Neutrosophic Generalized Pre Regular Closed Sets

I. Mohammed Ali Jaffer
K. Ramesh

Follow this and additional works at: https://digitalrepository.unm.edu/nss_journal

Recommended Citation

This Article is brought to you for free and open access by UNM Digital Repository. It has been accepted for inclusion in Neutrosophic Sets and Systems by an authorized editor of UNM Digital Repository. For more information, please contact amywinter@unm.edu, lsloane@salud.unm.edu, sarahrk@unm.edu.
Neutrosophic Generalized Pre Regular Closed Sets

I. Mohammed Ali Jaffer and K. Ramesh

1 Department of Mathematics, Government Arts College, Udumalpet - 642126, Tamilnadu, India.
E-mail: jaffermathsgac@gmail.com

2 Department of Mathematics, Nehru Institute of Engineering & Technology, Coimbatore - 641 105, Tamil Nadu, India.
E-mail: ramesh251989@gmail.com

* Correspondence: ramesh251989@gmail.com;

Abstract: As a generalization of fuzzy sets and intuitionistic fuzzy sets, Neutrosophic sets have been developed by Smarandache to represent imprecise, incomplete and inconsistent information existing in the real world. A neutrosophic set is characterized by a truth value, an indeterminacy value and a falsity value. In this paper, we introduce and study a new class of Neutrosophic generalized closed set, namely Neutrosophic generalized pre regular closed sets and Neutrosophic generalized pre regular open sets in Neutrosophic topological spaces. Also we study the separation axioms of Neutrosophic generalized pre regular closed sets, namely Neutrosophic pre regular $T_{1/2}$ space and Neutrosophic pre regular $T^{*}_{1/2}$ space and their properties are discussed.

Keywords: Neutrosophic generalized pre regular closed sets, Neutrosophic generalized pre regular open sets, Npr$T_{1/2}$ space and Npr$T^{*}_{1/2}$ space.

1. Introduction

Neutrality the degree of indeterminacy as an independent concept was introduced by Florentine Smarandache [8]. He also defined the Neutrosophic set on three components, namely Truth (membership), Indeterminacy, Falsehood (non-membership) from the fuzzy sets and intuitionistic fuzzy sets. Smarandache’s Neutrosophic concepts have wide range of real time applications for the fields of [1, 2, 3&4] Information systems, Computer science, Artificial Intelligence, Applied Mathematics and Decision making.

In 2012, Salama A. A and Alblowi [14] introduced the concept of Neutrosophic topological spaces by using Neutrosophic sets. Salama A. A. [15] introduced Neutrosophic closed set and Neutrosophic continuous functions in Neutrosophic topological spaces. Further the basic sets like Neutrosophic regular-open sets, Neutrosophic semi-open sets, Neutrosophic pre-open sets, Neutrosophic α-open sets and Neutrosophic generalized closed sets are introduced in Neutrosophic topological space and their properties are studied by various authors [10], [15], [17], [13]. In this direction, we introduce and analyze a new class of Neutrosophic generalized closed set called Neutrosophic generalized pre regular closed sets and Neutrosophic generalized pre regular open sets in Neutrosophic topological spaces. Also we study the separation axioms of Neutrosophic generalized pre regular closed sets, namely Neutrosophic pre regular $T_{1/2}$ space and Neutrosophic
pre regular $T^*_1/2$ space in Neutrosophic topological spaces. Many examples are given to justify the results.

2. Preliminaries

We recall some basic definitions that are used in the sequel.

Definition 2.1: [14] Let X be a non-empty fixed set. A Neutrosophic set (NS for short) A in X is an object having the form $A = \{(x, \mu_A(x), \sigma_A(x), \nu_A(x)): x \in X\}$ where the functions $\mu_A(x), \sigma_A(x)$ and $\nu_A(x)$ represent the degree of membership, degree of indeterminacy and the degree of non-membership respectively of each element $x \in X$ to the set A.

Remark 2.2: [14] A Neutrosophic set $A = \{(x, \mu_A(x), \sigma_A(x), \nu_A(x)): x \in X\}$ can be identified to an ordered triple $A = (x, \mu_A(x), \sigma_A(x), \nu_A(x))$ in non-standard unit interval $]^{-1}, 1^+[on X$.

Remark 2.3: [14] For the sake of simplicity, we shall use the symbol $A = (\mu_A, \sigma_A, \nu_A)$ for the neutrosophic set $A = \{(x, \mu_A(x), \sigma_A(x), \nu_A(x)): x \in X\}$.

Example 2.4: [14] Every IFS A is a non-empty set in X obviously on NS having the form $A_0 = \{(x, \mu_A(x), 1 - (\mu_A(x) + \nu_A(x)), \nu_A(x)): x \in X\}$. Since our main purpose is to construct the tools for developing Neutrosophic set and Neutrosophic topology, we must introduce the NS 0_N and 1_N in X as follows:

0_N may be defined as:

(0) $0_N = \{(x, 0, 0, 1): x \in X\}$
(0) $0_N = \{(x, 0, 1, 1): x \in X\}$
(0) $0_N = \{(x, 0, 1, 0): x \in X\}$
(0) $0_N = \{(x, 0, 0, 0): x \in X\}$

1_N may be defined as:

(1) $1_N = \{(x, 1, 0, 0): x \in X\}$
(1) $1_N = \{(x, 1, 0, 1): x \in X\}$
(1) $1_N = \{(x, 1, 1, 0): x \in X\}$
(1) $1_N = \{(x, 1, 1, 1): x \in X\}$

Definition 2.5: [14] Let $A = (\mu_A, \sigma_A, \nu_A)$ be a NS on X, then the complement of the set A [C(A) for short] may be defined as three kind of complements:

(C1) $C(A) = \{(x, 1-\mu_A(x), 1-\sigma_A(x), 1-\nu_A(x)): x \in X\}$
(C2) $C(A) = \{(x, \nu_A(x), \sigma_A(x), \mu_A(x)): x \in X\}$
(C3) $C(A) = \{(x, \nu_A(x), 1-\sigma_A(x), \mu_A(x)): x \in X\}$

Definition 2.6: [14] Let X be a non-empty set and Neutrosophic sets A and B in the form $A = \{(x, \mu_A(x), \sigma_A(x), \nu_A(x)): x \in X\}$ and $B = \{(x, \mu_B(x), \sigma_B(x), \nu_B(x)): x \in X\}$. Then we may consider two possible definitions for subsets $(A \subseteq B)$.

