
Space Science Reviews manuscript No.
(will be inserted by the editor)

Neutron Stars – Cooling and Transport

Alexander Y. Potekhin · José A. Pons ·
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Abstract Observations of thermal radiation from neutron stars can potentially pro-

vide information about the states of supranuclear matter in the interiors of these stars

with the aid of the theory of neutron-star thermal evolution. We review the basics of

this theory for isolated neutron stars with strong magnetic fields, including most rel-

evant thermodynamic and kinetic properties in the stellar core, crust, and blanketing

envelopes.
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E-mail: page@astro.unam.mx



2 A.Y. Potekhin, J.A. Pons, D. Page

3 Superfluidity and superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Pairing types and critical temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Superfluid effects on heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Superfluid effects on neutrino emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Superfluid effects on heat conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 The effects of strong magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Magnetic-field parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Magnetic field effects on the equation of state and heat capacity . . . . . . . . . . . . . . 30

4.3 Magnetic field effects on neutrino emission . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Magnetic field effects on heat conduction . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Thermal structure of neutron stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Blanketing envelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 The effects of strong magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Non-radial heat transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Thermal evolution of neutron stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1 Cooling scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Heating mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Thermal luminosities of isolated neutron stars . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A. Electron thermal conductivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.1 Weakly degenerate electron gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.2 Strongly degenerate electron gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.3 The case of intermediate degeneracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.4 Impurities and mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B. Temperature relations for envelopes of neutron stars with magnetic fields . . . . . . . . . . . . . 51

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1 Introduction

The first works on neutron star cooling and thermal emission (Stabler 1960; Tsuruta

1964; Chiu and Salpeter 1964; Morton 1964; Bahcall and Wolf 1965a,b) appeared at

the epoch of the discoveries of X-ray sources outside the Solar System in the rocket

and balloon experiments (Giacconi et al. 1962; Bowyer et al. 1964a,b). The authors

estimated cooling rates and surface temperatures in order to answer the question,

whether a neutron star can be detected in this kind of experiments. However, the

first attempts failed to prove the relation between neutron stars and newly discovered

X-ray sources. In particular, Bowyer et al. (1964b) measured the size of the X-ray

source in the Crab Nebula from observations during a lunar occultation on July 7,

1964. Their result, ∼ 1013 km, indicated that the source was much larger than a neu-

tron star should be. Ironically, there was a neutron star there, the famous Crab pulsar,

but it was hidden within a compact plerion pulsar nebula. Kardashev (1964) and later

Pacini (1967) conjectured that the Crab Nebula could be powered by the neutron-star

rotational energy, which was transferred to the nebula via the magnetic field, but this

model remained a hypothesis. Curiously, the Crab pulsar was observed as a scintillat-

ing radio source since 1962 (Hewish and Okoye 1965), but the nature of this source

remained unclear. Sandage et al. (1966) identified Sco X-1, the first detected and the

brightest cosmic X-ray source, as an optical object of 13th magnitude. Shklovsky

(1967) analyzed these observations and concluded that the X-ray radiation of Sco

X-1 originated from the accretion of matter onto a neutron star from its companion.

Later this conjecture was proved to be true (de Freitas Pacheco et al. 1977), but at
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the time it was refuted (Cameron 1967). Because of these early confusions, the first

generally accepted evidence of neutron stars was provided only by the discovery of

pulsars (Hewish et al. 1968) after a successful competition of the theoretical inter-

pretation of pulsars as rotating neutron stars (Gold 1968) with numerous alternative

hypotheses (see, e.g., the review by Ginzburg 1971).

The foundation of the rigorous cooling theory was laid by Tsuruta (1964) and

Tsuruta and Cameron (1966), who formulated the main elements of the theory: the

relation between the internal and surface temperatures of a neutron star, the neutrino

and photon cooling stages, etc. After the discovery of neutron stars, a search for their

soft X-ray thermal emission has become a topical challenge, which stimulated the

development of the cooling theory. The first decade of this development was reviewed

by Tsuruta (1979) and Nomoto and Tsuruta (1981a).

Thorne (1977) presented the complete set of equations describing the mechani-

cal and thermal structure and evolution of a spherically symmetric star at hydrostatic

equilibrium in the framework of General Relativity (GR). The GR effects on the

thermal evolution of neutron stars were first included into the cooling calculations

by Glen and Sutherland (1980); Nomoto and Tsuruta (1981b); Van Riper and Lamb

(1981). A generally relativistic cooling code for a spherically symmetric non-

barotropic star was written by Richarson et al. (1982). Nomoto and Tsuruta (1986,

1987) studied neutron star cooling using an updated physics input and discussed the

role of different physical factors for thermal relaxation of different models of neutron

stars. Tsuruta (1986) provided a comprehensive review of the neutron star cooling

theory with a comparison of the results of different research groups obtained by mid-

1980s.

The early studies of the neutron-star cooling were mostly focused on the stan-

dard scenario where the neutrino emission from the stellar core was produced mainly

by the modified Urca (Murca) processes, which compete with neutrino emission via

plasmon decay, nucleon bremsstrahlung, etc. The enhanced (accelerated) cooling due

to the direct Urca (Durca) processes was believed possible only if the core con-

tains a pion condensate or a quark plasma (e.g., Tsuruta 1979; Glen and Sutherland

1980; Van Riper and Lamb 1981; Richarson et al. 1982). By the end of 1980s a new

cooling agent, kaon condensate, was introduced (Brown et al. 1988; Page and Baron

1990). The studies of the enhanced cooling were intensified after the discovery

by Lattimer et al. (1991) that the Durca process is allowed in the neutron star

core with the standard nuclear composition for some realistic equations of state

(EoS) without “exotic” models. The standard and Durca-enhanced neutron star cool-

ing scenarios were compared in a number of numerical simulations starting from

Page and Applegate (1992), who also noticed that nucleon superfluidity becomes the

strongest cooling regulator in the Durca-allowed stellar kernels. This result triggered

a flow of papers on the cooling of superfluid neutron stars.

The progress in the theoretical studies of the neutron-star thermal evolution was

influenced in the 1980s and 1990s by the spectacular progress of the X-ray astronomy,

notably due to the space observatories Einstein (1978–1981), EXOSAT (1983–1986),

and ROSAT (1990–1998). ROSAT was the first to reliably detect X-ray thermal ra-

diation from isolated neutron stars. This theoretical and observational progress was

reviewed by Tsuruta (1998); Yakovlev and Pethick (2004); Page et al. (2004).
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In the 21st century, the data collected by X-ray observatories Chandra and XMM-

Newton give a new impetus to the development of the cooling theory. Some new

theoretical results on the cooling of neutron stars and relation of the theory to ob-

servations were reviewed by Yakovlev et al. (2008); Page (2009); Tsuruta (2009).

Recently, 2D simulations of the fully coupled thermal and magnetic field evolution

have been possible (Pons et al. 2009; Viganò et al. 2013), mostly motivated by the

increasing number of observed magnetars and high magnetic field pulsars.

The theory of thermal evolution of neutron stars has different aspects associ-

ated with rotation, accretion, etc. In this review, we will mostly focus on the physics

that determines thermal structure and evolution of slowly rotating non-accreting neu-

tron stars, whose thermal emission can be substantially affected by strong magnetic

fields. The processes of formation of thermal spectra in the outermost layers of such

stars are explicitly excluded from this paper but considered in the companion re-

view (Potekhin, De Luca, and Pons 2015, hereafter Paper I). We will pay a special

attention to the effects of strong magnetic fields on the thermal structure and heat

conduction in the crust and heat-blanketing envelopes of neutron stars.

2 The essential physics of neutron star cooling

In this section we briefly present the essential physical ingredients needed to build

a model of a cooling neutron star regardless its magnetic field. The effects of strong

magnetic fields will be discussed in subsequent sections, starting from Sect. 4.

2.1 Structure and composition of a neutron star

A neutron star is born hot (≈ 1011 K) and lepton-rich, but only a few days after its

birth, its temperature drops to a few ×109 K. Thus, the Fermi energy εF of all particles

is much higher than the kinetic thermal energy in most of the star volume, except in

the thin outermost layers (a few meters thick), which does not affect the mechanical

and thermal structure of the rest of the star. Therefore, a good approximation is to

describe the state of matter as cold nuclear matter in beta equilibrium, resulting in an

effectively barotropic EoS. The mechanical structure of the star is decoupled from its

thermal structure and can be calculated only once and kept fixed during the thermal

evolution simulations.

To a very good approximation, the mechanical structure can be assumed to be

spherical. Appreciable deviations from the spherical symmetry can be caused by

ultra-strong magnetic fields (B & 1017 G) or by rotation with ultra-short periods (less

than a few milliseconds), but we will not consider such extreme cases. Then the

space-time is described by the Schwarzschild metric (e.g. Misner et al. 1973)

ds2 = −e2Φ(r)c2dt2 + e2Λ (r)dr2 + r2(dθ2 + sin2 θdϕ 2), (1)

where (r,θ,ϕ ) are the standard spherical coordinates, e2Λ (r) = 1− 2GMr/c2r, and

Φ(r) is determined by equation

dΦ(r)/dP(r) = −
[

P(r)+ρ(r)c2
]−1

(2)
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with the boundary condition e2Φ(R) = 1− rg/R at the stellar radius R. Here, rg =
2GM/c2 = 2.95(M/M⊙) km is the Schwarzschild radius, M ≡ MR is the stellar mass,

Mr = 4π
∫ r

0 ρ(r)r2dr is the mass inside a sphere of radius r, G is the gravitational

constant, c is the speed of light, P is the pressure, and ρ is the gravitational mass

density.

The mechanical structure of a spherically symmetric star is described by the

Tolman-Oppenheimer-Volkoff equation

dP

dr
= −GMr ρ

r2

(

1 +
P

ρc2

) (

1 +
4πr3P

Mrc2

) (

1− 2GMr

rc2

)−1

, (3)

where r is the radial coordinate measured from the stellar center. In order to determine

the stellar mechanical structure, Eq. (3) should be supplemented by an EoS, which

depends on a microscopic physical model (Sect. 2.4). Several qualitatively different

regions can be distinguished in a neutron star, from the center to the surface: the inner

and outer core, the mantle, the inner and outer crust, the ocean, and the atmosphere

(e.g., Haensel et al. 2007).

The outer core of a neutron star has mass density 0.5ρ0 . ρ . 2ρ0, where ρ0 =
2.8× 1014 g cm−3 is the nuclear saturation density (the typical density of a heavy

atomic nucleus). It is usually several kilometers thick and contains most of the stellar

mass. The outer core is mostly composed of neutrons with an admixture of the protons

and leptons – electrons and muons (npeµ matter).

The inner core, which can exist in rather massive neutron stars, M & 1.5M⊙, occu-

pies the central part with ρ & 2ρ0. It is defined as the region where the composition is

uncertain, but probably more rich than simply neutrons and protons. Its composition

and properties are not well known because the results of their calculation strongly de-

pend on details on the theoretical model of collective fundamental interactions. Some

of the proposed models envision the following hypothetical options:

1. hyperonization of matter – the appearance of various hyperons (first of all, Λ - and

Σ−-hyperons – npeµΛΣ matter);

2. pion condensation – formation of a Bose condensate of collective interactions

with the properties of π-mesons;

3. kaon condensation – formation of a similar condensate of K-mesons;

4. deconfinement – phase transition to quark matter.

The last three options are often called exotic (Haensel et al. 2007, Chapt. 7). In this

paper we will not consider the exotic matter in any detail.

In the stellar crust and ocean the matter is less extraordinary: it contains elec-

trons, nuclei composed of protons and neutrons, and, in the inner crust, quasi-free

neutrons. Nevertheless, this region is also under extreme conditions (density, temper-

ature, magnetic field) that cannot be reproduced in the laboratory. In the crust, which

is normally ∼ 1 km thick, the nuclei are arranged into a crystalline lattice, and in the

ocean with a typical depth from a few to ∼ 100 meters (depending on temperature)

they form a liquid (see Sect. 2.4.1).

With increasing density, nuclei become progressively neutron-rich due to the

beta-captures that are favored by the increase of pressure of the degenerate elec-
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trons. Neutrons start to drip out of nuclei at density ρdrip = 4.3×1011 g cm−3. Thus

at ρ > ρdrip neutron-rich nuclei are embedded in the sea of quasi-free neutrons.

At the bottom of the crust, the nuclei may take rodlike and platelike shapes to

compose so called pasta phases of nuclear matter (Pethick and Ravenhall 1995).

Then they form a mantle with anisotropic kinetic properties (Pethick and Potekhin

1998). Thermodynamic stability of the pasta phase state and, therefore, the exis-

tence of the mantle depends on the model of nuclear interactions. Lorenz et al. (1993)

demonstrated stability of the pasta phases at ρ & 1014 g cm−3 for the FPS EoS model

of Pandharipande and Ravenhall (1989), but they were not found to be stable in mod-

ern EoS models SLy (Douchin and Haensel 2001) and BSk (Pearson et al. 2012).

The strong gravity drives the rapid separation of chemical elements in the crust

and the ocean. Estimates of characteristic sedimentation time range from seconds to

months, depending on local conditions and composition (see, e.g., Eq. 20 in Potekhin

2014), which is a very short timescale compared to the stellar age. Therefore the

envelopes are thought to be made of chemically pure layers, which are separated by

narrow transition bands of diffusive mixing (De Blasio 2000; Chang et al. 2010).

2.2 Thermal evolution equations

The multidimensional heat transport and thermal evolution equations in a locally flat

reference frame read (e.g., Aguilera et al. 2008; Pons et al. 2009; Viganò et al. 2013)

cv eΦ ∂T

∂ t
+ ∇ · (e2ΦFFF) = e2Φ(H −Qν), FFF = −e−Φ κ̂ · ∇ (eΦT ), (4)

where FFF is the heat flux density, H is the heating power per unit volume, cv

is specific heat (Sects. 2.5, 3.2, and 4.2), Qν is neutrino emissivity (Sects. 2.6,

3.3, 4.3), κ̂ is the thermal conductivity tensor (Sects. 2.7, 3.4, and 4.4), and ∇ =
(e−Λ (r)∂/∂ r, r−1∂/∂θ, (r sinθ)−1∂/∂ϕ ) in compliance with Eq. (1). The inner

boundary condition to the system of equations (4) is FFF = 0 at r = 0. The outer

boundary condition is determined by the properties of a heat-blanketing envelope,

which serves as a mediator of the internal heat into the outgoing thermal radiation. It

will be considered in Sect. 5. Solutions to the thermal evolution equations and their

implications are briefly reviewed in Sect. 6.

For weak magnetic fields, we can assume that the temperature gradients are es-

sentially radial, and that in most of the star volume (inner crust and core) the con-

ductivity tensor is simply a scalar quantity times the identity matrix. In this limit,

corrections for deviations from the 1D approximation have little effect on the total

luminosity. However, for strong fields and neutron stars with locally intense inter-

nal heating sources, such as magnetars, a more accurate description, beyond the 1D

approximation, must be considered.

2D calculations of thermal structure and evolution of strongly magnetized neutron

stars have been done by several groups (Geppert et al. 2004, 2006; Pérez-Azorin et al.

2006; Aguilera et al. 2008; Kaminker et al. 2012, 2014). In some of these works

(Geppert et al. 2006; Pérez-Azorin et al. 2006; Aguilera et al. 2008), neutron-star

models with superstrong (B∼ 1015 – 1016 G) toroidal magnetic fields in the crust were
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considered, in addition to the less strong (B ∼ 1012 – 1014 G) poloidal component that

penetrates from the crust into the magnetosphere. The latter models help to explain

the strongly non-uniform distribution of the effective temperature over the neutron-

star surface and the possible energy source for magnetars outbursts (Pons and Perna

2011; Pons and Rea 2012). Only recently (Viganò et al. 2013), the fully coupled evo-

lution of temperature and magnetic field has been studied with detailed numerical

simulations, which allow one to follow the long-term evolution of magnetars and

their connection with other neutron star classes. Some results of such calculations

will be discussed in Sect. 6.

2.3 Basic plasma parameters

In this section we introduce several basic parameters of Coulomb plasmas that are

used below. To be concrete, we start with electrons and ions (including bare atomic

nuclei). When other charged particles are present, their respective parameters are

defined analogously, with the obvious replacements of particle mass, charge, number

density, etc.

Since the major constituents of the neutron-star matter are mostly degenerate, an

important parameter is the Fermi energy, which (without the rest energy) equals

εF = c

√

(mc)2 +(pF)2 −mc2, (5)

where m is the particle mass, and pF is the Fermi momentum. For instance, for the

Fermi gas in the absence of a quantizing magnetic field, pF = h̄(3π2n)1/3, where n

is the number density, and h̄ is the reduced Planck constant. It is convenient to use

the dimensionless density parameter related to the Fermi momentum of electrons,

xr = pFe/mec, where me is the electron mass. In the outer core and the envelopes, as

long as the baryons are non-relativistic, xr ≈ (ρ6 Ye)
1/3, where Ye is the number of

electrons per baryon and ρ6 ≡ ρ/106 g cm−3.

Thermal de Broglie wavelengths of free ions and electrons are usually defined

as λi =
√

2πh̄2/miT and λe =
√

2πh̄2/meT , where mi = Amu is the ion mass, and

mu is the unified atomic mass unit. Here and hereafter, we use T in energy units

and suppress the Boltzmann constant (i.e., 106 K = 86.17 eV). The quantum effects

on ion motion are important either at λi & ai or at T ≪ Tp, where Tp = h̄ωp is the

ion plasma temperature, and ωp =
(

4πe2 ni Z2/mi

)1/2
is the ion plasma frequency.

Debye temperature of a crystal ΘD is closely related to the plasma temperature. In

the harmonic approximation for the Coulomb crystal, ΘD ≈ 0.45Tp (Carr 1961).

The Coulomb plasmas are called strongly coupled if the parameter ΓC =
(Ze)2/aiT , which estimates the electrostatic to thermal energy ratio, is large. Here,

ai ≡ ( 4
3 πni)

−1/3 is the ion sphere, or Wigner-Seitz cell, radius, and ni is the ion num-

ber density. If the plasma only consists of electrons and non-relativistic ions of one

kind, which is typical for neutron-star envelopes, then

Tp = 7.832(Z/A)
√

ρ6 ×106 K, ΓC = 22.747Z5/3(ρYe)
1/3/T6. (6)
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Analogously, Tp,e = h̄(4πe2ne/me)
1/2 = 3.34

√

ρ6 Z/A × 108 K is the electron

plasma temperature. Other plasma parameters, which become important in a strong

magnetic field, will be considered in Sect. 4.1.

