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FOREWORD 
 
 
 
 
There is beginning for anything; we used to hear that phrase. 
The same wisdom word applies to us too. What began in 2005 as 
a short email on some ideas related to interpretation of the Wave 
Mechanics results in a number of papers and books up to now. 
Some of these papers can be found in Progress in Physics or 
elsewhere.  
 
It is often recognized that when a mathematician meets a 
physics-inclined mind then the result is either a series of endless 
debates or publication. In our story, we prefer to publish rather 
than perish. 
 
Therefore, our purpose with this book is to present a selection of 
published papers in a compilation which enable the readers to 
find some coherent ideas which appear in those articles. For this 
reason, the ordering of the papers here is based on categories of 
ideas. 
 
While some of these articles have been published in book format 
elsewhere, we hope that reading this book will give the readers 
an impression of the progress of our thoughts. A few other 
papers are not yet published elsewhere, or being planned to 
publish in other journal. 
  
We wish to extend our sincere gratitude to plenty of colleagues, 
friends and relatives all around the world for sharing their ideas, 
insightful discussions etc. Special thanks to D. Rabounski, S. 
Crothers, L. Borissova for their great service in Progress in 
Physics journal. 
 
One of these authors (VC) would like to thank to Profs. A. 
Yefremov and M. Fil’chenkov for all hospitality extended to him 
in the Institute of Gravitation and Cosmology of PFUR, where 
this book is prepared. Discussions with Prof. V.V. Kassandrov, 
Prof. V. Ivashchuk, & Prof. Yu P. Rybakov are appreciated. Many 
thanks also to Dr. S. Trihandaru and others from UKSW, Central 
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Java,Indonesia. Sincere thanks to good friends in PFUR, 
especially to D. Kermite, Y. Umniyati, Anastasia Golubtsova & 
Serguey– all other friends are of course worth mentioning here, 
but the margin of this book is quite limited to mention all of you.  
 
And to all other scientist colleagues, allow us to say: Full speed 
ahead!  
 
 
FS & VC, March 2009 
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A New Form of Matter — Unmatter, Composed of Particles and Anti-Particles

Florentin Smarandache

Dept. of Mathematics, University of New Mexico, 200 College Road, Gallup, NM 87301, USA

E-mail: fsmarandache@yahoo.com; smarand@unm.edu

Besides matter and antimatter there must exist unmatter (as a new form of matter) in

accordance with the neutrosophy theory that between an entity <A> and its opposite

<AntiA> there exist intermediate entities <NeutA>. Unmatter is neither matter nor

antimatter, but something in between. An atom of unmatter is formed either by (1):

electrons, protons, and antineutrons, or by (2): antielectrons, antiprotons, and neutrons.

At CERN it will be possible to test the production of unmatter. The existence of

unmatter in the universe has a similar chance to that of the antimatter, and its production

also difficult for present technologies.

1 Introduction

This article is an improved version of an old manuscript [1].

This is a theoretical assumption about the possible existence

of a new form of matter. Up to day the unmatter was not

checked in the lab.

According to the neutrosophy theory in philosophy [2],

between an entity <A> and its opposite <AntiA> there exist

intermediate entities <NeutA> which are neither <A> nor

<AntiA>.

Thus, between “matter” and “antimatter” there must exist

something which is neither matter nor antimatter, let’s call it

UNMATTER.

In neutrosophy, <NonA> is what is not <A>, i. e.

<NonA> = <AntiA> ∪ <NeutA>. Then, in physics, NON-

MATTER is what is not matter, i. e. nonmatter means anti-

matter together with unmatter.

2 Classification

A. Matter is made out of electrons, protons, and neutrons.

Each matter atom has electrons, protons, and neutrons,

except the atom of ordinary hydrogen which has no neutron.

The number of electrons is equal to the number of pro-

tons, and thus the matter atom is neutral.

B. Oppositely, the antimatter is made out of antielectrons,

antiprotons, and antineutrons.

Each antimatter atom has antielectrons (positrons), anti-

protons, and antineutrons, except the antiatom of ordinary

hydrogen which has no antineutron.

The number of antielectrons is equal to the number of

antiprotons, and thus the antimatter atom is neutral.

C. Unmatter means neither matter nor antimatter, but in

between, an entity which has common parts from both

of them.

Etymologically “un-matter” comes from [ME<OE, akin

to Gr. an-, a-, Latin in-, and to the negative elements in no,

not, nor] and [ME matière < OFr < Latin material] matter

(see [3]), signifying no/without/off the matter.