(1) $A \subseteq B \iff \mu_A(x) \leq \mu_B(x), \sigma_A(x) \leq \sigma_B(x) \text{ and } \mu_A(x) \geq \mu_B(x) \forall x \in X$
(2) $A \subseteq B \iff \mu_A(x) \leq \mu_B(x), \sigma_A(x) \geq \sigma_B(x) \text{ and } \mu_A(x) \geq \mu_B(x) \forall x \in X$

Proposition 2.7: [14] For any Neutrosophic set A, the following conditions hold:

$0_N \subseteq A, 0_N \not\subseteq 0_N$

$A \subseteq 1_N, 1_N \not\subseteq 1_N$

Definition 2.8: [14] Let X be a non-empty set and $A = \{(x, \mu_A(x), \sigma_A(x), \nu_A(x)): x \in X\}$, $B = \{(x, \mu_B(x), \sigma_B(x), \nu_B(x)): x \in X\}$ are NSs. Then $A \cap B$ may be defined as:

(I) $A \cap B = \{(x, \mu_A(x) \wedge \mu_B(x), \sigma_A(x) \vee \sigma_B(x) \text{ and } \nu_A(x) \vee \nu_B(x))\}$
(II) $A \cap B = \{(x, \mu_A(x) \wedge \mu_B(x), \sigma_A(x) \vee \sigma_B(x) \text{ and } \nu_A(x) \vee \nu_B(x))\}$
AUB may be defined as:

(U1) $A \cup B = \{x, \mu_A(x) \lor \mu_B(x), \sigma_A(x) \lor \sigma_B(x), \nu_A(x) \lor \nu_B(x)\}$

(U2) $A \cup B = \{x, \mu_A(x) \lor \mu_B(x), \sigma_A(x) \lor \sigma_B(x), \nu_A(x) \lor \nu_B(x)\}$

We can easily generalize the operations of intersection and union in Definition 2.8., to arbitrary family of NSs as follows:

Definition 2.9: [14] Let $\{A_j : j \in J\}$ be an arbitrary family of NSs in X, then

$\cap A_j$ may be defined as:

(i) $\cap A_j = \{x, \bigwedge_{j \in J} \mu_{A_j}(x), \bigwedge_{j \in J} \sigma_{A_j}(x), \bigwedge_{j \in J} \nu_{A_j}(x)\}$

(ii) $\cap A_j = \{x, \bigwedge_{j \in J} \mu_{A_j}(x), \bigwedge_{j \in J} \sigma_{A_j}(x), \bigwedge_{j \in J} \nu_{A_j}(x)\}$

$\cup A_j$ may be defined as:

(i) $\cup A_j = \{x, \bigvee_{j \in J} \mu_{A_j}(x), \bigvee_{j \in J} \sigma_{A_j}(x), \bigvee_{j \in J} \nu_{A_j}(x)\}$

(ii) $\cup A_j = \{x, \bigvee_{j \in J} \mu_{A_j}(x), \bigvee_{j \in J} \sigma_{A_j}(x), \bigvee_{j \in J} \nu_{A_j}(x)\}$

Proposition 2.10: [14] For all A and B are two Neutrosophic sets then the following conditions are true:

$C(A \cap B) = C(A) \cup C(B)$; $C(A \cup B) = C(A) \cap C(B)$.

Definition 2.11: [14] A Neutrosophic topology [NT for short] is a non-empty set X is a family τ of Neutrosophic subsets in X satisfying the following axioms:

(NT1) $\emptyset, \{x\} \in \tau$.

(NT2) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$.

(NT3) $\bigcup \{G_i \in \tau : i \in I\} \subseteq \tau$.

Throughout this paper, the pair (X, τ) is called a Neutrosophic topological space (NTS for short). The elements of τ are called Neutrosophic open sets [NOS for short]. A complement $C(A)$ of a NOS A in NTS (X, τ) is called a Neutrosophic closed set [NCS for short] in X.

Example 2.12: [14] Any fuzzy topological space (X, τ) in the sense of Chang is obviously a NTS in the form $\tau = \{A: \mu_A \in \tau\}$ wherever we identify a fuzzy set in X whose membership function is μ_A with its counterpart.

The following is an example of Neutrosophic topological space.

Example 2.13: [14] Let $X = \{x\}$ and $A = \{(x, 0.5, 0.5, 0.4): x \in X\}$, $B = \{(x, 0.4, 0.6, 0.8): x \in X\}$, $C = \{(x, 0.5, 0.6, 0.4): x \in X\}$, $D = \{(x, 0.4, 0.5, 0.8): x \in X\}$. Then the family $\tau = \{\emptyset, A, B, C, D, \{x\}\}$ of NSs in X is Neutrosophic topological space on X.

Now, we define the Neutrosophic closure and Neutrosophic interior operations in Neutrosophic topological spaces:

Definition 2.14: [14] Let (X, τ) be NTS and $A = \{(x, \mu_A(x), \sigma_A(x), \nu_A(x)): x \in X\}$ be a NS in X. Then the Neutrosophic closure and Neutrosophic interior of A are defined by

$\text{NCl}(A) = \bigcap \{K: K\text{ is a NCS in } X\text{ and } A \subseteq K\}$

$\text{NInt}(A) = \bigcup \{G: G\text{ is a NOS in } X\text{ and } G \subseteq A\}$

It can be also shown that $\text{NCl}(A)$ is NCS and $\text{NInt}(A)$ is a NOS in X.

a) A is NOS if and only if $A = \text{NInt}(A)$,

b) A is NCS if and only if $A = \text{NCl}(A)$.