2.4 Equation of state

2.4.1 Equation of state for the outer crust and the ocean

The composition of the outer crust and the ocean of a neutron star is particularly

simple: their basic constituents are electrons and nuclei, which, to a good accuracy,

can be treated as pointlike. The EoS of such electron-ion plasmas is well known (see,

e.g., Haensel et al. 2007, Chapt. 2, and references therein).

The ions thermodynamic state will go from liquid to solid as the star cools, and in

the solid state from a classical to a quantum crystal. It is generally assumed that the

ions form a crystalline solid and not an amorphous one. This assumption is confirmed

by molecular dynamics numerical simulations (Hughto et al. 2011) and corroborated

by the analysis of observations of neutron-star crust cooling after an accretion episode

(see Sect. 6.2).

The simplest model of the electron-ion plasmas is the one component plasma

(OCP) model, which considers Coulomb interactions of identical pointlike ions and

replaces the degenerate electron gas by a static uniform charge-compensating back-

ground. The OCP has been studied analytically and numerically in many papers (see

Haensel et al. 2007, Chapt. 2, for references). In the classical regime (T ≫ Tp) its

thermodynamic functions depend on a single parameter ΓC. At ΓC ≪ 1 the ions form

a Debye-Hückel gas, with increasing ΓC the gas gradually becomes a liquid, and with

further increase of ΓC the OCP liquid freezes. An analysis of Monte Carlo simu-

lations of the OCP shows that its ground state is crystalline when ΓC > Γm = 175

(Potekhin and Chabrier 2000). However, supercooling cannot be excluded up to a

value ΓC ≃ 250. Indeed, Monte Carlo simulations of freezing of classical OCP

(DeWitt et al. 1993) indicate that, as a rule, the ions do not freeze at the equilibrium

melting temperature Tm but form a supercooled fluid and freeze at lower T (depending

on initial conditions and other parameters). This happens because the phase transition

is really tiny.

At T . Tp, the quantum effects on ion motion become significant. Then thermo-

dynamic functions depend not only on ΓC, but also on rs. The quantum effects are

especially important for the solid neutron star crust at high densities, although they

can also be significant in the deep layers of the ocean composed of light elements (for

instance, they prevent solidification of H and He plasmas). The free energy per unit

volume of an OCP crystal can be written as

Flat

V
= niC0

(Ze)2

ai
+

3

2
ni u1Tp +

Fth

V
+

Fah

V
, (7)

where the first term is the classical static-lattice energy, C0 ≈ −0.9 is the Madelung

constant, and the next two terms describe thermodynamics of the phonon gas in the

harmonic approximation (e.g., Kittel 1963): the second term accounts for zero-point
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quantum vibrations, and Fth/V = 3niT 〈ln[1− exp(−h̄ωkkkα /T )]〉ph is the thermal con-

tribution. Here, u1 = 〈ωkkkα 〉ph/ωp ≈ 0.5 is the reduced first moment of phonon fre-

quencies ωkkkα , and 〈. . .〉ph denotes the averaging over phonon polarizations α and

wave vectors kkk in the first Brillouin zone. The last term in Eq. (7) arises from an-

harmonic corrections, which have only been studied in detail in the classical regime

(T ≫ Tp; e.g., Farouki and Hamaguchi 1993 and references therein). An analytical

extrapolation of Fah for any T was proposed in Potekhin and Chabrier (2010).

For mixtures of various ion species, the simplest evaluation of the thermodynamic

functions is given by the average of their values for pure substances, weighed with

their number fractions, which is called the linear mixing rule (Hansen et al. 1977).

The linear mixing rule is accurate within a few percent, if the electrons are strongly

degenerate and ΓC > 1 for each of the ion species in the mixture. However, this ac-

curacy may be insufficient for such subtle phenomena as melting/freezing or phase

separation in the Coulomb plasmas. Corrections to the linear mixing rule were ob-

tained by Potekhin et al. (2009). Medin and Cumming (2010) used these results to

construct a semianalytical model for prediction of the composition and phase state of

multicomponent mixtures. Hughto et al. (2012) confirmed the qualitative validity of

this model by molecular dynamics simulations.

The OCP model is a reasonable first approximation, but in reality the electrons

do not form a uniform background: they interact with each other and with the ions,

which gives rise to exchange-correlation and polarization corrections, respectively.

The polarization corrections are appreciable even for strongly degenerate plasmas.

For instance, they can substantially shift the melting transition away from ΓC = 175

(Potekhin and Chabrier 2013). In the outer envelopes of a neutron star, the electron

degeneracy weakens, and one should take the T -dependence of their EoS into ac-

count. Analytical fits for all above-mentioned contributions to the EoS of electron-

ion plasmas were presented by Potekhin and Chabrier (2010, 2013). Their Fortran

implementation is publicly available at http://www.ioffe.ru/astro/EIP/.

An essential input for calculating the EoS is the chemical composition of the

plasma. The ground state of the matter in the outer crust can be found following

the method of Baym et al. (1971). The procedure, based on the minimization of the

Gibbs free energy per nucleon, is described in detail in Haensel et al. (2007). The

structure of the crust is completely determined by the experimental nuclear data up

to a density of the order ρ ∼ 6× 1010 g cm−3. At higher densities the nuclei are so

neutron rich that they have not yet been experimentally studied, and the composition

of these dense layers is model dependent. However, this model dependence is not very

significant in the models based on modern nuclear physics data (Haensel and Pichon

1994; Rüster et al. 2006; Pearson et al. 2011).

While a newly born neutron star is made of hot matter in nuclear equilibrium,

its subsequent evolution can lead to the formation of regions where the matter is out

of nuclear equilibrium. This is the case of an old accreting neutron star. Burning of

the helium layer near the surface is followed by electron captures and beta decays

in deeper layers. The growing layer of the processed accreted matter pushes down

and eventually replaces the original catalyzed (ground-state) crust. These processes

were studied by several authors (see Haensel and Zdunik 1990, 2008, and references

therein).
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2.4.2 Equation of state for the inner crust and the core

The pressure in the inner crust of a neutron star is largely created by degenerate neu-

trons. However, the electrons and nuclei may give an important contribution to the

heat capacity (see Sect. 2.5). In the core, there are contributions from neutrons, pro-

tons, electrons and muons (and other particles in the exotic models, which we do not

consider here). Different theoretical EoSs of the neutron fluid and npeµ matter have

been proposed, based on different methods of theoretical physics: the Brueckner-

Bethe-Goldstone theory, the Green’s function method, variational methods, the rela-

tivistic mean field theory, and the density functional method (see Haensel et al. 2007,

Chapt. 5, for review). The model of Akmal et al. (1998) (APR) has been often cited

as the most advanced one for the core. It was derived from the variational principle of

quantum mechanics, under which an energy minimum for the trial wave function was

sought. The trial function was constructed by applying the linear combination of op-

erators describing admissible symmetry transformations in the coordinate, spin, and

isospin spaces to the Slater determinant consisting of wave functions for free nucle-

ons. The APR EoS exists in several variants, which differ in the effective potentials of

nucleon-nucleon interaction and in relativistic boost corrections. The potentials bor-

rowed from earlier publications were optimized so as to most accurately reproduce

the results of nuclear physics experiments.

Many theoretical neutron-star EoSs in the literature consist of crust and core

segments obtained using different physical models. The crust-core interface there

has no physical meaning, and both segments are joined using an ad hoc matching

procedure. This generally leads to thermodynamic inconsistencies. The EoS mod-

els that avoid this problem by describing the core and the crust in frames of the

same physical model are called unified. Examples of the unified EoSs are the FPS

(Pandharipande and Ravenhall 1989; Lorenz et al. 1993), SLy (Douchin and Haensel

2001), and BSk (Goriely et al. 2010; Pearson et al. 2011, 2012) EoS families. All of

them are based on effective Skyrme-like energy density functionals. In particular,

the BSk21 model is based on a generalized Skyrme functional that most success-

fully satisfies various experimental restrictions along with a number of astrophysical

requirements (see the discussion in Potekhin et al. 2013).

2.5 Specific heat

2.5.1 Specific heat of electron-ion plasmas

The two components that largely dominate the specific heat cv in the crust are the

electron gas and the ions. In the neutron-star crust and core, the electrons form an

ultra-relativistic highly degenerate Fermi gas, and their contribution in the heat ca-

pacity per unit volume is simply given by

cv,e =
p2

Fe

3h̄3c
T = ne

π2

pFe c
T. (8)

In the ocean, where the density is lower, approximation (8) may not work. Then it is

advisable to use accurate approximations, cited in Sect. 2.4.1.
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Fig. 1 Left panel: Heat capacity per ion versus T (bottom axis) and ΓC (top axis) for 80Ni at ρ = 1011

g cm−3. The solid line displays the total normalized heat capacity cv/ni; the long-dashed line shows this
quantity for a classical Coulomb lattice of ions, including harmonic and anharmonic terms; the short-
dashed line is the harmonic-lattice approximation in the solid phase; the dot-dashed line is the same plus
anharmonic and electron polarization corrections in the solid phase. The dotted line is the electron Fermi
gas contribution. The vertical line is the OCP melting point ΓC = 175, and the hatched band shows the
range ΓC = 150 – 200, where melting is expected to occur in realistic conditions. The inset illustrates the
competition between the electron and ion contributions t low T . Right panel: Heat capacity per baryon as
function of mass density from the ocean throughout the crust and core of a neutron star at T = 108 K.
The solid line displays the total cv/nb, and the other lines show its constituents due to the electrons (e−),
neutrons (n) in the inner crust and core, nuclei (N), including electrostatic terms in the ocean and crust but
neglecting the neutron entrainment effects in the inner crust (Sect. 2.5.2), protons (p) and muons (µ−) in
the core, assuming that the nucleons are non-superfluid. For comparison, the thick long dashes display an
example of the total cv/nb in the inner crust and core in the case of superfluid nucleons (Sect. 3.2). The
top axis shows the volume contained inside a sphere with given ρ for a 1.4 M⊙ neutron star. The stellar
structure and composition correspond to the BSk21 EoS model.

In Fig. 1 we show the temperature and density dependences of the normalized

heat capacity of the ground-state matter in a neutron star. The left panel illustrates

the dependence of cv/ni on T , and the right panel the dependence of cv/nb on ρ.

Since the electron polarization effects shift the melting temperature (Sect. 2.4.1), the

phase transition may occur anywhere within the hatched region around the vertical

line ΓC = 175 in the left panel.

When the temperature of the Coulomb liquid decreases, the heat capacity per ion

increases from the ideal-gas value cv,i/ni = 3
2 at T ≫ Tm to, approximately, the sim-

ple harmonic lattice value cv,i/ni = 3 at T . Tm (the Dulong-Petit law for a classical

harmonic crystal). This gradual increase is due to the Coulomb non-ideality in the

liquid phase, which effectively smears a phase transition between the strongly cou-

pled Coulomb liquid and OCP crystal (see Baiko et al. 1998). With further cooling,

quantum effects suppress the heat capacity. Once the crystal is deep into the quantum

regime its specific heat is given by the Debye result

c
(D)
v,i = ni

12π4

5

(

T

ΘD

)3

. (9)
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The calculations of Baiko et al. (2001b) show that the Dulong-Petit law applies at

temperatures down to T ≃ Tp, while the Debye value of Eq. (9) is attained when

T . 0.1Tp. The same authors present a simple analytical approximation for the heat

capacity of a harmonic Coulomb crystal, accurate to a few parts in 105 at any T .

However, the harmonic OCP model is an idealization. The anharmonic correc-

tions and electron polarization corrections (Sect. 2.4.1) can amount up to (10 – 20) %

of cv,i. Because of the anharmonic effects, cv,i/ni is not equal to 3 exactly, but is

∼ 10% larger at T = Tm. If the above-mentioned supercooling takes place in stellar

matter, various fluid elements solidify at different T below Tm, and the average heat

capacity, as function of temperature, can contain a bump, associated with latent heat

releases (see Sect. 2.4.6 of Haensel et al. 2007 for a discussion).

The right panel of Fig. 1 shows the density dependence of the total heat capacity,

normalized per one nucleon, cv/nb, throughout the neutron star from the ocean to

the core, and partial contributions to cv/nb. Different particle fractions are adopted

from the BSk21 model (Goriely et al. 2010; Pearson et al. 2011, 2012), as fitted by

Potekhin et al. (2013). Here, we have mostly neglected the effects of nucleon super-

fluidity to be discussed in Sect. 3. The importance of these effects is demonstrated,

however, by the heavy long-dashed line, which displays the total normalized heat

capacity suppressed by nucleon superfluidity (see Sect. 3.2).

2.5.2 Specific heat of neutrons

In the inner crust, besides electrons and nuclei, there are also neutrons. In a thin layer

at densities ρ just above the neutron drip point ρdrip, the dripped neutrons are not

paired (non-superfluid) and largely dominate cv. Heat capacity of strongly degener-

ate non-superfluid neutrons can be accurately evaluated using the above-referenced

analytical fits, but since the neutrons are strongly degenerate almost everywhere in

the neutron star, the simpler Sommerfeld result for Fermi gases at T ≪ εF is usually

applicable,

cv,x ∼
π2

2

nx T

εF,x
, (10)

where x stands for the fermion type (x = n, p, e, µ). For neutrons at ρ only slightly

above ρdrip, however, the latter formula is inaccurate because εF,n is not suffi-

ciently large. For this reason, Pastore et al. (2015) proposed an interpolation between

Eq. (10) and the ideal-gas limit cv = 3
2 n,

cv,x ≈
3

2
nx

(

1− e−T/Tcl

)

, Tcl =
3εF,x

π2
. (11)

They also showed that corrections due to the coupling to phonons (e.g., Sect. 1.4.4 in

Baym and Pethick 1991) turn out to be unimportant for cv,n. Approximation (11) is

accurate within 17% for non-relativistic Fermi gases at any density. For a relativistic

Fermi gas, we can preserve this accuracy by using Eq. (5) for εF,x and multiplying

both Tcl and prefactor 3
2 by the ratio (mc2 + 10T)/(mc2 + 5T ).

With further density increase, the neutrons become superfluid (Sect. 3), and then

their contribution to cv nearly vanishes. However, even in a superfluid state, the neu-

trons have a dramatic effect on cv. Indeed, Flowers and Itoh (1976) noticed that since
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Fig. 2 Iso-contour lines of cv in the crust, labeled by the value of log10(cv/ergcm−3 K−1). Also shown
are the melting curve Tm and the critical temperature for neutron 1S0 superfluidity, Tc, the electron and
ion plasma temperatures, Tp,e and Tp respectively, the Debye temperature, ΘD ≃ 0.45Tp , that marks the
transition from classical to quantum solid and 0.1Tp below which the wholly quantum crystal regime is
realized. The outer crust chemical composition is from Haensel and Pichon (1994) and inner crust from
Negele and Vautherin (1973) with the neutron drip point at ρdrip = 4.3× 1011 g cm −3. The electron con-
tribution dominates in the two dark-shadowed (green) regions at high T and ρ below ρdrip and at low T

and high ρ, while neutrons dominate in the light-shadowed (yellow) region at high T and ρ above ρdrip,
and ions dominate in the intermediate regime. The right panel only displays the inner crust but assuming
that about 80% of the dripped neutrons are entrained, illustrating the resulting increase in cv,i, mainly due
to the strong reduction of Tp and ΘD, significantly extending the regime where cv,i dominates over cv,e.

free neutrons move in a periodic potential created by lattice of atomic nuclei, their

energy spectrum should have a band structure, which can affect kinetic and neutrino

emission phenomena involving the free neutrons. Chamel (2005) calculated the band

structure of these neutrons, in much the same way as electron band structure is calcu-

lated in solid state physics. The effect of this band structure is that a large fraction of

the dripped neutrons are “locked” to the nuclei, i.e., the thermal motion of the nuclei

entrains a significant part of the dripped neutrons resulting in a strongly increased

ion effective mass meff,i. This increase mi → meff,i significantly increases cv,i in the

quantum regime since c
(D)
v,i ∝ T−1

p ∝ m
3/2
i (Chamel et al. 2013).

The overall “landscape” of crustal specific heat is illustrated in Fig. 2. For highly

degenerate electrons cv,e ∝ T , while for ions cv,i decreases as T 3 according to Eq. (9),

therefore the electron contribution dominates at T ≪ ΘD, and the ion contribution

prevails at T & ΘD (cf. the inset in the left panel of Fig. 1). On the other hand, in the

non-degenerate regime cv,e/cv,i ∼ Z, therefore the contribution of the electrons dom-

inates again for Z > 1 at T & εF in the liquid phase (also cf. the left panel of Fig. 1).

The effect of dripped neutron band structure on low-level collective excitations in the

inner crust and the resulting increase of cv,i is illustrated in the right panel of Fig. 2.
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2.5.3 Specific heat of the core

The specific heat is simpler to evaluate in the core than in the crust but it has larger

uncertainties. The core is a homogeneous quantum liquid of strongly degenerate

fermions, and its specific heat is simply taken as the sum of its components con-

tribution: cv = ∑x cv,x where x stands for neutrons (n), protons (p), electrons (e),

muons (µ), and any other component as hyperons or quarks that may appear at high

densities. For each fermionic component, one can use Eq. (10), but for baryons one

should replace the bare fermion mass mx by an effective mass m∗
x, which encapsu-

lates most effects of interactions. In principle, m∗
x should be calculated from the same

microphysical interaction as employed for the EoS; cf. Sect. 2.6.3. For leptons (e

and µ), interactions have a negligible effect on m∗
x and the bare fermion mass value

can be used. The nucleon heat capacity in the core is strongly affected by pairing

(superfluidity) effects, as discussed in Sect. 3.2.

2.6 Neutrino emissivity

The neutrino luminosity of a neutron star is, in most cases, strongly dominated by

the core contribution, simply because the core comprises a lion’s share of the total

mass. The crust contribution can, however, prevail in the case of strong superfluidity

in the core, which suppresses the neutrino emissivities. Crust neutrino emission is

also essential during the early thermal relaxation phase (the first few decades of the

life of the star), or the crust relaxation after energetic transient events (e.g., strong

bursts of accretion in X-ray binaries and flares in magnetars).

