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Abstract

Neutrophils play an important role in innate immunity by defending the host organism against invading microorganisms.
Antimicrobial activity of neutrophils is mediated by release of antimicrobial peptides, phagocytosis as well as formation of
neutrophil extracellular traps (NET). These structures are composed of DNA, histones and granular proteins such as
neutrophil elastase and myeloperoxidase. This study focused on the influence of NET on the host cell functions, particularly
on human alveolar epithelial cells as the major cells responsible for gas exchange in the lung. Upon direct interaction with
epithelial and endothelial cells, NET induced cytotoxic effects in a dose-dependent manner, and digestion of DNA in NET did
not change NET-mediated cytotoxicity. Pre-incubation of NET with antibodies against histones, with polysialic acid or with
myeloperoxidase inhibitor but not with elastase inhibitor reduced NET-mediated cytotoxicity, suggesting that histones and
myeloperoxidase are responsible for NET-mediated cytotoxicity. Although activated protein C (APC) did decrease the
histone-induced cytotoxicity in a purified system, it did not change NET-induced cytotoxicity, indicating that histone-
dependent cytotoxicity of NET is protected against APC degradation. Moreover, in LPS-induced acute lung injury mouse
model, NET formation was documented in the lung tissue as well as in the bronchoalveolar lavage fluid. These data reveal
the important role of protein components in NET, particularly histones, which may lead to host cell cytotoxicity and may be
involved in lung tissue destruction.
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Introduction

Neutrophils are the most abundant type of white blood cells in

mammals, which represent an essential part of the innate immune

system and are considered as the first line of defense against

microorganisms. After recruitment to the inflammatory site,

neutrophils attack invading pathogens by release of antimicrobial

peptides and lytic enzymes as well as production of reactive oxygen

species (ROS) followed by phagocytosis that enables clearance of

the invading pathogens [1–3]. Another recently described

antimicrobial mechanism of neutrophils is the formation of

neutrophil extracellular traps (NET). These structures are

composed of DNA in association with histones, as the most

abundant proteins in NET, as well as granular proteins such as

elastase and myeloperoxidase and several cytoplasmic proteins.

Inflammatory stimuli such as interleukin-8, lipopolysaccharide

(LPS) or phorbol myristate acetate (PMA) provoke ‘‘NETosis’’ of

neutrophils. During this cell-destructive process, which is distinct

from classical apoptosis or necrosis, intracellular organelle

membranes disintegrate after decondensation of materials in the

nucleus, allowing the mixing of cytoplasmic and nuclear

components which is followed by the rupture of plasma membrane

to expel NET. These structures can bind and kill bacteria and

fungi [4–7], whereby NET-associated proteins such as elastase and

histones exhibit bactericidal and leishmanicidal activity [5,8].

However, excessive activation of neutrophils may lead to the

development of multiple organ dysfunction syndrome, and lungs

are the main target of this syndrome [9–11]. Acute lung injury

(ALI) and its more severe form acute respiratory distress syndrome

(ARDS) represent pathological situations of lung dysfunction

characterized by impairment in the alveolar-capillary barrier

function that result from complex responses of the lung to a

multitude of direct and indirect insults [12–14]. Activated

neutrophils contribute to lung injury by releasing proteolytic

enzymes, ROS and other proinflammatory mediators [15].

Alveolar epithelial cell function and barrier integrity are crucial

to preserve normal gas exchange, and injury or loss of epithelial

cells may lead to progression of ALI/ARDS [16,17]. ARDS

carries high mortality rates between 40% and 60% in affected

patients [18]. Therefore, understanding of the mechanisms in the

development of ALI/ARDS is essential for developing novel

therapeutic options to treat these patients [19,20]. Besides ALI,
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other lung diseases such as cystic fibrosis are associated with lung

epithelial cell death. In cystic fibrosis patients, progressive infection

and inflammation in the lower airways results in the destruction of

small and medium airways in lung, and extracellular DNA

accumulates in the airway due to the chronic bacterial infection

[21].

Although elevated amounts of NET were observed in several

pathophysiological conditions in vivo [5,22–28] and exaggerated

NET formation was correlated with damaging effects and

impaired tissue function [29–31], the direct effect of NET and

their components on host cells have not been investigated. In this

study, the direct influence of isolated NET on alveolar epithelial

cells (as the major cells responsible for gas exchange in the lung) as

well as endothelial cells was examined, indicating that NET and

particularly the histone components are responsible for cell death

in lung epithelial and endothelial cells.

Materials and Methods

Cell culture
A549-human lung adenocarcinoma cell line and mouse lung

epithelial cells (MLE-12) were obtained from American Type

Culture Collection (ATCC, Manassas, VA, USA). Human

pulmonary artery endothelial cells (HPAEC) were obtained from

Lonza (Germany). Human umbilical vein endothelial cells

(HUVEC) and murine alveolar type II (AT-II) cells were isolated

as described [32,33]. Human neutrophils were isolated from

healthy donors using density gradient separation according to

Costa and co-workers [34]. Briefly, a double gradient was formed

by layering an equal volume of histopaque-1077 over histopaque-

1119 (Sigma-Aldrich, Germany). Venous blood was collected in

EDTA tubes and carefully layered onto the upper histopaque-

1077, followed by centrifugation at 7006 g for 30 min and

granulocytes were concentrated at the 1077/1119 interphase.

Purity of isolated cells (.96%) was assessed by FACS following

labeling the cells with neutrophil-specific marker CD66b (anti-

bodies-online, Germany), and viability was determined to be 98%

by trypan blue dye exclusion. For neutrophil isolation, human

blood taken from healthy volunteer donors with verbal consent

was provided by the Blood Bank (Clinical Immunology, Blood

Transfusion Medicine, University Hospital Giessen) and data were

analyzed anonymously.