Proposition 2.15: [14] For any Neutrosophic set A in (X, τ) we have

a) $\text{NCl}(C(A)) = C(\text{NInt}(A))$,

b) $\text{NInt}(C(A)) = C(\text{NCl}(A))$.

I. Mohammed Ali Jaffer and K. Ramesh, Neutrosophic Generalized Pre Regular Closed Sets
Proposition 2.16: [14] Let \((X, \tau)\) be NTS and \(A, B\) be two Neutrosophic sets in \(X\). Then the following properties are holds:

a) \(\text{NInt}(A) \subseteq A\),
b) \(A \subseteq \text{NCl}(A)\),
c) \(A \subseteq B \Rightarrow \text{NInt}(A) \subseteq \text{NInt}(B)\),
d) \(A \subseteq B \Rightarrow \text{NCl}(A) \subseteq \text{NCl}(B)\),
e) \(\text{NInt}(\text{NInt}(A)) = \text{NInt}(A)\),
f) \(\text{NCl}(\text{NCl}(A)) = \text{NCl}(A)\),
g) \(\text{NInt}(A \cap B) = \text{NInt}(A) \cap \text{NInt}(B)\),
h) \(\text{NCl}(A \cup B) = \text{NCl}(A) \cup \text{NCl}(B)\),
i) \(\text{NInt}(\emptyset) = 0\),
j) \(\text{NInt}(\top) = 1\),
k) \(\text{NCl}(\emptyset) = 0\),
l) \(\text{NCl}(\top) = 1\),
m) \(A \subseteq B \Rightarrow C(A) \subseteq C(B)\),
n) \(\text{NCl}(A \cap B) \subseteq \text{NCl}(A) \cap \text{NCl}(B)\),
o) \(\text{NInt}(A \cup B) \supseteq \text{NInt}(A) \cup \text{NInt}(B)\).

Definition 2.17: [9] A NS \(A = \{\langle x, \mu_A(x), \sigma_A(x), \nu_A(x) \rangle : x \in X \}\) in a NTS \((X, \tau)\) is said to be

(i) Neutrosophic regular closed set (NRCS for short) if \(A = \text{NCl}(\text{NInt}(A))\),
(ii) Neutrosophic regular open set (NROS for short) if \(A = \text{NInt}(\text{NCl}(A))\),
(iii) Neutrosophic semi closed set (NSCS for short) if \(\text{NInt}(\text{NCl}(A)) \subseteq A\),
(iv) Neutrosophic semi open set (NSOS for short) if \(A \subseteq \text{NCl}(\text{NInt}(A))\),
(v) Neutrosophic pre closed set (NPCS for short) if \(\text{NCl}(\text{NInt}(A)) \subseteq A\),
(vi) Neutrosophic pre open set (NPOS for short) if \(A \subseteq \text{NInt}(\text{NCl}(A))\),
(vii) Neutrosophic \(\alpha\)-closed set (NSCS for short) if \(\text{NCl}(\text{NInt}(\text{NCl}(A))) \subseteq A\),
(viii) Neutrosophic \(\alpha\)-open set (NSOS for short) if \(A \subseteq \text{NInt}(\text{NCl}(\text{NInt}(A)))\).

Definition 2.18: [18] Let \((X, \tau)\) be NTS and \(A = \{\langle x, \mu_A(x), \sigma_A(x), \nu_A(x) \rangle : x \in X \}\) be a NS in \(X\). Then the Neutrosophic pre closure and Neutrosophic pre interior of \(A\) are defined by

\[\text{NPCl}(A) = \{K : K \text{ is a NPCS in } X \text{ and } A \subseteq K\}\],
\[\text{NPInt}(A) = \{G : G \text{ is a NPOS in } X \text{ and } G \supseteq A\}\].

Definition 2.19: [13] A NS \(A = \{\langle x, \mu_A(x), \sigma_A(x), \nu_A(x) \rangle : x \in X \}\) in a NTS \((X, \tau)\) is said to be a Neutrosophic generalized closed set (NGCS for short) if \(\text{NCl}(A) \cup U\) whenever \(A \subseteq U\) and \(U\) is a NOS in \((X, \tau)\). A NS \(A\) of a NTS \((X, \tau)\) is called a Neutrosophic generalized open set (NGOS for short) if \(C(A)\) is a NGCS in \((X, \tau)\).

Definition 2.20: [11] A NS \(A = \{\langle x, \mu_A(x), \sigma_A(x), \nu_A(x) \rangle : x \in X \}\) in a NTS \((X, \tau)\) is said to be a Neutrosophic \(\alpha\)-generalized closed set (NaGCS for short) if \(\text{NaCl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is a NOS in \((X, \tau)\). A NS \(A\) of a NTS \((X, \tau)\) is called a Neutrosophic \(\alpha\)-generalized open set (NaGOS for short) if \(C(A)\) is a NaGCS in \((X, \tau)\).

Definition 2.21: [16] A NS \(A = \{\langle x, \mu_A(x), \sigma_A(x), \nu_A(x) \rangle : x \in X \}\) in a NTS \((X, \tau)\) is said to be a Neutrosophic \(\omega\) closed set (N\(\omega\)CS for short) if \(\text{NCl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is a NSOS in \((X, \tau)\). A NS \(A\) of a NTS \((X, \tau)\) is called a Neutrosophic \(\omega\) open set (N\(\omega\)OS for short) if \(C(A)\) is a N\(\omega\)CS in \((X, \tau)\).