Yakovlev et al. (2001) reviewed the main neutrino emission mechanisms in neu-

tron star crusts and cores and collected fitting formulae for the neutrino emissivity

in each reaction as a function of density and temperature. The summary of the most

important processes is given in Table 1. The last column of this table contains refer-

ences to the analytical fitting formulae that can be directly employed to calculate the

relevant emission rates. These processes are briefly described below.

2.6.1 Neutrino emission in the crust

There is a variety of neutrino processes acting in the crust. In a non-magnetized crust

the most important ones are the plasmon decay process and the electron-ion brems-

strahlung process (see Table 1). The pair annihilation process can be also important

if the crust is sufficiently hot.

The total emissivity from the sum of these processes is illustrated in the left panel

of Fig. 3. The first thing to notice is the enormous range of values of Qν covered in

the ρ −T range displayed in this figure, which spans 26 orders of magnitude. This is

a direct consequence of the strong T dependence of the neutrino processes. The pair

annihilation process is efficient only at low densities and very high temperatures, but

when T ≪ TF,e very few positrons are present and the process is strongly suppressed.

In the whole range of this plot, TF,e ≫ 1010 K but pair annihilation still dominates

at low ρ and high T . In the opposite high-ρ and low-T regime the dominant process
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Table 1 Main neutrino emission processesa

Process / Control function Symbolic notationb Formulae for Qν and/or R

In the crust

1 Plasmon decay Γ → ν + ν̄ Eqs. (15) – (32) of [1]
2 Electron-nucleus bremsstrahlung e− +N → e− +N +ν + ν̄ Eqs. (6), (16) – (21) of [2]

3 Electron-positron annihilation e− + e+ → ν + ν̄ Eq. (22) of [3]

4c Electron synchrotron e−
B→ e− +ν + ν̄ Eq. (48) – (57) of [3]

In the core

1d Direct Urca
(Durca)

n → p+ e− + ν̄e ,
p+ e− → n+νe

Eq. (120) of [3]

Magnetic modificationc R
(D)
B Eqs. (247) – (250) of [3]

Reduction factorse R
(D)
x Eqs. (199), (202)–(206) of [3]

2 Modified Urca (Murca)
(neutron branch)

n+n → n+ p+ e− + ν̄e ,
n+ p+ e− → n+n+νe

Eq. (140) of [3]

Reduction factorse R
(Mn)
x Appendix of [4]

3 Murca
(proton branch)

p+n → p+ p+ e− + ν̄e ,
p+ p+ e− → p+n+νe

Eq. (142) of [3], corrected at
3pFp > pFn + pFe as per [4]

Reduction factorse R
(Mp)
x Appendix (and Eq. (25)) of [4]

4 Baryon-baryon
bremsstrahlung







n+n → n+n+ν + ν̄
n+ p → n+ p+ν + ν̄
p+ p → p+ p+ν + ν̄

Eq. (165) of [3]
Eq. (166) of [3]
Eq. (167) of [3]

Reduction factorse



















R
(nn)
x

R
(np)
x

R
(pp)
x

Eqs. (221), (222), (228) of [3]
and Eq. (60) of [4]

Eq. (220), (229) of [3]
and Eq. (54) of [4]

Eq. (221) of [3]

5e Cooper pairing of baryons

{

n+n → [nn]+ν + ν̄
p+ p → [pp]+ν + ν̄

Eqs. (236), (241) of [3],
corrected as per [5] (Sect. 3.3)

6c,e Electron-fluxoid
bremsstrahlung

e− + f → e− + f +ν + ν̄ Eqs. (253), (263), (266) – (268)
of [3]

Notes. a References: [1] Kantor and Gusakov (2007); [2] Ofengeim et al. (2014); [3] Yakovlev et al.
(2001); [4] Gusakov (2002); [5] Leinson (2009, 2010). b Γ means a plasmon, e− an electron, e+ a
positron, ν a neutrino, ν̄ an antineutrino (in general, of any flavor, but νe or ν̄e stands for the electron
neutrino or antineutrino, respectively), p a proton, n a neutron, [pp] and [nn] their paired states, N stands
for an atomic nucleus, and f for a proton fluxoid. At densities where muons are present, they participate in
the Urca and bremsstrahlung processes fully analogous to the processes 1, 2, 3, 6 in the core (see details in
Ref. [1]). R with subscripts/superscripts signifies a control function (correction factor) due to superfluidity
or magnetic field. Subscript x in Rx substitutes for different superfluidity types (proton or neutron, singlet
or triplet); B indicates magnetic field. c The effect of strong magnetic field (see Sect. 4.3). d At densities
beyond the Durca threshold (see Sect. 2.6.2). e The effect of superfluidity (see Sect. 3.3).

is electron-ion bremsstrahlung, for which Q
(brems)
ν ∝ T 8. At intermediate T and ρ

the plasmon decay process is most important and, when it strongly dominates, its

emissivity behaves as Q
(pl)
ν ∝ T 4.

The right panel of Fig. 3 illustrates the density dependence of Q
(pl)
ν and Q

(brems)
ν

in either ground-state or accreted crust of a neutron star with T = 109 K. Pair an-
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Fig. 3 Neutrino emissivity Qν in a non-magnetized crust from the pair annihilation, plasmon decay,
and electron-ion bremsstrahlung processes. Left panel: The contour lines are labeled by the value of
log10[Qν /(ergcm−3 s−1)]. Regions where the pair, plasma, and bremsstrahlung processes dominate are
indicated: the boundaries happen to be quite well described by the two dotted lines that show 5

3 Tp,e and
1
13 Tp,e. (Also indicated is the ion melting curve, dashed line.) Right panel: Density dependences of Qν for

the ground-state nuclear matter (solid lines) and for the accreted crust (dashed lines) at T = 109 K. The
dotted line represents an older fit to the bremsstrahlung process (see text for detail).

nihilation is negligible in this case. Q
(pl)
ν is calculated according to Yakovlev et al.

(2001) and Q
(brems)
ν according to Ofengeim et al. (2014). For comparison, an older

fit to Q
(brems)
ν (Kaminker et al. 1999) is plotted by the dotted line. The ground-state

composition and the nuclear size are described by the BSk21 model (Goriely et al.

2010; Pearson et al. 2012, as fitted by Potekhin et al. 2013). The accreted compo-

sition is taken from Haensel and Zdunik (1990); in this case the approximation by

Itoh and Kohyama (1983) is used for the nuclear size.

The band structure of the energy spectrum of neutrons in the inner crust, which

was mentioned in Sect. 2.5.1, should reduce the neutrino reactions of the brems-

strahlung type and initiate an additional neutrino emission due to direct inter-band

transitions of the neutrons, in analogy with Cooper pairing of neutrons discussed in

Sect. 3.3. These effects have been mentioned by Yakovlev et al. (2001), but remain

unexplored.

Electron and positron captures and decays by atomic nuclei (beta processes),

which accompany cooling of matter and non-equilibrium nuclear reactions, pro-

duce neutrino emission. A pair of consecutive beta capture and decay reactions is

a nuclear Urca process. Urca processes involving electrons were put forward by

Gamow and Schoenberg (1941), while those involving positrons were introduced by

Pinaev (1964). In the neutron star crust, the appropriate neutrino luminosity de-

pends on cooling rate and should be especially strong at T ∼(2–4) ×109 K when

the main fraction of free neutrons is captured by nuclei. However, there are other ef-

ficient neutrino reactions open at such temperatures, which make the neutrino emis-

sion due to beta processes insignificant (Yakovlev et al. 2001). On the other hand,

heating produced by non-equilibrium nuclear reactions (the deep crustal heating,



Neutron Stars – Cooling and Transport 17

Haensel and Zdunik 1990) that accompany accretion mentioned in Sect. 2.4.1, may

be more important than non-equilibrium neutrino cooling.

There are a number of other neutrino-emission processes (Yakovlev et al. 2001),

which are less efficient than those listed in Table 1. In the inner crust with dripped

neutrons, n− n bremsstrahlung is very efficient but it is suppressed by pairing and,

hence, only acts in the layers where T > Tcn, where Tcn is the neutron pairing crit-

ical temperature (Sect. 3.1). This process operates in a wide range of densities and

temperatures, and the density dependence of its emissivity is generally smooth. Neu-

trino emission from the formation and breaking of Cooper pairs makes a significant

contribution, much stronger than the bremsstrahlung, but is confined to a restricted

region of ρ and T (Sect. 3.3). In the presence of a very strong magnetic field, some of

the above-mentioned processes are modified, and new channels for neutrino emission

may open (Sect. 4).

2.6.2 Neutrino emission in the core

Yakovlev et al. (2001) discussed a wealth of neutrino reactions which may be impor-

tant in the npeµΛΣ− matter in a neutron star core, which include

1. 8 direct Urca (Durca) processes of the electron or muon production and capture

by baryons (baryon direct Urca processes),

2. 32 modified Urca (Murca) processes, also associated with the electron or muon

production and capture by baryons (baryon Murca processes),

3. 12 processes of neutrino-pair emission in strong baryon-baryon collisions (baryon

bremsstrahlung),

4. 4 Murca processes associated with muon decay and production by electrons (lep-

ton Murca process),

5. 7 processes of neutrino pair emission in Coulomb collisions (Coulomb brems-

strahlung).

In this paper we basically restrict ourselves to the npeµ matter. We refer the reader

to the review by Yakovlev et al. (2001) for the more general case, as well as for a

discussion of other exotic models (such as the pion or kaon condensates). It appears

that the reactions that proceed in the npeµ matter are often sufficient for the neutron-

star cooling, even when the appearance of the Σ− and Λ hyperons is allowed. The

reason is that these hyperons can appear at high densities only, where the baryon

Durca processes are likely to be allowed and dominate, for realistic EoSs.

The Durca cycle consists of the beta decay and electron capture processes (see

Table 1). They are threshold reactions open at sufficiently high densities, and not for

every EoS model. For the degenerate nucleons they are only possible if the proton

fraction exceeds a certain threshold. In the npe matter (without muons) this threshold

is ≈ 11%, which follows readily from the energy and momentum conservation com-

bined with the condition of electric charge neutrality of matter. Indeed, for strongly

degenerate fermions the Pauli blocking implies that the reaction is possible only if

the energies of the reacting particles are close to their respective Fermi energies.

Then the momentum conservation assumes the inequality pFn 6 pFe + pFp, that is

n
1/3
n 6 n

1/3
e +n

1/3
p . For the npe matter ne = np because of the charge neutrality, there-
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fore nn 6 8np, or np > nb/9, where nb is the total baryon number density. The pres-

ence of muons can increase this threshold by several percent. If pFµ > pFn− pFp, then

the muon Durca process adds to the electron Durca.

If allowed, the Durca processes produce a rapid (enhanced) cooling of neutron

stars. If they are forbidden, the main reactions are those of the baryon Murca and

bremsstrahlung processes which produce a slow (standard) cooling. The Murca pro-

cess is a second order process, in which a bystander neutron or proton participates

to allow momentum conservation (see Table 1). Since this process involves five de-

generate fermions, instead of three for the Durca process, its efficiency is reduced,

simply by phase space limitation, by a factor of order (T/εF)2, which gives an over-

all temperature-dependence T 8 instead of T 6. This reduction, for typical conditions

in the neutron-star core, amounts to 6 orders of magnitude. It is certainly the domi-

nant process for not too high densities in absence of pairing, and is the essence of the

“standard cooling scenario”. However, in presence of superfluidity, neutrino emission

by the formation of Cooper pairs (Sect. 3.3) can dominate over the Murca process.

Other neutrino reactions in the core involve neutrino-pair bremsstrahlung in Cou-

lomb collisions lepton modified Urca processes, electron-positron annihilation, etc.

All of them are not significant under the typical conditions in the non-exotic core.

For instance, the plasmon decay process that is efficient in the neutron star crust

(Sect. 2.6.1) is exponentially suppressed in the core, because the electron plasmon

energy in the core (∼ h̄ωp ∼ 10 MeV) is much larger than the thermal energy.

In a strong magnetic field penetrating into the core, some of the above-mentioned

processes can be modified, and new channels for neutrino emission may open (see

Sect. 4).

2.6.3 Remarks on in-medium effects

Neutrino emissivity Qν may be strongly modified by in-medium (collective) effects

at the high densities of neutron stars (see Voskresensky 2001, for a review). For in-

stance, these effects may result in renormalization of electroweak interaction param-

eters. Moreover, the in-medium effects may open new channels for neutrino emis-

sion. Voskresensky and Senatorov (1986) found that the direct and modified Urca

processes appreciably exceed the estimates obtained neglecting the collective ef-

fects, provided the density is sufficiently large. On the other hand, the in-medium

effects suppress the nn bremsstrahlung in the neutron-star core by a factor of 10 – 20

(Blaschke et al. 1995). According to the study by Schaab et al. (1997), the medium

effects on the emissivity of the Murca process cause a more rapid cooling than ob-

tained for the standard scenario and result in a strong density dependence, which

gives a smooth crossover from the standard to the enhanced cooling scenario (see

Sect. 6.1) for increasing star masses.

The problem of calculation of the in-medium effects in the neutron star matter is

complicated. Various theoretical approaches were used to solve it, results of different

techniques being different typically by a factor of a few (see, e.g., Blaschke et al.

1995, and references therein). The renormalization of the electroweak coupling is

usually taken into account in an approximate manner by replacing the bare baryon
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masses mB with effective ones, m∗
B (e.g., Yakovlev et al. 2001). The values of these

effective masses should be taken from microscopic theories.

The in-medium effects are also important for the Cooper-pairing neutrino emis-

sion mechanism related to baryon superfluidity, as discussed in Sect. 3.3 below, for

heat capacity (Sect. 2.5.3), and for baryon heat conduction (Sect. 2.7.3) in the core of

a neutron star.

2.7 Thermal conductivity

The most important heat carriers in the crust and ocean of the star are the electrons.

In the atmosphere, the heat is carried mainly by photons. In general, the two mech-

anisms work in parallel, hence κ = κr +κe, where κr and κe denote the radiative (r)

and electron (e) components of the thermal conductivity κ . The radiative transfer is

considered in Paper I. In this paper we will pay most attention to the electron heat

conduction mechanism. Both the electron and photon heat conduction are affected by

strong magnetic fields. We will consider these effects in Sect. 4.

The elementary theory in which the effective collision rate ν of heat carriers with

effective mass m∗ and number density n does not depend on their velocity, gives

(Ziman 1960)

κ = anT/m∗ν , (12)

where a is a numerical coefficient: a = 3/2 for a non-degenerate gas, and a = π2/3 for

strongly degenerate particles. (We remind that we use energy units for T ; otherwise

a should be multiplied by the squared Boltzmann constant.)

The most important heat carriers and respective scattering processes that control

the thermal conductivity κ are listed in Table 2, and briefly discussed below. The

last column of the table contains references to either analytical fitting formulae or

publicly available computer codes for the evaluation of κ . Figure 4 illustrates the

magnitude of κe and characteristic temperatures in the crust.

2.7.1 Heat conduction in the outer envelopes

Electron heat conduction is the most important process in the neutron star envelopes

that determines thermal luminosity of neutron stars. In this case, m∗ = me

√

1 + x2
r in

Eq. (12), and ν = νe is mostly determined by electron-ion (ei) and electron-electron

(ee) Coulomb collisions. In the crystalline phase, the electron-ion scattering takes

the form of scattering on phonons (collective ion excitations). The Matthiessen rule

(e.g., Ziman 1960) assumes that effective frequencies of different collisions simply

add up, i.e., νe = νei + νee. This is strictly valid for extremely degenerate electrons

(Hubbard and Lampe 1969). In general case it remains a good estimate, because νei +
νee ≤ νe ≤ νei + νee + δν, where δν ≪ min(νei,νee) (Ziman 1960). The relative

importance of the different types of collisions and practical formulae for evaluation

of νe can be different, depending on the composition and phase state of the plasma

(see Appendix A.).
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Table 2 Main contributions to thermal conductivity

Conduction type and regime Referencesa

1b Photon conduction Eqs. (14) – (20) of [1]
– plasma cutoff correction Sect. 3.3 of [2]
– magnetic field modificationsc Eqs. (21) – (23) of [1]

2 Electron conduction in the ocean and the crust: see Appendix A.
– Electron-ion / electron-phonon scattering [3] (theory), [4] (public code)

– the effects of magnetic fieldsd [5] (theory), [4] (public code)
– the effects of finite nuclear sizes in the inner crust [6] (theory), [4] (public code)

– Electron scattering on impurities in the crust see Appendix A.4
– Electron-electron scattering:

– strongly degenerate electrons Eqs. (10), (21) – (23) of [7]
– arbitrary degeneracy see Appendix A.3

3 Baryon conduction in the core Eqs. (7), (12), (21), (28) – (30) of [8]
– Effects of superfluiditye Eqs. (45) – (48), (50) – (53) of [8]

4 Lepton conduction in the core Eqs. (4) – (6), (16), (17), (33) – (37) of [9]

– Effects of superfluiditye Eqs. (45), (54) – (61), (84) – (92)f of [9]

Notes. a References: [1] Potekhin and Yakovlev (2001); [2] Potekhin et al. (2003); [3] Potekhin et al.
(1999); [4] http://www.ioffe.ru/astro/conduct/; [5] Potekhin (1996, 1999); [6] Gnedin et al. (2001);
[7] Shternin and Yakovlev (2006); [8] Baiko et al. (2001a); [9] Shternin and Yakovlev (2007). b For fully
ionized atmospheres only. For partially ionized atmospheres, see references in Potekhin (2014). c See
Sect. 4.4.1. d See Sect. 4.4.2. e See Sect. 3.4. f The power index 2 should be suppressed at its first
occurrences in the third and fourth lines of Eq. (92) of Ref. [9].

Chugunov and Haensel (2007) considered an alternative heat transport by the

plasma ions (phonons in the solid OCP), which works in parallel with the trans-

port by the electrons. The ion (phonon) heat conduction is usually unimportant in

neutron stars. Although the ion thermal conductivity can be larger than the electron

conductivity across the strong magnetic field, the multidimensional modeling shows

that in such cases the heat is mainly transported by the electrons non-radially (i.e.,

not straight across the field lines; see Sect. 6).

2.7.2 Heat conduction in the inner crust

The inner crust of a neutron star is characterized by the presence of free neutrons. This

has two important consequences. First, heat transport by neutrons can compete with

the transport by the electrons and phonons. Second, electron-neutron scattering adds

to the other electron scattering mechanisms considered above and in Appendix A..