Isolation of neutrophils from bronchoalveolar lavage
fluid (BALF) and immunofluorescence microscopy of
isolated neutrophils
To generate ALI, C57BL/6 mice (n= 3 per group) were treated

intratracheally with 10 mg of LPS from Escherichia coli (serotype

0111.B4, Sigma Aldrich) in 50 ml of PBS. Control mice were treated

with PBS only [35–37]. Intratracheal applications of LPS or PBS

were done essentially as described elsewhere [38,39]. Briefly, mice

were anesthetized with ketamine and tetrazoline hydrochloride, and

the trachea was exposed. Subsequently, catheter (Abbot, Wiesba-

den, Germany) was inserted into trachea, and LPS or PBS was

installed under stereomicroscopic control (MS5; Leica Microsys-

tems, Wetzlar, Germany). After installation, wounds were closed,

andmice were allowed to recover with free access to food and water.

For BALF collection, mice were killed with an overdose of isoflurane

(Forene; Abbott, Wiesbaden, Germany). Subsequently, trachea was

exposed, and a small incision was made to insert a shortened 21-

gauge cannula connected to a 1-ml insulin syringe, followed by

repeated intratracheal instillations of 0.5 ml aliquots of PBS [38,39].

After 24 h, BALF was collected and mouse neutrophils were

isolated by anti-Ly-6G MicroBead Kit (Miltenyi Biotec, Germany)

according to the manufacturer’s protocol. Isolated neutrophils were

seeded on coverslips and treated with 25 nM PMA (Sigma-Aldrich)

for 1.5 h at 37uC. Samples were fixed with 2% paraformaldehyde,

blocked with 3% bovine serum albumin in PBS and incubated with

primary mouse anti-DNA Histone H1 (Millipore, Germany) and

rabbit anti-CD46 (H-294) (Santa Cruz, Germany), followed by

detection with secondary antibodies coupled to Alexa Fluor 555

donkey anti-mouse IgG and Alexa Fluor 488 donkey anti-rabbit

(Invitrogen, Germany), respectively. DAPI (Vectashield mounting

medium with DAPI; Vector Laboratories, Burlingame, CA, USA)

was used for nuclear DNA detection. For negative controls either

the primary antibodies were omitted or the isotype-matched

controls were used. Images were taken with fluorescence micro-

scope using MetaMorph imaging software version series 7.0 (Leica

Microsystems, Wetzlar, Germany). All animal experiments were

approved by ethical approval (approval ID 67/2009) from the

Ethics Committee of the University of Giessen, School of Medicine.

BALF collection, MNase digestion and neutrophil elastase
activity
C57BL/6 mice were treated intratracheally with LPS as

mentioned above, and BALF was collected after 3, 6, 12, 24

and 48 h following treatment. Control mice were treated with PBS

only. BALF samples were centrifuged 10006 g for 5 min. The

supernatants were collected separately and 500 mU/ml micro-

coccal nuclease from Staphylococcus aureus (MNase) (Sigma-Aldrich)

were added to each pellet [4]. Both digested pellet (to detect NET-

derived elastase) and supernatant (to detect free elastase) were

incubated with peptide substrate N-(methoxysuccinyl)-Ala-Ala-

Pro-Val 4-nitroanilide (Sigma Aldrich) for 15 min and the optical

density was measured at 405 nm (Ultra microplate reader ELx

808; BIO-TEK Instruments, Germany).

Immunofluorescence microscopy of mouse lung
Frozen 5 mm lung tissue sections from mice treated intratra-

cheally for 24 h with 10 mg LPS or PBS only were equilibrated to

room temperature and fixed in acetone for 10 min. Vector

M.O.M. Immunodetection Kit (Vector Laboratories) was used

with some modification in the protocol. Briefly, after blocking the

sections with M.O.M Mouse Ig Blocking Reagent for 1 h, samples

were incubated with primary antibodies anti-CD46 or anti-

neutrophil elastase (M-18; Santa Cruz) followed by a secondary

antibody coupled to Alexa Fluor 488 and anti-DNA/histone 1

coupled with Alexa Fluor 546 (Invitrogen). In addition, some

sections were incubated with primary antibodies against myelo-

peroxidase (L-20; Santa Cruz) and citrullinated H3 (2+8+17)

[CitH3] (Abcam), followed by detection with secondary antibodies

coupled to Alexa Fluor 555 donkey anti-mouse IgG and Alexa

Fluor 488 donkey anti-rabbit, respectively. For negative controls

either the primary antibodies were omitted or the isotype-matched

controls were used. DAPI was used for DNA detection.

Histone treatment of cells
A549 cells and HUVEC were treated with different concentra-

tions of histone type IIA from calf (Sigma-Aldrich). Cell

morphology was inspected under the light microscope and the

cell numbers were counted by CASY Cell Counter System

(Schaerfe Systems, Reutlingen, Germany).

NET production, isolation and quantification
Isolated human neutrophils were resuspended in phenol red–

free RPMI 1640 (Invitrogen), and 1.86106 cells were seeded per

well in 6-well plates. Following stimulation with 50 nM PMA for

NET and Host Cell Cytotoxicity
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4 h, medium was removed and wells were washed with RPMI.

PMA, at this concentration, does not promote apoptosis or

necrosis; rather, it induces typical features of NETosis [4,40–44].

To collect NET, 2 ml RPMI per well was added and NET (the

smear on the wells) was collected in 15 ml tubes by vigorous

agitation. After centrifugation at 206 g for 5 min, NET was

collected in the supernatant and subjected to different treat-

ments, including partial digestion by 500 U/ml MNase for

10 min at 37uC or complete digestion by 10 U/ml DNase I

(Fermentas, Germany) for 20 min at 37uC or kept undigested.