Definition 2.22: [9] A NS \(A = \{\langle x, \mu_A(x), \sigma_A(x), \nu_A(x) \rangle : x \in X \}\) in a NTS \((X, \tau)\) is said to be a Neutrosophic regular generalized closed set (NRGCS for short) if \(\text{NCl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is a NRCS in \((X, \tau)\). A NS \(A\) of a NTS \((X, \tau)\) is called a Neutrosophic regular generalized open set (NRGOS for short) if \(C(A)\) is a NRGCS in \((X, \tau)\).
Definition 2.23: [18] A NS $A = \{(x, \mu_A(x), \sigma_A(x), \nu_A(x)) : x \in X\}$ in a NTS (X, τ) is said to be a Neutrosophic generalized pre closed set (NGPCS for short) if $\text{NPCl}(A) \subseteq U$ whenever $A \subseteq U$ and U is a NOS in (X, τ). A NS A of a NTS (X, τ) is called a Neutrosophic generalized pre open set (NGPOS for short) if $C(A)$ is a NGPCS in (X, τ).

Definition 2.24: [9] A NS $A = \{(x, \mu_A(x), \sigma_A(x), \nu_A(x)) : x \in X\}$ in a NTS (X, τ) is said to be a Neutrosophic regular α generalized closed set (NRαGCS for short) if $\text{NCl}(A) \subseteq U$ whenever $A \subseteq U$ and U is a NROS in (X, τ). A NS A of a NTS (X, τ) is called a Neutrosophic regular α generalized open set (NRαGOS for short) if $C(A)$ is a NRGCS in (X, τ).

3. Neutrosophic Generalized Pre Regular Closed Sets

In this section we introduce Neutrosophic generalized pre regular closed sets in the Neutrosophic topological space and study some of their properties.

Definition 3.1: A NS A in a NTS (X, τ) is said to be a Neutrosophic generalized pre regular closed set (NGPRCS for short) if $\text{NPCl}(A) \subseteq U$ whenever $A \subseteq U$ and U is a NROS in (X, τ). The family of all NGPRCSs of a NTS (X, τ) is denoted by $\text{NGPRC}(X)$.

Example 3.2: Let $X = \{a, b\}$ and $\tau = \{0, U, V, 1\}$ where $U = (0.5, 0.3, 0.6), (0.4, 0.4, 0.7)$ and $V = (0.7, 0.5, 0.3), (0.7, 0.5, 0.2))$. Then (X, τ) is a Neutrosophic topological space. Here the NS $A = (0.2, 0.1, 0.7), (0.4, 0.4, 0.7)$ is a NGPRCS in (X, τ). Since $A \subseteq U$ and U is a NROS, we have $\text{NPCl}(A) = A \subseteq U$.

Theorem 3.3: Every NCS in (X, τ) is a NGPRCS in (X, τ) but not conversely.

Proof: Let U be a NROS in (X, τ) such that $A \subseteq U$. Since A is NCS in (X, τ), we have $\text{NCl}(A) = A$. Therefore $\text{NPCl}(A) = A \subseteq U$, by hypothesis. Hence A is a NGPRCS in (X, τ).

Example 3.4: In Example 3.2., the NS $A = A = (0.2, 0.1, 0.7), (0.4, 0.4, 0.7)$ is a NGPRCS but not NCS in (X, τ).

Theorem 3.5: Every NαCS in (X, τ) is a NGPRCS in (X, τ) but not conversely.

Proof: Let U be a NROS in (X, τ) such that $A \subseteq U$. Since A is NαCS in (X, τ), we have $\text{NCl}(\text{NInt}(\text{NCl}(A))) \subseteq A$, now $A \subseteq \text{NCl}(A)$, $\text{NCl}(\text{NInt}(A)) \subseteq \text{NCl}(\text{NInt}(\text{NCl}(A))) \subseteq A$. Therefore $\text{NPCl}(A) = A \subseteq \text{NCl}(\text{NInt}(A)) \subseteq A \subseteq U$. Hence A is a NGPRCS in (X, τ).

Example 3.6: In Example 3.2., the NS $A = A = (0.2, 0.1, 0.7), (0.4, 0.4, 0.7)$ is a NGPRCS but not NαCS in (X, τ).

Theorem 3.7: Every NPCS in (X, τ) is an NGPRCS in (X, τ) but not conversely.

Proof: Let U be a NROS in (X, τ) such that $A \subseteq U$. Since A is NPCS in (X, τ), we have $\text{NPCl}(A) \subseteq \text{NCl}(A) \subseteq U$, because every NROS is NSOS in (X, τ). Therefore $A \subseteq U$, by hypothesis. Hence A is a NGPRCS in (X, τ).

Example 3.8: Let $X = \{a, b\}$ and $\tau = \{0, U, V, 1\}$ where $U = (0.6, 0.5, 0.2), (0.7, 0.5, 0.1))$ and $V = (0.5, 0.4, 0.7), (0.4, 0.5, 0.6))$. Then (X, τ) is a Neutrosophic topological space. Here the NS $A = (0.4, 0.3, 0.7), (0.3, 0.2, 0.6))$ is a NGPRCS in (X, τ). Since $A \subseteq V$ and V is a NROS, we have $\text{NPCl}(A) = A \subseteq V$. But A is not NαCS in (X, τ). Since $A \subseteq V$ and V is a NSOS, we have $\text{NCl}(A) = C(V) \subseteq V$.

Theorem 3.9: Every NPCS in (X, τ) is an NGPRCS in (X, τ) but not conversely.
Proof: Let U be a NROS in (X, τ) such that $A \subseteq U$. Since A is NPCS in (X, τ), we have $\text{NPCl}(\text{NInt}(A)) \subseteq A$. Therefore $\text{NPCl}(A) = A \cup \text{NPCl}(\text{NInt}(A)) \subseteq AU = A \subseteq U$. Hence A is a NGPRCS in (X, τ).