The thermal conductivity by neutrons, κn, was studied in several papers (e.g.,

Flowers and Itoh 1976; Bisnovatyi-Kogan and Romanova 1982). A general expres-

sion for κn in non-superfluid matter is given by Eq. (12) with n = nn, the number

density of neutrons, m∗ = m∗
n, the neutron effective mass modified by medium effects,

and νn = νni + νnn. The neutron-neutron collision frequency, νnn, can be calculated

in the same manner as in uniform matter of a neutron-star core (Sect. 2.7.3). How-

ever, for strongly degenerate neutrons these collisions are much less efficient than

the neutron-ion ones. Therefore, one can set νn ≈ νni, at least for order-of-magnitude

estimates. For the scattering of the neutrons by uncorrelated nuclei, νni = ni vFn Sni,



Neutron Stars – Cooling and Transport 21

D

0.1 T

21

20

19

Θ

p, i

Tp, i

Tm

ρ [g cm   ]

10
−3

1410131012

d
ri

p
N

eu
tr

o
n

Θ

17

18

19

19 20

21

m

p, i

T

N
eu

tr
o

n

d
ri

p

p, e

ΘD

T

T

0.1 Tp, i

T m

p, iT

D

0.1 Tp, i

10

1010

T
  

[K
]

9

8

10

10

7

−3

14101110 1010910 108 13101210

[g cm   ]ρ

Fig. 4 Iso-contour lines of the electron thermal conductivity κe in the crust, labeled by the value
of log10(κe/ergs−1 cm−1 K−1), using the results of Gnedin et al. (2001). Also shown are the melting
curve Tm, the electron and ion plasma temperatures, Tp,e and Tp respectively, the Debye temperature,
ΘD ≃ 0.45Tp , that marks the transition from classical to quantum solid and 0.1Tp below which the wholly
quantum crystal regime is realized. The crust composition is the same as in Fig. 2. The right panel only
displays the inner crust but assuming that about 80% of the dripped neutrons are entrained: the strong
reduction of Tp and ΘD pushes the onset of the wholly quantum regime to lower T . The dashed contour
lines illustrate the reduction of κe from impurity scattering, assuming an impurity parameter Qimp = 1.

where vFn = pFn/
√

c2 +(pFn/m∗
n)

2 is the neutron Fermi velocity and Sni is the trans-

port cross section. For a crude estimate at sufficiently low neutron energies in the neu-

tron star crust one can set (e.g., Bisnovatyi-Kogan and Romanova 1982) Sni = πR2
n,

where Rn is the neutron radius of an atomic nucleus (fitted, e.g., in Potekhin et al.

2013). Estimated in this way, κn is negligible, being at least two orders of magnitude

smaller than κe in the entire inner crust at T . 109 K. However, νni can be strongly

affected by ion-ion correlations and by superfluidity (Sect. 3.4).

In addition, the electron conduction in the inner crust is affected by the size of a

nucleus, which becomes non-negligible compared to the mean distance between the

nuclei, so that the approximation of pointlike scatterers is not applicable anymore.

Then one should take into account the form factor, which depends on the size and

shape of the charge distribution in a nucleus. A finite charge distribution reduces νei

with respect to the model of a pointlike charge, thereby increasing the conductivity

(Gnedin et al. 2001). The effect mainly depends on the ratio of the root mean square

charge radius of a nucleus Rch to the Wigner-Seitz cell radius ai. Gnedin et al. (2001)

presented fitting formulae for the dependences of the thermal and electrical conduc-

tivities on the parameter xnuc =
√

5/3Rch/ai. The latter parameter has been fitted as

function of density for modern BSk models of nuclear matter (Potekhin et al. 2013)

and for some other models (Appendix B in Haensel et al. 2007).
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2.7.3 Heat conduction in the core

The first detailed studies of the kinetic coefficients in neutron star cores were per-

formed by Flowers and Itoh (1979), who constructed the exact solution of the mul-

ticomponent system of transport equations in the npe matter. But since the pro-

ton fraction is small and the electron-neutron interaction is weak, the kinetic coef-

ficients can be split in two almost independent parts – the neutron kinetic coeffi-

cients mediated by nucleon-nucleon collisions and electron kinetic coefficients me-

diated by the collisions between charged particles; the proton kinetic coefficients are

small. In the non-superfluid npeµ matter, the neutrons are the main heat carriers at

T . 108 K, while the heat transport by leptons e− and µ− is competitive at T & 109 K

(Shternin and Yakovlev 2007; Shternin et al. 2013).

Baryon heat conduction. Flowers and Itoh (1979) based their calculations on the free

nucleon scattering amplitudes, neglecting the Fermi-liquid effects and nucleon many-

body effects. Their results were later reconsidered by Baiko et al. (2001a).

The thermal conductivity is written in the form analogous to Eq. (12):

κn =
π2T neτn

3m∗
n

, κ p =
π2T npτp

3m∗
p

, (13)

where the effective relaxation times τn and τp are provided by solution of the system

of algebraic equations (e.g., Shternin et al. 2013)

∑
j=n,p

νi jτ j = 1, νi j =
64m∗

i m∗2
j T 2

5m2
N h̄3

Si j (i, j = n, p), (14)

where νi j are effective collision frequencies, mN is the bare nucleon mass in vacuo,

and Si j are the effective cross-sections.

Many-body effects in the context of transport coefficients of pure neutron matter

were first addressed by Wambach et al. (1993) and later reconsidered in many papers.

There are two kinds of these effects: the three-body part of the effective potential for

the nucleon-nucleon interactions and the in-medium effects (cf. Sect. 2.6.3) that affect

nucleon-nucleon scattering cross-sections. Baiko et al. (2001a) calculated Si j in the

approximation of pairwise interactions between nucleons with appropriate effective

masses, using the Bonn potential model for the elastic nucleon-nucleon scattering

(Machleidt et al. 1987) with and without the in-medium effects. They presented the

results in the form Si j = S
(0)
i j Ki j, where S

(0)
i j corresponds to scattering of bare particles,

and Ki j describes the in-medium effects. They also constructed a simple analytical fits

to their results for S
(0)
i j and Ki j (referenced in Table 2).

Shternin et al. (2013) studied the many-body effects on the kinetic coefficients of

nucleons in the npeµ matter in beta equilibrium using the Brueckner-Hartree-Fock

(BHF) method. According to this study, the three-body forces suppress the thermal

conductivity. This suppression is small at low densities but increases to a factor of

∼ 4 at the baryon number density of nb = 0.6 fm−3. However, the use of the effec-

tive masses partly grasps this difference. For this reason it proves to be sufficient to
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multiply the conductivities obtained in the effective-mass approximation (Baiko et al.

2001a) by a factor of 0.6 to reproduce the BHF thermal conductivity (Shternin et al.

2013) with an accuracy of several percent in the entire density range of interest.

Lepton heat conduction. The up-to-date electron and muon contributions to ther-

mal conductivities of neutron star cores were calculated by Shternin and Yakovlev

(2007). Their treatment included the Landau damping of electromagnetic interac-

tions owing to the exchange of transverse plasmons. This effect was studied by

Heiselberg and Pethick (1993) for a degenerate quark plasma, but was neglected

in the previous studies of the lepton heat conductivities in the npeµ matter (e.g.,

Flowers and Itoh 1981; Gnedin and Yakovlev 1995).

The electron and muon thermal conductivities are additive, κeµ = κe + κµ , and

can be written in the familiar form of Eq. (12):

κe =
π2T neτe

3m∗
e

, κµ =
π2T nµτµ

3m∗
µ

, (15)

where κe and κµ are the partial thermal conductivities of electrons and muons, re-

spectively; ne and nµ are number densities of these particles, m∗
e and m∗

µ are their

dynamical masses at the Fermi surfaces, determined by their chemical potentials.

In neutron star cores at beta equilibrium these chemical potentials are equal, there-

fore m∗
e = m∗

µ . The effective electron and muon relaxation times can be written as

(Gnedin and Yakovlev 1995)

τe =
νµ −ν ′

eµ

νeνµ −ν ′
eµν ′

µe

, τµ =
νe −ν ′

µe

νeνµ −ν ′
eµν ′

µe

, (16)

where νe = ∑i νei = νee + νeµ + νep and νµ = ∑i νµi = νµµ + νµe + νµ p are the to-

tal effective collision frequencies of electrons and muons with all charged particles

i = e,µ , p; νei and νµi are partial effective collision frequencies, while ν ′
eµ and ν ′

µe

are additional effective collision frequencies, which couple heat transport of the elec-

trons and muons. All these collision frequencies can be expressed as multidimen-

sional integrals over momenta of colliding particles. Shternin and Yakovlev (2007)

calculated these integrals in the weak-screening approximation and described the re-

sults by simple analytical formulae (referenced in Table 2). In the case of strongly

degenerate ultra-relativistic leptons, which is typical for neutron star cores, the latter

authors obtained a much simpler expression, which can be written as

κe,µ ≈ 20.8c(pFe,µ/h̄)2. (17)

The latter simplification, however, does not hold if the protons are superfluid.

3 Superfluidity and superconductivity

Soon after the development of the BCS theory (Bardeen et al. 1957), which ex-

plains superconductivity by Cooper pairing of fermions (Cooper 1956), Bohr et al.

(1958) argued that the same phenomenon of pairing is occurring inside nuclei (later
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this suggestion was confirmed experimentally). Migdal (1959) extended the idea to

the interior of neutron stars. Ginzburg and Kirzhnits (1965) formulated a number of

important propositions concerning neutron superfluidity in the interior of neutron

stars, the formation of Feynman-Onsager vortices, a critical superfluidity tempera-

ture (Tc . 1010 K) and its dependence on the density (ρ ∼ 1013 – 1015 g cm−3), and

discussed the influence of neutron superfluidity on heat capacity and therefore on the

thermal evolution of a neutron star. Baym et al. (1969) and Ginzburg (1970) analyzed

the consequences of neutron superfluidity and proton superconductivity: rotation of

the superfluid component in the form of quantized vortices and splitting of the in-

ternal stellar magnetic field into fluxoids (Sect. 4.3.4). Later many different authors

considered various types of pairing of nucleons, hyperons, or quarks using different

model potentials.

Although we will not consider exotic models of neutron star cores, let us

mention that superfluidity is possible in these models as well. For instance,

Takatsuka and Tamagaki (1995) reviewed calculations of neutron and proton super-

fluid gaps in pion condensed matter. Some authors have discussed superfluidity in

quark matter (e.g., Stejner et al. 2009). If hyperons are present, they can also be in a

superfluid state (Balberg and Barnea 1998). For a detailed recent review of superflu-

idity in the interiors of neutron stars, see Page et al. (2014).

3.1 Pairing types and critical temperatures

The Cooper pairing appears as a result of the attraction of particles with the anti-

parallel momenta,which is expected to occur, at low enough temperature, in any de-

generate system of fermions in which there is an attractive interaction between par-

ticles whose momenta ppp lie close to the Fermi surface (Cooper 1956). The strength

of the interaction determines the critical temperature Tc at which the pairing phase

transition will occur. In a normal system the particle energy ε varies smoothly when

the momentum crosses the Fermi surface, while in the presence of pairing a discon-

tinuity develops, with a forbidden energy zone having a minimum width of 2∆pair at

p = pF, which can be regarded as the binding energy of a Cooper pair.

The BCS equations that describe symmetric nuclear matter in atomic nuclei and

asymmetric neutron-rich matter in neutron stars have much in common but have also

some differences. For instance, pairing in atomic nuclei takes place in the singlet

state of a nucleon pair. In this case, the energy gap is isotropic, that is independent of

the orientation of nucleon momenta. On the other hand, one can expect triplet-state

pairing in the neutron-star matter, which leads to anisotropic gap. Singlet-state neu-

tron superfluidity develops in the inner neutron star crust and disappears in the core,

where an effective neutron-neutron singlet-state attraction transforms into repulsion.

Triplet-state neutron superfluidity appears in the neutron-star core. Protons in the core

can undergo the singlet-state pairing.

The triplet pair states may have different projections mJ of the total pair momen-

tum onto the quantization axis: |mJ | = 0, 1, and 2. The actual (energetically favor-

able) state may be a superposition of states with different mJ . Owing to uncertainties

of microscopic theories this state is still unknown; it depends possibly on density and
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Fig. 5 Critical temperatures of singlet neutron (left panel), triplet neutron (middle panel), and sin-
glet proton (right panel) superfluidities in the inner crust and core of a neutron star, as func-
tions of gravitational mass density ρ, for different superfluidity models, as marked near the curves
(see Ho et al. 2015): AO (Amundsen and Østgaard 1985a,b), AWP2 (Ainsworth et al. 1989), BCLL
(Baldo et al. 1992), BEEHS (Baldo et al. 1998), BS (Baldo and Schulze 2007), CCDK (Chen et al. 1993),
GIPSF (Gandolfi et al. 2008), MSH (Margueron et al. 2008), SFB (Schwenk et al. 2003), TTav and TToa
(Takatsuka and Tamagaki 2004).

temperature. In simulations of neutron star cooling, one usually considers the triplet-

state pairing with |mJ|= 0 and 2, since their effects on the heat capacity and neutrino

luminosity are qualitatively different (e.g., Yakovlev et al. 1999b, 2001).

The critical temperature Tc is very sensitive to the strength of the repulsive core

of the nucleon-nucleon interaction. It is related to the superfluid energy gap by

Tc = 0.5669∆pair for the singlet gap (e.g., Lifshitz and Pitaevskiı̆ 2002, Sect. 40).

For the triplet gap, the situation is more complicated, because the gap is anisotropic

(e.g., Amundsen and Østgaard 1985b; Baldo et al. 1992; Yakovlev et al. 1999b). Ex-

amples of the dependence of Tc on gravitational mass density in the crust and core

of a neutron star are shown in Fig. 5. Here, we employed the gap parametrization

of Kaminker et al. (2001) with the parameter values and notations for different mod-

els of superfluidity according to Ho et al. (2015) together with the ρ-dependences of

free-nucleon number densities nn and np from the fits (Potekhin et al. 2013) for the

BSk21 model of crust and core composition. Figure 5 demonstrates a large scatter of

theoretical predictions, but also general features. We see that the 1S0 superfluidity

of neutrons occurs mostly in the inner crust and the 3P2 superfluidity mostly in the

core. The critical temperatures of neutrons in the triplet states, Tcn(
3P2), and protons,

Tcp(
1S0 ), have usually a maximum at a supranuclear density ρ > ρ0. Typical mag-

nitudes of Tc vary from one model to another within a factor of a few. Neutron 3P2

superfluidity has, in general, much lower Tc than 1S0 pairing of neutrons in the inner

crust and protons in the core.
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3.2 Superfluid effects on heat capacity

Once a component x of the neutron star matter becomes superfluid, its specific heat

cv,x is strongly altered. When T reaches Tc,x, the critical temperature for the pairing

phase transition, cv,x jumps by a factor & 2. However, as T continues to decrease,

the heat capacity becomes progressively suppressed. At T ≪ Tc the energy gap in the

nucleon spectrum strongly reduces the heat capacity even compared to its value in the

absence of pairing. These effects are implemented in numerical calculations through

“control functions” Rc(T/Tc,x) as

cv,x = Rc c
(0)
v,x, (18)

where c
(0)
v,x denotes the value in the normal phase, Eq. (10). The control function de-

pends on the type of pairing. This dependence was studied by Levenfish and Yakovlev

(1994). Analytical fitting formulae for Rc in the npeµ matter for the main types of

superfluidity listed above are given by Eq. (18) of Yakovlev et al. (1999b).1

Three examples of the control functions, calculated according to Yakovlev et al.

(1999b) (with the correction mentioned in footnote 1), are shown in the left panel

of Fig. 6. One can notice that cv,x nearly vanishes when T drops below ∼ 0.1Tc,x.

Therefore, in the case of extensive pairing of baryons, the heat capacity of the core

can be reduced to its leptonic part. This would result in a drastic reduction of the

total specific heat, as already demonstrated by the heavy long-dashed line in Fig. 1,

where we adopted MSH, TToa (assuming mJ = 0), and BS superfluidity models for

neutrons in the crust and core, and protons in the core, respectively, according to the

notations in the caption to Fig. 5.

Another example of the distribution of cv among the various core constituents is

shown in the right panel of Fig. 6. Here, we have adopted SFB, BEEHS (with mJ = 0),

and BCLL pairing gaps. The behavior of cv as function of ρ proves to be qualitatively

similar for different sets of superfluid gap models. In all cases this behavior strongly

differs from that for unpaired nucleons, which is shown by thin lines for comparison.

3.3 Superfluid effects on neutrino emission

The enormous impact of pairing on the cooling comes directly from the appearance

of the energy gap ∆pair at the Fermi surface which leads to a suppression of all pro-

cesses involving single particle excitations of the paired species. When T ≪ Tc the

suppression is of the order of e−∆pair/T and hence dramatic. Its exact value depends

on the details of the phase space involved in each specific process. In numerical cal-

culations it is introduced as a control function. As well as for the heat capacity, for

the neutrino emissivity one writes

Qν = R
(process type)
(pairing type) Q

(0)
ν , (19)

1 In the latter paper, an accidental minus sign in front of the term (0.2846v)2 in the denominator of the
fitting formula for Rc in the case of “type C” (3P2, |mJ | = 2) superfluidity must be replaced by the plus
sign (D.G. Yakovlev, personal communication).
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Fig. 6 Left panel: Specific heat control functions for the 1S0 , 3P2 (mJ = 0), and 3P2 (|mJ | = 2) types
of pairing listed in Sect. 3.1. The inset displays the same functions on a logarithmic scale. Right panel:
Total and partial specific heats near the bottom of the crust and in the core of a neutron star at T = 108 K
as functions of density. The solid lines show the total cv, and the other lines show the contributions of
electrons (e−), neutrons (n), nuclei (N, in the crust), muons and protons (µ− and p, in the core). Thin
lines show results of a calculation with nucleons assumed to be unpaired, and thick lines take pairing into
account. The top axis shows the volume contained inside a sphere with given ρ for a 1.4 M⊙ neutron star.
The stellar structure and composition are adopted from the BSk21 model.

where Q
(0)
ν relates to the same process in the absence of pairing. These control func-

tions (reduction factors) are available in the form of analytical fits, referenced in

Table 1.