There are two types of unmatter atoms, that we call

unatoms:

u1. The first type is derived from matter; and a such

unmatter atom is formed by electrons, protons, and

antineutrons;

u2. The second type is derived from antimatter, and a such

unmatter atom is formed by antielectrons, antiprotons,

and neutrons.

One unmatter type is oppositely charged with respect to

the other, so when they meet they annihilate.

The unmatter nucleus, called unnucleus, is formed either

by protons and antineutrons in the first type, or by antiprotons

and neutrons in the second type.

The charge of unmatter should be neutral, as that of

matter or antimatter.

The charge of un-isotopes will also be neutral, as that

of isotopes and anti-isotopes. But, if we are interested in a

negative or positive charge of un-matter, we can consider

an un-ion. For example an anion is negative, then its cor-

responding unmatter of type 1 will also be negative. While

taking a cation, which is positive, its corresponding unmatter

of type 1 will also be positive.

Sure, it might be the question of how much stable the

unmatter is, as J. Murphy pointed out in a private e-mail. But

Dirac also theoretically supposed the existence of antimatter

in 1928 which resulted from Dirac’s mathematical equation,

and finally the antimatter was discovered/produced in large

accelerators in 1996 when it was created the first atom of

antihydrogen which lasted for 37 nanoseconds only.

There does not exist an unmatter atom of ordinary hydro-

gen, neither an unnucleus of ordinary hydrogen since the

ordinary hydrogen has no neutron. Yet, two isotopes of

the hydrogen, deuterium (2H) which has one neutron, and

F. Smarandache. A New Form of Matter — Unmatter, Composed of Particles and Anti-Particles 9
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artificially made tritium (3H) which has two neutrons have

corresponding unmatter atoms of both types, un-deuterium

and un-tritium respectively. The isotopes of an element X

differ in the number of neutrons, thus their nuclear mass is

different, but their nuclear charges are the same.

For all other matter atom X, there is corresponding an

antimatter atom and two unmatter atoms

The unmatter atoms are also neutral for the same reason

that either the number of electrons is equal to the number

of protons in the first type, or the number of antielectrons is

equal to the number of antiprotons in the second type.

If antimatter exists then a higher probability would be for

the unmatter to exist, and reciprocally.

Unmatter atoms of the same type stick together form

an unmatter molecule (we call it unmolecule), and so on.

Similarly one has two types of unmatter molecules.

The isotopes of an atom or element X have the same

atomic number (same number of protons in the nucleus)

but different atomic masses because the different number of

neutrons.

Therefore, similarly the un-isotopes of type 1 of X will

be formed by electrons, protons, and antineutrons, while the

un-isotopes of type 2 of X will be formed by antielectrons,

antiprotons, and neutrons.

An ion is an atom (or group of atoms) X which has

last one or more electrons (and as a consequence carries a

negative charge, called anion, or has gained one or more

electrons (and as a consequence carries a positive charge,

called cation).

Similarly to isotopes, the un-ion of type 1 (also called

un-anion 1 or un-cation 1 if resulted from a negatively

or respectively positive charge ion) of X will be formed

by electrons, protons, and antineutrons, while the un-ion of

type 2 of X (also called un-anion 2 or un-cation 2 if resulted

from a negatively or respectively positive charge ion) will be

formed by antielectrons, antiprotons, and neutrons.

The ion and the un-ion of type 1 have the same charges,

while the ion and un-ion of type 2 have opposite charges.

D. Nonmatter means what is not matter, therefore non-

matter actually comprises antimatter and unmatter.

Similarly one defines a nonnucleus.

3 Unmatter propulsion

We think (as a prediction or supposition) it could be possible

at using unmatter as fuel for space rockets or for weapons

platforms because, in a similar way as antimatter is presup-

posed to do [4, 5], its mass converted into energy will be

fuel for propulsion.

It seems to be a little easier to build unmatter than

antimatter because we need say antielectrons and antiprotons

only (no need for antineutrons), but the resulting energy

might be less than in matter-antimatter collision.

We can collide unmatter 1 with unmatter 2, or unmatter

1 with antimatter, or unmatter 2 with matter.

When two, three, or four of them (unmatter 1, unmatter 2,

matter, antimatter) collide together, they annihilate and turn

into energy which can materialize at high energy into new

particles and antiparticles.