Example 3.10: Let $X = \{a, b\}$ and $\tau = \{0_N, U, V, 1_N\}$ where $U = ((0.3, 0.2, 0.6), (0.1, 0.2, 0.7))$ and $V = ((0.8, 0.2, 0.1), (0.8, 0.2, 0.1))$. Then (X, τ) is a Neutrosophic topological space. Here the NS $A = (1_N, 1_N)$ is a NGPRCS in (X, τ). Since $A \subseteq 1_N$, we have $\text{NPCl}(A) = 1_N \subseteq 1_N$. But A is not NPCS in (X, τ).

Theorem 3.11: Every NGCS in (X, τ) is a NGPRCS in (X, τ) but not conversely.

Proof: Let U be a NROS in (X, τ) such that $A \subseteq U$. Since A is NGCS in (X, τ) and every NROS in (X, τ) is a NOS in (X, τ). Therefore $\text{NPCl}(A) \subseteq \text{NCl}(A) \subseteq U$, by hypothesis. Hence A is a NGPRCS in (X, τ).

Example 3.12: Let $X = \{a, b\}$ and $\tau = \{0_N, U, V, 1_N\}$ where $U = ((0.3, 0.5, 0.6), (0.4, 0.5, 0.6))$ and $V = ((0.8, 0.5, 0.2), (0.7, 0.5, 0.3))$. Then (X, τ) is a Neutrosophic topological space. Here the NS $A = ((0.3, 0.5, 0.7), (0.3, 0.4, 0.7))$ is a NGPRCS in (X, τ). Since $A \subseteq U$ and U is a NROS, we have $\text{NPCl}(A) = A \subseteq U$. But A is not NGCS in (X, τ).

Theorem 3.13: Every N_αGCS in (X, τ) is a NGPRCS in (X, τ) but not conversely.

Proof: Let U be a NROS in (X, τ) such that $A \subseteq U$. Since A is N_αGCS in (X, τ). Therefore $\text{NPCl}(A) \subseteq \text{N}_\alpha\text{Cl}(A) \subseteq U$, by hypothesis. Hence A is a NGPRCS in (X, τ).

Example 3.14: Let $X = \{a, b\}$ and $\tau = \{0_N, U, V, 1_N\}$ where $U = ((0.5, 0.3, 0.6), (0.4, 0.4, 0.7))$ and $V = ((0.7, 0.3, 0.2), (0.7, 0.3, 0.2))$. Then (X, τ) is a Neutrosophic topological space. Here the NS $A = ((0.4, 0.3, 0.6), (0.3, 0.4, 0.7))$ is a NGPRCS in (X, τ). Since $A \subseteq U$ and U is a NROS, we have $\text{NPCl}(A) = A \subseteq U$. But A is not N_αGCS in (X, τ).

Theorem 3.15: Every NR_αGCS in (X, τ) is a NGPRCS in (X, τ) but not conversely.

Proof: Let U be a NROS in (X, τ) such that $A \subseteq U$. Since A is NR_αGCS in (X, τ). Therefore $\text{NPCl}(A) \subseteq \text{N}_\alpha\text{Cl}(A) \subseteq U$, by hypothesis. Hence A is a NGPRCS in (X, τ).

Example 3.16: In Example 3.14, the NS $A = ((0.4, 0.3, 0.6), (0.3, 0.4, 0.7))$ is a NGPRCS but not NR_αGCS in (X, τ).

Theorem 3.17: Every NGPCS in (X, τ) is a NGPRCS in (X, τ) but not conversely.

Proof: Let U be a NROS in (X, τ) such that $A \subseteq U$. Since A is NGPCS in (X, τ) and every NROS in (X, τ) is a NOS in (X, τ). Therefore $\text{NPCl}(A) \subseteq \text{NCl}(A) \subseteq U$, by hypothesis. Hence A is a NGPRCS in (X, τ).

Example 3.18: In Example 3.10, the NS $A = ((0.8, 0.2, 0.1), (0.8, 0.2, 0.1))$ is a NGPRCS in (X, τ). Since $A \subseteq 1_N$, we have $\text{NPCl}(A) = 1_N \subseteq 1_N$. But A is not NGPCS in (X, τ). Since $A \subseteq V$ and V is a NOS, we have $\text{NPCl}(A) = 1_N \subseteq V$.

Theorem 3.19: Every NRGCS in (X, τ) is a NGPRCS in (X, τ) but not conversely.

Proof: Let U be a NROS in (X, τ) such that $A \subseteq U$. Since A is NRGCS in (X, τ). Therefore $\text{NPCl}(A) \subseteq \text{NCl}(A) \subseteq U$, by hypothesis. Hence A is a NGPRCS in (X, τ).

I. Mohammed Ali Jaffer and K. Ramesh, Neutrosophic Generalized Pre Regular Closed Sets
Example 3.20: In Example 3.8., the NS $A = \langle (0.4, 0.3, 0.7), (0.3, 0.2, 0.6) \rangle$ is a NGPRCS but not NRGCS in (X, τ).

Theorem 3.21: Every NαGCS in (X, τ) is a NRαGCS in (X, τ) but not conversely.

Proof: Let U be a NROS in (X, τ) such that $A \subseteq U$. Since A is NαGCS in (X, τ) and every NROS in (X, τ) is a NOS in (X, τ). Therefore $\text{NαCl}(A) \subseteq U$, by hypothesis. Hence A is a NRαGCS in (X, τ).

Example 3.22: In Example 3.10., the NS $A = \langle (0.7, 0.2, 0.3), (0.8, 0.2, 0.2) \rangle$ is a NRαGCS but not NαGCS in (X, τ).

Theorem 3.23: Every NGCS in (X, τ) is a NαGCS in (X, τ) but not conversely.

Proof: Let U be a NOS in (X, τ) such that $A \subseteq U$. Since A is NGCS in (X, τ). Therefore $\text{NαCl}(A) \subseteq \text{NCl}(A) \subseteq U$, by hypothesis. Hence A is a NαGCS in (X, τ).

