco(n2).

Then one needs to build the function ρ(n). For n < n1,

ρ(n) = ρcr(n). Let us define the chemical potential at the den-

sity n1: μ1 = [P1 + ρcr(n1)]/n1. By imposing thermodynamic

consistency, the value of chemical potential μ at a density n in

the matching region can be derived using the P (n) relation:

μ(n) = μ1 +
∫ n

n1

dP (n)

n
. (6)

The matched energy density equals

ρ(n) = nμ(n) − P (n). (7)

However this technique generally leads to thermodynamic

inconsistency with the core EOS: the value of chemical

potential μ2 at the density n2 obtained from Eq. (6) differs

from μco(n2) = [P2 + ρco(n2)]/n2. As a consequence ρ(n2)

given by Eq. (7) is different from ρco(n2). In order to get a

thermodynamically consistent EOS for n > n2 one has to add

a constant value (an energy shift):


μ = μ(n2) − μco(n2) (8)

to the chemical potential in the core. Then the energy density

ρ(n) for n > n2 is

ρ(n) = ρco(n) + n
μ. (9)

Of course, such a procedure affects the whole EOS for the

core, but the main effect on the M(R) relation is for NS with

a central pressure close to P2.

The second method considers the energy density ρ as an

independent variable. This can be motivated by the TOV

equations since this quantity and the function P (ρ) actually

enter the stress-energy tensor in the Einstein equations. Thus

the EOS can be written in the form Pcr(ρ) and ncr(ρ) for the

crust and Pco(ρ) and nco(ρ) for the core. The matching region

is defined such that ρ1 < ρ < ρ2.

The first step consists of obtaining the function P (ρ).

For ρ < ρ1, P (ρ) = Pcr(ρ) and for ρ > ρ2, P (ρ) = Pco(ρ).

Similarly to the first method one can assume a form for the

function P (ρ) in the matching region such that P (ρ1) = P1 =
Pcr(ρ1), P (ρ2) = P2 = Pco(ρ2).

Then one wants to derive the relation n(ρ). For ρ < ρ1

one has n(ρ) = ncr(ρ). Let us define n1 = ncr(ρ1). Assuming

thermodynamic consistency, in the matching region, i.e., ρ1 �
ρ < ρ2, one gets

n(ρ) = n1 exp

(∫ ρ

ρ1

dρ

P (ρ) + ρ

)

. (10)

However, as for the first method, this construction does not

ensure that n(ρ2) obtained from the previous formula is equal to

nco(ρ2). A similar conclusion can be reached for the chemical

potential at ρ2. Thus one has to modify the n(ρ) dependence for

the core EOS in order to ensure thermodynamic consistency.

For ρ > ρ2, the matched EOS is

n(ρ) = nco(ρ)
n(ρ2)

nco(ρ2)
. (11)

This approach does not affect the P (ρ) relation (nor the

gravitational mass and the radius), but strictly speaking the

microscopic model of dense matter is changed since it is

the baryon number density which is the basic quantity for

the theoretical calculations, within the many-body theory, of

dense matter properties. Of course the accepted procedure

given by Eq. (11) also influences the value of a baryon chemical

potential (dividing it by the same factor).

C. Thermodynamic consistency and causality

In principle, when gluing two EOS one should match all

thermodynamic quantities: the pressure P , the energy density

ρ, and the baryonic density n. In other words, a pair of

functions for the pressure and the energy density should be

constructed so that thermodynamic consistency is fulfilled.

Let us consider the EOS for the core and the crust, this

time in terms of the chemical potential μ, Pcr(μ) in the crust

and Pco(μ) in the core. The matching region is defined by

μ1 < μ < μ2. Let us define Pcr(μ1) = P1 and Pco(μ2) = P2.

The function P (μ) in the matching region and its first

derivative, which is the baryon number density n, should fulfill

the conditions of continuity given by

P (μ1) = P1, P (μ2) = P2. (12)

Thermodynamic consistency and causality imply that the

following conditions on the derivatives must be fulfilled in the

matching region:

(1) n is an increasing function of P , i.e., P (μ) is increasing

and convex;
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FIG. 2. Pressure P versus chemical potential μ, for the NL3 EOS

for the core (black solid line) and DH for the crust EOS (red solid line).

The presented situation corresponds to a matching between n1 =
0.09 fm−3 and n2 = n0 = 0.16 fm−3. The dashed lines correspond

to the condition of thermodynamical consistency and are given by

Eqs. (14) and (15). The dotted lines are given by the causality limit,

Eqs. (16) and (17). The area defined by these lines corresponds to

the shaded region and is a bit smaller than the region allowed for a

thermodynamically consistent matching between points 1 and 2 (see

insets).

(2) (dP/dρ)1/2 = vsound/c � 1, with the energy density

ρ(μ) = n(μ)μ − P (μ).

From the first requirement one can derive a necessary

condition (using Lagrange’s mean value theorem),

n1 <
P2 − P1

μ2 − μ1

< n2,

with n1 =
(

dPcr

dμ

)

μ1

and n2 =
(

dPco

dμ

)

μ2

. (13)

If the above inequality is not fulfilled, a matching of the

crust and core EOS using a continuous P (μ) function cannot

be obtained.

Figure 2 shows an example of the matching between the

DH EOS for the crust and the NL3 EOS for the core, with

n1 = 0.09 fm−3 and n2 = n0. The points 1 and 2 have the

coordinates (n1,P1(μ1)) and (n2,P2(μ2)), respectively.

Any thermodynamically consistent EOS is located in the

triangle defined by the two tangents at the points 1 and 2,

P = P1 + n1(μ − μ1), P = P2 + n2(μ − μ2) (14)

and the straight line connecting these two points,

P = P1 + (P2 − P1)
μ − μ1

μ2 − μ1

. (15)

FIG. 3. Pressure P versus chemical potential μ, for the NL3 EOS

for the core (black solid line) and DH for the crust EOS (red solid line).

The points A2 and B2 correspond to two different values of n2: nt, the

core-crust transition density, and n0/2, respectively. The dashed lines

indicate the condition of thermodynamical consistency and the dotted

lines mark the causality limit. They are almost indistinguishable. The

points A1 and B1 correspond to the higher limits on μ or equivalently

n, such that a thermodynamically consistent gluing with the core at

the points A2 and B2 exists.

However the bounds defined by Eqs. (14–15) describe incom-

pressible matter with a constant baryon number density equal

to n1, n2, (P2 − P1)/(μ2 − μ1), respectively.

The additional constraint resulting from the causality

requirement reduces the allowed region, but the change is very

small (see zoomed inserts in Fig. 2). Instead of the tangents

at the points 1 and 2 given by Eq. (14) the causality limit

corresponds to

P = Pi + ni(μ − μi)
μ + μi

2μi

, i = 1,2. (16)

The line connecting the two points and fulfilling the causality

condition is

P = P1 + (P2 − P1)
μ2 − μ2

1

μ2
2 − μ2

1

. (17)

In Fig. 3 the matching conditions for the same EOS as in

Fig. 2 but for lower n2 (or equivalently μ2) are presented. The

points A2 and B2 correspond to n2 = nt, the transition density

between the core and the crust, and n2 = n0/2, respectively.

In these cases, for a given n2 two upper limits on n1 can be

obtained: the first one by the crossing point between the tangent

at the point 2 given by Eq. (13) and the crust EOS, and the

second one by the intersection of the line defined by Eq. (16)

and the crust EOS. Here both upper limits are actually almost
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identical and correspond to the points A1 and B1, obtained for

the points A2 and B2, respectively.

For the matching of the NL3 EOS with the DH crust if we

choose n2 = n0/2 (point B2 in the figure) then the condition

given by Eqs. (13)–(16) results in n1 < 0.02 fm−3 (point B1).

It means that the matching region in terms of n and P should

be extremely large, with n2 > 4n1 and P2 > 16P1.

A similar estimation for the point A2 with n2 = nt results

in n1 < 0.0075 fm−3 (upper limit marked by the point A1) and

the matching described in Sec. III A for the NL3 model (n1 =
0.1n0, n2 = nt) cannot be performed in a thermodynamically

consistent and causal way, unless one changes the core EOS,

as described in Sec. III B. As a consequence not all matchings

presented in Sec. III B are thermodynamically consistent

and/or causal.

