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Neutrophils are the most abundant innate immune cells. The pathogenic roles of

neutrophils are related to chronic inflammation and autoimmune diseases. Psoriasis

is a chronic systemic inflammatory disease affecting ∼2–3% of the world population.

The abundant presence of neutrophils in the psoriatic skin lesions serves as a typical

histopathologic hallmark of psoriasis. Recent reports indicated that oxidative stress,

granular components, and neutrophil extracellular traps from psoriatic neutrophils

are related to the initial and maintenance phases of psoriasis. This review provides

an overview on the recent (up to 2019) advances in understanding the role of

neutrophils in the pathophysiology of psoriasis, including the effects of respiratory burst,

degranulation, and neutrophil extracellular trap formation on psoriatic immunity and the

clinical relationships.
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INTRODUCTION

Neutrophils are the most abundant cells in innate immunity. The main offensive functions of
neutrophils include respiratory burst accompanied by reactive oxygen species (ROS) generation,
degranulation (release of granules), and the formation of neutrophil extracellular traps (NETs)
(Figure 1) (1, 2). Neutrophils shape adaptive immunity because they communicate and interact
with the antigen-presenting cells and lymphocytes at the sites of inflammation (3, 4). Recently
great attention was brought to the role of neutrophils in the development and progression of
autoimmune diseases such as psoriasis.

Psoriatic neutrophils produce augmented respiratory burst with an overt accumulation
of oxidative stress involving complicated inflammatory pathways. Proteases released in the
degranulation step by neutrophils, such as myeloperoxidase (MPO), neutrophil elastase (NE),
proteinase 3, and cathepsin G, participate in the generation of ROS, proteolytical activation
of inflammatory mediators, and formation of autoantigens in psoriasis. The complexity and
prevalence of psoriasis among the population since antiquity encouraged scientists to study the
etiology of the disease and its relation to the immune system and inflammatory responses. Elegant
reviews described the role of inflammation and immune system in the development of psoriasis
(5, 6), the importance of biologic therapies targeting systemic inflammation (7), the significance of
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utilizing specific antibodies (8), the contribution of platelets
to regulation of NET formation (9), the antimicrobial
and pathogenetic roles of neutrophils in autoimmune,
autoinflammatory, metabolic (10) and cardiovascular diseases
(11). Also, recent books summarized the causes, symptoms, and
treatment options of psoriasis (12–15).

However, the role of neutrophils in psoriasis was not deeply
analyzed and summarized based on recent literature. Thus, in
this work, we focus on summarizing recent findings on the
main offensive features of neutrophils including respiratory
burst, degranulation and NETs and their direct connection with
development and progression of psoriasis (Figure 2). We hope
that our work would provide a foundation for further studies
to attenuate overstimulation of neutrophils in psoriasis and aid
patients with a debilitating disease.

PSORIASIS

Psoriasis affects ∼2–3% of the world population (>125
million people). Psoriasis is a common, chronic, immune-
mediated disease that is manifested mainly as skin lesions and
extracutaneous comorbidities (16, 17). It is associated with
systemic inflammation, similar to that observed in obesity,
malignancy, psoriatic arthritis, cardiovascular disorders, chronic
obstructive pulmonary diseases, type 2 diabetes mellitus, liver
and renal diseases, and inflammatory bowel diseases (18–20).
Psoriasis affects men and women equally and usually starts to be
manifested at the age of 20 to 30, but children and teenagers can
be also affected (21). Clinical types of psoriasis include psoriasis
vulgaris, guttate psoriasis, inverse psoriasis, pustular psoriasis,
and erythrodermic psoriasis (22). Typical skin manifestations of
psoriasis include erythematous, indurated, and scaling plaques
that are painful, itchy, and have a burning sensation (16, 23).
Psoriasis decreases patients’ quality of life due to unpleasant
symptoms and related public stigma (24, 25). The unpleasant
skin appearance contributes to reduced employment levels and
thus, affects the financial status of patients (26). Depression and
suicidal tendencies are also increased in patients with psoriasis
(27, 28). Therefore, psoriasis results in long-term physical,
psychological, and economic burden at both the individual and
societal levels.