4 Existence of unmatter

The existence of unmatter in the universe has a similar chance

to that of the antimatter, and its production also difficult for

present technologies. At CERN it will be possible to test the

production of unmatter.

If antimatter exists then a higher probability would be for

the unmatter to exist, and reciprocally.

The 1998 Alpha Magnetic Spectrometer (AMS) flown on

the International Space Station orbiting the Earth would be

able to detect, besides cosmic antimatter, unmatter if any.

5 Experiments

Besides colliding electrons, or protons, would be interesting

in colliding neutrons. Also, colliding a neutron with an anti-

neutron in accelerators.

We think it might be easier to produce in an experiment

an unmatter atom of deuterium (we can call it un-deuterium

of type 1). The deuterium, which is an isotope of the ordinary

hydrogen, has an electron, a proton, and a neutron. The

idea would be to convert/transform in a deuterium atom the

neutron into an antineutron, then study the properties of the

resulting un-deuterium 1.

Or, similarly for un-deuterium 2, to convert/transform in

a deuterium atom the electron into an antielectron, and the

proton into an antiproton (we can call it un-deuterium of

type 2).

Or maybe choose another chemical element for which

any of the previous conversions/transformations might be

possible.

6 Neutrons and antineutrons

Hadrons consist of baryons and mesons and interact via

strong force.

Protons, neutrons, and many other hadrons are composed

from quarks, which are a class of fermions that possess

a fractional electric charge. For each type of quark there

exists a corresponding antiquark. Quarks are characterized

by properties such as flavor (up, down, charm, strange, top,

or bottom) and color (red, blue, or green).

A neutron is made up of quarks, while an antineutron is

made up of antiquarks.

A neutron (see [9]) has one Up quark (with the charge

of + 2
3
×1.606×1019 C) and two Down quarks (each with the

10 F. Smarandache. A New Form of Matter — Unmatter, Composed of Particles and Anti-Particles
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charge of − 1
3
×1.606×1019 C), while an antineutron has one

anti Up quark (with the charge of − 2
3
×1.606×1019 C) and

two anti Down quarks (each with the charge of + 1
3
×1.606×

×1019 C).

An antineutron has also a neutral charge, through it is

opposite to a neutron, and they annihilate each other when

meeting.

Both, the neutron and the antineutron, are neither attract-

ed to nor repelling from charges particles.

7 Characteristics of unmatter

Unmatter should look identical to antimatter and matter, also

the gravitation should similarly act on all three of them.

Unmatter may have, analogously to antimatter, utility in

medicine and may be stored in vacuum in traps which have

the required configuration of electric and magnetic fields for

several months.

8 Open Questions

8.a Can a matter atom and an unmatter atom of first type

stick together to form a molecule?

8.b Can an antimatter atom and an unmatter atom of sec-

ond type stick together to form a molecule?

8.c There might be not only a You and an anti-You, but

some versions of an un-You in between You and anti-

You. There might exist un-planets, un-stars, un-

galaxies? There might be, besides our universe, an

anti-universe, and more un-universes?

8.d Could this unmatter explain why we see such an im-

balance between matter and antimatter in our corner

of the universe? (Jeff Farinacci)

8.e If matter is thought to create gravity, is there any way

that antimatter or unmatter can create antigravity or

ungravity? (Mike Shafer from Cornell University)

I assume that since the magnetic field or the gravitons

generate gravitation for the matter, then for antimatter and

unmatter the corresponding magnetic fields or gravitons

would look different since the charges of subatomic particles

are different. . .

I wonder how would the universal law of attraction be

for antimmater and unmatter?
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Florentin Smarandache
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E-mails: fsmarandache@yahoo.com; smarand@unm.edu

As shown, experiments registered unmatter: a new kind of matter whose atoms include

both nucleons and anti-nucleons, while their life span was very short, no more than

10−20sec. Stable states of unmatter can be built on quarks and anti-quarks: applying

the unmatter principle here it is obtained a quantum chromodynamics formula that

gives many combinations of unmatter built on quarks and anti-quarks.

In the last time, before the apparition of my articles defining

“matter, antimatter, and unmatter” [1, 2], and Dr. S. Chubb’s

pertinent comment [3] on unmatter, new development has

been made to the unmatter topic.

1 Definition of Unmatter

In short, unmatter is formed by matter and antimatter that

bind together [1, 2]. The building blocks (most elementary

particles known today) are 6 quarks and 6 leptons; their 12

antiparticles also exist. Then unmatter will be formed by

at least a building block and at least an antibuilding block

which can bind together.