It should be mentioned that limits defined by Eqs. (14)–(17)

correspond to a very high stiffness of matter [incompressible

fluid for Eqs. (14) and (15) and sound speed equal to the

speed of light for Eqs. (16) and (17)]. In reality the sound

speed in the matching region is much smaller. Assuming linear

dependence between the pressure and energy density in this

region, P = a(ρ − ρ̃), with a being the square of sound speed

(in the units of c) we obtain a general formula for the P (μ)

dependence which is thermodynamically consistent:

P = P1 + (P2 − P1)
μb − (μ1)b

(μ2)b − (μ1)b
, b =

1 + a

a
. (18)

Then Eqs. (15) and (17) are special cases of Eq. (18) for

a = ∞ and a = 1, respectively. Thermodynamically correct

linear matching for a given a generally leads to density

discontinuities (first-order phase transitions) at P = P1 and

P = P2 (for details see the Appendix). There exists a minimum

value of a (amin) for which such a procedure is possible (with

only one density jump) and in general it is larger than the slope

of the line connecting points (ρ1,P1) and (ρ2,P2) (equality

being reached for a very specific relation between P , ρ, and μ

at the boundaries of a matching region).

In Fig. 4 we visualize the crucial role of the thermodynamic

consistency for a determination of the stellar radius. For a ther-

modynamically consistent matching between core and crust,

the radii of NS models with M > 1.0M⊙ are very similar even

for a very different matching functions (e.g., for a = 0.33 and

a = 0.0913). For a simplest P (ρ) matching (linear function

without density jumps) we get a = (P2 − P1)/(ρ2 − ρ1) =
0.088; smaller than the minimum value amin = 0.0913 allowed

by the condition of thermodynamical consistency (for details

see Appendix). The requirement that the matching function

P (ρ) is continuous at P1 and P2 results in a discontinuity in

the μ(P ) function (i.e., a shift in the baryon chemical potential

μ) and leads to thermodynamical inconsistency.

IV. UNIFIED EQUATIONS OF STATE

We introduce a set of unified EOS which were built within

a RMF approach or using nonrelativistic Skyrme interactions.

The choice of models takes into account the astrophysical

constraints on the maximum NS mass and the speed of sound:

Mmax � 2M⊙, vsound(2M⊙) < c.

FIG. 4. Linear matching between core and crust. Upper panel,

solid line: direct connection between (ρ1,P1) and (ρ2,P2) which

is thermodynamically inconsistent (a = 0.088); dotted and dashed

lines: thermodynamically consistent gluing for a = 0.33 (dotted)

and a = amin = 0.0913 (dashed) accompanied by a density jump

(jumps) defined by ρ ′
1, ρ ′

2 (dotted line). Bottom panel: M(R) for

these matchings; thermodynamically consistent solutions give very

similar radii for M > 1.0M⊙. Stars with central pressure equal to P2

have masses ∼0.6M⊙.

To these two constraints we will add experimental and

theoretical constraints on nuclear matter properties and we

will discuss the uncertainty on the determination of the

radius and the crust thickness of 1.0M⊙, 1.4M⊙, and 1.8M⊙
stars.
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TABLE II. Nuclear and astrophysical properties of the RMF models. Energy per nucleon (Es), compression modulus (K), symmetry energy

(J ), slope (L), and incompressibility (Ksym) of the symmetry energy at the saturation point of uniform symmetric nuclear matter of density ns.

The density at the edge of the liquid uniform core is denoted as nt. In the column “Pasta,” the type(s) of pasta phase in the bottom layer (mantle)

above the edge of the core is indicated: s stands for slab, r for rod, and d for droplet phases. MnoY
max is the maximum mass for a purely nucleonic

core composition. nDU and MDU are respectively the baryon density and NS mass threshold above which the nucleonic DUrca is switched on

for a purely nucleonic core.

Model ns Es K J L Ksym nt Pasta MnoY
max nDU MDU Ref.

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (fm−3) (M⊙) (fm−3) (M⊙)

NL3 0.149 −16.2 271.6 37.4 118.9 101.6 0.056 d 2.77 0.20 0.84 [39]

GM1 0.154 −16.3 300.7 32.5 94.4 18.1 0.064 d 2.36 0.28 1.10 [37]

TM1 0.146 −16.3 281.2 36.9 111.2 33.8 0.058 d 2.18 0.21 0.81 [46]

DDHδ 0.153 −16.3 240.3 25.6 48.6 91.4 0.080 s, r, d 2.14 0.58 1.90 [47]

BSR2 0.149 −16.0 239.9 31.5 62.0 −3.1 0.065 s,r,d 2.38 0.37 1.61 [48,49]

BSR6 0.149 −16.1 235.8 35.6 85.7 −49.6 0.061 d 2.44 0.27 1.00 [48,49]

NL3ωρ 0.148 −16.2 271.6 31.7 55.5 −7.6 0.082 s, r, d 2.75 0.50 2.55 [40]

DDME2 0.152 −16.1 250.9 32.3 51.2 −87.1 0.072 s, r, d 2.48 [50]

DD2 0.149 −16.0 242.6 31.7 55.0 −93.2 0.067 s, r, d 2.42 [51]

Some of the proposed EOS, namely the RMF EOS, are not

fully unified since the outer crust is not calculated within the

framework of the model that defines the rest of the EOS, but

we have checked that since most of the outer crust is defined by

experimental results, the use of other EOS for the outer crust,

such as [23,24], does not significantly affect the star radius

with a mass above 1.0M⊙.

A. RMF unified EOS

In the present study we consider two different types of

models within the relativistic mean field (RMF) approach:

(i) nonlinear Walecka models (NLWM) with constant cou-

pling parameters, and (ii) density-dependent hadronic models

(DDH) with density-dependent coupling parameters. The only

condition that has been imposed a priori is that the models

describe a 2M⊙ star. Within the first category a set of

models that span a quite large range of nuclear saturation

properties was chosen: NL3 [39] with a large symmetry

energy slope and incompressibility at saturation and which

was fitted to the ground state properties of both stable and

unstable nuclei; NL3ωρ [40] which, compared to NL3, has a

softer density dependence of the symmetry energy through

the inclusion of a nonlinear ωρ term; GM1 [37] fitted to

describe nuclear matter saturation properties subject to NS

mass-radius constraints; TM1 [46] which includes nonlinear

ω meson terms in order to soften the matter at high densities

and is one of the classical supernova EOS [52,53]; and two

parametrizations, BSR2 and BSR6, with several nonlinear

terms mixing the ω, ρ, and σ mesons [48,49]. Within the

second type, three EOS were considered: DDME2 [50], DD2

[54], and DDHδ [47], the last one also including the δ meson.

Some properties of the set of models we use are indicated in

Table II.

We have built unified EOS for these models in the following

way: (a) for the outer crust we take the EOS proposed in [24];

(b) for the inner crust we perform a Thomas-Fermi calculation

and allow for nonspherical clusters according to [38,55]; (c)

for the core we consider the homogeneous matter EOS. The

transition between the inner crust and the core is smooth. The

maximum mass stars in Table II have been obtained with the

unified EOS.

Two compositions are considered: purely nucleonic and

baryonic matter with both nucleons and hyperons. The nu-

cleonic models, the so-called noY models, include the scalar

σ , vector ω, and vector-isovector ρ meson fields (possibly

also the δ meson) together with the nucleon doublet: neutron

n and proton p. The Y and Yss models denote hyperonic

EOS and, with respect to the noY models, they also include

the six lightest hyperons (�0, the �+,�0,�− triplet, and the


0,
− doublet) and the hidden-strangeness vector-isoscalar

φ meson for the Y models, or the φ meson together with the

hidden-strangeness scalar-isoscalar σ ∗ for the Yss models.