The superfluidity not only reduces the emissivity of the usual neutrino reactions

but also initiates a specific “pair breaking and formation” (PBF) neutrino emission

mechanism. The superfluid or superconducting condensate is in thermal equilibrium

with the single particle (“broken pairs”) excitations and there is continuous formation

and breaking of Cooper pairs. The formation of a Cooper pair liberates energy which

can be taken away by a ν − ν̄ pair (Flowers et al. 1976; Voskresensky and Senatorov

1987). This effect is most pronounced near the Fermi surface. When T falls below

Tc, the neutrino emissivity produced by the Cooper pairing sharply increases. The

PBF mechanism is sensitive to the model adopted for calculating the superfluid gaps

in the baryon spectra: it is more important for lower gaps (weaker superfluid). Its

emissivity is a sharp function of density and temperature. The main neutrino energy

release takes place in the temperature interval between ∼ Tc/5 and Tc. The control

functions and the intensity of the Cooper-pair neutrino emission are available as ana-

lytical fits collected by Yakovlev et al. (2001) (see references therein for the original

derivations), as indicated in Table 1 above.

Voskresensky and Senatorov (1987) noticed that the PBF mechanism is sensi-

tive to the in-medium renormalization of the nucleon weak-interaction vertex due to

strong interactions (cf. Sect. 2.6.3). Later this effect has been reexamined in many

papers for different types of baryon pairing – see Leinson (2009, 2010) for modern
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results and a critical analysis of previous works. The net result is that the collective

effects virtually kill down the PBF emission for the singlet pairing of nucleons, but

leave this mechanism viable for the triplet pairing. Quantitatively, PBF emissivity es-

timated without in-medium effects (Yakovlev et al. 1999a) has to be multiplied by a

small factor of (pF/m∗c)2 in the 1S0 case, but by a moderate factor of ≈ 0.19 in the
3P2 case. This result lies at the basis of the “minimal cooling scenario” and the expla-

nation of the observed fast cooling of the neutron star in the Cassiopeia A supernova

remnant (see Sect. 6).

Superconductivity of protons may also induce another type of neutrino emission,

electron-fluxoid scattering, in the presence of a strong magnetic field. It will be ad-

dressed in Sect. 4.3.

3.4 Superfluid effects on heat conduction

The effects of nucleon superfluidity on the heat transport in neutron stars were dis-

cussed qualitatively by Flowers and Itoh (1976, 1981). The thermal conductivity of

electrons and muons was reconsidered by Gnedin and Yakovlev (1995) and later by

Shternin and Yakovlev (2007), who obtained accurate analytical expressions valid for

a wide class of models of superfluid and non-superfluid matter. Baiko et al. (2001a)

reanalyzed the thermal conduction by neutrons, utilizing some new developments

in the nucleon–nucleon interaction theory. The latter authors showed that the low-

temperature behavior of the nucleon thermal conductivity is very sensitive to the re-

lation between critical temperatures of neutrons and protons.

The lepton heat conduction in the core can also be affected by proton super-

conductivity, because superconductivity modifies the transverse polarization func-

tion and screening functions in neutron-star matter. These effects were studied by

Shternin and Yakovlev (2007). These authors, as well as Baiko et al. (2001a), man-

aged to describe the effects of superfluidity by analytical functions, which facilitate

their inclusion in simulations of neutron-star thermal evolution (see Table 2).

In the presence of neutron superfluidity, there may be another channel of heat

transport, the so-called convective counterflow of the normal component of matter

with respect to the superfluid one. This mechanism is known to be quite effective in

superfluid helium (e.g., Tilley and Tilley 1990), but in the context of neutron stars the

situation is unclear and has not been studied in sufficient detail.

Heat can also be transported through the neutron star crust by collective modes

of superfluid neutron matter, called superfluid phonons (Aguilera et al. 2009). At

ρ ≈ 1012 − 1014 g cm−3 the conductivity due to superfluid phonons was estimated

to be significantly larger than that due to lattice phonons and comparable to electron

conductivity when T ≈ 108 K. The authors found that this mode of heat conduction

could limit the anisotropy of temperature distribution at the surface of highly magne-

tized neutron stars. However, new studies of the low-energy collective excitations

in the inner crust of the neutron star (Chamel 2012; Chamel et al. 2013), includ-

ing neutron band structure effects, show that there is a strong mixing between the

Bogoliubov-Anderson bosons of the neutron superfluid and the longitudinal crystal

lattice phonons. In addition, the speed of the transverse shear mode is greatly re-
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duced as a large fraction of superfluid neutrons are entrained by nuclei. This results

in an increased specific heat of the inner crust, but also in a decrease of the electron

thermal conductivity. On the other hand, the entrainment of the unbound neutrons

decreases the density of conduction neutrons, i.e., neutrons that are effectively free.

The density of the conduction neutrons can be much smaller than the total density of

unbound neutrons (Chamel 2012), which results in a decrease of the neutron thermal

conductivity.

4 The effects of strong magnetic fields

4.1 Magnetic-field parameters

Convenient dimensionless parameters that characterize the magnetic field in a plasma

are the ratios of the electron cyclotron energy h̄ωc to the atomic unit of energy, elec-

tron rest energy, and temperature:

γ =
h̄3B

m2
ece3

=
B

B0
, b =

h̄eB

m2
ec3

=
B

BQED
, ζe =

h̄ωc

T
= 134.34

B12

T6
. (20)

Here, ωc = eB/mec is the electron cyclotron frequency, B0 = 2.3505× 109 G is the

atomic unit of magnetic field, BQED = 4.414×1013 G is the critical field in Quantum

Electrodynamics (Schwinger 1988), and B12 ≡ B/1012 G.

Motion of charged particles in a magnetic field is quantized in discrete Lan-

dau levels. In the non-relativistic theory, the energy of an electron in a magnetic

field equals Nh̄ωc + me p2
z/2, where pz is the momentum component along BBB, N =

nL + 1
2 ∓ 1

2 characterizes a Landau level, the term ∓ 1
2 is the spin projection on

the field, and nL is the non-negative integer Landau number related to the quanti-

zation of the kinetic motion transverse to the field. In the relativistic theory (e.g.,

Sokolov and Ternov 1986), the kinetic energy ε of an electron at the Landau level N

depends on its longitudinal momentum pz as

εN(pz) = c
(

m2
ec2 + 2h̄ωcmeN + p2

z

)1/2 −mec2. (21)

The levels N > 1 are double-degenerate with respect to the spin projection s. Their

splitting δε due to the anomalous magnetic moment of the electron is negligible,

because it is much smaller than h̄ωc (e.g., Schwinger 1988; Suh and Mathews 2001):

δε ≈ αf

2π
×

{

h̄ωc at b ≪ 1,
mec2 [lnb−1.584]2 at b ≫ 1,

(22)

where αf is the fine structure constant.

The Landau quantization becomes important when the electron cyclotron energy

h̄ωc is at least comparable to both the electron Fermi energy εF and temperature T . If

h̄ωc is appreciably larger than both εF and T , then the electrons reside on the ground

Landau level, and the field is called strongly quantizing. The condition h̄ωc > T is

equivalent to ζe > 1. The condition h̄ωc > εF,e translates into ρ < ρB, where

ρB ≈ 7045Y−1
e B

3/2
12 g cm−3. (23)
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In the opposite limit, where either ζe ≪ 1 or ρ ≫ ρB, the field can be considered as

nonquantizing.

For the ions, the cyclotron energy is h̄ωci = Z (me/mi) h̄ωc, and the Landau quan-

tization is important when the parameter

ζi = h̄ωci/T = 0.0737(Z/A)B12/T6 (24)

is not small. The energy spectrum of an ion essentially differs from Eq. (21) because

of the non-negligible anomalous magnetic moments. In the non-relativistic theory,

the energy of an ion equals ε = (nL + 1
2)h̄ωci + mi p

2
z /2 + 1

4 giζisi, where nL is the

ion Landau number, pz is the longitudinal momentum, gi is the g-factor (gi = 2 in

the Dirac theory, but, e.g., gi = 5.5857 for the protons), and si is the integer quantum

number corresponding to the spin projection on BBB in units of h̄/2. If the ions are

relativistic, the situation is much more complicated. For baryons with spin 1
2 (e.g.,

protons) the energy spectrum was derived by Broderick et al. (2000).

4.2 Magnetic field effects on the equation of state and heat capacity

4.2.1 Magnetized core

A magnetic field can affect the thermodynamics of the Coulomb plasmas, if the Lan-

dau quantization is important, i.e., under the conditions that are quantified in Sect. 4.1.

In particular, Eq. (23) can be recast into

B & (3.8×1019 G)(Yenb/fm−3)2/3. (25)

We have nb ∼ 0.1 fm−3 near the crust-core interface, and Ye is typically several per-

cent throughout the core. Therefore, the electron component of pressure in the core

might be affected by the fields B & 1018 G.

One can easily generalize Eq. (25) for other fermions (µ-mesons, nucleons) in the

ideal-gas model. In this case, Ye should be replaced by the number of given particles

per baryon, and the right-hand side should be multiplied by mµ/me = 206.77 for

muons and ∼ 103 (of the order of nucleon-to-electron mass and electron-to-nucleon

magnetic moment ratios) for protons and neutrons. Accordingly, the partial pressures

of muons and nucleons in the core cannot be affected by any realistic (B . a few×
1018 G) magnetic field.

Broderick et al. (2000) developed elaborated models of matter in ultra-magnetized

cores of neutron stars. They considered not only the ideal npeµ gas, but also interact-

ing matter in the framework of the relativistic mean field (RMF) model. The magnetic

field affects their EoS at B & 1018 G. As follows both from the estimates based on

the virial theorem (Lai and Shapiro 1991) and from numerical hydrodynamic simu-

lations (e.g., Frieben and Rezzolla 2012, and references therein), this field is close

to the upper limit on B for dynamically stable stellar configurations. The effect is

even smaller when the magnetization of matter is included consistently in the EoS

(Chatterjee et al. 2015). Therefore, it is unlikely that a magnetic modification of the

EoS could be important in the cores of neutron stars.
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Fig. 7 Left panel: Normalized pressure P/niT ; entropy S and heat capacity CV per one ion, and logarithmic
derivatives of pressure over density and temperature, χρ and χT , for a fully-ionized non-magnetic (dashed

lines) and magnetized (B = 1012 G, solid lines) iron plasma at T = 107 K. The vertical dotted lines mark
the densities at which the electron Fermi temperature equals T without (1) or with (2) the magnetic field,
ρ = ρB (3), ΓC = Γm (4), and Tp = T (5). (Figure 6 from Potekhin and Chabrier 2013, reproduced with the
permission of c©ESO.) Right panel: Normalized thermal phonon contribution to the reduced heat capacity
as a function of log10(T/Tp) at different values of the ratio h̄ωci/Tp, marked near the curves.

4.2.2 Magnetized crust and ocean

At B & 1016 G, nuclear shell energies become comparable with the proton cyclotron

energy. Thus the interaction of nucleon magnetic moments and proton orbital mo-

ments with magnetic field may cause appreciable modifications of nuclear shell en-

ergies. These modifications and their consequences for magnetars were studied by

Kondratyev et al. (2001), who found large changes in the nuclear magic numbers

under the influence of such magnetic fields. This effect may alter significantly the

equilibrium chemical composition of a magnetar crust.

Muzikar et al. (1980) calculated the triplet-state neutron pairing in magnetized

neutron-star cores. According to these calculations, magnetic fields B & 1016 G make

the superfluidity with nodes at the Fermi surface energetically preferable to the usual

superfluidity without nodes. Accordingly, the superfluid reduction factors for the heat

capacity and neutrino emissivity (the control functions) may be different in ultra-

strong fields.

Chamel et al. (2012) studied the impact of superstrong magnetic fields on the

composition and EoS of the neutron star crust. In particular, they found that the

neutron-drip pressure increases almost linearly by 40% from its zero-field value in

the interval 1016 G < B < 5×1016 G. With further increase of the field strength, the

drip pressure becomes directly proportional to B.

Thus the ultra-strong fields B & 1016 G can affect various aspects of the physics

of the inner crust in quite non-trivial way. Hereafter we will consider only fields

B . 1016 G. They can be quantizing in the outer crust of a neutron star, but not in the

inner crust or the core. Analytical fitting formulae for the thermodynamic functions

of the electron-ion plasmas in such fields, as well as a computer code that imple-
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ments these fits2, were published by Potekhin and Chabrier (2013). Such fields affect

the electron part of thermodynamic functions in the outer envelopes only, as illus-

trated in the left panel of Fig. 7 in the case of fully-ionized iron at T = 107 K and

B = 1012 G (for illustration, the density range is extended to ρ . 105 neglecting

the bound states that can be important in this ρ – T domain). We plot the principal

thermodynamic quantities normalized per one ion as functions of density. For com-

parison we also show them in the absence of quantizing magnetic field. The vertical

dotted lines marked by numbers separate different characteristic domains, consecu-

tively entered with increasing density: onset of electron degeneracy at B = 0 and at

B = 1012 G, population of excited Landau levels (ρ = ρB), melting point with for-

mation of a classical Coulomb crystal (Tm = T ), and onset of the quantum effects in

the crystal (Tp = T ). The gradually decreasing oscillations correspond to consecutive

filling of the electron Landau levels. The magnetic field B = 1012 G does not affect

the ion contributions at this T .

The contributions of ions to the thermodynamic functions are affected by the

magnetic field if the parameter ζi, defined by Eq. (24), is large. This may occur in

a superstrong field of a magnetar. The right panel of Fig. 7 illustrates the effects

of a superstrong field on cv,i for the model of a harmonic Coulomb crystal (Baiko

2009). Here we plot the thermal phonon contribution to the heat capacity of the bcc

Coulomb lattice calculated as the derivative cv = T∂S/∂T of the fit to the phonon

entropy S given by Eq. (77) of Potekhin and Chabrier (2013). This approximation is

more accurate for the heat capacity than the alternative approximation that provides

exact fulfillment of the Maxwell relations (Eq. 80 of the same paper). The three steps

on the curves in the right panel of Fig. 7 correspond to contributions of three branches

of the phonon spectrum, which are affected differently by the quantizing magnetic

field.

4.3 Magnetic field effects on neutrino emission

4.3.1 Magnetic Durca process

We have mentioned in Sect. 2.6.2 that the Durca reaction is the most efficient neu-

trino emission process, but it can only operate above a certain threshold density in

the central parts of the cores of sufficiently massive neutron stars. Leinson and Pérez

(1998) noted that a superstrong magnetic field can substantially weaken this re-

quirement. An accurate study of this effect was performed by Baiko and Yakovlev

(1999). They showed that the border between the open and closed Durca regimes

is smeared out over some B-dependent scale and described this smearing by sim-

ple formulae. In practice this effect should be very important for neutron stars with

B & 1016 G. At less extreme fields (1014 G . B . 1016 G) it is important for neutron

stars whose mass happens to be close (within a few percent) to the Durca threshold

mass. Baiko and Yakovlev (1999) also showed that a strong magnetic field has a non-

trivial effect (oscillations of the reaction rate) in the permitted domain of the Durca

reaction, but the latter effect, albeit interesting, appears to be unimportant.

2 Also available at http://www.ioffe.ru/astro/EIP/.
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Fig. 8 Neutrino emissivity in a magnetized crust from the synchrotron processes for two, uniform, mag-
netic field strengths of 1014 G (left panel) and 1015 G (right panel). The contour lines are labeled by the
value of log10[Qν /(ergcm−3 s−1)]. Regions where this process dominates over the ones shown in Fig. 3
are lightly shadowed (in yellow) and regions where it dominates by more than a factor of 10 are darkly
shadowed (in orange). The two dotted lines show the dominance transitions between the three processes
presented in Fig. 3. (Also indicated is the ion melting curve, dashed line.)

4.3.2 Pair annihilation

The e−e+ pair annihilation process in strong magnetic fields was studied by

Kaminker et al. (1992) and Kaminker and Yakovlev (1994). In a hot, non-degenerate

plasma (T & 1010 K) only ultra-strong magnetic fields B & 1016 G can significantly

affect the neutrino emissivity. Such fields can be quantizing in the ρ − T domain

where the pair emission dominates (see Fig. 3). They amplify Qpair by increasing the

number densities of electrons and positrons via very strong quantization of their mo-

tion. Lower fields may also influence Qpair but less significantly. A field B ∼ 1014 G

may quantize the motion of positrons at T . 109 K and increase the positron number

density. In this way the presence of a strong magnetic fields greatly enhances Qpair in

a not too hot plasma. However, this enhancement usually takes place where the pair

annihilation emissivity is much lower than the contribution from other neutrino reac-

tions, and therefore it is unimportant for studies of neutron-star thermal evolution.

4.3.3 Synchrotron radiation

A relativistic electron propagating in the magnetic field can emit neutrinos because

of its rotation around the magnetic field lines. This process is quite analogous to the

usual synchrotron emission of photons. The calculation of the corresponding neutrino

emissivity, Qsyn, is similar to that of the pair annihilation process. It was studied, e.g.,

by Kaminker et al. (1992), Vidaurre et al. (1995), and Bezchastnov et al. (1997). In

Fig. 8 we show the plot of Qsyn on the ρ −T plane for two field strengths typical for

magnetars, B = 1014 G and 1015 G. It is clear from this plot that the the synchrotron

process can be dominant in the crust of magnetars in a large temperature range.
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4.3.4 Electron-fluxoid scattering

The internal stellar magnetic field can be confined in the crust or be distributed over

the entire star. In the latter case, a transition to a superconducting state in the course

of stellar cooling is accompanied by a dramatic change in the spatial structure of

the magnetic field. Initially homogeneous field splits into an ensemble of Abrikosov

fluxoids – quantized magnetic flux tubes, which contain a superstrong magnetic field,

embedded in the field-free superconducting medium. Neutrino synchrotron radiation

is then modified and may be treated as neutrino pair emission due to scattering of

electrons on the fluxoids. This mechanism was studied by Kaminker et al. (1997),

who obtained an analytical fit to the corresponding neutrino emissivity (referenced

in Table 1). The concentration of the field within the fluxoids amplifies the neutrino

emissivity, compared to the usual synchrotron regime, when temperatures drops be-

low the critical one for the protons, Tcp. As long as T is not much lower than Tcp,

the Cooper pairing mechanism remains much more powerful (unless B ≫ 1016 G,

in which case the electron-fluxoid scattering may be more powerful at any T ). At

T ≪ Tcp, the electron-fluxoid scattering becomes the dominant neutrino emission

mechanism for the neutron stars with strong and superstrong fields (B & 1012 G).