For some experiments, NET was heated for 5 min at 95uC

(‘‘boiled NET’’). Quantification of DNA in NET was performed

by Picogreen dsDNA kit (Invitrogen) according to the manufac-

turer’s instructions.

Treatment of endothelial or epithelial cells with NET
HUVEC, HPAEC or A549, MLE-12, AT-II cells were seeded

in 24-well plates to reach 90% confluency, washed once with PBS,

and NET in different concentrations were added. Approximately

3.4 (NET) or 10.1 (36NET) mg/ml DNA-NET, respectively, was

added to different wells. Some cells were treated with 3.3 mg/ml

staurosporine (Sigma-Aldrich) as a cell death inducer and some left

untreated as negative controls. The total volume in each well was

kept equal by adding RPMI medium. Cell morphology evaluation

was also performed with the non-confluent cells by MetaMorph

software using integrated morphometry analysis. Cells were

analyzed after 4 h or 16 h incubation at 37uC with different

measurements as indicated in the following methods.

Lactate dehydrogenase (LDH) release or cytotoxcicity
assay
Epithelial or endothelial cells were treated with 1% Triton X-

100 (high control), with NET or kept untreated (low control). LDH

release into the supernatant was assessed by cytotoxicity detection

kit (Roche Applied Science, Germany) according to the manufac-

turer’s instructions. The degree of cytotoxicity was calculated as

follows:

Cytotoxicity (%)~
exp:value{low control

high control{low control
|100

Where ‘‘exp.value’’ is the average absorbance (of four wells) from

the experimental data.

Multi-caspase activity
A549 cells were left untreated or treated with NET, staur-

osporine or caspase inhibitor Z-VAD-FMK as an additional

negative control, and green multi-caspase staining kit (Promokine,

Germany) was used to detect activated caspases in living cells

according to the manufacturer’s protocol. The fluorescence

intensity was measured at exitation and emission wavelengths of

485 nm and 535 nm, respectively (FLx 800 fluorescence micro-

plate reader; BIO-TEK Instruments).

Detection of Annexin V and ethidium homodimer III
positive cells by fluorescence microscopy
Untreated (control) and NET- or staurosporine-treated A549

cells were stained with FITC-Annexin V, ethidium homodimer

III and Hoechst 33342 (Promokine, Germany) according to the

manufacturer’s instructions. Annexin V and ethidium homodi-

mer III positive cells were evaluated by fluorescence microscopy

and MetaMorph software using integrated morphometry

analysis.

Treatment of histone and NET by activated protein C
(APC)
Histone from calf thymus (Type II-A; Sigma-Aldrich) (100 or

200 mg/ml) was incubated with 6 mg/ml (100 nM) APC (Xigris,

Eli Lilly) for 1 h at 37uC [45]. In addition, NET (approximately

10 mg/ml protein content), digested or non-digested, was incubat-

ed with 100 nM APC for different time points. Moreover, NET

was incubated with APC at different mass ratios of APC: NET

(1:5, 1:2, and 1:1) for 1 h at 37uC. APC alone or APC plus 6 mM

APC inhibitor, PPACK (Calbiochem, Germany) were used as

controls. LDH release by A549 cells was measured after treatment

with histones, APC, NET, APC-pretreated histones or APC-

pretreated NET.

Elastase activity of human neutrophils and isolated NET
In order to evaluate elastase activity and its inhibition in NET,

human neutrophils were kept untreated as unstimulated samples

(Unstim) or stimulated with 50 nM PMA for 4 h (Stim) and the

supernatants were collected for elastase activity. NET was also

isolated from the stimulated samples as described under ‘‘NET

production, isolation and quantification’’. Thereafter, NET

samples were digested with DNase or MNase or kept undigested

followed by centrifugation at 10006 g for 5 min, and the

supernatants were collected for elastase activity in the absence or

presence of 0.2 mM N-(methoxysuccinyl)-L-alanyl-L-alanyl-L-

prolyl-L-valine chloromethyl ketone (Sigma-Aldrich) as an elastase

inhibitor.

NET-protein quantification
For NET-protein quantification the Micro-BCA protein assay

reagent kit (Pierce, Germany) or the 2D-Quant kit (GE

Healthcare) was used. Both methods resulted in the same values

of protein concentration.

Inhibition of NET cytotoxicity
To test the influence of NET on cytotoxicity, 800 ml NET

(approximately 10 mg protein content) was pre-incubated with

1:100 of the following histone antibodies: H2A antibody (Cell

signaling, Germany), H3 antibody (Millipore), citrullinated H3

(2+8+17) antibody [CitH3] (Abcam, Germany) or H4 antibody

(Cell signaling) or with 8 mg of the subsequent antibodies: DNA/

histone H1 antibody (Millipore, German), H2B antibody (Milli-

pore), mouse IgG isotype antibody (M4509; Sigma-Aldrich) or

rabbit IgG isotype antibody (Dianova, Germany) for 1 h at room

temperature before incubation of NET with A549 cells. In

addition, 800 ml NET was pre-incubated with 0.125, 0.25, 0.5 or

1 mM neutrophil elastase inhibitor N-(methoxysuccinyl)-Ala-Ala-

Pro-Val-chloromethyl ketone, with 37 ng/ml myeloperoxidase

inhibitor dihydrolipoic acid (gift from Dr. Oliver Soehnlein,

Ludwig-Maximilians-University Munich) or with 10 ı̀g polysialic

acid (colominic acid á2,8-linked Neu5Ac polymer of E.coli K1 -

equivalent to polySia in mammalians) (Sigma-Aldrich) for 1 h at

room temperature prior to incubation of NET with A549 or AT-II

cells. As a control, 50 mg/ml isolated histones were pre-incubated

with 50 mg/ml polysialic acid or 1:100 antibody against histone

H4 for 1 h at room temperature before incubation with the cells.