The vector meson-hyperon coupling constants are always

calculated assuming SU(6) symmetry (see, e.g., [56–58]):

1

3
gωN =

1

2
gω� =

1

2
gω� = gω
 ,

2gφ� = 2gφ� = gφ
 = −
2
√

2

3
gωN ,

gρN =
1

2
gρ� = gρ
 , (19)

gφN = 0 ,

gρ� = 0 ,

where N stands for nucleons. For models with the density

dependent couplings, we define the hyperon-meson couplings

as giY (n) = xiY gNY (n) (see [59]), where n is the total baryonic

density and the ratios xiY are constants. The gσY couplings,

where Y stands for hyperons (Y = �,�,
), are obtained from

the hyperon potential in symmetric nuclear matter, U
(N)
Y ,

U
(N)
Y = −(gσY + g′

σY ρs)s0 + (gωY + g′
ωY ns)w0, (20)

with s0 and w0 the mean-field values of the σ and ω meson

fields, respectively, and ρs the scalar density, all quantities

calculated at saturation density. The terms involving the

derivatives of the couplings with respect to the total density
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only occur for models with density dependent couplings. Here

we adopt the following values at saturation density: U
(N)
� (ns) =

−28 MeV, U
(N)

 (ns) = −18 MeV, and U

(N)
� (ns) = 30 MeV

[60] (see also the discussion in [61]).

In the Yss model the σ ∗ meson is also included. It is

assumed that it does not couple to a nucleon, i.e., gσ ∗N = 0.

The � potential in � matter is given by

U
(�)
� = −gσ�s0 − gσ ∗�s∗

0 + gω�w0 + gφ�f0 , (21)

with s∗
0 and f0 the mean-field values of the σ ∗ and φ meson

fields, respectively. Taking U
(�)
� (ns) = −5 MeV [62] (see also

the discussion in [61]), the value of gσ ∗� can then be fixed.

This is, however, only an indicative effect that should be

taken with care, since the hyperon-meson couplings should

be constrained by fitting the experimental binding energy of

hyperons in hypernuclei [63]. This subject requires further

investigation. Since the definition of the hyperon-meson

couplings in density dependent couplings involves several

choices, we considered that presenting results including the

σ ∗ meson would introduce further uncertainties and, therefore,

decided not to show results with the σ ∗ meson for these

models. The two remaining coupling constants can be derived

taking gσ ∗� = gσ ∗� and assuming that U
(
)

 ≃ 2U

(�)
� . The


 potential, U
(
)

 , in symmetric 
0-
− matter is given by

an expression similar to Eq. (21), replacing � by 
. For

DDHδ we only present the Y results because even in this

case the maximum mass is far from 2M⊙, and the presence

of the δ meson brings extra unknowns in the definition of the

hyperon-meson couplings.

Unified EOS are built for all the models and the TOV

equations solved. The mass-radius relations M-R of all

models, nucleonic and hyperonic, are plotted in Fig. 5. The

models were chosen such that nucleonic EOS predict stars with

a mass above 2M⊙. We can observe that the same occurs for all

Y models, except for the one built with DDHδ. With respect to

the Yss models, only the ones built with NL3 or NL3ωρ satisfy

the constraint set by PSR J0348+0432. Although models have

been distributed between two figures so that they are not too

crowded, it is still possible to see that the radius of a 1.5M⊙
star varies between ∼ 12.6 and 14.6 km. Another conclusion

is that the onset of hyperons occurs for a mass ∼1.4M⊙ or

above, except for the DDHδ model.

Models with the largest values of L only predict droplet-like

clusters in the inner crust, in accordance with the results of

[64]; see Table II.

In Table III we gather some of the properties of the

hyperonic stars, including the central baryonic density, the

maximum mass, the onset density of each hyperon and the

corresponding mass of the star. It is seen that, for the choice of

meson-hyperon couplings described above, the first hyperon

to set in in all models is the � meson. The second hyperon is

the 
− hyperon, again in all models. This hyperon is favored

with respect to �− because of the attractive 
 potential in

nuclear matter. The third meson to set in, when it exists in a

stable NS, is either �− or 
0. �− appears only when the σ ∗

meson is not included in the calculation, because the attractive

effect of the σ ∗ meson is stronger for 
 hyperons due to their

double strangeness charge.

FIG. 5. Mass-radius relation for the various RMF models: noY,

Y, and Yss. The horizontal lines indicate the constraints set by the

pulsars PSR J0348+0432 and PSR J1614− 2230.

B. Nonrelativistic unified EOS

To construct nonrelativistic unified equations of state we

proceed as follows. We select a large set of different Skyrme

functionals proposed in the recent nuclear physics literature.

At low density we variationally determine the nucleus A and

Z number, as well as the volume VWS of the Wigner-Seitz

cell and the density of the free neutron component ng after

neutron drip, employing the same Skyrme functional for both

the nucleus and the free neutrons [65]. The baryonic part of

the Wigner-Seitz cell energy is written as

EWS(A,Z,ng,VWS) = VWSESky + Evac + δE. (22)

Here, ESky(ng) is the energy density of homogeneous neutron

matter as given from the chosen Skyrme functional, Evac(A,Z)

is the vacuum energy of a nucleus of mass number A and

charge Z, and the extra term δE = δEbulk + δEsurf + δECoul

corresponds to the bulk, surface, and Coulomb in-medium

modifications.

For the vacuum energy, we employ a compressible liquid-

drop (CLDM) parametrization [66]. The coefficients of this
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TABLE III. Properties of hyperonic RMF models. For given EOS and hyperonic model, the central density nmax (in fm−3) at the maximum

mass Mmax (in M⊙) is given. The next columns list the type of hyperons Yi , the values of the onset densities nYi
(in fm−3), and the corresponding

NS masses: MYi
(in M⊙). The last two columns indicate the density and mass threshold, nDU and MDU respectively above which the nucleonic

DUrca process operates.

EOS Model nmax MY
max Y1 nY1

MY1
Y2 nY2

MY2
Y3 nY3

MY3
nDU MDU

(fm−3) (M⊙) (fm−3) (M⊙) (fm−3) (M⊙) (fm−3) (M⊙) (fm−3) (M⊙)

NL3 Yss 0.77 2.07 �0 0.28 1.52 
− 0.33 1.75 
0 0.57 2.03 0.20 0.84

Y 0.78 2.31 �0 0.28 1.52 
− 0.35 1.85 0.20 0.84

NL3ωρ Yss 0.80 2.14 �0 0.31 1.59 
− 0.34 1.74 
0 0.65 2.13 0.42 1.91

Y 0.79 2.34 �0 0.31 1.58 
− 0.34 1.78 �− 0.49 2.17 0.43 2.07

DDME2 Y 0.93 2.12 �0 0.34 1.41 
− 0.37 1.55 �− 0.41 1.66

GM1 Yss 0.82 1.85 �0 0.35 1.48 
− 0.40 1.64 
0 0.70 1.84 0.28 1.10

Y 0.92 1.99 �0 0.35 1.48 
− 0.41 1.67 0.28 1.10

TM1 Yss 0.73 1.78 �0 0.35 1.52 
− 0.39 1.63 
0 0.72 1.78 0.21 0.81

Y 0.85 1.92 �0 0.32 1.40 
− 0.42 1.70 0.21 0.81

DDHδ Y 1.05 1.79 �0 0.37 1.30 
− 0.52 1.60 �− 0.70 1.74 0.62 1.69

DD2 Y 0.93 2.10 �0 0.37 1.52 
− 0.38 1.55 �− 0.45 1.75

BSR2 Yss 0.84 1.84 �0 0.34 1.37 
− 0.39 1.54 0.39 1.55

Y 0.89 2.00 �0 0.34 1.38 
− 0.42 1.65 �− 0.51 1.81 0.39 1.56

BSR6 Yss 0.84 1.84 �0 0.33 1.34 
− 0.38 1.54 
0 0.81 1.83 0.27 0.95

Y 0.87 2.03 �0 0.33 1.36 
− 0.42 1.67 �− 0.57 1.91 0.26 0.93

mass formula are fitted out of Hartree-Fock calculations in

slab geometry, using the same Skyrme effective interaction

which is employed for the free neutron component. The

absence of shell effects and curvature terms in this analytic

parametrization implies that a mass shift which, depending on

the Skyrme interaction, can be as high as 0.5 MeV/nucleon,

is observed with respect to experimentally measured masses.