2 Exotic atom

If in an atom we substitute one or more particles by other

particles of the same charge (constituents) we obtain an

exotic atom whose particles are held together due to the

electric charge. For example, we can substitute in an ordinary

atom one or more electrons by other negative particles (say

π−, anti-ρ-meson, D−, D−s - muon, τ , Ω−,Δ−, etc., generally

clusters of quarks and antiquarks whose total charge is neg-

ative), or the positively charged nucleus replaced by other

positive particle (say clusters of quarks and antiquarks whose

total charge is positive, etc).

3 Unmatter atom

It is possible to define the unmatter in a more general way,

using the exotic atom. The classical unmatter atoms were

formed by particles like:

(a) electrons, protons, and antineutrons, or

(b) antielectrons, antiprotons, and neutrons.

In a more general definition, an unmatter atom is a system

of particles as above, or such that one or more particles

are replaces by other particles of the same charge. Other

categories would be:

(c) a matter atom with where one or more (but not all) of

the electrons and/or protons are replaced by antimatter

particles of the same corresponding charges, and

(d) an antimatter atom such that one or more (but not all)

of the antielectrons and/or antiprotons are replaced by

matter particles of the same corresponding charges.

In a more composed system we can substitute a particle

by an unmatter particle and form an unmatter atom.

Of course, not all of these combinations are stable, semi-

stable, or quasi-stable, especially when their time to bind

together might be longer than their lifespan.

4 Examples of unmatter

During 1970-1975 numerous pure experimental verifications

were obtained proving that “atom-like” systems built on

nucleons (protons and neutrons) and anti-nucleons (anti-

protons and anti-neutrons) are real. Such “atoms”, where

nucleon and anti-nucleon are moving at the opposite sides of

the same orbit around the common centre of mass, are very

unstable, their life span is no more than 10−20 sec. Then

nucleon and anti-nucleon annihilate into gamma-quanta and

more light particles (pions) which can not be connected with

one another, see [6, 7, 8]. The experiments were done in

mainly Brookhaven National Laboratory (USA) and, partial-

ly, CERN (Switzerland), where “proton — anti-proton” and

“anti-proton — neutron” atoms were observed, called them

p̄p and p̄n respectively, see Fig. 1 and Fig. 2.

After the experiments were done, the life span of such

“atoms” was calculated in theoretical way in Chapiro’s works

[9, 10, 11]. His main idea was that nuclear forces, acting

between nucleon and anti-nucleon, can keep them far way

from each other, hindering their annihilation. For instance,

a proton and anti-proton are located at the opposite sides

in the same orbit and they are moved around the orbit

centre. If the diameter of their orbit is much more than

the diameter of “annihilation area”, they can be kept out of

annihilation (see Fig. 3). But because the orbit, according to

Quantum Mechanics, is an actual cloud spreading far around

the average radius, at any radius between the proton and

the anti-proton there is a probability that they can meet one

another at the annihilation distance. Therefore “nucleon —

anti-nucleon” system annihilates in any case, this system

F. Smarandache. More Types of Unmatter and a Quantum Chromodynamics Formula 113
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Fig. 1: Spectra of proton impulses in the reaction p̄+d→ (p̄n)+p.

The upper arc — annihilation of p̄n into even number of pions, the

lower arc — its annihilation into odd number of pions. The observed

maximum points out that there is a connected systemp̄n. Abscissa

axis represents the proton impulse in GeV/sec (and the connection

energy of the system p̄n). Ordinate axis — the number of events.

Cited from [6].

is unstable by definition having life span no more than

10−20 sec.

Unfortunately, the researchers limited the research to the

consideration of p̄p and p̄n “atoms” only. The reason was

that they, in the absence of a theory, considered p̄p and p̄n
“atoms” as only a rare exception, which gives no classes of

matter.

Despite Benn Tannenbaum’s and Randall J. Scalise’s re-

jections of unmatter and Scalise’s personal attack on me in

a true Ancient Inquisitionist style under MadSci moderator

John Link’s tolerance (MadSci web site, June-July 2005),

the unmatter does exists, for example some messons and

antimessons, through for a trifling of a second lifetime, so

the pions are unmatter∗, the kaon K+ (uŝ ), K− (u ŝ), Phi

(sŝ ), D+ (cd )̂, D0 (cu )̂, D+s (cŝ ), J/Psi (cĉ ), B− (bu )̂, B0

(db )̂, B0s (sb )̂, Upsilon (bb )̂, etc. are unmatter too†.