NEUTROPHILS IN PSORIASIS

Psoriasis is an immunogenetic disease that is associated with
the interactions between the innate and adaptive immune
systems (29). The immunology disturbance in psoriasis is
related to overstimulation of neutrophils, dendritic cells, T cells,
keratinocytes, fibroblasts (6, 30), mast cells (31), and melanocytes
(30, 32). Munro’s microabscesses filled with neutrophils, which
were first described in 1898, are considered as one of the major

Abbreviations: CCL, CC-chemokine ligand; CXCL, chemokine (C-X-C motif)

ligand; IL, interleukin; IFN, interfenon; LPS, lipopolysaccharide; mDCs, myeloid

dendritic cells; MPO, myeloperoxidase; NET, neutrophil extracellular trap; NOX,

NADPH oxidase; NE, neutrophil elastase; NLR, neutrophil-to-lymphocyte ratio,

pDCs, plasmacytoid dendritic cells; PLR, platelet-to-lymphocyte ratio; Th, T helper

cell; TLR, Toll-like receptor; TNF, tumor necrosis factor.

histopathological hallmarks of psoriasis (33). Neutrophils are
now thought to be regulators between the innate and adaptive
immune systems (34, 35).

There is no cure for psoriasis, however the symptoms can
be reduced either by avoiding triggers or by medications.
Currently, the available treatments such as phototherapy,
topical therapy (corticosteroids, vitamin D analogs), systemic
therapy (methotrexate, apremilast, cyclosporin), and biological
treatments offer a relieve for patients with different severity
of psoriasis. However, the risk-benefit ratio must be well-
considered on individual basis, particularly, considering the
chronic course of the disease and limitations of the long-
term use of certain drugs (16). Although T cell immunology-
related treatments have emerged as attractive options for
psoriasis, according to a systematic review of adherence and
satisfaction to current treatment covering studies conducted
in 2002 (36) or between beginning of 2009 and end of 2014
in European Union (37), psoriatic patients expressed only
moderate satisfaction with the available treatments as evidenced
by the poor adherence rates, in particular to topical treatments
(36, 37). That might be the biggest motivating factor for
the use of alternative treatment methods such as traditional
Chinese medicine and herbs (Scutellaria baicalensis, Zingiber
officinale, Indigo naturalis, Mahonia aquifolium, Aloe vera)
(38), dietary supplements (fish oil, vitamin D) or other (39).
Furthermore, the combination of certain alternative medicines
with conventional drug therapies has been shown to improve
the treatment efficacy, which points to the importance of
evaluation of safety of combined treatments, education of
doctors but also improvements in patient-doctor interactions
(40). Indeed, modern biological therapies demonstrate improved
safety and efficacy, as well as better satisfaction in patients, but
belong to an expensive class of drugs, with limited availability
(41). Biological therapies of psoriasis include monoclonal
antibodies or inhibitors targeting tumor necrosis factor (TNF)α
(infliximab, adalimumab; etanercept) (42–44), interleukin (IL)-
23/IL-12 (ustekinumab) (42), IL-23 (guselkumab, tildrakizumab,
risankizumab) (45, 46), or IL-17 (secukinumab, ixekizumab,
brodalumab) (11, 47, 48). The available therapies indirectly affect
the function and numbers of neutrophils. According to previous
studies, the neutrophil-to-lymphocyte ratio (NLR) and platelet-
to-lymphocyte ratio (PLR) are significantly increased in patients
with psoriasis (49). While the elevated NLR and PLR values
are particularly associated with psoriasis, they do not indicate
the severity of the condition (50). The importance of NLR
level in the progression of the disease was demonstrated by
the reduction in NLR level following psoriasis treatment (51).
That brings in question the effectiveness of certain treatments
such as narrow-band ultraviolet B phototherapy which does
not affect the increased level of NLR (52). Increased NLR and
PLR levels emerged as unrecognized predictors of subclinical
atherosclerosis in patients with psoriasis (53). The presence
of excessive amount of neutrophils is characteristic for the
generalized pustular psoriasis. Recent reports indicated that the
depletion of neutrophils significantly relieves the symptoms
of pustular psoriasis in patients that did not respond well
to conventional treatments (54). Understanding the role of
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FIGURE 1 | The offensive mechanisms of neutrophils in inflammation. In the activated neutrophils, respiratory burst, degranulation, and the formation of neutrophil

extracellular traps (NETs) are the main mechanisms responsible for inflammation. During the respiratory burst, neutrophils utilize oxygen to produce reactive oxygen

species (ROS) such as superoxide (O−

2 ), peroxide H2O2 or hypochlorous acid (HOCl) by activating NADPH oxidase (NOX2) and myeloperoxidase (MPO). As activation

processes are triggered by diverse stimuli, neutrophils mobilize different granules including azurophilic granules, specific granules, gelatinase granules, and secretory

vesicles. Subsequently, neutrophils degranulate and release various granular compounds of which neutrophil elastase (NE), MPO, proteinase 3, LL37, and lipocalin 2

play an important role in the pathogenesis of psoriasis. NETs are novel and pivotal components of neutrophils composed of extruded sticky and decondensed

chromatin decorated with many antimicrobial compounds, such as histones, MPO, NE, and cathepsin G. The formation of NETs is involved in complicated

inflammatory reactions and contributes to the pathogenesis of psoriasis. MPO, myeloperoxidase; NADPH, reduced nicotinamide adenine dinucleotide phosphate; NE,

neutrophil elastase; NET, neutrophil extracellular trap; NOX2, NADPH oxidase.

neutrophils in psoriasis attracted the attention of scientific
community aiming to develop treatment protocols focusing on
attenuating neutrophil overstimulation in this disease (55).