As a consequence, the EOS of the external part of the

outer crust differs from the one we would get employing

experimental data. This is true even for recent sophisticated

Skyrme functionals which have shown, if full HFB calculations

are performed, a very good agreement with experimentally

measured nuclear masses [67]. An example is given in

Fig. 6, which shows for a representative Skyrme functional

the discontinuity in the baryonic pressure obtained if an

EOS using experimental masses is matched with the unified

prescription.

However, the deviation between the CLDM-based EOS and

the one obtained when the experimental mass data are used is

small enough to impact the M(R) relation to less than 1%, as

one can see in the lower panel of Fig. 6.

The bulk in-medium correction to the nuclear energy δEbulk

is approximated by

δEbulk(A,Z,ng) = −
A

ns

ESky, (23)

where A/ns(δ) represents the equivalent cluster volume

corresponding to the given isospin asymmetry δ, evaluated

in the nuclear bulk. For a nucleus in the vacuum we take for

the bulk asymmetry the estimation from the droplet model

[68],

δ = δ0 =
[(

1 − 2
Z

A

)

+
3ac

8Q

Z2

A5/3

]/(

1 +
9J

4QA1/3

)

.

(24)

In this equation, J is the symmetry energy per nucleon at

the saturation density of symmetric matter, Q is the surface

stiffness coefficient, and ac is the Coulomb parameter. In the

presence of an external neutron gas of density ng, the bulk

asymmetry defined by Eq. (24) is generalized to account for

the contribution of the gas as [69]

δ(A,Z,ng) =
(

1 −
ng

ns(δ)

)

δ0 +
ng

ns(δ)
, (25)

where δ0 is the asymmetry value given by Eq. (24) considering

only the bound part of the cluster. For details, see [65,69,70].

The Coulomb energy shift δECoul is due to the screening

effect of the electrons, and it is evaluated in the standard

Wigner-Seitz approximation [36]. The residual energy shift

corresponds to the in-medium modification of the surface

tension in the inner crust. This term can be evaluated in

the extended Thomas-Fermi approximation [70–72]. For the

applications of the present paper, this correction has been

neglected. The error induced by this approximation on the

M(R) relation is quantified below in this section, and shown

to be reasonably small. However, this effect, together with

the curvature terms which are also neglected, is important

for a precise determination of the transition density. For this

reason we leave the study of the functional dependence of the

transition density to future work.

Since the droplet phase is known to be the dominant pasta

phase in β equilibrium [33], we have not considered possible

deviation from spherical symmetry in the nucleus functional.

The Wigner-Seitz energy density from Eq. (22) is min-

imized with respect to its arguments with the additional

requirement of β equilibrium, thus leading to the equilibrium

composition of the neutron star crust at each baryonic density

value [65]. In the absence of deformation degrees of freedom

the crust-core transition occurs via a narrow phase coexistence
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FIG. 6. (n,p,e) matter in β equilibrium. Upper panel: total

pressure versus total energy density for the unified EOS (solid lines)

and using experimental masses when available (dashed lines). Lower

panel: relative deviation of the NS radius as a function of mass with

the two prescriptions shown on the top part. The SkI4 functional is

used.

domain [65]. The transition to the core is defined by the high

density border of this first-order phase transition region.

As stated above, a precise treatment of this transition

requires proton shell effects, curvature terms, modifications

of the surface tension, and deformation degrees of freedom.

However the energy density landscape turns out to be ex-

tremely flat close to the transition point [65,71]. This means

that the approximations employed in Eq. (22) prevent a precise

determination of the transition density, but do not affect the

density behavior of the pressure.

The M(R) relation is then obtained integrating the TOV

equations. Only the functionals which produce, without

hyperonic degrees of freedom, maximum NS masses of at

least, within 1% accuracy, 2M⊙, and which are causal up to

the highest densities met in such massive stars are kept for the

following analysis. The list of the functionals which have been

retained, and the corresponding EOS parameters, are listed in

Table IV. With the exception of BSk20 and BSk26 models,

the causality condition actually holds also up to the maximum

mass. The resulting M(R) relation is shown in Fig. 7. It is seen

that 1.0M⊙–1.5M⊙ stars span a radius range ∼3 km wide,

from ∼11.5 to ∼14.2 km.

In the case of some of the Skyrme functionals developed

by the Brussels group [84,85], the M(R) relation has already

been calculated with a unified EOS obtained by numerically

solving in the crust the full Hartree-Fock-Bogoliubov problem

in the Wigner-Seitz cell [86,87]. A comparison with our results

using the simplified CLDM allows quantifying the error which

occurs because of the different approximations employed

to get an analytic model, namely the lack of shell effects,

curvature terms, and in-medium modifications of the surface

tension. This comparison is shown in Fig. 8. We can see that

the estimation of the maximum mass is never affected by the

approximations (the dashed and full lines are very similar for

M � 1M⊙) while for a fixed mass a deviation is observed in the

radius; deviation which increases as expected with decreasing

mass. We consider that this comparison is representative of

the systematic error which occurs for all functionals due

to the limitations of the model. We have checked that this

mass-dependent error bar is always smaller than the size of the

symbols and width of the lines of all the figures of the present

paper.

V. RESULTS

In the present section we discuss the uncertainties on the

determination of the radius and the crust thickness of a star

associated with the models presented in the previous section.

In the next subsection we will also discuss how the radius

and the crust thickness of NS are related with two properties

at saturation: the incompressibility and the symmetry energy

slope. We will then proceed to impose a set of terrestrial

constraints and select the models that satisfy all constraints,

or miss at most two by less than 10%, and will discuss how

the uncertainties on the determination of the radius and the

crust thickness of a star previously obtained are affected.

The final subsection focuses on the DUrca process and the

possible constraint that could be put on L, the NS radius or the

EOS thanks to the astrophysical observations of thermal states

of NS.

A. Radius and crust thickness

In Fig. 9, the radii of 1.0M⊙, 1.4M⊙, and 1.8M⊙ NS for a

purely nucleonic core are plotted as a function of the slope L

and the incompressibility K . We can see that the radii for the

various EOS differ at most by 2.8, 3.0 and 3.7 km for masses of

1.0M⊙, 1.4M⊙, and 1.8M⊙, respectively. The uncertainty on

the radius is connected with the nuclear properties of the EOS

of the models used [88]. In the next subsection we will restrict

ourselves to the models that also satisfy other constraints both

from experiments and from theoretical calculations of pure

neutron matter and will discuss how much this uncertainty

changes.

We can also see from Fig. 9 that the radius appears well

correlated with the slope of the symmetry energy L, especially

for low mass stars. This correlation is still present for the

more massive stars but the dispersion increases with the

mass, as expected. Indeed, in [89] the authors have shown

that the radius of low mass stars is well correlated with the

neutron skin thickness of 208Pb. On the other hand, it has been
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TABLE IV. Nuclear and astrophysical properties of considered Skyrme functionals. Energy per nucleon (Es), compression modulus (K),

symmetry energy (J ), slope (L) and incompressibility (Ksym) of the symmetry energy at the saturation point of uniform symmetric nuclear

matter of density ns. MnoY
max is the maximum NS mass and v2

sound(2M⊙) is the square of the sound speed at a density equal to the central density

of the 2M⊙ NS. nDU and MDU are respectively the density and mass threshold above which the nucleonic DUrca is switched on.

Functional ns Es K J L Ksym MnoY
max v2

sound(2M⊙) nDU MDU Ref.