Statistical analysis
Data were analyzed by GraphPad Prism 5.02 software using

one-way analysis of variance (ANOVA) with Tukey post-tests for

multiple comparisons or by student’s t-test for single measure-

ments. Each experiment was performed at least three times on

independent occasions unless otherwise stated. Differences were

NET and Host Cell Cytotoxicity
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considered statistically significant at p,0.05. In the figures,

significant differences were illustrated with asterisks (*p,0.05;

**p,0.01; ***p,0.001).

Results

NET induce cell death in epithelial cells in a
concentration-dependent manner
To study the effect of NET on epithelial cells, A549 cells were

incubated with MNase-digested NET or staurosporine for 4 h or

16 h. While untreated cells grew normally and became confluent,

cells treated with staurosporine or NET did not reach confluency

(Fig. 1A and B). Vigorous agitation of unstimulated neutrophils

incubated for 4 h at 37uC will disturb the intact neutrophils, and

may result in the release of all components of neutrophils which

are not equivalent to NET, and cannot be used as controls;

therefore, only the untreated cells were used as controls. Multi-

caspase activity in A549 cells increased significantly after exposure

to staurosporine or NET in a dose-dependent manner (Fig. 1C).

Moreover, NET exposure increased the fractions of annexin V

and ethidium homodimer (a membrane-impermeable fluorescent

dye which binds to DNA) positive cells (Fig. 1D and E). Proteomic

analysis of NET-treated epithelial cells (Materials and Methods S1)

also revealed up-regulation of proteins involved in cell death

(Table S1). Together, these data indicate that NET can induce

lung epithelial cell death in a concentration-dependent manner.

NET induce cytotoxicity in epithelial and endothelial cells
independent of DNA digestion
In order to investigate in detail the role of DNA digestion in

NET-mediated cytotoxicity, different forms of NET were used:

undigested (containing long DNA fibers), completely digested by

DNase (containing mostly oligonucleotides) or partially digested by

MNase (containing smaller DNA fragments but not nucleotides)

(Fig. S1). Moreover, DNA alone, the same concentration as used

in DNA-NET, was used as another control. The extent of

cytotoxicity in A549 cells after incubation with NET substantially

(approximately 60%) increased (Fig. 2A), and DNase or MNase

Figure 1. NET cause lung epithelial cell death in a concentration-dependent manner. (A) The morphology of A549 cells was evaluated
after 4 or 16 h treatment with medium (control), NET or staurosporine. Shown are representative pictures of .8 independent experiments at 206
magnification. (B) Cell growth from (A) was quantified by measuring the difference between occupied cell area after 16 h and 4 h. (C) Multicaspase
activity of A549 cells was measured after 16 h treatment with two concentrations of NET (3.4 and 10.1 mg/ml DNA-NET) or staurosporine. Shown are
representative data of three independent experiments (mean+ SD), *p,0.05; **p,0.01; ***p,0.001. (D) Immunofluorescence staining of A549 cells
after 16 h treatment with two concentrations of NET (3.4 and 10.1 mg/ml DNA-NET) or staurosporine was performed for ethidium homodimer III
(ethidium-HD, red), annexin V (green), and Hoechst 33342 (black and white). Shown are representative pictures of three independent experiments. (E)
Percentage of ethidium-HD and annexin-V positive cells from (D) was evaluated by morphometry analysis.
doi:10.1371/journal.pone.0032366.g001
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Figure 2. NET induce cytotoxicity in epithelial and endothelial cells independent of digestion. (A) The extent of cytotoxicity was
measured after treatment of A549 cells for 16 h with undigested NET (2), completely (DNase), partially digested (MNase) or boiled forms of NET. The
same concentration of DNA alone as DNA-NET (3.4 mg/ml) as well as DNase or MNase alone were used as controls. Shown are representative data of
five independent experiments (mean + SD), ***p,0.001, and ns = non-significant. (B) The degree of cytotoxicity was measured after treatment of
HUVEC, HPAEC, AT-II or MLE-12 cells for 16 h with undigested NET (2) or completely (DNase) forms of NET as well as DNA alone. Shown are
representative data of three (except for AT-II, n = 2) independent experiments (mean + SD), ns = non-significant.
doi:10.1371/journal.pone.0032366.g002
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treatment of NET did not change their cytotoxic activity.

Incubation of cells with DNase, MNase or DNA alone as well as

boiled NET did not provoke any appreciable cytotoxicity. To

identify whether this effect of NET is also seen in other cells rather

than A459, endothelial cells such as HUVEC and HPAEC as well

as other lung epithelial cells such as MLE-12 and AT-II cells were

incubated with undigested or DNA-digested NET, which induced

similar cytotoxicity (Fig. 2B). Together, these data indicate that

DNA digestion in NET does not change the cytotoxic activity of

NET, and the DNA component in NET (either undigested or

fragmented) is not responsible for its cytotoxic effect.

Histones induce epithelial and endothelial cell death
Identification of spots from 2-D gel electrophoresis of NET by

mass spectrometry confirmed the presence of different proteins,

the majority of which had been described by Urban and co-

workers [7]. Some additional newly identified proteins were listed

as well (Table S2). To elucidate the relevance of histones as the

major protein components of NET structure [7] for NET-

mediated cytotoxicity, the influence of pure histones on both

epithelial and epithelial cell death was investigated. NET contains

all types of histones; therefore, commercially available purified

histones (histone type-IIA, which includes all types of histones)

were used for treatment with the cells. Incubation of epithelial and

endothelial cells with histone type-IIA prevented cell growth, and

provoked cytotoxicity in a concentration-dependent manner

(Fig. 3). These data together with the previous studies [45]

confirms the cytotoxic capability of histones on the host cells.

Histone antibodies and polysialic acid decrease NET-
mediated cytotoxicity
It was recently described that APC and histone antibodies can

decrease histone-mediated cytotoxicity in endothelial cells [45].