RESPIRATORY BURST AND PSORIASIS

Circulating neutrophils are recruited to inflammatory sites
following inflammatory signals. They are then activated to
generate and release large amounts of ROS in a phenomenon
known as respiratory burst. NADPH oxidase (NOX2) and MPO
are two key enzymes that contribute to the respiratory burst
(56, 57). NOX2 is composed of transmembrane cytochrome
b558 (p22phox and gp91phox) and cytosolic subunits (p40phox,
p47phox, p67phox, and Rac1/2). The assembled NOX2 complex,
at the phagosomal and plasma membranes, is fully activated
to generate superoxide anion (O•−

2 ), which is the origin of
various ROS produced by neutrophils. Superoxide (O•−

2 ) is
rapidly converted to hydrogen peroxide (H2O2) by superoxide
dismutase (SOD). MPO, a heme peroxidase enzyme which is

released in a process known as degranulation, utilizes H2O2

to produce many secondary reactive products. These products
include hypochlorous acid (HOCl), chloramines (R-NHCl), and
hypothiocyanite (OSCN–), as well as organic radicals such as
products of lipid peroxidation (Figure 1) (58, 59).

ROS production is an integral part of the antimicrobial activity
of neutrophils. However, the overproduction or inadequate
clearance of ROS can cause various oxidative stress-related
dysfunctions. These include cell and tissue damage; peroxidation
andmodification of DNA, lipids, and proteins; autoimmuneNET
formation; and autoantibody generation (58, 60). Neutrophils
obtained from patients with psoriasis were shown to possess
increased MPO and NOX2 activities, and release more ROS
compared with neutrophils from healthy individuals (61, 62).
Keratinocytes and T cells in psoriatic lesions produce priming
agents of neutrophils, which results in an augmented respiratory
burst by neutrophils with the overproduction of ROS (63–66).
Accumulation of oxidative radicals also contributes to the
pathogenesis of psoriasis. In response to the overproduction of
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FIGURE 2 | Role of neutrophils in psoriasis. Various and diverse endogenous and exogenous impulses such as antigens, trauma, infection, or emotional stress can

trigger the complex immune reactions leading to psoriasis. The interplay of neutrophils, dendritic cells, and T cells bridges the innate immune and adaptive immune

systems. T cells and keratinocytes release chemokines, such as IL-17, CXCL1, CXCL2, and CXCL8, that mediate the recruitment of neutrophils. Circulating

neutrophils migrate to the psoriatic lesions and induce respiratory burst, degranulation, and formation of NETs, thereby contributing to the immunopathogenesis of

psoriasis which involves T cell imbalance, keratinocyte proliferation, angiogenesis, and auto-antigen formation. Neutrophils from patients with psoriasis have enhanced

NOX2 and MPO activity and augmented respiratory burst. MPO also participates in generating oxidative stress and upregulating degranulation. The accumulated

oxidative stress produced by neutrophils could stimulate the antigen-presenting cells pDCs via TLR receptors 7 and 9 which stimulate antigen-specific CD8+ T cells

(memory T cells in dermis and naive T cells in lymph node) to release cytokines, chemokines, and other innate immune mediators. These T cells may also migrate to

epidermis and trigger local inflammation and keratinocyte proliferation via MHC I receptor of keratinocytes. Production of IFN-α and IFN-β by pDCs then stimulates

mDCs to secrete pro-inflammatory mediators such as TNF, IL-12 and IL-23. Proteinase 3 released from neutrophils cleaves pro-IL-36 to activated IL-36 cytokine

amplifying the response of mDCs. TNF, IL-12, and IL-23 play an important role in the initiation of the Th1, Th17, and Th22 cells immune response in lymph node,

leading to a secretion of various cytokines and chemokines. IL-1 is further amplifying Th17 response while TNF and IFN-γ is creating a back loop to mDCs activation.

Th17 activation then leads to the production of IL-17 activating neutrophils and keratinocytes via IL-17 receptors which generates profound IL-17 response.