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (M⊙) (c2) (fm−3) (M⊙)

Ska 0.155 −15.99 263.16 32.91 74.62 −78.46 2.22 0.61 0.37 1.23 [73]

Skb 0.155 −16.00 263.0 33.88 47.6 −78.5 2.20 0.63 [73]

SkI2 0.1575 −15.77 241.0 33.4 104.3 70.7 2.17 0.56 0.26 0.92 [74]

SkI3 0.1577 −15.98 258.2 34.83 100.5 73.0 2.25 0.54 0.26 0.92 [74]

SkI4 0.160 −15.95 247.95 29.50 60.39 −40.56 2.18 0.64 0.52 1.64 [74]

SkI5 0.156 −15.85 255.8 36.64 129.3 159.5 2.25 0.51 0.22 0.86 [74]

SkI6 0.159 −15.89 248.17 29.90 59.24 −46.77 2.20 0.62 0.51 1.66 [75]

SLy2 0.161 −15.99 229.92 32.00 47.46 −115.13 2.06 0.78 [76]

SLy230a 0.160 −15.99 229.90 31.99 44.30 −98.3 2.11 0.72 0.82 2.00 [77]

SLy4 0.159 −15.97 230.0 32.04 46.00 −119.8 2.06 0.79 [15]

SkMP 0.157 −15.56 230.87 29.89 70.31 −49.82 2.11 0.66 0.43 1.32 [78]

SkOp 0.160 −15.75 222.36 31.95 68.94 −78.82 1.98 0.55 0.58 1.53 [79]

KDE0V1 0.165 −16.23 227.54 34.58 54.69 −127.12 1.98 0.57 [80]

Sk255 0.157 −16.33 254.96 37.4 95.0 −58.3 2.15 0.61 0.25 0.76 [81]

Sk272 0.155 −16.28 271.55 37.4 91.7 −67.8 2.24 0.59 0.26 0.80 [81]

Rs 0.157 −15.53 236.7 30.58 85.7 −9.1 2.12 0.62 0.32 1.06 [82]

BSk20 0.1596 −16.080 241.4 30.0 37.4 −136.5 2.17 0.77 [83]

BSk21 0.1582 −16.053 245.8 30.0 46.6 −37.2 2.29 0.60 0.45 1.60 [83]

BSk22 0.1578 −16.088 245.9 32.0 68.5 13.0 2.27 0.56 0.33 1.15 [67]

BSk23 0.1578 −16.068 245.7 31.0 57.8 −11.3 2.28 0.58 0.38 1.34 [67]

BSk24 0.1578 −16.048 245.5 30.0 46.4 −37.6 2.29 0.60 0.45 1.60 [67]

BSk25 0.1587 −16.032 236.0 29.0 36.9 −28.5 2.23 0.58 0.47 1.63 [67]

BSk26 0.1589 −16.064 240.8 30.0 37.5 −135.6 2.18 0.76 [67]

SLy9 0.151 −15.80 229.84 31.98 54.86 −81.42 2.16 0.65 0.56 1.72 [76]

discussed in [40,90,91] that the neutron skin thickness is very

sensitive to the density dependence of the nuclear symmetry

energy and, in particular, to the slope parameter L at the

normal nuclear saturation density. The correlation obtained

in [89] corresponds, therefore, to a correlation between the

star radius and the slope L. The authors take a set of four

different models and within each span a wide range of neutron

skin thicknesses by changing the density dependence of the

symmetry energy. The correlation between the star radius

and the neutron skin thickness of 208Pb is particularly strong

for stars with masses 0.5M⊙ and 0.75M⊙. For M = 1.4M⊙,

although a clear correlation is still present, the spread of the

distribution is wider showing a larger model dependence. The

behavior was attributed to the stellar matter densities that were

being explored within each type of star: for low mass the

main contribution comes from densities close to the saturation

density where all models behave similarly because most of

them are fitted to finite nucleus properties. The properties

of stars with larger masses are also determined by the high

density EOS, corresponding to a range of densities where the

higher order coefficients in the density expansion of the energy

functional play an increasing role.

Looking now at the radius as a function of the incom-

pressibility, a linear correlation is also observed as indicated

by the nonzero value of the correlation coefficient. However,

the spread of the data for the three masses considered

is considerably larger than when considering correlations

between L and the radii. This can be quantified by looking

at the result of a fit, using a linear regression, of the radius

R for different masses, with a linear function ax + b, where

x = L or K . The result of the fit, including the error bar on

the two fitting parameters, is represented in Fig. 9 as a shaded

area. In the case of R(L) (upper panel), a well defined linear

behavior can be extracted, even if the importance of higher

order terms in the density expansion [92] can be inferred by

the larger dispersion at high mass. In contrast, the error in

the b parameter is so large that no relevant information on K

can be extracted from the radius. This indicates that, as far

as isoscalar properties are concerned, the influence of higher

order terms cannot be neglected. An analytic parametrization

for radii of NS with different masses in terms of properties

of symmetric saturated matter was first discussed in [88]

and a quite complex dependence on K , skewness parameter

K ′ = 27n3
s (∂3E

NM
/∂n3)ns,δ=0, and L was highlighted.

The crust thickness for the RMF models is plotted as a

function of the star mass in Fig. 10. We do not show results

for the Skyrme parametrizations because the method used to

describe the crust in these models does not allow for a precise

calculation of the crust-core transition density, as explained

before. For the models represented in Fig. 10, no correlations

were found between the crust thickness and the slope L or the

incompressibility K for stars with masses 1.0M⊙, 1.4M⊙, and

1.8M⊙. Excluding the DDHδ model that predicts the smallest

thickness, we have obtained 1.6 < lcr < 2.1 km for a star with
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FIG. 7. Mass-radius relations for Skyrme models. As in Fig. 5,

the horizontal lines indicate the constraints set by the pulsars PSR

J0348+0432 and PSR J1614−2230.

M = 1.0M⊙, 1.1 < lcr < 1.5 km for 1.4M⊙ and 0.7 < lcr <

1.1 km for 1.8M⊙. For stars with masses 1.0M⊙ and 1.4M⊙
the upper limits of the crust thickness are more than 30%

larger than the lower limits. This difference rises to 50% for

the 1.8M⊙ star.

B. Comparison with nuclear constraints

So far, two constraints were imposed on the various EOS

discussed in Sec. IV: the causality and ability to reach the 2M⊙
mass limit. There are, however, several nuclear constraints

that have been obtained from experiment or microscopic

calculations during the last decade and which set much

stronger conditions on the models. In this subsection we

impose in addition the following set of constraints reviewed in

[95–98]:

(1) Constraint on the energy per particle of neutron matter

as a function of the density n from the calculations of

[94] and of [93] (see Fig. 11 and 12). From [94] we

consider the limiting cases corresponding to the model

FIG. 8. Mass as a function of the radius for the BSk20 and

BSk21 functionals. Full lines: full microscopic HFB calculation from

[84]. Dashed lines: our model for the unified EOS. As in Fig. 5,

the horizontal lines indicate the constraints set by the pulsars PSR

J0348+0432 and PSR J1614−2230.

using a two-nucleon (2N) force without 3N interaction

and to the one with a 2N force and the Urbana IX

3N interaction which approximately cover the present

uncertainty range of ab initio calculations,

(2) Constraint on the incompressibility of infinite nuclear

matter at saturation. Direct fits of ISGMR and IVGMR

experimental data within a macroscopic approach

based on the liquid drop model can lead to very

different values for the K parameter [99–101], but self-

consistent microscopic calculations in the last decade

have lead to a reliable constraint K = 230 ± 40 MeV

[102,103]. The quoted uncertainty include both the

model dependence due to the use of relativistic or

nonrelativistic functionals [102], and the uncertainty

in the extrapolations from the average nuclear density

to the saturation density [103].

(3) Constraints in the J -L plane as compiled in [95,97]

and plotted in Fig. 13:

(a) from neutron skin thickness of 208Pb [104],

(b) from heavy ion collisions (HIC) [105],

(c) from electric dipole polarizability αD [97,106],

(d) from giant dipole resonance (GDR) of 208Pb [107],

(e) from measured nuclear masses [108],

(f) from isobaric analog states (IAS) [109].