Likewise, the cytotoxic activity of purified histones on A549 cells

was significantly decreased by APC (Fig. 4A). In contrast,

incubation of NET with APC even in high doses did not reduce

NET-mediated cytotoxicity (Fig. 4B). Moreover, incubation of

DNase or undigested forms of NET with APC up to 80 min could

not decrease NET-mediated cytotoxicity (Fig. 4C and D). SDS-gel

electrophoresis of NET proteins before or after incubation with

APC and the subsequent identification with MALDI-TOF-MS did

not show histone degradation (Fig. S2B). Likewise, two-dimen-

sional difference in gel electrophoresis (2-D DIGE), which enables

accurate analysis of differences in protein abundance between

Figure 3. Histones induce epithelial and endothelial cell death. (A) A549 cells were treated for 16 h with different concentrations of histone
type II-A, and the cell morphology was evaluated. (B) A549 cell numbers were counted after treatment with various concentrations of histones for
16 h. (C) HUVEC or A549 cells were treated with 200 mg/ml histones for 16 h or left untreated (control). (D) HUVEC were treated for 16 h with
different concentrations of histones, and the extent of cytotoxity was measured. B and D are representative data of three independent experiments,
and in A and C pictures are representative pictures from three independent experiments at 206magnification.
doi:10.1371/journal.pone.0032366.g003

NET and Host Cell Cytotoxicity
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samples, did not show any difference between untreated NET and

NET treated with APC (Fig. S2D), implying that histones in NET

are protected against APC degradation. However, pre-incubation

of NET with histone antibodies against DNA/H1, H2A, H2B and

H4 but not H3 and citrullinated H3 significantly decreased NET-

mediated cytotoxicity (Fig. 5A). Moreover, a recent study showed

that polysialic acid, which is an extended and highly negatively

charged glycan, can directly bind to histone and this interaction

may be important for nervous system development and regener-

ation [46]. Pre-incubation of histones or NET with polysialic acid

considerably reduced both histone- and NET-mediated cytotox-

icity (Fig. 5B and C). These data indicate that the cytotoxicity of

NET is in great part mediated by histones.

Inhibition of neutrophil elastase does not inhibit the
cytotoxic effect of NET
Another abundant component of NET is neutrophil elastase [7].

To investigate the role of neutrophil elastase in NET-mediated

cytotoxicity, activity of elastase in NET was measured before or

after digestion. Increased activity of elastase in NET was observed

after digestion of DNA either by DNase or MNase (Fig. 6A), and

neutrophil elastase inhibitor significantly inhibited elastase activity

in NET, indicating that neutrophil elastase is active in NET and its

activity can be abolished by elastase inhibitor. However, using

elastase inhibitor, even at high concentrations, could not reduce

NET-mediated cytotoxicity in either digested or undigested NET

(Fig. 6B).

Inhibition of myeloperoxidase reduces NET-induced
cytotoxicity
One of the other granular components of NET is myeloperox-

idase (MPO) [5,7]. MPO has an important role in defense against

bacteria, viruses and fungi by conversion of hydrogen peroxidase

to hypochlorous acid. However, MPO activity can also induce

damage to adjacent tissue and, thus, contributes to the

pathogenesis of different inflammatory diseases including pulmo-

nary injury [47,48]. Pre-incubation of MPO inhibitor with

digested or non-digested NET led to reduction of NET-induced

Figure 4. APC decreases epithelial cytotoxicity induced by histones but not by NET. (A) Histones (200 or 100 mg/ml), pre-incubated for 1 h
at 37uC in the absence or presence of 100 nM human APC, were incubated with A549 cells for 16 h, followed by analysis of cytotoxicity. (B) NET were
incubated with APC (mass ratio APC: NET proteins, 1:5, 1:2 and 1:1) or without APC for 1 h at 37uC, followed by incubation with A549 cells for 16 h
and measurement of cytotoxicty. APC alone or active-site blocked APC (APC+PPACK) were incubated with A549 cells for control. (C) DNase-digested
and (D) undigested forms of NET were pre-incubated with 100 nM APC for 20 to 80 min before incubation with A549 cells for 16 h, followed by
determination of cytotoxicty. Shown are representative data of four independent experiments (mean + SD), ***p,0.001 and ns = non-significant.
doi:10.1371/journal.pone.0032366.g004

NET and Host Cell Cytotoxicity
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cytotoxicity in epithelial cells (Fig. 7). These data indicate that the

cytoxicity of NET, besides histones, is partly mediated by MPO.

NET formation in lung tissue and BALF of LPS-induced
lung injury model
Under physiological conditions and in the absence of infectious

or inflammatory stimuli, there are less than one million

polymorphonuclear neutrophils (PMN) in the lung tissue and no

PMN in the BALF [18]. To recruit PMN to the lung in

considerable number, LPS was instilled intratracheally into mice

to induce LPS-mediated acute lung injury [49–54]. NET

formation was observed in mouse lung tissue after LPS treatment

(as compared to the PBS controls), which was demonstrated by the

co-localization of extracellular chromatin with neutrophil elastase

(Fig. 8A) as well as the appearance of extracellular chromatin and

disintegration of cell membranes (Fig. 8B). In general, deconden-

sated chromatin in NET showed weak signal for DAPI staining,

while it was detected strongly by DNA/histone antibody. CD46

receptor, which was used as a cell membrane marker, is present on

all nucleated cells [55–57] and was used in this study to

demonstrate the release of chromatin from the cells since NET

formation requires the disintegration of the cell membrane.