Keratinocytes produce TNF and CCL20, a chemotactic for T cell and DCs. Neutrophils degranulate and release MPO, NE, proteinase 3, cathepsin G and lipocalin.

Proteinase 3 cleaves and converts the resting TNFα located in membrane of epithelial cells (mTNFα) to an activated state called soluble TNFα (sTNFα). Proteinase 3

also contributes to the formation of the LL-37 which serves as autoantigen. The chromatin of NETs (DNA) combined with LL-37 have a profound role in the initiation

and maintenance of immune response in psoriasis. NETs further supply IL-17 and induce Th17 cells to release more IL-17, which plays a decisive role in the

maintenance of psoriasis. These processes participate in the psoriasis complex inflammatory reactions and lead to the escalation of local psoriatic tissue inflammation.

IL-22 contributes to the formation of characteristic psoriatic skin lesions including epidermal hyperplasia and acanthosis (thickening of skin). The activation of the

following transcription factors promote TNF and IL-17 production and formation of downstream amplification loops in psoriasis: the Janus kinase (JAK)–signal

transducer and activator of transcription (STAT) family, nuclear factor-κB (NF-κB) and cyclic AMP. Furthermore, the activation of endothelial cells induces vascular

proliferation, angiogenesis and the expression of adhesion molecules in the endothelium to recruit additional inflammatory cells into the skin such as mast cells and

macrophages contributing to the pathogenesis of psoriasis. CCL, CC-chemokine ligand; CXCL, chemokine (C-X-C motif) ligand; IL, interleukin; IFN, interfenon; MHC I,

major histocompatibility complex class I, MPO, myeloperoxidase; NET, neutrophil extracellular trap; NOX, NADPH oxidase; NE, neutrophil elastase; pDCs,

plasmacytoid dendritic cells; mDCs, myeloid dendritic cells; TLR, Toll-like receptor; TNF, tumor necrosis factor.

ROS, dendritic cells are stimulated to present antigens to the T
cells which results in an imbalance of T helper cell (Th)1 and Th2
cells, stimulation of keratinocytes proliferation, and promotion of

angiogenesis (Figure 2). ROS then serve as the second messenger
to activate mitogen-activated protein kinase (MAPK), nuclear
factor-kappa B (NF-κB), or the Janus kinase-signal transducer
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and activator of transcription proteins (JAK-STAT)-related
inflammatory pathways (67, 68). Suppression of respiratory burst
of neutrophils emerged as a plausible pathway of attenuating
overly immune response associated with psoriatic symptoms.

DEGRANULATION AND PSORIASIS

Neutrophils possess a multi-lobed nucleus, few mitochondria,
and many specific storage organelles called granules. Granules
are classified into azurophilic granules, specific granules,
gelatinase granules, and secretory vesicles depending on their
size, reaction with peroxidase-reactive dye, staining with 3,3’-
diaminobenzidine, protein content, and tendency to mobilize
(Figure 1) (69, 70). Azurophilic (peroxidase-positive or primary)
granules are packed with MPO, bactericidal/permeability-
increasing protein, defensins, lysozyme, and serine proteases,
such as neutrophil elastase (NE), proteinase 3, and cathepsin G.
Lysozyme is also found in specific and gelatinase granules (55).
Specific (secondary) granules contain distinctive iron-binding
glycoprotein lactoferrin, neutrophil gelatinase-associated
lipocalin (NGAL, also called serum lipocalin-2, LCN2),
collagenase, cytochrome b558, MAC-1 (CD11/CD18), and
importantly, cathelicidins such as LL-37 (71). Cytochrome b558
and MAC-1 are also present in gelatinase granules and secretory
vesicles (55). Gelatinase (tertiary) granules store gelatinase,
lysozyme, arginase 1, and ficolin 1 (72). The secretory vesicles
contain a characteristic alkaline phosphatase (57).

As activation processes of neutrophils are triggered by
diverse stimuli such as bacterial or proinflammatory lipid
mediators, neutrophils mobilize different granules and release
the aforementioned granular components in a process known
as degranulation or exocytosis (57). Degranulation is regulated
by complicated control mechanisms, such as calcium signaling
and actin remodeling (72–74). Azurophilic granules discharge
toxic components into phagosomes and at inflammation sites.
The secretion of specific and gelatinase granules promotes
migration of neutrophils and the antimicrobial activity. The
main purpose of releasing secretory vesicles is to facilitate
neutrophils recruitment. Therefore, the degranulation process
promotes firm adhesion, migration, respiratory burst, and
successive NET formation of activated neutrophils (75).
However, the dysregulation of neutrophil degranulation
could damage tissues as observed in various diseases, such
as hypoxia-related airway injury (76), severe pneumonia and
chronic obstructive pulmonary diseases (77), atherosclerosis
(78, 79), acute inflammatory liver injury (80), and rheumatoid
arthritis (81, 82).