Example 3.24: Let $X = \{a\}$ and $\tau = \{0_N, U, V, 1_N\}$ where $U = \langle (0.5, 0.4, 0.7) \rangle$ and $V = \langle (0.8, 0.5, 0.2) \rangle$. Then (X, τ) is a Neutrosophic topological space. Here the NS $A = \langle (0.2, 0.2, 0.8) \rangle$ is a NGCS in (X, τ). Since $A \subseteq U$ and U is a NOS, we have $\text{NαCl}(A) = A \subseteq U$ but A is not NGCS in (X, τ). Since $A \subseteq U$, we have $\text{NCl}(A) = C(V) \not\subseteq U$.

Theorem 3.25: Every NGCS in (X, τ) is a NRGCS in (X, τ) but not conversely.

Proof: Let U be a NROS in (X, τ) such that $A \subseteq U$. Since A is NGCS in (X, τ) and every NROS in (X, τ) is a NOS in (X, τ). Therefore $\text{NCl}(A) \subseteq U$, by hypothesis. Hence A is a NRGCS in (X, τ).

Example 3.26: Let $X = \{a, b, c\}$ and $\tau = \{0_N, U, 1_N\}$ where $U = \langle (0.6, 0.6, 0.3), (0.8, 0.5, 0.2), (0.7, 0.4, 0.8) \rangle$. Then (X, τ) is a Neutrosophic topological space. Here the NS $A = \langle (0.2, 0.1, 0.7), (0.4, 0.4, 0.7) \rangle$ is a NRGCS in (X, τ). Since $A \subseteq 1_N$, we have $\text{NCl}(A) = 1_N \not\subseteq 1_N$ but A is not NGCS in (X, τ). Since $A \subseteq U$ and U is a NOS, we have $\text{NCl}(A) = 1_N \not\subseteq U$.

The following diagram, we have provided the relation between NGPRCS and the other existed NSs.

```
  NαCS  \rightarrow  NPCS  \rightarrow  NGPCS
   \downarrow   \downarrow   \downarrow
  NRCS  \rightarrow  NCS  \rightarrow  NαGCS  \rightarrow  NRαGCS  \rightarrow  NGPCS
     \downarrow        \downarrow           \downarrow
  NαCS     \rightarrow  NGCS  \rightarrow  NRGCSNC
```

In this diagram by $A \implies B$ means A implies B but not conversely and $A \iff B$ means A & B are independent.

Remark 3.27: The union of any two NGPRCSs in (X, τ) is not an NGPRCS in (X, τ) in general as seen from the following example.

Example 3.28: Let $X = \{a, b\}$ and $\tau = \{0_N, U, V, 1_N\}$ where $U = \langle (0.5, 0.3, 0.6), (0.4, 0.4, 0.7) \rangle$ and $V = \langle (0.7, 0.5, 0.3), (0.7, 0.5, 0.2) \rangle$. Then the NSs $A = \langle (0.2, 0.1, 0.7), (0.4, 0.4, 0.7) \rangle$ and $B = \langle (0.5, 0.3, 0.6), (0.2, 0.1, 0.7), (0.4, 0.4, 0.7) \rangle$ and $B = \langle (0.5, 0.3, 0.6), (0.2, 0.1, 0.7), (0.4, 0.4, 0.7) \rangle$.
(0.2, 0.2, 0.8) are NGPRCSs in \((X, \tau)\) but \(A \cup B = ((0.5, 0.3, 0.6), (0.4, 0.4, 0.7))\) is not a NGPRCS in \((X, \tau)\). Since \(A \cup B \subseteq U\) but \(NPCl(A \cup B) = C(U) \nsubseteq U\).

Remark 3.29: The intersection of any two NGPRCSs in \((X, \tau)\) is not an NGPRCS in \((X, \tau)\) in general as seen from the following example.

Example 3.30: Let \(X = \{a, b\}\) and \(\tau = \{0, V, U, 1\}\) where \(U = ((0.5, 0.3, 0.6), (0.4, 0.4, 0.7))\) and \(V = ((0.7, 0.5, 0.3), (0.7, 0.5, 0.2))\). Then the NSs \(A = ((0.5, 0.5, 0.4), (0.7, 0.8, 0.7))\) and \(B = ((0.6, 0.3, 0.6), (0.4, 0.4, 0.3))\) are NGPRCSs in \((X, \tau)\) but \(A \cap B = ((0.5, 0.3, 0.6), (0.4, 0.4, 0.7))\) is not a NGPRCS in \((X, \tau)\). Since \(A \cap B \subseteq U\) but \(NPCl(A \cap B) = C(U) \nsubseteq U\).

Theorem 3.31: Let \((X, \tau)\) be a NTS. Then for every \(A \in NGPRC(X)\) and for every NS \(B \in NS(X)\), \(A \subseteq B \Rightarrow NPCl(A) \Rightarrow B \in NGPRC(X)\).

Proof: Let \(B \subseteq U\) and \(U\) is a NROS in \((X, \tau)\). Since \(A \subseteq B\), then \(A \subseteq U\). Given \(A\) is a NGPRCS, it follows that \(NPCl(A) \subseteq U\). Now \(B \subseteq NPCl(A) \Rightarrow NPCl(B) \subseteq NPCl(NPCl(A)) = NPCl(A)\). Thus, \(NPCl(B) \subseteq U\). This proves that \(B \in NGPRC(X)\).

Theorem 3.32: If \(A\) is a NROS and a NGPRCS in \((X, \tau)\), then \(A\) is a NPCs in \((X, \tau)\).

Proof: Since \(A \subseteq A\) and \(A\) is a NROS in \((X, \tau)\), by hypothesis, \(NPCl(A) \subseteq A\). But since \(A \subseteq NPCl(A)\). Therefore \(NPCl(A) = A\). Hence \(A\) is a NPCs in \((X, \tau)\).