4.4 Magnetic field effects on heat conduction

4.4.1 Photon heat conduction

The thermal conductivity κ is related to the opacity κ by the equation

κ =
16σSBT 3

3ρκ

, (26)

where σSB is the Stefan-Boltzmann constant. The spectral radiative opacities for two

normal polarization modes in strongly magnetized neutron-star photospheres are re-

viewed in Paper I. These opacities, κω, j(θB), where j = 1,2 marks the extraordinary

and ordinary polarization modes, depend on the angle θB between the wave vector

and magnetic field. In the diffusion approximation, they combine into the effective

opacities for the transport along (κ
‖
ω, j) and across (κ⊥

ω, j) magnetic field according to

{

(κ
‖
ω, j)

−1

(κ⊥
ω, j)

−1

}

=
3

4

∫ π

0

{

2cos2 θB

sin2 θB

}

sinθB dθB

κω, j(θB)
. (27)

The effective opacity for energy transport at angle θ to BBB in each polarization mode

is given by 1/κ̄ j = cos2 θ/κ̄
‖
j + sin2 θ/κ̄

⊥
j , where κ̄ is the Rosseland mean of κω,

1

κ̄ j

≡
∫ ∞

0

u(z)

κω, j

dz, u(z) =
15

4π4

z4ez

(ez −1)2
, z =

h̄ω
T

. (28)
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For fully ionized plasmas, the radiative opacities are contributed from the free-

free absorption and Thomson scattering. Silant’ev and Yakovlev (1980) studied the

Rosseland opacities for a non-polarized radiation in magnetized fully ionized plasmas

κ
‖,⊥
r =

[

1/κ̄
‖,⊥
1 + 1/κ̄

‖,⊥
2

]−1
(29)

using the Born approximation for the free-free contribution. Potekhin and Yakovlev

(2001) obtained simple analytical fits for κ
‖,⊥
r , including a correction to the Born

approximation, as functions of ρ, T , Z, A, and the magnetic-field parameter ζe defined

by Eq. (20). Asymptotically, κr ∝ ζ −2
e at ζe → ∞.

At finite but large ζe, the radiative opacities of fully ionized matter are strongly

reduced. The reduction is ∼ 10 times stronger for the Thomson scattering than for the

free-free absorption. In deep, strongly magnetized photospheric layers the Thomson

scattering dominates only if T6 & 10ρ2/7 & 10B
2/7
12 ; otherwise the free-free absorp-

tion prevails (Potekhin and Yakovlev 2001).

The outermost envelopes of neutron stars can be incompletely ionized in the cases

of large Z or B. The presence of bound species can strongly affect the radiative opac-

ities and the spectrum of emitted radiation, as discussed in Paper I. However, the

layers that are responsible for the heat flux from the interior of the neutron star to the

surface, as a rule, lie at sufficiently large densities, where the plasma is fully ionized

by pressure. Therefore the bound species are usually unimportant for the effective

surface temperature of a neutron star.

4.4.2 Electron heat conduction

A non-quantizing magnetic field does not affect thermodynamic functions of the

plasma. However, it does affect the electron heat conduction, if the Hall magneti-

zation parameter

ωgτ ≈ 1760
B12

√

1 + x2
r

τ
10−16 s

(30)

is not small. Here, ωg = ωc/
√

1 + x2
r is the electron gyrofrequency, and τ is the

effective relaxation time. In a degenerate Coulomb plasma with a non-quantizing

magnetic field, the main contribution is given by the electron-ion scattering according

to Eq. (A.3). This regime has been studied by Yakovlev and Urpin (1980).

Electric and thermal currents induced in a magnetized plasma under the effect

of an electric field EEE , a weak gradient ∇ µ of the electron chemical potential, and a

weak temperature gradient ∇ T can be decomposed into conduction and magnetiza-

tion components (e.g., Hernquist 1984). The latter ones relate to surface effects and

must be subtracted. Let jjje and jjjT be the conduction components of the electric and

thermal current densities. They can be written as

jjje = σ̂ ·EEE∗− α̂ · ∇ T, jjjT = T α̂ ·EEE∗− ˆ̃κ · ∇ T, (31)

where EEE∗ = EEE + ∇ µ/e is the electrochemical field. The symbols σ̂ , α̂ , and ˆ̃κ denote

second-rank tensors (σ̂ is the conductivity tensor) which reduce to scalars at B = 0.
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Equations (31) can be rewritten as

EEE∗ = R̂ · jjje − Q̂ · ∇ T, jjjT = T α̂ · R̂ · jjje − κ̂ · ∇ T, (32)

where R̂ = σ̂−1, Q̂ =−R̂ · α̂ , and κ̂ = ˆ̃κ +T α̂ ·Q̂ are the tensors of specific resistance,

thermopower, and thermal conductivity, respectively.

Electron heat and charge transport controlled by electron-ion collisions in quan-

tizing magnetic fields of neutron stars was studied by Kaminker and Yakovlev (1981);

Yakovlev (1984); Hernquist (1984); Potekhin (1996, 1999). The components of ten-

sors σ̂ , α̂ , and ˆ̃κ can be expressed as (Potekhin 1999)







σi j

αi j

κ̃i j







=
∫ ∞

0







e2

e(µ − ε)/T

(µ − ε)2/T







NB(ε)

me + ε/c2
τi j(ε)

[

− ∂
∂ε

1

e(ε−µ)/T + 1

]

dε, (33)

where

NB(ε) =
1

2π2a2
mh̄

Nmax

∑
N=0

(2−δN,0)|pz|, (34)

Nmax is the maximum Landau number for a given electron energy ε, and |pz| depends

on ε and N according to Eq. (21). In a non-quantizing magnetic field, i.e., at Nmax ≫
1, the sum can be replaced by the integral, which gives NB(ε) = (p/h̄)3/3π2, where

p is the momentum that corresponds to the energy ε. The functions τi j(ε) play role of

relaxation times for the components of tensors σ̂ , α̂ , and ˆ̃κ , determined by electron

scattering. In general, they differ from the mean free time τei(ε) = 1/νei(ε) between

scattering events for an electron with energy ε. Because of the symmetry properties

of the tensors σ̂ , α̂ , and ˆ̃κ , in the coordinate frame with z axis directed along BBB,

there are only three different non-zero components of τi j: τzz related to longitudinal

currents, τxx = τyy related to transverse currents, and τxy = −τyx related to the Hall

currents.

In a quantizing magnetic field, there are two different effective mean-free times

τ‖(ε) and τ⊥(ε), corresponding to electron transport parallel and perpendicular to BBB.

In this case, the classical expressions (e.g., Yakovlev and Urpin 1980) are recovered:

τzz = τ‖, τxx =
τ⊥

1 +(ωgτ⊥)2
, τyx =

ωgτ 2
⊥

1 +(ωgτ⊥)2
. (35)

It is convenient to keep using Eq. (A.3) for τ‖ and τ⊥, but with different Coulomb

logarithms Λ‖(ε) and Λ⊥(ε). Potekhin (1999) calculated these Coulomb logarithms

and fitted them by analytic expressions. Their Fortran implementation is available at

http://www.ioffe.ru/astro/conduct/. In the limit of non-quantizing magnetic

field, τ‖ = τ⊥ = τei(ε) is given by Eq. (A.3) with ε = µ .

When the electrons are strongly degenerate, the derivative in the square brackets

in Eq. (33) is sharply peaked. Then Eq. (33) gives

σi j ≈
e2c2ne

µ
τi j(µ), κi j ≈ κ̃i j ≈

π2T

3e2
σi j. (36)
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Fig. 9 Electron thermal conductivities along (upper curves) and across (lower curves) magnetic field B =
1013 G (left panel) and 1015 G (right panel) as functions of mass density at temperatures T = 107 K (solid
lines) and 108 K (dot-dashed lines). For comparison, the non-magnetic thermal conductivities are shown
by dotted lines.

The latter relation is the Wiedemann-Franz law generalized to the magnetic case. On

the other hand, Eq. (33) satisfactorily describes the conductivities in general, includ-

ing the opposite case of weakly degenerate electrons.

Figure 9 illustrates the ρ-dependence of the thermal conductivities along (κ‖) and

across (κ⊥) the magnetic field. The first, most significant peak at κ‖ is related to the

filling of the first Landau level by the electrons at ρ ∼ ρB. The other peaks correspond

to consecutive filling of higher Landau levels.

5 Thermal structure of neutron stars

5.1 Blanketing envelopes

The very different thermal relaxation timescales of the envelope and the crust of a

neutron stars makes computationally expensive to perform cooling simulations in a

numerical grid that comprises both regions. Radiative equilibrium is established in the

low-density region much faster than the crust evolves, so that the envelope reaches

a stationary state on shorter timescales. Thus, the usual approach is to use results of

stationary envelope models to obtain a relation between the photon flux Fph radiated

from the surface and the flux Fb and temperature Tb at the crust/envelope boundary,

ρ = ρb. This relation supplements the evolution equations for the interior [Eq. (4)] as

an outer boundary condition.

The boundary density ρb is chosen as a trade-off between two requirements: first,

that the thermal relaxation time of the layer with ρ < ρb is short compared to the

characteristic variability time of the studied thermal radiation, which favors smaller

ρb, and second, that T does not strongly vary at ρ > ρb, which favors larger ρb. For
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weakly magnetized, isolated cooling neutron stars, ρb is usually set at 1010 g cm−3

(Gudmundsson et al. 1983), but in general it varies from 108 g cm−3 for neutron stars

with rapid variations of thermal emission (Shternin et al. 2007) to ρdrip for relatively

hot and strongly magnetized neutron stars (Potekhin et al. 2003).

At every Tb, Fph or, equivalently, the effective surface temperature Ts, depends

on the properties of the heat-blanketing envelopes. In the absence of neutrino energy

losses in the envelope (that is the case for most cooling neutron stars, except for the

hottest ones), the flux Fph at the surface is equal to the flux Fb at the inner boundary of

the blanketing envelope. Then it is sufficient to know the Tb – Ts relation for cooling

simulations.

Gudmundsson et al. (1983) carried out a comprehensive study of the thermal

structure of the non-magnetized blanketing envelopes composed of iron, using

the best physics input available at that time. They considered the envelopes with

log10 Ts[K]≥ 5.25 (there were no reliable calculation of the thermal conductivities

for lower temperatures) and fitted the numerical solutions by a remarkably simple

formula

Tb = 1.288×108(T 4
s6/g14)

0.455 K, (37)

where Ts6 = Ts/106 K. An analytical derivation of a similar expression was given by

Ventura and Potekhin (2001). A more accurate but less simple fit was constructed by

Potekhin et al. (1997).

The Tb – Ts relation is mainly regulated by the thermal conductivity in the “sen-

sitivity strip” (Gudmundsson et al. 1983) that plays the role of a “bottleneck” for

the heat leakage. Its position lies around the line where κr = κe (as a rule, around

ρ ∼ 105 – 107 g cm−3 for B = 0) and depends on the stellar structure, the boundary

temperature Tb, the magnetic field BBB in the vicinity of the given surface point, and the

chemical composition of the envelope. Since the magnetic field hampers heat trans-

port across BBB, the depth of the sensitivity strip can be different at different places of a

star with a strong magnetic field: it lies deeper at the places where the magnetic field

lines are parallel to the surface (Ventura and Potekhin 2001).

The blanketing envelopes are more transparent to the heat flux, if they are com-

posed of light chemical elements. This effect was studied in detail by Potekhin et al.

(1997) for non-magnetic envelopes and by Potekhin et al. (2003) for strongly magne-

tized envelopes. The effect is related to the Z-dependence of the collision frequencies

νei. The higher is Z, the larger is νei and the lower is the conductivity. A temperature

variation by a factor of 30 can change the thermal conductivity of iron plasma less

than altering the chemical composition from Fe to He at a fixed T . This effect has

important consequences for the relationship between the surface and internal tem-

peratures of neutron stars. For example, combined effects of strong magnetic fields

and light-element composition simplify the interpretation of magnetars: these effects

allow one to interpret observations assuming less extreme (therefore, more realistic)

heating in the crust (Kaminker et al. 2009; Pons et al. 2009; Viganò et al. 2013).

The envelope is thin (its depth zb ∼ 100 m, if ρb = 1010 g cm−3) and contains a

tiny fraction of the neutron-star mass (∼ 10−7, if ρb = 1010 g cm−3). Therefore one

can neglect the variation of the gravitational acceleration in this layer. Neglecting

also the non-uniformity of the energy flux through the envelope due to the neutrino
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emission (which is small, if the neutron star is not too hot, as we discuss below) and

the variation of the temperature Ts over the surface (which varies on larger length

scales than zb), one can obtain, instead of Eq. (4), the much simpler thermal structure

equation (Gudmundsson et al. 1983; Van Riper 1988)

d lnT

dlnP
=

3

16

Pκ

g

T 4
s

T 4
, (38)

whereκ is the total opacity, related to the conductivity κ via Eq. (26).

The assumption of a constant flux, however, breaks down for magnetars, most of

which have atypically high effective temperatures. In this case one should solve the

complete set of equations, taking neutrino emission and heat sources into account.

The neutrino emission from the crust limits the effective surface temperature of a

cooling neutron star (Potekhin et al. 2007; cf. Fig. 11 below). This very same effect

is what limits the maximum flux in the few days of a magnetar outburst (Pons and Rea

2012). In addition, for magnetars one must go beyond the plane-parallel approxima-

tion (see Sect. 5.3)

5.2 The effects of strong magnetic fields

As seen from Eqs. (30) and (A.3), the Hall magnetization parameter is large in the

outer neutron-star envelope at B & 1011 G. Moreover, the magnetic field can be

strongly quantizing in the outermost part of the envelope. In this case the magnetic

field can greatly affect the heat conduction and the thermal structure.

Figure 10 shows examples of the temperature profiles in the envelopes. The left

panel is a recast of Fig. 8 from Potekhin and Chabrier (2013). Here we show a profile

of an ultra-magnetized neutron star, with B = 1015 G, and with relatively high surface

temperature, log10 Ts(K) = 6.5, which is similar to the values evaluated for some

magnetars. In this case, thermal photons are radiated from a solid surface, with high

mass density ρ = 2× 107 g cm−3 just below the surface. The temperature quickly

grows at the solid surface and reaches the melting point at the depth z ≈ 7 cm. Thus,

at the given conditions, the liquid ocean of a magnetar turns out to be covered by

a thin layer of “ice” (solid substance). We treat the solid crust as immobile, but the

liquid layer below the “ice” is convective up to the depth z ∼ 1 m. The change of

the heat-transport mechanism from conduction to convection causes the break of the

temperature profile at the melting point in Fig. 10. We underline that this treatment

is only an approximation. In reality, the superadiabatic growth of temperature can

lead to a hydrostatic instability of the shell of “ice” and eventually to its cracking and

fragmentation into turning-up “ice floes”. Potekhin and Chabrier (2013) speculated

that such events may result in variations of thermal luminosity of magnetars. The

temperature profile flattens with density increase, and the Coulomb plasma freezes

again at the interface between the layers of 66Ni and 86Kr at ρ = 1.5×109 g cm−3.

For comparison, we also show the thermal profile without the magnetic field. It

is smooth. There is neither magnetic condensation nor convection. In this case, the

spectrum is formed in the gaseous atmosphere at much lower density beyond the

frame of the left panel.
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Fig. 10 Thermal structure of blanketing envelopes with different magnetic fields. Left panel: temperature
profile (solid line in the left top panel) for an envelope with ground-state composition, with Z values
shown in the bottom left panel, for a neutron star with surface gravity g = 1.6× 1014 cm s−2, magnetic
field B = 1015 G directed at 45◦ to the surface, and internal temperature Tb = 6.7× 108 K, which yields
the effective surface temperature Ts = 3.16×106 K. The dot-dashed line is the melting line. The asterisks
confine the part of the profile where heat is carried by convection. For comparison, the non-magnetic
profile with the same Tb is shown by dotted line. Right panel: temperature profiles for carbon blanketing
envelopes for a neutron star with g = 1.4× 1014 cm s−2, Tb = 108 K, and magnetic fields B = 0 (dotted
line), 1012 G (short dashes), 1013 G (long dashes), 1014 G (alternating short and long dashes), and 1015 G
(solid line). The vertical segment of the dot-dashed melting line corresponds to the maximum density for
carbon, according to the thermonuclear stability criterion of Potekhin and Chabrier (2012), where carbon
gives way to heavier chemical elements, which form a crystal. The heavy dots mark the position of the
radiative surface, where T equals the effective surface temperature Ts.

In the right panel of Fig. 10 we compare temperature profiles for a neutron star

with internal temperature 108 K and heat blanketing envelopes made of carbon, en-

dowed with different magnetic fields. For the field strengths up to 1014 G, the radi-

ation is formed in the gaseous atmosphere, whose density gradually becomes larger

with increasing magnetic fields, due to the reduction of the effective opacities dis-

cussed in Sect. 4.4.1. The temperature profiles are rather smooth. The blanketing

envelopes are liquid at this temperature. At the largest field strength B = 1015 G,

however, the situation is qualitatively different. As well as in the case of the hotter

ultra-magnetized ground-state envelope in the left panel, the heat is radiated from

the condensed solid surface. Below the surface, at density 107 g cm−3, the tempera-

ture quickly grows, which causes melting of the Coulomb crystal with formation of

a Coulomb liquid beneath the solid surface. With further density increase, the profile

suffers a break at ρB ≈ 4.5×108 g cm−3 [Eq. (23)], where the electrons start to pop-

ulate the first excited Landau level, which is associated with the peak of the thermal

conductivity around ρB (cf. Fig. 9).

As we have seen in Sect. 4.4, the conduction is strongly anisotropic in these con-

ditions. Therefore the effective local surface temperature Ts is non-uniform and de-

pends on the magnetic field geometry. Figure 11 shows examples of the relations

between Ts and Tb deep in the crust for the magnetic fields B = 1012 G and 1015 G
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perpendicular and parallel to the radial direction. The relations obtained in the 1D ap-

proximation (Potekhin et al. 2007) with and without allowance for neutrino emission

are plotted by the solid and dotted lines, respectively. We see that at Tb . 108 K the

neutrino emission does not affect Ts. At higher Tb & 109 K, in contrast, this emission

is crucial: if Qν = 0, then Ts continues to grow up with increasing Tb, whereas with

realistic Qν the surface temperature tends to a constant limit, which depends on BBB. In

most cases this limit is reached when Tb ∼ 109 K.