In psoriasis, MPO is significantly increased in skin plaques
and is positively correlated with the severity of psoriasis
(83). Serum MPO is also increased in patients with psoriasis,
which may be related to recruited leukocytes in psoriatic skin
lesions (84). MPO, the major enzymatic content of neutrophil
granules, accounts for ∼5% of the dry weight of the cell and
represents the most toxic enzyme expressed by neutrophils
(85). MPO is involved in the respiratory burst and can
bind to CD11b/CD18 integrins, thereby contributing to the
upregulation and augmentation of neutrophil degranulation

in psoriasis (86). Furthermore, the neutrophil granule-derived
serine proteinases, such as NE, proteinase 3, and cathepsin G, can
activate interleukin (IL)-36 cytokine and lead to the escalation
of local psoriatic tissue inflammation (87, 88). Proteinase 3
cleaves and converts the resting TNFα located in membrane
of epithelial cells (mTNFα) to an activated state called soluble
TNFα (sTNFα), which participates in the psoriasis complex
inflammatory reactions (Figure 2). Proteinase 3 also contributes
to the formation of the LL-37, an antimicrobial peptide belonging
to cathelicidin family of polypeptides (89, 90), which serves
as autoantigen mediating immune response in psoriasis (33).
Antimicrobial peptides, synthesized by various leukocytes and
epithelial cells, act via DNA/RNA complexes binding Toll-like
receptors (TLR) 7, 8, and 9 to facilitate skin inflammation
(91, 92). In addition, NE proteolytically activates the epidermal
growth factor receptor (EGFR) signaling pathway resulting in
excessive keratinocyte proliferation in psoriasis (93). Thus, the
inhibition of neutrophils degranulation process or some of the
enzymes contributing to psoriasis (NE, MPO, proteinase 3) are
feasible targets for alleviating psoriatic symptoms.

NETS AND PSORIASIS

The process of forming neutrophil extracellular traps (NETs) was
first reported in 2004 (94). NETs are composed of extruded sticky
chromatin ornamented with many antimicrobial components
including histones, MPO, NE, cathepsin G, high mobility group
protein B1 (HMGB1) and antimicrobial peptides, such as LL-
37 (Figure 1) (95). NETs can catch and destroy pathogens in
order to prevent microbes from spreading (96). However, the
dysregulated formation and clearance of NETs can result in many
diseases. These include autoimmune diseases, such as systemic
lupus erythematosus, anti-neutrophil cytoplasmic autoantibody
(ANCA)-associated vasculitis, rheumatoid arthritis, gout (97),
and autoimmune hepatitis (98); cardiovascular diseases, such
as atherosclerosis, thrombosis, and abdominal aortic aneurysm
(99–101); respiratory disorders inclusive of asthma, chronic
obstructive pulmonary disease, cystic fibrosis, tuberculosis,
bacterial and viral pneumonia, and transfusion-related acute
lung injury (102, 103); digestive diseases, such as inflammatory
bowel diseases, primary sclerosing cholangitis, primary biliary
cholangitis (98); and cancer-related organ damage, metastasis,
and thrombosis (9). Recently, a role of NETs in awakening of
dormant cancer cells was discovered (104).

The process of NET formation is termed NETosis, which is
subdivided into lytic NETosis and non-lytic NETosis. In lytic
NETosis (also called suicidal NETosis), activated neutrophils
generate NETs (it takes 2–4 h) and undergo a programmed cell
death, which differs from necrosis, necroptosis, and apoptosis
(105). Lytic NET formation is triggered by various stimuli
undergoing different pathways. For instance, phorbol myristate
acetate (PMA) increases cytosol calcium, activates protein
kinase C (PKC)/Raf/MEK/ERK pathway, and induces NOX2
to generate ROS. ROS then acts as the second messenger
to disintegrate the nuclear membrane and stimulate MPO to
translocate NE to the nucleus where it causes proteolysis of
histones and decondensation of chromatin. Afterward, peptidyl
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arginine deiminase 4 (PAD4)-mediated hypercitrullination of
histones allows decondensed chromatin, the main component
of NETs, to be readily expelled from the cell nucleus. Finally,
as the plasma membrane dissolves, the chromatin decorated
with granular components is released as extracellular traps (106).
Other pathways of lytic NETosis include stimulation by fungi
(such as Aspergillus spp.) through Dectin 2 and complement
receptor 3 (CR3) (107), LPS (lipopolysaccharide) under special
conditions described later in detail (108) or by monosodium
urate crystals via receptor-interacting serine/threonine-protein
kinase 1 (RIPK1) and RIPK3 pathway (109). All of these pathways
involve NOX2, MPO, and NE activation (105). Nevertheless,
there are other stimulators of NETosis acting independently
of NOX2 such as ionomycin, or immune complexes (110).
Ionomycin induces NETs via small conductance calcium-
activated potassium channel protein 3 (SK3) and protein kinase
C ζ (PKCζ), mitochondrial ROS (mitoROS), NE, and protein-
arginine deiminase type 4 (PAD4) (111). Immune complexes
related NETosis through FcγRIIIb are highly dependent on
mitoROS (110, 112). The lytic-NETosis inducers such as PMA,
ionomycin, or living bacteria were confirmed using a live imaging
confocal microscopy, however, dead bacteria, LPS, glucose, or
activated platelets alone failed to induce NETosis in the in vitro
experiment (113). Such discrepancy might be due to variations in
the experimental design of various studies.