Theorem 3.33: Let \((X, \tau)\) be a NTS and \(NPC(X)\) (resp. \(NRO(X)\)) be the family of all NPCs (resp. NROSs) of \(X\). If \(NPC(X) = IRO(X)\) then every Neutrosophic subset of \(X\) is NGPRCS in \((X, \tau)\).

Proof: If \(NPC(X) = IRO(X)\) and \(A\) is any Neutrosophic subset of \(X\) such that \(A \subseteq U\) where \(U\) is NROS in \(X\). Then by hypothesis, \(U\) is NPCS in \(X\) which implies that \(NPCl(U) = U\). Then \(NPCl(U) \subseteq NPCl(U) = U\). Therefore \(A\) is NGPRCS in \((X, \tau)\).

Definition 3.34: Let \((X, \tau)\) be a NTS and \(A = \{(x, \mu_A(x), \sigma_A(x), \nu_A(x)) : x \in X\}\) be the subset of \(X\). Then \(NGPRCl(A) = \cap \{K : K \text{ is a NGPRCS in } X \text{ and } A \subseteq K\}\) and \(NGPRInt(A) = \cup \{G : G \text{ is a NGPROS in } X \text{ and } G \subseteq A\}\).

Lemma 3.35: Let \(A \) and \(B\) be subsets of \((X, \tau)\). Then the following results are obvious.

a) \(NGPRCl(0) = 0\).

b) \(NGPRCl(1) = 1\).

c) \(A \subseteq NGPRCl(A)\).

d) \(A \subseteq B \Rightarrow NGPRCl(A) \subseteq NGPRCl(B)\).

4. Neutrosophic Generalized Pre Regular Open Sets

In this section we introduce Neutrosophic generalized pre regular open sets in Neutrosophic topological space.

Definition 4.1: A NS \(A\) in a NTS \((X, \tau)\) is said to be a Neutrosophic generalized pre regular open set (NGPROS for short) if \(NPInt(A) \supseteq U\) whenever \(A \supseteq U\) and \(U\) is a NROS in \((X, \tau)\). Alternatively, A NS \(A\) is said to be a Neutrosophic generalized pre regular open set (NGPROS for short) if the complement of \(C(A)\) is a NGPRCS in \((X, \tau)\).

The family of all NGPROSs of a NTS\((X, \tau)\) is denoted by NGPRO\((X)\).
Example 4.2: Let $X = \{a, b\}$ and $\tau = \{0_N, U, V, 1_N\}$ where $U = \{(0.5, 0.3, 0.6), (0.4, 0.4, 0.7)\}$ and $V = \{(0.7, 0.5, 0.3), (0.7, 0.5, 0.2)\}$. Then (X, τ) is a Neutrosophic topological space. Here the NS $A = \{(0.8, 0.9, 0.2), (0.9, 0.6, 0.1)\}$ is a NGPROS in (X, τ). Since $A \supseteq C(U)$ and $C(U)$ is a NRCS, we have $\text{NPInt}(A) = A \supseteq C(U)$.

Theorem 4.3: Every NOS is a NGPROS in (X, τ) but the converses may not be true in general.

Proof: Let U be a NRCS in (X, τ) such that $A \supseteq U$. Since A is NOS, $\text{NInt}(A) = A$. By hypothesis, $\text{NPInt}(A) = A \cap \text{NInt}(\text{NCl}(A)) = A \cap \text{NCl}(A) \supseteq A \cap A = A \supseteq U$. Therefore A is a NGPROS in (X, τ).

Example 4.4: In Example 4.2, the NS $A = \{(0.8, 0.9, 0.2), (0.9, 0.6, 0.1)\}$ is an NGPROS in (X, τ) but not a NOS in (X, τ).

Theorem 4.5: Every NaOS, NWOS, NPOS, NGOS, N\alphaGOS, NGPOS, NRGOS, NR\alphaGOS is a NGPROS in (X, τ) but the converses are not true in general.

Example 4.6: Let $X = \{a, b\}$ and $\tau = \{0_N, U, 1_N\}$ where $U = \{(0.4, 0.2, 0.3), (0.8, 0.6, 0.7)\}$. Then (X, τ) is a Neutrosophic topological space. Here the NS $A = \{(0.3, 0.8, 0.4), (0.7, 0.4, 0.8)\}$ is a NGPROS in (X, τ). Since $A \supseteq 0_N$, we have $\text{NPInt}(A) = 0_N \supseteq 0_N$ but A is not a NaOS, NWOS, NPOS in (X, τ).

Example 4.7: Let $X = \{a, b\}$ and $\tau = \{0_N, U, V, 1_N\}$ where $U = \{(0.5, 0.6, 0.2), (0.7, 0.5, 0.1)\}$ and $V = \{(0.5, 0.4, 0.7), (0.4, 0.5, 0.6)\}$. Then (X, τ) is a Neutrosophic topological space. Here the NS $A = \{(0.8, 0.8, 0.2), (0.7, 0.9, 0.3)\}$ is a NGPROS in (X, τ). Since $A \supseteq C(V)$ and $C(V)$ is a NRCS, we have $\text{NPInt}(A) = A \supseteq C(V)$. but A is not NRGOS, NR\alphaGOS in (X, τ).

Theorem 4.9: Let (X, τ) be a NTS. Then for every $A \in \text{NGPRO}(X)$ and for every $B \in \text{NP}(X)$, $\text{NPInt}(A) \subseteq B \subseteq A$ implies $B \in \text{NGPRO}(X)$.

Proof: Let A be any NGPROS of (X, τ) and B be any NS of X. By hypothesis $\text{NPInt}(A) \subseteq B \subseteq A$. Then $C(A)$ is an NGPRCS in (X, τ) and $C(A) \subseteq C(B) \subseteq \text{NPCI}(C(A))$. By Theorem 3.31, $C(B)$ is an NGPRCS in (X, τ). Therefore B is an NGPROS in (X, τ). Hence $B \in \text{NGPRO}(X)$.