Also, the pentaquark theta-plusΘ+, of charge +1, uuddŝ
(i. e. two quarks up, two quarks down, and one anti-strange

quark), at a mass of 1.54 GeV and a narrow width of 22

MeV, is unmatter, observed in 2003 at the Jefferson Lab in

Newport News, Virginia, in the experiments that involved

multi-GeV photons impacting a deuterium target. Similar

pentaquark evidence was obtained by Takashi Nakano of

Osaka University in 2002, by researchers at the ELSA accel-

erator in Bonn in 1997-1998, and by researchers at ITEP in

Moscow in 1986. Besides theta-plus, evidence has been

∗Which have the composition u d̂ and ud ,̂ where by uˆ we mean

anti-up quark, d = down quark, and analogously u = up quark and dˆ =

anti-down quark, while by ˆwe mean “anti”.
†Here c = charm quark, s = strange quark, b = bottom quark.

Fig. 2: Probability σ of interaction between p̄, p and deutrons d
(cited from [7]). The presence of maximum stands out the existence

of the resonance state of “nucleon — anti-nucleon”.

found in one experiment [4] for other pentaquarks, Ξ−s
(ddssu )̂ and Ξ+s (uussd )̂.

In order for the paper to be self-contained let’s recall

that the pionium is formed by a π+ and π− mesons, the

positronium is formed by an antielectron (positron) and an

electron in a semi-stable arrangement, the protonium is

formed by a proton and an antiproton also semi-stable, the

antiprotonic helium is formed by an antiproton and electron

together with the helium nucleus (semi-stable), and muonium

is formed by a positive muon and an electron. Also, the

mesonic atom is an ordinary atom with one or more of its

electrons replaced by negative mesons. The strange matter

is a ultra-dense matter formed by a big number of strange

quarks bounded together with an electron atmosphere (this

strange matter is hypothetical).

From the exotic atom, the pionium, positronium, pro-

tonium, antiprotonic helium, and muonium are unmatter. The

mesonic atom is unmatter if the electron(s) are replaced by

negatively-charged antimessons. Also we can define a me-

sonic antiatom as an ordinary antiatomic nucleous with one

or more of its antielectrons replaced by positively-charged

mesons. Hence, this mesonic antiatom is unmatter if the

antielectron(s) are replaced by positively-charged messons.

The strange matter can be unmatter if these exists at least

an antiquark together with so many quarks in the nucleous.

Also, we can define the strange antimatter as formed by
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Fig. 3: Annihilation area and the probability arc in “nucleon —

anti-nucleon” system (cited from [11]).

a large number of antiquarks bound together with an anti-

electron around them. Similarly, the strange antimatter can

be unmatter if there exists at least one quark together with

so many antiquarks in its nucleous.

The bosons and antibosons help in the decay of unmatter.

There are 13 + 1 (Higgs boson) known bosons and 14 anti-

bosons in present.

5 Quantum Chromodynamics formula

In order to save the colorless combinations prevailed in the

Theory of Quantum Chromodynamics (QCD) of quarks and

antiquarks in their combinations when binding, we devise

the following formula:

Q− A ∈ ±M3 , (1)

whereM3means multiple of three, i. e. ±M3={3k| k∈Z}=
={. . . ,−12,−9,−6,−3, 0, 3, 6, 9, 12, . . .}, and Q=number

of quarks, A = number of antiquarks. But (1) is equivalent to

Q ≡ A (mod 3) (2)

(Q is congruent to A modulo 3).

To justify this formula we mention that 3 quarks form

a colorless combination, and any multiple of three (M3)
combination of quarks too, i. e. 6, 9, 12, etc. quarks. In

a similar way, 3 antiquarks form a colorless combination,

and any multiple of three (M3) combination of antiquarks

too, i. e. 6, 9, 12, etc. antiquarks. Hence, when we have

hybrid combinations of quarks and antiquarks, a quark and

an antiquark will annihilate their colors and, therefore, what’s

left should be a multiple of three number of quarks (in the

case when the number of quarks is bigger, and the difference

in the formula is positive), or a multiple of three number

of antiquarks (in the case when the number of antiquarks is

bigger, and the difference in the formula is negative).