On the other hand, non-lytic NETosis (also called vital
NETosis) does not require neutrophils lysis or even the
breach of the plasma membrane. Following the release of
NETs, neutrophils are alive and keep their functions, such as
chemotactic movement, phagocytotic ability, and respiratory
burst power (98). This form of NETosis usually occurs early
in infection by Gram-positive bacteria in human and mice.
The process is very rapid (5–60min to form NETs), requires
both TLR 2 and complement-mediated opsonization, and
is independent of NOX2 (114). Non-lytic NETosis can be
induced by Staphylococcus aureus via a unique mechanism
where the inner and outer nuclear membranes are separated,
and the vesicles filled with nuclear DNA are extruded intact
into the extracellular space where they rupture and release
chromatins. Despite that this type of NETs keep a limited amount
of proteolytic activity it is still able to kill S. aureus (115). Non-
lytic NETosis can also be stimulated by Candida albicans via
interaction with CR3 and fibronectin (116). Moreover, a special
type of non-lytic NETosis, which releases mitochondrial DNA
and is dependent on ROS, is stimulated by the granulocyte-
macrophage colony-stimulating factor (GM-CSF) and LPS (10).
Interestingly, Leishmania parasites induce both lytic and non-
lytic NETosis (117). In that case, the chromatin decondensed
by PAD4 is mixed with granular proteins and subsequently
excreted with a minor nuclear envelope disruption and without
cell membrane disorganization (10, 98). Delgado-Rizo et al.
previously summarized the microbial inducers of NETs (10) but
we would like to clarify the effect of LPS. Lipopolysaccharide
(LPS) is an important component of the outer membrane
of gram-negative bacteria known to trigger immune response
(118). For a long time, it was unclear whether the direct
interaction between LPS and neutrophils causes NETs release,
because several reports showed LPS-induced lytic NET formation

(94, 119) while other not (113, 120). Recently, it has been shown
that only species- and serotype-specific LPS is able to induce
NETs by direct interaction with neutrophils. It was demonstrated
that LPS has to be derived from specific bacterial strain
of Escherichia coli (O128:B12) and Pseudomonas aeruginosa
(serotype 10) and must be present at sufficient concentration
(8 pg per neutrophil). The neutrophils then undergo a lytic-
NETosis independent of TLR4. However, non-lytic NETosis is
triggered when sufficient amount of LPS regardless of bacterial
origin interacts with TLR4 of platelets (108). The process is
followed by binding of platelets to the P-selectin glycoprotein
ligand-1 (PSGL-1) of neutrophils, and the release of HMGB1
by platelets (9, 95). Moreover, there is a growing evidence of
crucial role of the other endogenous and immune factors in
the process of NET formation, such as presence of platelets
(95, 120), glucose (10), or other effectors (121). To orchestrate
inflammatory response, NETs in combination with LPS were
shown to induce the production of IL-1β by J774 macrophages
via the caspase-1 and caspase-8 pathways (122).