Theorem 4.10: A NS A of a NTS (X, τ) is a NGPROS in (X, τ) if and only if $F \subseteq \text{Npint}(A)$ whenever F is a NRCS in (X, τ) and $F \subseteq A$.

Proof: Necessity: Suppose A is a NGPROS in (X, τ). Let F be a NRCS in (X, τ) such that $F \subseteq A$. Then $C(F)$ is a NROS and $C(A) \subseteq C(F)$. By hypothesis $C(A)$ is a NGPRCS in (X, τ), we have $\text{NPCl}(C(A)) \subseteq C(F)$. Therefore $F \subseteq \text{Npint}(A)$.

Sufficiency: Let U be a NRCS in (X, τ) such that $C(A) \subseteq U$. By hypothesis, $C(U) \subseteq \text{Npint}(A)$. Therefore $\text{NPCl}(C(A)) \subseteq U$ and $C(A)$ is a NGPRCS in (X, τ). Hence A is a NGPROS in (X, τ).

Theorem 4.11: Let (X, τ) be a NTS and $\text{NPO}(X)$ (resp. $\text{NGPRO}(X)$) be the family of all NPOSs (resp. NGPROSs) of X. Then $\text{NPO}(X) \subseteq \text{NGPRO}(X)$.

Proof: Let $A \in \text{NPO}(X)$. Then $C(A)$ is NPCS and so NGPRCS in (X, τ). This implies that A is NGPROS in (X, τ). Hence $A \in \text{NGPRO}(X)$. Therefore $\text{NPO}(X) \subseteq \text{NGPRO}(X)$.
5. Separation Axioms of Neutrosophic Generalized Pre Regular Closed Sets

In this section we have provide some applications of Neutrosophic generalized pre regular closed sets in Neutrosophic topological spaces.

Definition 5.1: If every NGPRCS in \((X, \tau)\) is a NPCS in \((X, \tau)\), then the space \((X, \tau)\) can be called a Neutrosophic pre regular \(T_{1/2}\) (NPRT\(_{1/2}\) for short) space.

Theorem 5.2: An NTS \((X, \tau)\) is a NPRT\(_{1/2}\) space if and only if \(NPO(X) = NGPRO(X)\).

Proof: Necessity: Let \((X, \tau)\) be a NPRT\(_{1/2}\) space. Let \(A\) be a NGPRO in \((X, \tau)\). By hypothesis, \(C(A)\) is a NGPRCS in \((X, \tau)\) and therefore \(A\) is a NPCS in \((X, \tau)\). Hence \(NPO(X) = NGPRO(X)\).

Sufficiency: Let \(NPO(X, \tau) = NGPRO(X, \tau)\). Let \(A\) be a NGPRCS in \((X, \tau)\). Then \(C(A)\) is a NGPRO in \((X, \tau)\). By hypothesis, \(C(A)\) is a NPCS in \((X, \tau)\) and therefore \(A\) is a NPCS in \((X, \tau)\). Hence \((X, \tau)\) is a NPRT\(_{1/2}\) space.

Definition 5.3: A NTS \((X, \tau)\) is said to be a Neutrosophic pre regular \(T^*_{1/2}\) space (NPRT^*\(_{1/2}\) space for short) if every NGPRCS is a NCS in \((X, \tau)\).

Remark 5.4: Every NPRT^*\(_{1/2}\) space is a NPRT\(_{1/2}\) space but not conversely.

Proof: Assume be a NPRT^*\(_{1/2}\) space. Let \(A\) be a NGRCS in \((X, \tau)\). By hypothesis, \(A\) is an NCS. Since every NCS is a NPCS, \(A\) is a NPCS in \((X, \tau)\). Hence \((X, \tau)\) is a NPRT\(_{1/2}\) space.

Example 5.8: Let \(X=\{a, b\}\) and let \(\tau = \{0N, U, 1N\}\) where \(U=\{(0.5, 0.4, 0.7), (0.4, 0.5, 0.6)\}\). Then \((X, \tau)\) is a NPRT\(_{1/2}\) space, but it is not NPRT^*\(_{1/2}\) space. Here the NS \(A=\{(0.2, 0.3, 0.8), (0.3, 0.4, 0.8)\}\) is a NGPRCS but not a NCS in \((X, \tau)\).

Theorem 5.9: Let \((X, \tau)\) be a NPRT^*\(_{1/2}\) space then,

(i) the union of NGPRCSs is NGPRCS in \((X, \tau)\)

(ii) the intersection of NGPROSs is NGPROS in \((X, \tau)\)

Proof: (i) Let \(|A|_{\text{d}}\) be a collection of NGPRCSs in a NPRT^*\(_{1/2}\) space \((X, \tau)\). Thus, every NGPRCSs is a NCS. However, the union of NCSs is a NCS in \((X, \tau)\). Therefore the union of NGPRCSs is NGPRCS in \((X, \tau)\). (ii) Proved by taking the complement in (i).

6. Conclusion

In this paper, we have defined new class of Neutrosophic generalized closed sets called Neutrosophic generalized pre regular closed sets; Neutrosophic generalized pre regular open sets and studied some of their properties in Neutrosophic topological spaces. Furthermore, the work was extended as the separation axioms of Neutrosophic generalized pre regular closed sets, namely Neutrosophic pre regular \(T_{1/2}\) space and Neutrosophic pre regular \(T^*_{1/2}\) space and discussed their properties. Further, the relation between Neutrosophic generalized pre regular closed set and existing Neutrosophic closed sets in Neutrosophic topological spaces were established. Many examples are given to justify the results.

Acknowledgements

The authors would like to thank the referees for their valuable suggestions to improve the paper.

References

Received: Sep 21, 2019. Accepted: Nov 29, 2019.