Since the distribution of Ts over the neutron-star surface is non-uniform in strong

magnetic fields, it is convenient to introduce the overall effective temperature of the

star, Teff, defined by

4πσSBR2T 4
eff = Lph =

∫

Fph dΣ = σSB

∫

T 4
s dΣ, (39)

where Fph is the local flux density and dΣ is the surface element. The quantities Ts,

Teff, and Lph refer to a local reference frame at the neutron-star surface. The redshifted

(“apparent”) quantities as detected by a distant observer are (Thorne 1977):

R∞ = R/
√

1− rg/R, T ∞
eff = Teff

√

1− rg/R, L∞
ph = (1− rg/R)Lph. (40)

The effects of quantizing magnetic fields on the thermal structure of neutron-star

envelopes were first studied by Hernquist (1985) and somewhat later by Van Riper

(1988) and Schaaf (1990), using the 1D approximation. Van Riper (1988) consid-

ered a neutron star with a constant radial magnetic field. In this model, the quantum

enhancement of conductivity at ρ near ρB, seen in Fig. 9, results in an overall en-

hancement of the neutron-star photon luminosity Lph at a fixed Tb. Consequently,

Van Riper (1991) found a strong effect of the magnetic field B ∼ 1013 G on the

neutron-star cooling. However, Shibanov and Yakovlev (1996) showed that, for the

dipole field distribution, the effects of suppression of the heat conduction across BBB

at the loci of nearly tangential field can compensate or even overpower the effect of

the conductivity increase near the normal direction of the field lines. This conclu-

sion confirmed the earlier conjectures of Hernquist (1985) and Schaaf (1990). In the

2000s, detailed studies of the Tb – Ts relation in strong magnetic fields were performed

for iron envelopes (Potekhin and Yakovlev 2001) and accreted envelopes composed

of light elements (Potekhin et al. 2003), as well as for the large-scale (dipole) and

small-scale (stochastic) surface magnetic fields (Potekhin et al. 2005). These studies

confirmed the conclusions of Shibanov and Yakovlev (1996), but showed that in su-

perstrong fields B & 1014 G the quantum enhancement of the conductivity and the

corresponding increase of Ts at the places where BBB is nearly radial overpowers the

decrease in the regions of nearly tangential field lines, so that Teff at a given Tb in-

creases. However, this may not be the case in the configurations where the field is

nearly tangential over a significant portion of the stellar surface as, e.g., in the case

of a superstrong toroidal field (Pérez-Azorin et al. 2006; Page et al. 2007).

5.3 Non-radial heat transport

As we mentioned in Sect. 5.1, in the case where BBB is nearly parallel to the surface,

the 1D approximation fails, because the heat is transported along the field lines from
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Fig. 11 Local effective surface temperature Ts as function of the temperature Tb at the bottom of a non-
accreted heat blanketing envelope with ρb = 1010 g cm−3 for a neutron star with mass M = 1.4M⊙ , radius
R = 12.6 km, and the dipole magnetic field with polar strength Bp = 1012 G (left panel) and 1015 G (right
panel). Solid lines – 1D calculation with allowance for neutrino emission from the crust, dotted lines –
neutrino emission is neglected. The upper dotted or solid curve shows Ts at the magnetic pole, and the
lower curve curve shows Ts at the equator. The dot-dashed curve shows the result of a full 2D calculation
for Ts at the magnetic equator.

the hotter surface regions outside the considered patch of the surface. Therefore the

1D approximation overestimates the heat blanketing effect in regions with nearly tan-

gential magnetic fields. For a dipole field geometry it is an equatorial region , whose

width can be estimated as ∼ 10% of the radius (Potekhin et al. 2007). Since these re-

gions are also the coldest ones, their contribution to the total flux is negligible. Then

the 1D approximation well reproduces the integrated observed flux. However, it is not

the case for magnetars, which may have a complex field geometry. A 2D treatment

shows that the 1D approach is reliable in the regions where magnetic field lines make

a substantial angle to the surface (Kaminker et al. 2012, 2014), but it predicts too low

surface temperatures when the tangential magnetic field dominates (see Section 3 in

Pons et al. 2009). Therefore for magnetars one must go beyond the 1D approxima-

tion. Complex field configurations which lack cylindrical symmetry may require the

full 3D treatment, which has not been done yet.

In Fig. 11 we show results of 2D calculations in the dipole field geometry, com-

pared with the 1D results. In this case, we see a substantial increase of Ts at the

magnetic equator. This effect is especially pronounced for the superstrong field on

the right panel. In Appendix B. we give an analytical approximation to the Tb – Ts re-

lation in the case of a strong magnetic field, including the effects of neutrino emission

from the crust.
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6 Thermal evolution of neutron stars

6.1 Cooling scenarios

Several tens of seconds after birth, the protoneutron-neutron star has lost its excess

lepton content, it has finished its residual contraction and becomes transparent to neu-

trino emission (Burrows and Lattimer 1986; Pons et al. 1999; Roberts 2012). Soon

after that, the temperature distribution in the highly conductive stellar core reaches

equilibrium, which is preserved thereafter throughout the star lifetime (except dur-

ing short periods after catastrophic phase transitions in the core postulated by certain

hypothetical models).

In the initial cooling stages, the stellar crust is hotter than the core, which is

rapidly cooled down by the copious neutrino emission. The cooling wave reaches the

surface within 10 –100 years; thereafter, the star cools down in the quasistationary

regime. Since all currently observed neutron stars are at least several centuries old,

they should be in the state of quasistationary cooling, except during transient events

with significant energy release in the crust or the ocean discussed below.

Cooling in the quasistationary regime goes through two major stages. The first,

neutrino cooling stage lasts ∼ 105 years. During this period, the core cools mostly

via neutrino emission. The second, photon cooling stage begins when the low tem-

perature of the core makes the neutrino energy losses smaller than the losses due to

electromagnetic radiation from the surface (see, e.g., Yakovlev and Pethick 2004, and

references therein). This occurs at the age of ≈ 105 years, depending on the particular

stellar model and local conditions.

A theoretical cooling curve of an isolated neutron star, which shows the photon

luminosity of the star Lph or its temperature as a function of age t, depends on the

stellar mass M, on the model of superdense matter in the core, which in particular,

determines the intensity of neutrino emission and the EoS (and hence the stellar radius

R), and on the properties of the envelopes. The latter include the thermal conductivity,

which determines Lph at a given internal stellar temperature, the neutrino luminosity

Qν in the stellar crust, and the intensity of heating sources H. For highly magnetized

neutron stars, the cooling curve also depends on the magnetic field BBB (on both its

strength and configuration), since it affects the microphysics (conductivities, EoS,

specific heat, etc.). Therefore, in general, the thermal evolution equations (4) should

be supplemented by the equations that describe evolution of the magnetic field and

electric currents in the star, which leads to the thermomagnetic evolution scenarios

(see the review by Mereghetti et al. 2015 and references therein).

By comparing theoretical cooling curves with the observed Lph and t of isolated

neutron stars, one can eventually place bounds on the theoretical models of super-

dense matter. At contrast, most neutron stars in binary systems have an additional

source of energy (accretion) and an additional source of X-ray radiation (accretion

disk), often much more powerful than the surface thermal emission. For this reason,

they cannot be used to test cooling models.

The theoretical cooling scenarios are currently divided into two main classes:

“minimal cooling” and “enhanced cooling”. The enhanced cooling implies fast neu-

trino emission processes, such as Durca reactions (Sect. 2.6.2), whereas the min-
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imal cooling does not include such processes, but may be enhanced at the epoch

of the onset of the baryon superfluidity via the PBF neutrino emission mechanism

(Sect. 3.3), which helps to explain the variety of the observed surface temperatures

of cooling neutron stars (Gusakov et al. 2004; Page et al. 2004). A spectacular ex-

ample is the neutron star CXO J232327.9+584842 in the Cassiopeia A supernova

remnant, dubbed Cas A NS, which shows an unexpectedly appreciable tempera-

ture decline during several years (Heinke and Ho 2010; Elshamouty et al. 2013) (but

see Posselt et al. 2013 for tentative alternative interpretations of the observations).

This decline can be comfortably explained by the PBF emission (Page et al. 2011;

Shternin et al. 2011; see also Ho et al. 2015 for a recent analysis including modern

observational data).

6.2 Heating mechanisms

In the course of their evolution, some regions of neutron stars may not only cool

but also heat up by different mechanisms. For instance, the polar cap of a pulsar can

be heated by a stream of electrons or positrons moving along open field lines from

the magnetosphere. The temperature of “hot spots” produced by this additional heat

deposited onto the stellar surface may be much higher than the average temperature

of the star (e.g., Greenstein and Hartke 1983). Non-uniform heating processes occur

also during accretion episodes (e.g., Inogamov and Sunyaev 2010). The hot polar

caps emit much more intense X-rays than the remaining surface; as a result, such

neutron stars become X-ray pulsars. Pulsed X-ray radiation is also observed from

thermonuclear explosions of accreted matter at the surface of a rotating neutron star

(see, e.g., review by Strohmayer and Bildsten 2006).

On the other hand, a neutron star may also be heated from inside, for example due

to dissipation of a strong magnetic field (e.g., Miralles, Urpin and Konenkov 1998;

Urpin and Konenkov 2008; Pons et al. 2009). It has been suggested that dissipation

of superstrong magnetic fields may be responsible for the high effective temperatures

of magnetars (Thompson 2001; see Mereghetti et al. 2015, for a review). Noticeable

liberation of energy in the crust may also occur during starquakes (Haensel et al.

1990; Franco et al. 2000; Perna and Pons 2011). Two heating processes related to the

secular spin-down of the star have also been proposed: vortex creep, the dissipative

motion of superfluid vortices through the neutron star crust (Alpar et al. 1984), and

rotochemical heating, the energy released by non-equilibrium beta decays due to the

slow contraction of the neutron star as its centrifugal force decreases (Reisenegger

1995). Gonzalez and Reisenegger (2010) performed a comparative study of several

heating mechanisms and found that the rotochemical heating and vortex creep can be

most important for classical and millisecond pulsars. Both processes, albeit model-

dependent, can keep millisecond pulsars at a surface temperature Teff ∼ 105 K.

Another class of neutron stars undergoing heating episodes are quasipermanent

transients, i.e., those soft X-ray transients (SXTs) whose active and quiescent periods

last a few years or longer. During high-state accretion episodes, compression of the

crust under the weight of newly accreted matter results in deep crustal heating, driven

by exothermic nuclear transformations (Haensel and Zdunik 1990, 2008). For a given
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neutron star model, one can calculate the heating curve, that is the dependence of the

equilibrium accretion-free Teff on the accretion rate averaged over a large period of

time. There is a close correspondence between the theory of thermal states of tran-

siently accreting neutron stars and the theory of neutron star cooling (Yakovlev et al.

2003). Comparing the heating curves with a measured equilibrium Teff value, one can

constrain parameters connected to properties of dense matter (Yakovlev et al. 2004;

Levenfish and Haensel 2007; Ho 2011). Wijnands et al. (2013) discuss prospects of

application of such analysis to various classes of X-ray transients. The SXTs that

have recently turned into quiescence allow one to probe the state of the neutron-star

crust with the observed decline of Teff. Brown et al. (1998) suggested that during this

decline the radiation is fed by the heat that was deposited in the crust in the preced-

ing active period. Such cooling is independent of the details of the star structure and

composition and therefore its analysis directly yields information on the physics of

the crust. Observations of several sources can be interpreted in terms of this hypoth-

esis and yield constraints to the heat conductivity in the neutron-star crust, as, e.g.,

for KS 1731–260 (Shternin et al. 2007; Brown and Cumming 2009), XTE J1701–

462 (Fridriksson et al. 2011; Page and Reddy 2013), EXO 0748–676 (Turlione et al.

2015). The conductivity proves to be rather high, which means that the crust has a

regular crystalline (not amorphous) structure. On the other hand, there are similar

objects which display variations of thermal flux that do not conform to the thermal-

relaxation scenario, which may be caused by a residual slow accretion on the neutron

star in quiescence (Rutledge et al. 2002; Coti Zelati et al. 2014; Turlione et al. 2015).

6.3 Thermal luminosities of isolated neutron stars

The inferred effective temperature depends on the choice of the emission model

(blackbody vs. atmosphere models, composition, condensed surface, etc. – see Pa-

per I), which typically results in variation of Teff by a factor ≈ 2−3, and it has even

larger theoretical uncertainties in the case of strong magnetic fields. In addition, pho-

toelectric absorption in the interstellar medium further constitutes a source of error

in temperature measurements, since the value of the hydrogen column density NH is

correlated to the temperature value obtained in spectral fits. Different choices for the

absorption model and the metal abundances can also yield different results for the

temperature. Last, in the case of data with few photons and/or strong absorption fea-

tures, the temperature is poorly constrained by the fit, adding a large statistical error

to the systematic one.

Because of these uncertainties, the luminosity may often be a better choice to

compare data and theoretical cooling models. Since it is an integrated quantity, it av-

erages effects of anisotropy and the choice of spectral model. The main uncertainty

on the luminosity is often due to the poorly known distance to the source. In many

cases, the distance is known within an error of a few, resulting in up to one order

of magnitude of uncertainty in the luminosity. In addition, the interstellar absorption

acts predominantly in the energy band in which most of the middle age neutron stars

emit (E . 1 keV). Clearly, hottest (magnetars) or closest (XINSs) sources are easier

to detect (see Viganò et al. 2013 and Paper I). Similarly to the case of the tempera-
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Table 3 Cooling neutron stars. tc is the characteristic age, tk is the kinematic age, and fX is the unabsorbed
flux in the 1–10 keV band. The range of luminosities L includes both statistical and distance errors; for
strongly absorbed sources (i.e., most magnetars) a minimum arbitrary factor of 50% uncertainty is assumed
to account for systematical model-dependent uncertainties. Data have been taken from Viganò et al. (2013)
(see references therein and the online catalog in http://www.neutronstarcooling.info.)

Source log10(tc) log10(tk) log10( fX) d log10(L)
[yr] [yr] [erg cm−2 s−1] [kpc] [erg/s]

CXOU J185238.6+004020 8.3 3.7–3.9 −12.3 7.1 33.5–33.7

1E 1207.4–5209 8.5 3.4-4.3 −11.8 2.1+1.8
−0.8 33.0–34.0

RX J0822–4300 8.3 3.5–3.6 −11.3 2.2±0.3 33.5–33.7

CXO J232327.9+584842 – 2.5 −11.8 3.4+0.3
−0.1 33.4–33.6

PSR J0538+2817 5.8 ≈ 4.6 −12.1 1.3±0.2 32.7–32.9
PSR B1055–52 5.7 – −13.4 0.73±0.15 32.2–32.6

PSR J0633+1746 5.5 – −12.5 0.25+0.22
−0.08 31.6–32.5

PSR B1706–44 4.2 – −12.1 2.6+0.5
−0.6 31.7–32.1

PSR B0833–45 4.1 3.7-4.2 −10.5 0.28±0.02 32.1–32.3
PSR B0656+14 5.0 ≈ 4.9 −12.6 0.28±0.03 32.7–32.8

PSR B2334+61 4.6 ≈ 4.0 −14.0 3.1+0.2
−2.4 30.7–32.1

PSR J1740+1000 3.1 – −13.8 1.4 32.1–32.2
PSR J1741–2054 5.6 – −12.5 0.8 30.4–31.4
PSR J0726–2612 5.3 – −14.0 1.0 32.1–32.5
PSR J1119–6127 3.2 3.6–3.9 −13.0 8.4±0.4 33.1–33.4
PSR J1819–1458 5.1 – −12.6 3.6 33.6–33.9

PSR J1718–3718 4.5 – −13.2 4.5+5.5
−0.0 32.8–33.5

RX J0420.0–5022 6.3 – −17.8 0.34 30.9–31.0
RX J1856.5–3754 6.6 5.5-5.7 −14.4 0.12±0.01 31.5–31.7
RX J2143.0+0654 6.6 – −13.1 0.43 31.8–31.9

RX J0720.4–3125 6.3 5.8-6.0 −13.3 0.29+0.03
−0.02 32.2–32.4

RX J0806.4–4123 6.5 – −13.4 0.25 31.2–31.4
RX J1308.6+2127 6.2 5.9-6.1 −12.1 0.50 32.1–32.2
RX J1605.3+3249 – 5.7−6.7 −13.0 0.35±0.05 30.9–31.0
1E 2259+586 5.4 4.0-4.3 −10.3 3.2±0.2 35.0–35.4
4U 0142+614 4.8 – −9.8 3.6±0.5 35.4–35.8

CXO J164710.2–455216 5.2 – −12.2 4.0+1.5
−1.0 33.1–33.6

XTE J1810–197 4.1 – −11.7 3.6±0.5 34.0–34.4
1E 1547.0–5408 2.8 – −11.5 4.5±0.5 34.3–34.7
1E 1048.1–5937 3.7 – −10.8 2.7±1.0 33.8–34.5
CXOU J010043.1–721 3.8 – −12.5 60.6±3.8 35.2–35.5
1RXS J170849.0–400910 4.0 – −10.4 3.8±0.5 34.8–35.1
CXOU J171405.7–381031 3.0 ≈ 3.7 −11.4 13.2±0.2 34.9–35.2

1E 1841–045 3.7 2.7–3.0 −10.4 9.6+0.6
−1.4 35.2–35.5

SGR 0501+4516 4.2 ≈ 4 −11.3 1.5+1.0
−0.5 33.2–34.0

SGR 1627–41 3.3 ≈ 3.7 −11.6 11.0±0.2 34.4–34.8
SGR 0526–66 3.5 ≈ 3.7 −12.0 49.7±1.5 35.4–35.8
SGR 1900+14 3.0 3.6–3.9 −11.1 12.5±1.7 35.0–35.4

SGR 1806–20 2.6 2.8–3.0 −10.6 13.0+4.0
−3.0 35.1–35.5

SGR 0418+5729* 7.6 – −14.0 2.0 30.7–31.1
Swift J1822.3–1606* 6.2 – −11.5 1.6±0.3 32.9–33.2

Notes. *The source has been recently discovered in outburst and it could have not yet reached the quies-
cence level.
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ture, the choice of different models of absorption and chemical abundances can yield

additional systematic errors on the luminosity. However, for the worst cases, the rela-

tive error is about 30%, making it usually a secondary source of error compared with

the distance.