In patients with psoriasis, neutrophils are pre-activated and
form NETs in psoriatic skin lesions (55, 123). NETs are increased
in blood samples and correlate with the severity of psoriasis
(124, 125). They create an extremely immunogenic environment
and participate in the initial and maintenance phases of psoriasis
(126, 127). NETs stimulate epidermis to release inflammatory
cytokines via TLR4 and IL-36 receptor crosstalk (123). Various
exogenous and endogenous stimuli and ROS generated by
neutrophils initiate immune reaction leading to psoriasis
which involves T cell imbalance, keratinocyte proliferation,
angiogenesis, and auto-antigen formation (Figure 2). The
chromatin of NETs in psoriasis plaques is accompanied with
antimicrobial peptide LL-37 released by keratinocytes to
stimulate the synthesis of inflammatory mediators including
IFN-α and IFN-β in plasmacytoid dendritic cells (pDCs) (16).
Myeloid DCs (mDCs) are then activated to release many pro-
inflammatory mediators, such as IL-6, IL-12, IL-23, and TNFα
(91, 92), which play an important role in the initiation of the
Th1, Th17, and Th22 cells immune response (16). Proteinase 3
released from neutrophils cleaves pro-IL-36 to activated IL-36
cytokine which is together with TNF and IFN-γ amplifying
the response of mDCs. Th17 activation then leads to the
production of IL-17 activating neutrophils and keratinocytes via
IL-17 receptors which generates profound IL-17 response (16).
Secretory leukocyte protease inhibitor (SLPI), a component of
NETs with an inhibitory function on NET formation, may bind
to DNA and NE in psoriatic skin lesions and activate the pDCs to
produce type 1 interferons (IFN-α, IFN-β, etc.) which regulates
autoimmunity in psoriasis (128–130). In addition, NETs allow
the mDCs to readily sense the neutrophilic antigens and allow
the T cells to be primed directly (45, 131, 132). Thus, NETs play
an important role in the pathophysiology of psoriasis due to their
link between the innate and adaptive immune systems. Psoriasis
is accompanied with increased serum levels of TNF-α, interferon
(IFN)-γ, IL-1, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-17, IL-18
(133), IL-22 (134), chemerin, resistin (135), lipocalin-2 (LCN2)
(123), soluble E-selectin (sE-selectin) (136), complement 3 (137),
and decreased levels of transforming growth factor-beta (TGF-β)
and adiponectin (133). These cytokines may therefore serve as
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potential biomarkers for psoriasis and treatment response in
patients. According to a cross-sectional study, psoriasis patients
had increased proinflammatory macrophage type 1 (IL-1, IL-6,
TNF-α), Th1 (IL-2, IL-12, IFN-γ), Th17 (IL-6, IL-17) but also
anti-inflammatory Th2/T regulatory (Treg) (IL-4, IL-10) profiles
which may be correlated to the severity of psoriasis (133).
Among the important mediators in psoriasis, LCN2 acts as
an antimicrobial protein as well as adipokine associated with
obesity, insulin resistance, and atherosclerotic disease, and is
also responsible for the activation of the immune system in
response to inflammatory and toxic stimuli. Importantly, serum
LCN2 levels are elevated in psoriatic patients (138) and correlate
with the severity of itching and thus might be used as a clinical
marker for itching in psoriasis (139). Not only granulocytes but
also keratinocytes of epidermis secrete LCN2, which drives the
chemotaxis of neutrophils and sustains NET formation, and
thereby in turn maintains the psoriatic inflammation (123). The
increased LCN2 blood levels were observed in patients with
palmoplantar pustular psoriasis (140) as well as other chronic
inflammatory skin diseases such as acne inversa (141) or atopic
dermatitis (142). Wolk et al. reported a positive correlation
between the LCN2 production and IL-1β levels in the epidermis,
which was further enhanced by IL-17 and TNF-α, but not by
IL-22. The contribution of LCN2 on skin neutrophil infiltration
is apparent (141). In the clinical setting, tissue LCN2 was
found to be also significantly higher in psoriasis, regardless of
dyslipidemia, or metabolic disturbance in patients. But the LCN2
levels together with psoriasis area and severity index (PASI)
score significantly dropped after NBUVB treatment (143). The
in vivo effects of LCN2 on topical imiquimod (IMQ)-induced
psoriasis-like skin in BALB/c mice were evaluated by Hau
group (138). In addition to markedly exacerbated erythema and
scaling in IMQ-treated murine skin, LCN2 increased the mRNA
expression of interleukin (IL)-17A, IL-17F, IL-22, IL-23, CC-
chemokine ligand (CCL)20, TNF-α, chemokine (C-X-C motif)
ligand (CXCL)1, CXCL2, LCN2, and S100A7 while it did not
affect the mRNA levels of IFN-γ, or CXCL10 in the skin. Similar
effects were observed in vitro on human keratinocytes (138). The
data suggest a link between NETs-related cytokines and Th-17
activation in psoriasis.