6 Quark-antiquark combinations

Let’s note by q= quark ∈ {Up,Down,Top,Bottom, Strange,
Charm}, and by a=antiquark∈{Up̂ ,Down̂ ,Top̂ ,Bottom ,̂

Strangê ,Charm }̂. Hence, for combinations of n quarks and

antiquarks, n� 2, prevailing the colorless, we have the fol-

lowing possibilities:

• if n=2, we have: qa (biquark — for example the me-

sons and antimessons);

• if n=3, we have qqq, aaa (triquark — for example the

baryons and antibaryons);

• if n=4, we have qqaa (tetraquark);

• if n=5, we have qqqqa, aaaaq (pentaquark);

• if n=6, we have qqqaaa, qqqqqq, aaaaaa
(hexaquark);

• if n=7, we have qqqqqaa, qqaaaaa (septiquark);

• if n=8, we have qqqqaaaa, qqqqqqaa, qqaaaaaa
(octoquark);

• if n=9, we have qqqqqqqqq, qqqqqqaaa,
qqqaaaaaa, aaaaaaaaa (nonaquark);

• if n=10, we have qqqqqaaaaa, qqqqqqqqaa,
qqaaaaaaaa (decaquark); etc.

7 Unmatter combinations

From the above general case we extract the unmatter combi-

nations:

• For combinations of 2 we have: qa (unmatter biquark),

mesons and antimesons; the number of all possible

unmatter combinations will be 6×6 = 36, but not all

of them will bind together.

It is possible to combine an entity with its mirror opposite

and still bound them, such as: uu ,̂ dd ,̂ sŝ , cĉ , bbˆwhich

form mesons. It is possible to combine, unmatter + unmatter

= unmatter, as in udˆ+ uŝ = uud ŝ̂ (of course if they bind

together).

• For combinations of 3 (unmatter triquark) we can not

form unmatter since the colorless can not hold.

• For combinations of 4 we have: qqaa (unmatter tetra-

quark); the number of all possible unmatter combina-

tions will be 62×62 = 1,296, but not all of them will

bind together.

• For combinations of 5 we have: qqqqa, or aaaaq
(unmatter pentaquarks); the number of all possible

unmatter combinations will be 64×6+64×6 = 15,552,

but not all of them will bind together.

• For combinations of 6 we have: qqqaaa (unmatter

hexaquarks); the number of all possible unmatter com-

binations will be 63×63 = 46,656, but not all of them

will bind together.

• For combinations of 7 we have: qqqqqaa, qqaaaaa
(unmatter septiquarks); the number of all possible un-

matter combinations will be 65×62+62×65 = 559,872,

but not all of them will bind together.
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• For combinations of 8 we have: qqqqaaaa, qqqqqqqa,
qaaaaaaa (unmatter octoquarks); the number of all the

unmatter combinations will be 64×64+67×61+61×67=
= 5,038,848, but not all of them will bind together.

• For combinations of 9 we have types: qqqqqqaaa,
qqqaaaaaa (unmatter nonaquarks); the number of all

the unmatter combinations will be 66×63+63×66=2×69

= 20,155,392, but not all of them will bind together.

• For combinations of 10 we have types: qqqqqqqqaa,
qqqqqaaaaa, qqaaaaaaaa (unmatter decaquarks);

the number of all the unmatter combinations will be

3×610= 181,398,528, but not all of them will bind to-

gether. Etc.

I wonder if it is possible to make infinitely many co-

mbinations of quarks/antiquarks and leptons/antileptons. . .

Unmatter can combine with matter and/or antimatter and the

result may be any of these three. Some unmatter could be in

the strong force, hence part of hadrons.

8 Unmatter charge

The charge of unmatter may be positive as in the pentaquark

theta-plus, 0 (as in positronium), or negative as in anti-ρ-
meson (u d̂) (M. Jordan).

9 Containment

I think for the containment of antimatter and unmatter it

would be possible to use electromagnetic fields (a container

whose walls are electromagnetic fields). But its duration is

unknown.

10 Further research

Let’s start from neutrosophy [13], which is a generalization

of dialectics, i. e. not only the opposites are combined but also

the neutralities. Why? Because when an idea is launched, a

category of people will accept it, others will reject it, and

a third one will ignore it (don’t care). But the dynamics

between these three categories changes, so somebody ac-

cepting it might later reject or ignore it, or an ignorant will

accept it or reject it, and so on. Similarly the dynamicity

of <A>, <antiA>, <neutA>, where <neutA> means neither

<A> nor <antiA>, but in between (neutral). Neutrosophy

considers a kind not of di-alectics but tri-alectics (based on

three components: <A>, <antiA>, <neutA>). Hence unmatter

is a kind of neutrality (not referring to the charge) between

matter and antimatter, i. e. neither one, nor the other.