In Table V, all our models are confronted with this set

of constraints: Y or N indicate whether the constraint is

satisfied or not, respectively. For the neutron energy per particle

from microscopic calculations we have also considered a

less restrictive constraint increasing by 10% the uncertainty

interval. The constraint on the incompressibility is taken

from [103]. However, in [110] it was discussed that the

uncertainty in the incompressibility is related to the lack of

knowledge of the skewness. Taking both Skyrme interactions

and RMF models, the uncertainty in the skewness is larger

than ±400 MeV, so that the uncertainty of 17% (corresponding
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FIG. 9. Radii of purely nucleonic NS as a function of the symmetry energy slope L (upper plots) and the incompressibility of symmetric

matter K (lower plots) for different masses (1.0M⊙, 1.4M⊙, and 1.8M⊙ from left to right). The red dots indicate Skyrme models, the black

ones RMF models. The blue symbols (stars for RMF and a pentagon for SLy9) correspond to models which are at the intersection of all nuclear

constraints in the L-J plane; see Fig. 13. The shaded areas and the solid violet line indicate the result of a linear regression with and without,

respectively, taking into account the error bars in the fitted parameters. The correlation coefficient r is indicated in each plot.

to 40 MeV) obtained for the incompressibility in [103] may

be underestimated taking into account that in their analysis

only three RMF models were considered. We therefore relax

this constraint and consider that NL3, NL3ωρ, and Sk272

also satisfy the constraint corresponding to increasing the

uncertainty from 17% to 18%. This is indicated by the ∗ symbol

in Table V.

Only one model satisfies all the constraints: DDME2.

Increasing the uncertainty interval of the energy per particle

of neutron matter from the calculations of [93] and [94], three

more models can be selected: DD2, NL3ωρ, and SLy9. In

Fig. 9 we present the three selected RMF models with a blue

star and the one Skyrme interaction with a blue pentagon.

In Fig. 14 the mass-radius curves of the selected models

are shown for EOS of purely nucleonic and hyperonic matter

(if available). Although they all have a very similar L—three

of them have L ∼ 55 MeV and for the last one L = 51.2

MeV—the radius uncertainty of a 1.4M⊙ star spanned by these

models is 
R1.4 = 1.30 km defined by the difference between

R1.4(SLy9) = 12.45 km and R1.4(NL3ωρ) = 13.75 km. This

uncertainty reduces to 0.88 km for 1.0M⊙ stars and increases

to 2.34 km for 2.0M⊙ stars. This radius interval is ∼1/3 of the

one that was obtained in Sec. IV for 1.0M⊙ stars and ∼1/2 for

2.0M⊙ stars. The fact that the range of possible radii is larger

for the more massive stars reflects the fact that the high density

range of the EOS is less well constrained than the one close to

and below saturation density.

One property that is very different for all the four models,

represented by a blue mark, is the incompressibility K; see

Fig. 9, bottom panels. The radius of the star is also to some

extent correlated with the incompressibility but, as discussed

above, the uncertainty of the linear correlation is too large to

provide a further constraint.

The same set of experimental constraints employed in this

work has been previously used in [97] with the same aim of

addressing the relation between uncertainties on the nuclear

EOS and NS radii. Using analytic equations between NS radii

and pressure of beta-equilibrated matter, which in turn depends

on L and K , the interval of 12.1 ± 1.1 km was proposed, within

90% confidence, for the radius of 1.4M⊙.

Finally, let us focus on the crust properties of the se-

lected RMF models, which have been plotted together in

the upper panel of Fig. 10. The dispersion observed in the

crust thickness becomes narrower, corresponding to ∼250 m,
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FIG. 10. Mass vs crust thickness relation for the various RMF

models: noY, Y, and Yss. Line styles correspond to the ones used in

Fig. 5.

which represents ∼30% of the range obtained for all RMF

models.

We can conclude that the present knowledge of L and

K allows determining the NS radius within 1–2 km. This

residual uncertainty appears to be essentially due to the lacking

information on higher order terms, meaning that an increasing

precision in the constraints for L and K is going to improve

this prediction only marginally.

This underlines the importance of independent constraints.

One possibility would be to get information on higher order

coefficients (skewness, symmetry incompressibility, etc.) from

high density laboratory observables.

C. DUrca processes

An interesting way to constrain the EOS could be to exploit

independent astrophysical data, notably from the luminosity

curves of the accreting NS and their interplay with the possible

occurrence of the DUrca process. This connection is explained

in the following.

After their birth in supernova explosions, NS are efficiently

cooled down by neutrino emission during ∼105–106 years (see

[111] and references therein). The simplest possible and most

powerful neutrino process is the so-called nucleonic electron

FIG. 11. Energy per particle of neutron matter as a function of

density n for Skyrme models and constraints by [93] and [94].

DUrca process [112]:

n → p + e− + ν̄e and p + e− → n + νe, (26)

which corresponds to the neutron β decay followed by the

electron capture on the proton. Momentum conservation has

to be satisfied for this process to operate which translates into

the so-called triangle inequalities:

pFn � pFp + pFe, (27)

where pFi is the Fermi momentum of a species i. Such

inequalities impose a minimum proton fraction Y min
p for the

nucleonic DUrca process to occur [113]:

Y min
p =

1

1 +
(

1 + x
1/3
e

)3
, (28)

with xe = ne/(ne + nμ). The absence of muons corresponds

to xe = 1 and Y min
p = 1/9 while their inclusion results in an

increase of the value of Y min
p . This minimum proton fraction

translates into a threshold density nDU and mass MDU above
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FIG. 12. Energy per particle of neutron matter as a function of

density n for RMF models and constraints by [93] and [94].

which the DUrca process is active. A process similar to the

one in Eq. (26) but involving muons instead of electrons may

also operate; its threshold density is then slightly larger than

for the electron DUrca process.

Mass and density thresholds for the nucleonic DUrca

process in purely nucleonic cores are given in Tables II and IV

for RMF and Skyrme models, respectively. For some EOS, the

density threshold above which the DUrca process operates

is larger than the central density of the maximum-mass

configuration. In other words, for such EOS the DUrca process

is turned off for all possible masses and does not operate for

any NS configuration. In Fig. 15 the density threshold above

FIG. 13. L and J parameters of all our EOS compared to various

nuclear constraints (see text for details). The white crossed region

corresponds to the intersection of all constraints. EOS fulfilling all

constraints are indicated by blue symbols: a pentagon for the unique

Skyrme model and a star for the three RMF ones.

which the DUrca process operates in a purely nucleonic NS

and the mass of the star with the corresponding central density

are plotted against the slope of the symmetry energy. It reveals

the possible existence of two distinct regions defined by a

threshold on L: LDU ≃ 70 MeV. Every nonhyperonic EOS

with L � LDU has the DUrca process operating in NS above a

mass M < 1.5M⊙. This is not the case for EOS with L � LDU

as for some EOS the DUrca does not operate at any NS mass

and, for other EOS, it does for masses either above 2M⊙ or

close to 1.5M⊙. Regarding EOS that fulfill all constraints,

two patterns are to be noted. For SLy9 the DUrca process is

possible for masses larger than 1.72M⊙. For the three RMF

models, in spite of their similar values of J and L, only the

one with non-density-dependent coupling constants, NL3ωρ,

allows for the DUrca process, although at high density and

masses above 2.5M⊙.

On the one hand, the thermal state of SAX J1808.4−3658,

the coldest observed transiently accreting NS, can be explained

as shown in [21] by a very large neutrino emission in the core of

the NS that only the very efficient DUrca process can explain.

Interestingly the region where all nuclear constraints in the L-J

plane overlap, as plotted in Fig. 13, corresponds to values of

L that are strictly smaller than the same LDU below which the

DUrca process does not necessarily operate in massive purely

nucleonic NS. Therefore reconciling the nuclear constraints

on L and J with the astrophysical one that the DUrca process

operates in NS might be challenging, as shown by the fact

that out of four EOS fulfilling our set of constraints only one

(SLy9) allows for the DUrca process below 2M⊙. In other

words astrophysical observations of NS with a low luminosity

might constrain the value of L and consequently the radius as

discussed in Sec. V A. On the other hand, population synthesis

of isolated NS imposes that the DUrca process does not occur

in NS with masses 1.0M⊙–1.5M⊙ [114], a constraint that

only a small number of EOS satisfy with L � 70 MeV, as

shown in Fig. 15, unless a strong proton superfluidity occurs

in the core of low mass stars [21]. In particular, among the

EOS consistent with our set of nuclear constraints, SLy9,

NL3ωρ for a purely nucleonic interior and an hyperonic one,

and DD2 with hyperons do not have any DUrca process

below 1.5M⊙.