However, the non-frequent NET detected structures and the

absence of long strands of chromatin in the tissue maybe due to

the presence of short fragments of DNA-protein complexes in the

airways, which is also confirmed recently by Douda and

Figure 5. Histone antibodies and polysialic acid decrease NET-mediated cytotoxicity. (A) NET were pre-incubated with different
antibodies against histones (DNA/H1, H2A, H2B, H3, citrullinated H3 [cit H3], H4) or with isotype-matched control antibodies. Antibody-treated NET or
NET alone (2) were incubated with A549 cells for 16 h to analyze the cytotoxicity. Shown are representative data of three independent experiments
(mean + SD), ***p,0.001 and ns =non-significant. (B) Histones or (C) NET were pre-incubated with antibody against histone H4 or polysialic acid
(PSA), followed by incubation with A459 cells for 16 h to analyze the cytotoxicity. Note that polysialic acid considerably decreased both histone- and
NET-mediated cytotoxicity.
doi:10.1371/journal.pone.0032366.g005
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co-workers [58]. Several areas adjacent to NET structures showed

tissue destruction which may be due to the cytotoxic effect of

NET. Colocalizaion of myeloperoxidase with citrullinated histone

H3, which is one of the histone modifications during NET

formation [59], also indicated NET formation in lung tissue

(Fig. 8C).

Moreover, after 3 to 48 h of stimulation with LPS, BALF was

collected and the numbers of PMN were counted. Application of

LPS provoked maximal recruitment of neutrophils after 24 h

(Fig. 9A). Since treatment of NET with MNase leads to

dissociation of NET-DNA from NET-proteins, neutrophil elastase

activity in the BALF supernatant (free elastase) was compared to

the activity of elastase in the NET structure after digestion with

MNase (NET-related elastase). There was a significant increase in

NET-related elastase activity after 12 h stimulation in comparison

to the corresponding free elastase activity, indicating more NET

formation after this time period of stimulation (Fig. 9B).

Considerable increase in elastase activity in BALF after MNase

digestion is in accordance with the data of Fig. 6A, where isolated

NET showed increase in elastase activity after DNase or MNase

digestion.

To characterize NET formation in BALF, mouse neutrophils in

BALF after 24 h LPS stimulation were isolated with neutrophil-

specific marker Ly-6G antibody, and stained for chromatin and

cell membrane marker CD46. Since non-LPS stimulated neutro-

phils, as negative controls, could not be isolated from BALF [18],

stimulation with PMA was used as a positive control. Therefore,

some of these neutrophils were further stimulated with PMA, a

potent inducer of NET formation, for 1.5 h in vitro. While LPS,

which induces neutrophil recruitment, provoked NET formation

(which was shown by the release of extracellular chromatin,

disintegration of cell membrane as well as weak signal for DAPI) to

Figure 6. Inhibition of neutrophil elastase does not inhibit NET-induced cytotoxicity. (A) The supernatants of unstimulated (Unstim) or
stimulated (Stim) neutrophils (50 nM PMA for 4 h) were collected and analyzed for elastase activity in the absence (filled bars) or presence (open bars)
of neutrophil elastase inhibitor (NEI). Likewise, NET were isolated from stimulated cells and digested with DNase or MNase or kept undigested (2),
followed by analysis of elastase activity in the same way. (B) Cytotoxicity of A549 cells was measured after 16 h treatment with NET (DNase-digested)
in the absence or presence of NEI. Similar results were seen for MNase- or non-digested NET as well as with different NEI concentrations from 0.125 to
1 mM. Shown are representative data of three independent experiments (mean + SD), ***p,0.001 and ns = non-significant.
doi:10.1371/journal.pone.0032366.g006

Figure 7. Myeloperoxidase inhibition moderately decreases NET-induced cytotoxicity of epithelial cells. Nondigested or DNase-
digested NET were pre-incubated without or with myeloperoxidase inhibitor (MPOI), followed by incubation of NET with epithelial cells, A549 or AT-II
cells, for 16 h and quantification of cytotoxicty. MPOI alone (37 ng/ml) was not toxic for the epithelial cells. Shown are representative data of three
(for AT-II cells, n = 2) independent experiments (mean + SD), *p,0.05 and ns =non-significant.
doi:10.1371/journal.pone.0032366.g007
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a certain extent, it was more pronounced in cells stimulated with

PMA (Fig. 9C). Together, these data demonstrate NET formation

in the BALF and lung tissue in LPS-induced lung injury model.

Discussion

Excessive NET formation or impairment of NET removal has

been reported to be linked to chronic inflammatory diseases such

as preeclampsia, small-vessel vasculitis and systemic lupus

erythematosus [26,28,29,31,60,61]. However, the direct influence

of NET and their components on host cells have not been

investigated. To verify that the cell destructive effect of

neutrophils is merely due to NET components and not to other

secreted components of neutrophils, the direct influence of

isolated NET on alveolar epithelial cells (as the major cells

responsible for gas exchange in the lung) as well as endothelial

cells was examined in this study. Here, NET-induced cytotoxicity

of epithelial and endothelial cells (whether primary or cell-line) in

a dose-dependent manner was noted. Interestingly, DNA-

digested NET (either completely digested or partially digested

NET) did not change NET-mediated cytotoxicity. Moreover,

boiled or denatured NET could not induce cytotoxicity which

may further indicate that mostly proteins in NET are involved in

NET-mediated cytotoxicity.