Upon the model of unmatter we may look at ungravity,

unforce, unenergy, etc.

Ungravity would be a mixture between gravity and anti-

gravity (for example attracting and rejecting simultaneously

or alternatively; or a magnet which changes the + and −
poles frequently).

Unforce. We may consider positive force (in the direction

we want), and negative force (repulsive, opposed to the pre-

vious). There could be a combination of both positive and

negative forces in the same time, or alternating positive and

negative, etc.

Unenergy would similarly be a combination between

positive and negative energies (as the alternating current,

a. c., which periodically reverses its direction in a circuit and

whose frequency, f , is independent of the circuit’s constants).

Would it be possible to construct an alternating-energy gen-

erator?

To conclusion: According to the Universal Dialectic the

unity is manifested in duality and the duality in unity. “Thus,

Unmatter (unity) is experienced as duality (matter vs anti-

matter). Ungravity (unity) as duality (gravity vs antigravity).

Unenergy (unity) as duality (positive energy vs negative en-

ergy) and thus also . . . between duality of being (existence)

vs nothingness (antiexistence) must be ‘unexistence’ (or pure

unity)” (R. Davic).
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Applying the R. A. Brightsen Nucleon Cluster Model of the atomic nucleus we discuss

how unmatter entities (the conjugations of matter and antimatter) may be formed as

clusters inside a nucleus. The model supports a hypothesis that antimatter nucleon

clusters are present as a parton (sensu Feynman) superposition within the spatial

confinement of the proton (1H1), the neutron, and the deuteron (1H2). If model

predictions can be confirmed both mathematically and experimentally, a new physics

is suggested. A proposed experiment is connected to othopositronium annihilation

anomalies, which, being related to one of known unmatter entity, orthopositronium

(built on electron and positron), opens a way to expand the Standard Model.

1 Introduction

According to Smarandache [1, 2, 3], following neutrosophy

theory in philosophy and set theory in mathematics, the union

of matter <A> and its antimatter opposite <AntiA> can form

a neutral entity <NeutA> that is neither <A> nor <AntiA>.

The <NeutA> entity was termed “unmatter” by Smarandache

[1] in order to highlight its intermediate physical constitution

between matter and antimatter. Unmatter is formed when

matter and antimatter baryons intermingle, regardless of the

amount of time before the conjugation undergoes decay.

Already Bohr long ago predicted the possibility of unmatter

with his principle of complementarity, which holds that nat-

ure can be understood in terms of concepts that come in

complementary pairs of opposites that are inextricably con-

nected by a Heisenberg-like uncertainty principle. However,

not all physical union of <A> with <AntiA> must form

unmatter. For instance, the charge quantum number for the

electron (e−) and its antimatter opposite positron (e+) make

impossible the formation of a charge neutral state — the

quantum situation must be either (e−) or (e+).

Although the terminology “unmatter” is unconventional,

unstable entities that contain a neutral union of matter and

antimatter are well known experimentally for many years

(e. g, pions, pentaquarks, positronium, etc.). Smarandache

[3] presents numerous additional examples of unmatter that

conform to formalism of quark quantum chromodynamics,

already known since the 1970’s. The basis that unmatter

does exists comes from the 1970’s experiments done at

Brookhaven and CERN [4–8], where unstable unmatter-like

entities were found. Recently “physicists suspect they have

created the first molecules from atoms that meld matter

with antimatter. Allen Mills of the University of California,

Riverside, and his colleagues say they have seen telltale

signs of positronium molecules, made from two positronium

atoms” [9, 10]. A bound and quasi-stable unmatter baryon-

ium has been verified experimentally as a weak resonance

between a proton and antiproton using a Skyrme-type model

potential. Further evidence that neutral entities derive from

union of opposites comes from the spin induced magnetic

moment of atoms, which can exist in a quantum state of both

spin up and spin down at the same time, a quantum con-

dition that follows the superposition principal of physics. In

quantum physics, virtual and physical states that are mutually

exclusive while simultaneously entangled, can form a unity

of opposites <NeutA> via the principle of superposition.