DUrca processes similar to the nucleonic ones can also

occur in hyperonic NS [115]. Examples relevant for our EOS

are

� → p + l + ν̄l and p + l → � + νl,


− → � + l + ν̄l and � + l → 
− + νl, (29)


− → 
0 + l + ν̄l and 
0 + l → 
− + νl .

The DUrca process involving a given hyperon turns on at a

density very close to the onset density of this specific hyperon

(with the condition that all other species involved in the process

are also present). These density thresholds, or equivalently

mass thresholds, for our RMF hyperonic EOS are given in

Table III together with the same quantity for the nucleonic

DUrca process. In the presence of hyperons the onset of the
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TABLE V. Confrontation of the EOS with the various constraints. For each model the symbols Y and N indicate whether a given constraint

is fulfilled or not, respectively. For the constraints from [93] and [94] on the energy per particle of neutron matter, the interval of density over

which the constraint is fulfilled is also given (in fm−3). The ∗ symbol indicates models for which the uncertainty on K has been increased from

17% to 18%; see text for details. In boldface we indicate the EOS that satisfy all constraints and that are also represented by blue marks in Fig. 9.

Model Hebeler Hebeler + 10% Gandolfi Gandolfi + 10% K Neutron skin HIC αD GDR masses IAS

NL3 N 0.093–0.108 N 0.084–0.120 N 0.096–0.112 N 0.087–0.125 Y* N N N N N N

NL3ωρ N 0.051–0.155 Y 0.050–0.155 N 0.068–0.155 Y 0.050–0.155 Y* Y Y Y Y Y Y

DDME2 Y 0.050–0.155 Y 0.050–0.155 N 0.063–0.155 Y 0.050–0.155 Y Y Y Y Y Y Y

GM1 N 0.124–0.155 N 0.113–0.155 N 0.130–0.155 N 0.118–0.155 N N Y N N N N

TM1 N 0.089–0.103 N 0.078–0.116 N 0.092–0.109 N 0.082–0.122 N N N N N N N

DDHd N 0.155–0.155 N 0.155–0.155 N 0.155–0.155 N 0.155–0.155 Y N Y N N N N

DD2 N 0.079–0.155 Y 0.050–0.155 N 0.090–0.155 N 0.058–0.155 Y Y Y Y Y Y Y

BSR2 N 0.083–0.155 Y 0.050–0.155 N 0.099–0.155 Y 0.050–0.155 Y Y Y Y N Y N

BSR6 N 0.082–0.101 N 0.070–0.120 N 0.086–0.108 N 0.074–0.131 Y N Y Y Y N Y

Ska N 0.099–0.140 N 0.082–0.155 N 0.106–0.153 N 0.088–0.155 Y N Y Y N Y Y

Skb N 0.155–0.155 N 0.155–0.155 N 0.155–0.155 N 0.155–0.155 Y Y N N N N N

SkI2 N 0.123–0.155 N 0.113–0.155 N 0.128–0.155 N 0.118–0.155 Y N N N N N N

SkI3 N 0.110–0.143 N 0.096–0.155 N 0.116–0.151 N 0.102–0.155 Y N Y N N Y N

SkI4 N 0.155–0.155 N 0.139–0.155 N 0.155–0.155 N 0.148–0.155 Y Y Y N N N N

SkI5 N 0.113–0.132 N 0.104–0.145 N 0.116–0.137 N 0.108–0.150 Y N N N N N N

SkI6 N 0.150–0.155 N 0.119–0.155 N 0.155–0.155 N 0.131–0.155 Y Y Y Y N Y N

SLy2 N 0.081–0.155 Y 0.050–0.155 N 0.065–0.155 Y 0.050–0.155 Y Y N N Y Y Y

SLy230a N 0.092–0.155 N 0.061–0.155 N 0.081–0.155 N 0.053–0.155 Y Y N N N Y Y

SLy4 N 0.080–0.155 Y 0.050–0.155 N 0.066–0.155 Y 0.050–0.155 Y Y N N Y Y Y

SLy9 N 0.057–0.155 Y 0.050–0.155 Y 0.050–0.155 Y 0.050–0.155 Y Y Y Y Y Y Y

SkMP N 0.143–0.155 N 0.127–0.155 N 0.149–0.155 N 0.133–0.155 Y Y Y N N N N

SkOp N 0.117–0.155 N 0.099–0.155 N 0.126–0.155 N 0.106–0.155 Y N Y Y N Y N

KDE0v1 N 0.155–0.155 N 0.051–0.155 N 0.125–0.155 Y 0.050–0.155 Y Y N N N N N

Sk255 N 0.082–0.101 N 0.068–0.120 N 0.086–0.108 N 0.073–0.130 Y N N N N N N

Sk272 N 0.070–0.089 N 0.050–0.110 N 0.075–0.096 N 0.058–0.121 Y* N N N N N N

Rs N 0.137–0.155 N 0.125–0.155 N 0.142–0.155 N 0.130–0.155 Y N N N N N N

BSk20 N 0.056–0.155 Y 0.050–0.155 Y 0.050–0.155 Y 0.050–0.155 Y Y N N Y Y Y

BSk21 N 0.057–0.155 Y 0.050–0.155 N 0.050–0.070 Y 0.050–0.155 Y Y Y Y Y Y N

BSk22 N 0.104–0.155 Y 0.050–0.155 N 0.117–0.155 N 0.082–0.155 Y N Y Y N Y N

BSk23 N 0.102–0.155 Y 0.050–0.155 N 0.122–0.155 Y 0.050–0.155 Y Y Y Y N Y N

BSk24 N 0.058–0.155 Y 0.050–0.155 N 0.051–0.072 Y 0.050–0.155 Y Y Y Y Y Y N

BSk25 N 0.072–0.121 N 0.056–0.155 N 0.067–0.091 N 0.051–0.155 Y N N Y Y Y N

BSk26 N 0.056–0.155 Y 0.050–0.155 Y 0.050–0.155 Y 0.050–0.155 Y Y N N Y Y Y

FIG. 14. Mass-radius relations for the models fulfilling all nuclear

constraints. As in Fig. 5, the horizontal lines indicate the constraints

set by the pulsars PSR J0348+0432 and PSR J1614−2230.

nucleonic DUrca process occurs at

(

np

np + nn

)

=
1

1 +
(

1 + xY
e

1/3)3
, xY

e =
ne

ne + nμ − nch
Y

,

(30)

where nch
Y = −n�− + n�+ − n
− .

The hyperonic DUrca processes have weaker emissivities

than their nucleonic counterparts [115], but for some EOS they

actually turn on at densities lower than the threshold for the

nucleonic process. For the hyperonic version of our selected

EOS—DD2, DDME2, and NL3ωρ—the mass thresholds are

1.52M⊙, 1.41M⊙, and 1.58M⊙, respectively. Nevertheless, a

systematic study of the dependence of these thresholds on

the poorly constrained hyperon properties and on the nuclear

parameters (e.g., L) is beyond the scope of this paper and will

be the subject of future works. It should be reminded that in

the presence of hyperons the nucleonic DUrca process occurs

at lower densities than expected in purely nucleonic stars due

to the smaller neutron fraction, because hyperons contribute

to both ρ and charge density. However, the condition for the
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FIG. 15. Density threshold nDU (upper plot) and mass threshold

MDU (lower plot) for the nucleonic DUrca process to operate in

purely nucleonic NS versus the slope of the symmetry energy L. The

convention for colors and symbols is the same as in Fig. 9. Empty

symbols next to the upper x axis indicate EOS for which nDU is larger

than the central density of the most-massive NS. In the lower plot,

the error bars indicate the mass range over which the DUrca process

operates.

nucleon DUrca process is still given by the inequality (27), and

a similar one with electrons replaced by muons. This could be

an indication that it is necessary to take into account hyperons

in order to reconcile an efficient DUrca process and an L

restricted to the interval allowed by terrestrial experiments.

VI. CONCLUSION

The present study has two main objectives: (i) to illustrate

the uncertainty that arises in the star radius determination when

a non-unified EOS is used for the integration of the TOV

equations and (ii) to quantify the same uncertainty taking a

set of causal unified EOS that are consistent with the 2M⊙
maximum-mass limit, with or without considering an extra set

of constraints.