In Table 3 we summarize the properties of cooling neutron stars,3 and in

Fig. 12 we compare the observational data to theoretical cooling curves, from

Viganò et al. (2013). Here, the theoretical results are computed by a finite differ-

ence method for 2D (axisymmetric) stellar configurations, using the SLy EoS model

(Douchin and Haensel 2001) at ρ > ρdrip and the BPS EoS (Baym et al. 1971) at

ρ < ρdrip. The high Durca threshold of the SLy EoS has been artificially lowered for

illustrative purpose to ρ = 1015 g cm−3, corresponding to the central density of a star

with M = 1.42M⊙ (see Viganò 2013 for details). For superfluid gap energies, the phe-

nomenological model of Ho et al. (2012) has been adopted. The other microphysics

input is the same as in Sects. 2 – 4.

In the upper panel of Fig. 12 we show cooling curves for non-magnetized neutron

stars with masses ranging between 1.10 and 1.76 M⊙ (lines from top to bottom).

After ≈ 100 yr, low mass stars (M . 1.4M⊙) are brighter than high mass stars. For

the high-mass family, M & 1.4M⊙, the Durca processes in the central part of the star

result in fast cooling before one hundred years. Within the low-mass family, cooling

curves are similar at early ages (< 100 yr). The differences at t ∼ 102−103 yr are due

to the delayed transition of neutrons in the core to a superfluid state, which activates

the PBF neutrino emission. After the effect of the transition to a superfluid core is

finished, at t & 103 yr, cooling curves for low-mass neutron stars tend to converge

again, following the same curve independently of the mass.

We see that luminosities of some objects in the upper panel of Fig. 12 are system-

atically above the theoretical cooling curves. For the CCOs this discrepancy can be

eliminated by considering accreted (more heat-transparent) blanketing envelopes, as

the lowest dashed line in the lower panel of Fig. 12 demonstrates. However, the high-

B objects still remain systematically hotter than what the theory can explain at B = 0.

This provides strong evidence in favor of the scenario in which magnetic field de-

cay powers their larger luminosity. In the lower panel we compare the observational

data to theoretical cooling curves for different values of the initial magnetic field up

to 3× 1015 G. The most relevant effect of the inclusion of the magnetic field is that

it allows to explain objects with high luminosities. Magnetic fields B & 1014 G are

strong enough to noticeably heat up the crust and power the observed X-ray radiation.

Another important difference is that the cooling timescale for strongly magnetized

objects is several times larger than for the weakly magnetized neutron stars.

7 Conclusions

We have considered the basic physical ingredients needed for theoretical modeling

neutron-star thermal evolution and briefly reviewed some recent results on cooling

of magnetized neutron stars. The physics behind such thermal evolution is extremely

3 A regularly updated online catalog can be found at http://www.neutronstarcooling.info, with
abundant links to references for each source.
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Fig. 12 Comparison between observational data and theoretical cooling curves (from Viganò et al. 2013).
The observational estimates of (errorbars) or constraints on (arrows) the age and thermal luminosity corre-
spond to Viganò et al. (2013) and Table 3. The abbreviations in the legend mark different classes of neutron
stars with measured thermal radiation (MAG – magnetar candidates, XINS – X-ray isolated neutron stars,
HB – high-B radio pulsars, RPP – rotation powered pulsars, CCO – central compact objects; see Paper I).
Upper panel: non-magnetic neutron stars with iron envelopes, with M = (1.10, 1.25, 1.32, 1.40, 1.48, 1.60,
1.70, 1.76) M⊙ (lines from top to bottom). Lower panel: a neutron star with M = 1.4M⊙ and R = 11.6
km, and three different cases with initial magnetic field at the pole B = 0, 3×1014 G, and 3×1015 G. The
magnetic field topology is that of Model A in Viganò et al. (2013) (crustal confined). We show results for
iron envelopes (solid lines) and hydrogen envelopes (dashed lines).
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rich. Clearly, we could not consider it in depth in a single review paper. However,

the information that we have given, together with the references to the formulae and

online resources elsewhere, should be sufficient to build a neutron-star cooling model

involving only the simplest assumptions. We considered the basic equations that gov-

ern the mechanical and thermal structure of a neutron star and its thermal evolution,

the main contributions to the physical quantities that enter these equations – namely,

EoS and heat capacity, thermal conductivity, neutrino emissivity, the effects of baryon

superfluidity and proton superconductivity and of strong magnetic fields. In addition,

we present a novel fit to the relation between the internal and external temperatures

and heat fluxes in the blanketing envelope, which includes the effects of neutrino

emission from the crust and the effects of non-radial heat transport.

In this paper we have restricted ourselves by the npeµ matter, without either

hyperons or “exotic” models that involve hyperon condensates, quark phases, mixed

phases, or phase transitions. We hope that an interested reader should be able to study

these issues in depth following the literature references that we have provided. We

have not considered also the equations of magnetic-field evolution, coupled to the

thermal evolution, which is especially important in magnetars. These equations are

given, for instance, in the paper by Mereghetti et al. (2015) in this volume, where ori-

gin, evolution, and observational manifestations of magnetars are reviewed in depth.
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Appendices

A. Electron thermal conductivities

In this Appendix, we briefly overview the physics of electron heat conduction in the neutron-star envelopes,
which is the most important heat conduction mechanism as regards the neutron-star thermal evolution, in
the case of B = 0. The magnetic field effects on the heat conduction are considered in Sect. 4.4.

A.1 Weakly degenerate electron gas

In the case of non-degenerate and non-relativistic electrons (Spitzer and Härm 1953; Braginskiı̆ 1958;
Spitzer 1962), the effective energy-averaged electron-ion collision frequency is

νei =
4

3

√

2π
me

Z2e4

T 3/2
niΛei, (A.1)

where Λei is the Coulomb logarithm. In the considered case Λei is a slowly varying function of density
and temperature. Its precise value depends on the approximations used to solve the Boltzmann equation,
but its order of magnitude is given by the elementary theory, where the Coulomb collision integral is
truncated at small and large impact parameters of the electrons. Then Λei ∼ ln(rmax/rmin), where rmax and
rmin are the maximum and minimum electron impact parameters. The parameter rmax can be set equal
to the Debye screening length, r−2

max = 4π(ne + Z2ni)e
2/T . The second parameter can be estimated as
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rmin = max(λe, rcl), where λe (defined in Sect. 2.3) limits rmin in the high-temperature regime (where
the Born approximation holds), and rcl = Ze2/T is the classical closest-approach distance of a thermal
electron, which limits rmin in the low-temperature, quasiclassical regime.

A similar effective frequency

νee =
8

3

√

π
me

e4

T 3/2
neΛee (A.2)

characterizes the efficiency of the ee collisions. If Λee ∼ Λei, then νei/νee ∼ Z, therefore for large Z the ei
collisions are much more efficient than the ee collisions.

A.2 Strongly degenerate electron gas

A.2.1 Electron-ion scattering

The thermal conductivity of strongly degenerate electrons in a fully ionized plasma is given by Eq. (12)
with a = π2/3. In order to determine the effective collision frequency that enters this equation, we use the
Matthiessen rule ν = νei +νee.

The effective electron-ion collision frequency can be written in the form (Lee 1950; Yakovlev and Urpin
1980)

νei =
4Zm∗

ee4Λei

3πh̄3
=

ZΛei

√

1+ x2
r

5.7×10−17 s
. (A.3)

Lee (1950) gave an estimate of the Coulomb logarithm Λei = ln(rmax/rmin), with the minimum impact
parameter rmin = h̄/2pF and the maximum impact parameter rmax = ai. Yakovlev and Urpin (1980) calcu-
lated the conductivities for relativistic degenerate electrons, neglecting electron screening, and obtained a
more accurate estimate rmax ≈ 0.4ai in the liquid regime. In the solid regime, where the electrons scatter
on phonons (collective ion excitations), Yakovlev and Urpin (1980) obtained different approximations for
the two distinct cases, ΘD < T < Tm and T < ΘD.

Potekhin et al. (1999) derived a unified treatment of the electron conductivities in the Coulomb liquid
and solid and described both regimes by Eq. (A.3). Then qualitatively, by order of magnitude, Λei ∼ 1
in the ion liquid, and Λei ∼ T/Tm in the Coulomb solid with a melting temperature Tm. The effects of
multiphonon scattering, electron screening, and non-Born corrections, have been taken into account, and
the Coulomb logarithms in both liquid and solid phases have been fitted by a single analytical formula. A
Fortran code and a table of thermal conductivities, based on this formalism, are available online.4

At the conditions typical for the envelopes of neutron stars, the electron-phonon scattering pro-
ceeds mainly via the Umklapp processes, where the wave vector corresponding to the change of elec-
tron momentum lies outside the first Brillouin zone. Raikh and Yakovlev (1982) noticed that if T . TU =
TpZ1/3αf

√

1+ x2
r /3xr , then the Umklapp processes occur less often (“freeze out”). Then the scattering rate

decreases. Raikh and Yakovlev (1982) assumed an extremely strong (exponential) decrease. This implied
that at T < TU the conductivity would be in practice determined by impurities and structure defects of
the lattice, rather than by the electron-phonon scattering (Gnedin et al. 2001). However, Chugunov (2012)
showed that distortion of electron wave functions due to interaction with the Coulomb lattice destroys this
picture and strongly slows down the increase of the conductivity. As a result, the conductivities in neutron
star envelopes can be treated neglecting the “freezing-out” of the Umklapp processes.

A.2.2 Electron-electron scattering

Although the electron-ion scattering is usually most important for degenerate plasmas, the electron-
electron scattering still can be non-negligible for relatively light elements (Z . 10) (Lampe 1968). The
expression of νee for the relativistic degenerate electrons at T ≪ Tp was obtained by Flowers and Itoh
(1976). Urpin and Yakovlev (1980) extended it to higher temperatures, where Tp . T ≪ εF.

Shternin and Yakovlev (2006) reconsidered the problem including the Landau damping of transverse
plasmons, neglected by the previous authors. This effect is due to the difference of the components of
the polarizability tensor, responsible for screening the charge-charge and current-current interactions:

4 http://www.ioffe.ru/astro/conduct/
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the transverse current-current interactions undergo “dynamical screening.” Shternin and Yakovlev (2006)
showed that the Landau damping of transverse plasmons strongly increases νee in the domain of xr & 1
and T ≪ Tp and presented a new fit to νee (also implemented in the code referenced in footnote 4).

A.3 The case of intermediate degeneracy

In the case where the electron gas is partially degenerate, that is T ∼ εF, the thermal and electrical con-
ductivities determined by the electron-ion scattering are satisfactorily evaluated by the thermal averaging
procedure [Eq. (33) in Sect. 4.4.2]. For conductivities determined by the electron-electron collisions, there
is no such averaging procedure, but we can use an interpolation between the two limiting cases,

νee = ν deg
ee

1+625(T /εF)2

1+25T/εF +271(T/εF)5/2
. (A.4)

A satisfactory accuracy of this interpolation has been verified by Cassisi et al. (2007).

A.4 Impurities and mixtures

If the plasma in an envelope is not a pure substance of a single chemical element, then the effective collision
frequency νei should be modified. The required modification can be different, depending on the state of
the plasma and on the amount of impurities. For example, Flowers and Itoh (1976), Yakovlev and Urpin
(1980), and Itoh and Kohyama (1993) considered electron scattering by charged impurities in a Coulomb
crystal. If the fraction of impurities is small and they are randomly distributed, then electron-impurity
scattering can be treated as scattering by charge fluctuations, controlled by the impurity parameter Q =
〈(Z − 〈Z〉)2〉, where 〈Z〉 ≡ ∑ j YjZ j , Yj = n j/∑ j n j is the number fraction of ions of the jth kind, and
Z j is their charge number. Then, using the Matthiessen rule, one can obtain νei as a sum of the terms
corresponding to the electron-phonon scattering in a homogeneous lattice and to the electron scattering
by charge fluctuations. The effective relaxation time for the latter term is given by Eq. (A.3) with ZΛei

replaced by ∑ j Yj(Z j −〈Z〉)2Λ j/〈Z〉, where the Coulomb logarithm Λ j depends generally on j. Neglecting
the differences between the Coulomb logarithms, one can thus simply replace Z by Q/〈Z〉 in Eq. (A.3) to
estimate the conductivity due to electron scattering by charged impurities.

An alternative approach is relevant when there is no dominant ion species which forms a crystal (e.g.,
in a liquid, a gas, or a glassy alloy). In this case, one can use Eq. (A.3) with Z2niΛei replaced by ∑ j Z2

j n jΛ j .
An approximation to Λ j based on the plasma “additivity rule” has been suggested by Potekhin et al. (1999).
Neglecting the differences between the Coulomb logarithms, one arrives at Eq. (A.3) with Z replaced by
√

〈Z2〉. If tabulated conductivities κ j for pure substances are used, then the best agreement with calcula-
tions based on the “additivity rule” is usually given by the estimate

κ ≈ ∑ j YjZ jκ j

∑ j YjZ j

≡ 〈κ Z〉
〈Z〉 . (A.5)

B. Temperature relations for envelopes of neutron stars with magnetic fields

Here we present an analytical fit to the temperature distribution over a surface of a neutron star with
a non-accreted envelope and a dipole magnetic field. We have chosen ρb = 1010 g cm−3 and used the
BSk21 EoS (Pearson et al. 2012) in the parametrized form (Potekhin et al. 2013). The numerical data have
been produced with the 2D code of Viganò et al. (2013) for 5 values of internal temperature Tb from
107 K to 109 K, 5 values of the magnetic field at the pole Bp from 1011 G to 1015 G, and 20 values of
magnetic colatitude θ at the surface of the neutron star from 0 to π/2. The use of the 2D code corrects
the temperature distribution near the magnetic equator, because the non-radial heat flow increases the
equatorial Ts as compared to the 1D model that was employed previously (see Fig. 11 in Sect. 5.2). These
data have been supplemented with more detailed calculations at the magnetic pole (θ = 0) using the 1D
code of Potekhin et al. (2007) for 36 values of Tb from 106.5 K to 1010 K and 9 values of Bp from 1011 G
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to 1015 G. An important difference from the old results is the inclusion of the neutrino emission from the
crust, which is especially important for the magnetars (see Sect. 5). Because of the 2D treatment and the
allowance for neutrino emission, the new fit supersedes the previous one (Potekhin et al. 2003), whenever
B > 1012 G or Tb & 108 K. We stress that its use is restricted by non-accreted (i.e., composed of heavy
chemical elements) envelopes in the range of 106.5 K . Tb . 1010 K and Bp . 1015 G, which is covered
by the underlying numerical data. For envelopes with B . 1012 G (either non-accreted or accreted), the
previous fit can be used, however the surface temperature Ts (but not the flux at the inner boundary, Fb –
see item 4 below) should be limited for hot stars according to Eq. (B.4) below.

The fit consists of 3 stages: (1) an expression for the surface temperature at the magnetic pole, Tp, as
function of Tb, g, and Bp; (2) an expression for the ratio of the polar to the equatorial surface temperatures,
Tp/Teq; (3) an expression for the dependence of Ts on the magnetic colatitude θ . Since the thermal conduc-
tivities for quantizing magnetic fields (Sect. 4.4.2) are known for the electron-ion but not electron-electron
collision mechanism, we multiplied Ts by a correction factor, obtained numerically from a comparison of
the results of thermal-structure calculations with and without the ee collisions at B = 0. At the end of this
Appendix we suggest a recipe for relating the flux Fb at the bottom of the heat-blanketing envelope to
temperature Ts and thereby to Tb.

1. At the magnetic pole, the effective surface temperature, neglecting neutrino emission from the crust,
is approximately given by the expression

T
(0)

p =
[

g14(T
4

1 +(1+0.15
√

B12)T 4
0 )

]1/4 ×106 K, (B.1)

where

T0 = (15.7T
3/2

9 +1.36T9)
0.3796, T1 = 1.13B0.119

12 T a
9 , a = 0.337/(1+0.02

√
B12), (B.2)

T9 = Tb/109 K, and B12 = Bp/1012 G. The limiting temperature, at which Tp(Tb) levels off due to the
neutrino emission from the crust is approximately given by

T
(max)

p = (5.2g0.65
14 +0.093

√

g14 B12)×106 K. (B.3)

The corrected surface temperature at the pole, which takes this limit into account, is reproduced by the
expression

Tp = T
(0)

p

[

1+(T
(0)

p /T
(max)

p )4
]−1/4

(B.4)

2. The ratio of the polar to equatorial surface temperatures can be roughly evaluated as

Tp

Teq
= 1+

(1230T9)
3.35 B12

√

1+2B2
12

(B12 +450T9 +119B12 T9)4
+

0.0066B
5/2
12

T
1/2

9 +0.00258B
5/2
12

. (B.5)

The numerically calculated Tp/Teq ratio has a complex dependence on Tb and B at B > 1013 G. In order
to keep our fitting formulae relatively simple, we do not reproduce these oscillations, but instead force the
ratio (B.5) to converge to some average value at B ≫ 1013 G. The numerical data oscillate in a complicated
manner around this average, with deviations reaching up to 35%. For smaller fields, B . 3 × 1012 G,
Eq. (B.5) reproduces the numerical data with typical errors of several percent (up to 10%). Note that
these significant deviations affect only nearly tangential field case, viz. the equatorial region, which is
substantially colder than the rest of the surface. Therefore its contribution to the observed flux is usually
not very important.

3. Finally, the dependence of the surface temperature on the magnetic colatitude θ is approximately
described by the expression

Ts(θ)−Teq

Tp −Teq
=

(1+a1 +a2)cos2 θ
1+a1 cosθ +a2 cos2 θ

, where a1 =
a2T

1/2
9

3
, a2 =

10B12

T
1/2

9 +0.1B12 T
−1/4

9

. (B.6)

4. Note that the outer boundary condition to the thermal evolution equations (4) involves the relation
between the heat flux density Fb through the boundary at ρ = ρb and the temperature Tb at this boundary.
In the absence of the neutrino emission from the crust, this boundary condition is directly provided by
the Tb – Ts relation, because in this case (in the plane-parallel approximation) Fb = σSBT 4

s . It is not so if a
significant part of the energy is carried from the outer crust by neutrinos. In this case we suggest to evaluate
the flux through the boundary by the relation Fb = σSBT 4

∗ , where T∗ is given by the above approximations
for Ts, but without the correction (B.4).
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