NET-TH17 AXIS AND PSORIASIS

Psoriasis has been considered as a T-helper (Th)1/Th17-
mediated, chronic inflammatory dermatosis with relation to
metabolic syndromes (144). Apart from keratinocytes and T
lymphocytes (145), neutrophils are one of the major cellular
sources of IL-17 via NET formation in psoriasis (146), and
also mast cells were reported to generate extracellular traps
(147). NETs activation has been linked with Th17 responses
in psoriasis and has drawn particular attention recently (148).
In an experimental model, NETs induced the generation
of CD3+CD4+IL-17+ (Th17) cells from peripheral blood
mononuclear cells, which requires monocyte and cell-to-cell
contact. Th17 induction was enhanced by a psoriasis risk-
associated variant in the TRAF3IP2 gene encoding the D10N
variant of Act1 which serves as a key mediator of IL-17 signal
transduction. That provides an evidence of genetic basis for the

enhanced IL-17 expression in psoriasis. IL-17-expressing T cells
and neutrophils were suggested to have a cross-talk because
IL-17-expressing T cells produce cytokines which promote the
development, recruitment, and lifespan of neutrophils (149).

Althoughmany immune diseases including psoriasis or atopic
dermatitis have been traditionally classified as Th1/Th2 biphasic
disorders, there is a growing evidence supporting a rather
systemic activation of other multiple Th-cell subsets, such as
Th17 cells producing IL-17 and IL-22 (Figure 2). Interestingly,
in comparison with psoriasis, atopic dermatitis showed reduced
genomic expression of IL-23, IL-17, IFN-γ, and other innate
defense genes (hBD2, elafin, LL-37) (150). Elevated IL-17 is
detected in psoriatic skin lesions and in the blood (151). IL-
17 mainly stimulates keratinocytes to produce neutrophil-tropic
chemokines CXCL-1, CXCL-2, CXCL-8 (IL-8), and antimicrobial
peptides, such as LL-37. IL-17 serves as an autocrine-amplifying
mediator that is simultaneously involved in the recruitment,
activation, and survival of neutrophils (6). There are several
subtypes of IL-17 family cytokines binding to IL-17 receptors,
namely IL-17A, IL-17B, IL-17C, IL-17D, IL-17E (also known as
IL-25) and IL-17F (145). IL-17A from neutrophils stimulates
keratinocytes to express CCL20, attracting Th17 cells with CCR6
expression to release IL-17A, and finally resulting in positive
feedback and the development of the psoriatic lesions (8). IL-
17C is a unique cytokine that is produced by keratinocytes and
that is involved in such synergistic loops that may be responsible
for amplifying the inflammation in both psoriasis and atopic
dermatitis. This may ultimately lead to induction of S100As and
other molecules that accompany epidermal hyperplasia. Thus,
antagonism of IL-17C may be beneficial for psoriasis and atopic
dermatitis treatment (152). IL-17E then recruits neutrophils by
activating macrophages and contributes to the infiltration of
psoriatic neutrophils (153). Besides other innate immune cells,
neutrophils significantly contribute to IL-17-related immune
regulations in psoriasis by employing several mechanisms
including the formation of NETs (45). Moreover, IL-17 released
by NETs leads to endothelial dysfunction in atherosclerosis
and keratinocyte proliferation in psoriasis, which may explain
why patients with psoriasis also suffer from increased risk of
atherosclerosis (11). Anti-IL-17 drugs, such as secukinumab,
clear the neutrophils in the epidermis and can be used to
effectively treat psoriasis (48). The targeted biologic therapies are
of great importance with regards to an increasing number of
comorbidities associated with psoriasis together with its systemic
inflammation nature indicating that these diseases are sharing
some common pathological mechanisms (7). In summary, NETs
were demonstrated as potential upstream drug targets for the
treatment of psoriasis.

CONCLUSION

Neutrophils in psoriasis are of interest, particularly, because of
their crucial roles in the innate and adaptive immune system.
The respiratory burst with ROS generation, degranulation,
and formation of NETs are the main offensive functions of
neutrophils and contribute to the immunopathogenesis of
psoriasis. Recently, great attention was brought to the role
of NETs in psoriasis because activated neutrophils producing
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NETs are abundant in psoriatic skin plaques and pustules, as
well as in the serum of patients with psoriasis. Overexpression
of NETs leads to the activation of other cells releasing IL-17,
which stimulates the synthesis of inflammatory mediators and
in turn leads to auto-amplification of neutrophils. Therefore,
further development of inhibitors and biologic drugs targeting
overexpressed offensive features of neutrophils, i.e., respiratory
burst, degranulation, and NET formation, is of great importance.
We believe that the consideration of the role of neutrophil
defense mechanisms in the pathogenesis of psoriasis offered in
this review highlights the need to further investigate neutrophils
for possible improvements of available treatments in the future.
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