Bearing in mind that histones are the most abundant proteins of

NET with bactericidal and leishmanicidal activity [5,8], interfer-

ence with histones by antibodies, polyanionic compounds or

proteases should decrease NET-mediated cytotoxicity. Pre-treat-

ment of NET with antibodies against different histones could

decrease NET-mediated cytotoxicity to a varying degree; however,

this treatment was not effective for all kinds of histones. Specific

histone modification(s), unique structures of histones in complex

Figure 8. NET formation in LPS-induced lung injury mouse model. (A) Immunofluorescence staining of lung sections from mice after 24 h
intratracheal LPS administration was performed, as compared to the control section, for DNA/histone (red), neutrophil elastase (green) and DAPI
(blue). The higher magnification views of the insets (1, 2 and 3), which were randomly chosen, showed co-localization of neutrophil elastase (green)
and DNA/histone (red) in NET structures. (B) Immunofluorescence staining of sections from PBS- or LPS-treated mice was performed for DNA/histone
(red), CD46 (green) as a cell membrane marker and DAPI (blue). The randomly chosen insets (4, 5 and 6) showed NET formation in LPS-treated lungs
in higher magnification views as appeared by extracellular chromatin, disintegration of the cell membranes as well as weak signal for DAPI (indication
of chromatin decondensation). DAPI alone and DNA/histone alone were also shown for the insets 4, 5 and 6. In A and B, yellow arrows indicate some
of the tissue destruction areas adjacent to NET. Shown are representative pictures of.10 fields of tissue staining. (C) Immunofluorescence staining of
lung sections from mice after 24 h intratracheal LPS administration was performed for myeloperoxidase (MPO, red), citrullinated histone H3 (Cit His3,
green) and DAPI (blue). The higher magnification views (right column) of the selected areas showed co-localization of myeloperoxidase with
citrullinated histone H3 which indicate NET formation.
doi:10.1371/journal.pone.0032366.g008
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with DNA and other proteins or histone degradation during NET

formation or the protein complexes in NET could be responsible

for such differences [7,59,62].

Using polyanionic compounds that mask or bind histones would

be an alternative approach to interfere with histone-mediated

cytotoxicity. Incubation of both isolated histones and NET with

polysialic acid, which has been recently described as a binding

partner for histone H1 [46], significantly reduced cytotoxicity. Yet,

specificity of these compounds needs to be further explored.

Moreover, histones can be degraded with different proteases

such as cytotoxic T lymphocyte protease granzyme A [63],

activated nuclear proteasome [64] or APC. APC is a serine

protease which plays an important role as natural anti-coagulant

and also has been reported to degrade histones in an isolated

system and thereby may reduce cell death in sepsis [45]. While our

data showed that APC significantly decreased histones-mediated

epithelial cytotoxicity in a purified system, incubation of NET

(either nuclease-digested or not) with APC could not reduce NET-

mediated cytotoxicity, although much higher concentrations of

APC were used for treatment with NET as in a purified system.

Analysis of NET compared to NET incubated with APC by SDS-

gel electrophoresis and the subsequent protein identification did

not show histone degradation after APC treatment (Fig. S2).

Similarly, 2-D DIGE did not reveal any difference in the protein

patterns between both samples. The observed protective effect

could be due to (a) formation of DNA-histone complexes, (b)

Figure 9. Neutrophils (PMN) in the BALF of mice produce NET after LPS treatment. (A) PMN, recruited to the BALF of mice following
intratracheal LPS administration, were counted at different time intervals. (B) At the same time intervals, neutrophil elastase activity was measured in
the supernatant of BALF (free elastase, open bars) as well as in the MNase-digested pellet of BALF (NET-related elastase, filled bars). (C) PMN were
isolated from BALF of mice stimulated intratracheally with LPS for 24 h, and immunofluorescence staining of isolated cells was performed for DNA/
histone (red), CD46 (green) and DAPI (blue) (upper row). Isolated PMN were further stimulated with PMA for 1.5 h (lower row); arrows indicate NET
formation which is demonstrated by appearance of the extracellular chromatin, disintegration of the cell membranes as well as chromatin
decondensation. Shown are representative data of three independent experiments (mean + SD), ***p,0.001.
doi:10.1371/journal.pone.0032366.g009
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formation of complexes between histones and other proteins, (c)

specific histone modification in NET [7,59], (d) octamerization

and decreased accessibility of histones in NET or (e) partial

degradation of histones during NET formation [62]. The fact that

histone-induced cytotoxicity in NET cannot be reduced by APC

or completely abolished with histone antibodies still does not rule

out the importance of these proteins in cytotoxicity, since APC and

anti-histone antibodies may be the best option to decrease the

cytotoxicity of histones in a purified system but not in NET.

Another abundant protein component of NET is neutrophil

elastase [7], which has important roles in the clearance of invading

pathogens.Moreover, elastase is able to mediate neutrophil-induced

tissue damage and efficiently degrades extracellular matrix

components [65]. Neutrophil elastase in NET showed increased

activity after digestion of DNA. These data also support the

presence of NET in BALF after LPS induction, as increased elastase

activity was observed after DNA digestion. However, inhibition of

neutrophil elastase in different forms of digested NET did reduce

NET-mediated cytotoxicity. The presence of more cytotoxic

components of NET (such as histones) may explain this effect such

that inhibition of neutrophil elastase alone is not sufficient to

suppress NET-mediated cytotoxicity. Alternatively, elastase in NET

may induce cytotoxicity independent of its enzymatic activity; a

possible mechanism that requires further attention.

MPO, another granular protein with anti-microbial activity, was

also investigated for NET-mediated cytotoxicity in the present

study. MPO has an important role in defense against bacteria by

conversion of hydrogen peroxidase to hypochlorous acid. Never-

theless, MPO activity can also provoke damage to the adjacent

tissues; therefore, it may contribute to the pathogenesis of several

inflammatory diseases including pulmonary injury [47,48]. It has

been reported that MPO can provoke caspase-3 activation and

apoptosis in HL-60 human leukemia cells [66]. Moreover, MPO

can induce DNA strand breakage in lung epithelial cells [67]. Pre-

incubation of NET with MPO inhibitor moderately decreased

NET-mediated cytotoxicity of epithelial cells, indicating that MPO

may also contribute to the cell-damaging capacity of NET.