The unified EOS that are presented have been chosen among

the nuclear RMF models and Skyrme interactions. In the latter

case we have only considered models with causal EOS for

densities at least as high as the central density of a 2M⊙
star. We have also considered EOS with hyperonic degrees

of freedom for all the chosen RMF models. Except for DDHδ

and TM1, all the other hyperonic EOS could still describe

a 2M⊙ star when obtained using SU(6) symmetry to fix the

vector meson coupling, experimental results to fix the scalar

meson couplings, and, considering the mesons with hidden

strangeness, including the φ meson and excluding the σ ∗

meson.

The unified EOS were built using different approaches

for the RMF and Skyrme models. For the RMF EOS we

take the same outer crust EOS [24] for all the models, the

inner crust is obtained within a Thomas Fermi calculation

performed allowing for nonspherical clusters according to

[38,55], and the core is described by the homogeneous matter

EOS. The EOS are not completely unified due to the outer

crust EOS, since this EOS is mainly fixed by experimental

measurements; the effect of this approximation is however

very small. Considering the nonrelativistic unified EOS: at

low density the nucleus A and Z numbers, as well as the

volume VWS of the Wigner-Seitz cell and the density of the free

neutron component after drip, are variationally determined.

The free neutrons are described with the same functional used

for the calculation of the core EOS. Concerning the nucleus,

it is modeled with a compressible liquid-drop model with

parameters fitted from Hartree-Fock calculations employing

the same Skyrme functional. Modifications of cluster energy

functionals due to in-medium surface corrections, disregarded

by the present modeling, will be addressed within the extended

Thomas-Fermi approximation in a forthcoming paper. With

the same occasion the correlations between the crust-core

transition density, crust thickness, and the properties of

uniform nuclear matter will be also discussed.

It was shown that for the non-unified EOS the crust-core

matching may quite strongly affect the radius and crust thick-

ness of the less massive stars. For our examples, depending

on the matching procedure the difference in the radius and

in crust thickness for a 1.0M⊙ star can be as large as ∼1 and

∼0.5 km, respectively. This corresponds to relative differences

as large as ∼4% for the radius and 30% for the crust thickness.

The largest uncertainties occur when the density dependence

of the symmetry energy is not the same in the crust and the

core (i.e., different slopes L characterize the two EOS). This

uncertainty may be minimized if EOS for the crust and the

core with similar saturation properties are considered, when a

unified EOS is not available.

Taking the initial set of EOS we have shown that the spanned

range of radii is ∼3 and ∼4 km wide for 1.0M⊙ and 2.0M⊙
respectively. Imposing further constraints from experiment

and theoretical calculations of neutron matter, these intervals

for radii are reduced respectively, to ∼1 and 2 km. Although

smaller, this uncertainty is still large and reflects mostly our

ignorance on the high density EOS, or equivalently on the

higher order terms of the density expansion of the energy

functional. Additional uncertainties arise when the hyperon

degrees of freedom are available. If hyperons are considered

it is still possible to get 2M⊙ stars, meaning that they cannot

be simply neglected. Stars with a mass �1.5M⊙ typically

contain hyperons in their core, and their presence is felt for the

larger masses giving rise to a reduction of the star radius, and

increasing uncertainties due to the largely unknown hyperon

couplings.

Taking the whole set of models discussed in Sec. IV, we

have confirmed the existence of a linear correlation between

the symmetry energy slope and the radius. This correlation is

stronger for the less massive stars when the central densities

of the stars are below 2.5n0, a conclusion first drawn in

[89]. When larger masses are considered the spread of data

increases, reflecting the lack of constraint to be imposed on the

high density segment of the EOS. Considering the correlation

between the incompressibility and the radius, the spread of

data is independent of the mass of the star and prevents from

extracting a clear correlation. These results imply that further

tighter constraints on L and K are not expected to improve the

radius uncertainty in an important way.
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A very promising avenue is given by the potential constraint

imposed by the necessity of DUrca processes to operate in NS

in order to explain the observations of thermal states of some

of them as shown in [21]. Indeed, the restricted L interval

compatible with present terrestrial constraints is close to the

threshold for DUrca process in nucleonic stars. This means

that only a limited number of functionals can at the same

time fulfill the L constraint and allow DUrca processes in NS.

However, it was also shown that if hyperons are included, the

nucleonic DUrca process is shifted to lower densities, possibly

allowing us to reconcile an efficient DUrca process and an L

restricted to the interval allowed by terrestrial experiments.

This effect could be an indication of the presence of hyperons

in the interior of a neutron star. A further constraint might

be obtained if the mass of a NS with a low luminosity is

measured.

Having shown the importance of using a unified EOS, all

the studied EOS are accessible in the Supplemental Material

and via the CompOSE database [20].

ACKNOWLEDGMENTS

The authors thank Isaac Vidaña, Stefan Typel, and Nicolas

Chamel for their comments, Micaela Oertel for helpful discus-

sions and assistance with the CompOSE database, and Helena

Pais for supplying some RMF inner crust EOS. This work has

been partially supported by New-Compstar COST MP1304

and by the NCN (Poland) Grant No. 2014/13/B/ST9/02621.

APPENDIX: LINEAR MATCHING

Let us assume that we want to perform the matching

between an EOS for the core and one for the crust in the

region defined by P1,ρ1,μ1 = (P1 + ρ1)/n1 (highest pressure

in the crust) and P2,ρ2,μ2 = (P2 + ρ2)/n2 (lowest pressure in

the core). For a linear matching of the form P = a(ρ − ρ̃) the

dependence P (μ) reads

P = P1 + 
P
μb − (μ1)b

(μ2)b − (μ1)b
, b =

1 + a

a
, (A1)

where 
P = P2 − P1. Equation (A1) does not guarantee that

the function P (ρ) is continuous at P = P1 and P = P2. In

general one has density jumps at these points corresponding

to first-order phase transitions (see Fig. 4):

P = P1 : n1 → n′
1, ρ1 → ρ ′

1, (A2)

P = P2 : n′
2 → n2, ρ ′

2 → ρ2, (A3)

P1 < P < P2, ρ ′
1 < ρ < ρ ′

2, P = a(ρ − ρ̃). (A4)

TABLE VI. Numerical values for the matching presented in Fig. 4.

μ2/μ1 b1 b2 a1 a2 
P/
ρ

1.0476 11.953 13.0004 0.0913 0.0833 0.088

From the continuity of μ at P1 and P2 we get

bP2 + ρ̃

bP1 + ρ̃
= q, q ≡

(

μ2

μ1

)b

. (A5)

Finally ρ̃ is given by

ρ̃ = b
P2 − qP1

q − 1
. (A6)

The densities ρ ′
1, ρ ′

2 for a linear matching at P1 and P2 are

given by the equations

ρ ′
1 = ρ̃ + P1/a =

b

q − 1

P − P1, (A7)

ρ ′
2 = ρ̃ + P2/a = ρ ′

1 + 
P/a =
bq

q − 1

P − P2. (A8)

The necessary conditions for the Rayleigh-Taylor stability in

a star with a phase transition are ρ ′
1 � ρ1 and ρ ′

2 � ρ2, i.e.,

b

q − 1

P � P1 + ρ1 = n1μ1,

b

q − 1
�

n1μ1


P
, (A9)

bq

q − 1

P � P2 + ρ2 = n2μ2,

bq

q − 1
�

n2μ2


P
. (A10)

Defining the function

f (x) =
x

(μ2/μ1)x − 1
, (A11)

we get

f (b) �
n1μ1


P
, f (−b) �

n2μ2


P
. (A12)

The equalities in Eq. (A12) correspond to the disappearance of

the density jump at P1 and P2 respectively. The two solutions

(b1, b2) of the equations

f (b1) =
n1μ1


P
, f (−b2) =

n2μ2


P
(A13)

define the maximum value of b and the minimum of a =
1/(b − 1) for which a linear matching is possible:

b < bmax ≡ min(b1,b2), a > amin ≡ max(a1,a2).

(A14)

Table VI gives numerical values for the example discussed

in the text and presented in Fig. 4 with 
ρ ≡ ρ2 − ρ1.
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