NET is composed of DNA and different types of proteins with

different sizes and cellular localization [7], and investigation of all

of these proteins on NET-mediated cytotoxicity was beyond the

scope of the present study. It should also be considered that

different procedures for NET collection or various techniques for

protein identification, such as gel-free mass spectrometry, may give

rise to different results. So far, a standard procedure for NET

collection, which truly confirms that the isolated NET contain all

the materials and structures comparable to the in vivo-formed

NET, has not been established. Therefore, it is essential to

mention the exact procedure of NET collection in studies dealing

with NET. Moreover, the diversity of NET proteins and their

incomplete identification make the recognition and analysis of the

cytotoxic parts of NET more complicated. Treatment of epithelial

cells with NET induced up-regulation of proteins with different

kinds of functions from regulation of cell cycle to glycolysis and

proteasome degradation pathway. Interestingly, several of these

proteins are known to be up-regulated during cell death and

apoptosis (Table S1) which further supported our data about

NET-mediated cytotoxicty.

NET structures and areas with tissue destruction adjacent to

NET were observed in the LPS-treated mice as well as in other

studies during influenza pneumonitis [68]. The absence of long

strands of chromatin in the tissue, which could be due to the

presence of short fragments of DNA-protein complexes in the

airways [58], may complicate the analysis of NET in lung tissue. It

is also worthwhile to consider that not only NET components but

also secretion of granular proteins can lead to tissue destruction.

During the preparation of the present study, Narasaraju and co-

workers showed that co-incubation of neutrophils with HUVEC

resulted in endothelial cell death [68]. However, in the present

study, epithelial and endothelial cells were incubated with isolated

NET and not with neutrophils to exclude the effect of other

components of neutrophils such as secreted enzymes and proteins

which are not bound to NET.

Lung epithelial cell death is not only observed in ALI but also in

other diseases such as cystic fibrosis. Progressive inflammation and

infection results in destruction of airways in the lungs of cystic

fibrosis patients, and patients’ lungs contain extracellular DNA

which accumulates in the airway due to the chronic bacterial

infection [21]. Using immunocytochemistry, we observed clear

structural similarity between isolated NET and the supernatant of

cystic fibrosis sputum where chromatin fibers were decorated with

granular proteins such as elastase (data not shown). This leads us

to propose that NET may be responsible for cytotoxic effects in the

broncho-alveolar space of cystic fibrosis patients. These observa-

tions were supported by a very recent study [69]. Although

aerosolic therapy with recombinant human DNase has been linked

with an improvement in airflow obstruction and a decrease in the

number of infectious respiratory exacerbations in some cystic

fibrosis patients, this is not true for all cases [70]. As reported in

this study, digestion of DNA in NET was not sufficient to abolish

NET cytotoxicity, and this could be one reason that DNase

therapy is not successful in all cystic fibrosis patients.

In this study, we tested the direct effect of NET on epithelial and

endothelial cells and found a case for histones in cytotoxicity. So

far, any study which estimates the exact amount of DNA-derived

NET in humans suffering from acute lung injury has not been

documented. Nevertheless, the DNA-NET concentrations used in

this study are in the range of DNA concentration in the sputum of

the cystic fibrosis patients [71] as well as plasma DNA

concentration of systemic lupus erythematosus patients [72].

Other studies also showed that the extracellular DNA in these

patients is predominantly derived from NET [29–31,69].

However, the in vivo situation is far more complex. Phagocy-

tosing cells remove dead cells and their debris (perhaps NET

components too). Furthermore, the ciliary motion in the lung

prevents the maintenance of dead cells in one place for a longer

period of time. It has to be further investigated whether one of the

reasons which promote lung destruction in patients with ALI or

cystic fibrosis is the impairment of NET removal mechanisms. In

addition to lung cells, NET showed cytotoxic effect on other cells,

such as HUVEC (also skin and neuronal cells, data not shown),

which may refer to the general cytotoxic capability of NET.

Supporting Information

Figure S1 Agarose gel electrophoresis of neutrophil-

and NET-derived DNA after treatment with MNase or

DNase. Isolated NET or lysed unstimulated neutrophils were

kept undigested or treated with DNase or MNase, followed by

separation of DNA on 1.5% agarose gel.

(TIF)

Figure S2 APC degrades isolated histones but not NET-

associated proteins. (A) SDS-gel electrophoresis (15%) of

histones and (B) NET proteins before or after incubation with

100 nM APC were carried out, and several bands were identified

with MALDI-TOF-MS. In (A) 10 times higher amount of APC

was loaded as a control. (C) 2-D gel electrophoresis (pH 7–11) of

NET (left) and NET treated with APC (right) were performed. (D)

NET (Cy3, green) and APC-treated NET (Cy5, red) labeled
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proteins were separated by 2-D gel electrophoresis. Gels from both

samples were overlaid with a minor space in the vertical

orientation (left gel) or exactly superimposed (right gel). No

difference in the gel profiles was noted.

(TIF)

Table S1 Identified up-regulated proteins in A549 cells

after incubation with NET. A549 cells were treated with

NET, and the up-regulated proteins were identified by MALDI-

TOF-MS. A wide range of proteins with different functions and

cellular localizations were up-regulated. Roles in cell death for

several proteins (indicated by a) have been reported based on www.

uniprot.org.

(DOC)

Table S2 Identified NET proteins by 2-D gel electro-

phoresis and MALDI-TOF-MS. 2-D gel electrophoresis was

performed for NET-proteins with isoelectric focusing at different

pH ranges (3–10 and 7–11). From 32 randomly chosen spots in

NET, we identified 13 different proteins from which 9 proteins

have been already described by Urban and co-workers [7]. Four

different proteins were identified for the first time (indicated by a).

Several functions of these proteins have been mentioned based on

www.uniprot.org.

(DOC)

Materials and Methods S1

(DOC)
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