Our motivation for this communication is to the question:

would the superposition principal hold when mass sym-

metrical and asymmetrical matter and antimatter nucleon

wavefunctions become entangled, thus allowing for possible

formation of macroscopic “unmatter” nucleon entities, either

stable or unstable? Here we introduce how the novel Nucleon

Cluster Model of the late R. A. Brightsen [11–17] does pre-

dict formation of unmatter as the product of such a superpo-

sition between matter and antimatter nucleon clusters. The

model suggests a radical hypothesis that antimatter nucleon

clusters are present as a hidden parton type variable (sensu

Feynman) superposed within the spatial confinement of the

proton (1H1), the neutron, and the deuteron (1H2). Because

the mathematics involving interactions between matter and

antimatter nucleon clusters is not developed, theoretical work

will be needed to test model predictions. If model predictions

can be experimentally confirmed, a new physics is suggested.

2 The Brightsen Nucleon Cluster Model to unmatter

entities inside nuclei

Of fundamental importance to the study of nuclear physics is

the attempt to explain the macroscopic structural phenomena

of the atomic nucleus. Classically, nuclear structure mathem-

atically derives from two opposing views: (1) that the proton

[P] and neutron [N] are independent (unbound) interacting
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Matter

Clusters −→

Antimatter

Clusters

−
→

[NP]

Deuteron

i

Stable

[NPN]

Triton

j

Beta-unstable

[PNP]

Helium-3

k

Stable

[NN]

Di-Neutron

l

[PP]

Di-Proton

m

[NNN]

Tri-Neutron

n

[PPP]

Tri-Proton

o

[N P̂̂ ]

a

Stable

[N]

|NP| |N P̂̂ |

[P]

|NP| |N P̂̂ |

Pions

(q q̂ )

Pions

(q q̂ )

[N]

|NN| |N P̂̂ |

[P]

|N P̂̂ | |PP|

[N P̂̂ N ]̂

b

Beta-unstable

[N ]̂

|NP| |N P̂̂ |

Pions

(q q̂ )

[P̂ ]

|NN| |NˆN |̂

[N ]̂

|N P̂̂ | |PP|

Pions

(q q̂ )

Tetraquarks

(q q q̂ q̂ )

[P̂ N P̂̂ ]

c

Stable

[P̂ ]

|NP| |N P̂̂ |

Pions

(q q̂ )

[P̂ ]

|N P̂̂ | |NN|

[N ]̂

|PP| |P P̂̂ |

Tetraquarks

(q q q̂ q̂ )

Pions

(q q̂ )

[NˆN ]̂

d

Pions

(q q̂ )

[N]

|NN| |NˆN |̂

[P]

|NP| |NˆN |̂

Tetraquarks

(q q q̂ q̂ )

[N]

|NN| |NˆN |̂

[P]

|PP| |NˆN |̂

[P̂ P̂ ]

e

Pions

(q q̂ )

[N]

|NP| |P P̂̂ |

[P]

|NP| |P P̂̂ |

Tetraquarks

(q q q̂ q̂ )

[N]

|P̂ P̂ | |NN|

[P]

|PP| |P P̂̂ |

[NˆNˆN ]̂

f

[N ]̂

|NP| |NˆN |̂

Pions

(q q̂ )

Tetraquarks

(q q q̂ q̂ )

[N ]̂

|NN| |NˆN |̂

[N ]̂

|NˆN |̂ |PP|

Hexaquarks

(q q q q̂ q̂ q̂ )

[P̂ P̂ P̂ ]

g

[P̂ ]

|NP| |P P̂̂ |

Tetraquarks

(q q q̂ q̂ )

Pions

(q q̂ )

[P̂ ]

|P̂ P̂ | |NN|

[P̂ ]

|P̂ P̂ | |PP|

Hexaquarks

(q q q q̂ q̂ q̂ )

Table 1: Unmatter entities (stable, quasi-stable, unstable) created from union of matter and antimatter nucleon clusters as predicted by

the gravity-antigravity formalism of the Brightsen Nucleon Cluster Model. Shaded cells represent interactions that result in annihilation

of mirror opposite two- and three- body clusters. Top nucleons within cells show superposed state comprised of three valance quarks;

bottom structures show superposed state of hidden unmatter in the form of nucleon clusters. Unstable pions, tetraquarks, and hexaquark

unmatter are predicted from union of mass symmetrical clusters that are not mirror opposites. The symbol ˆ= antimatter, N = neutron, P

= proton, q = quark. (Communication with R. D. Davic).

fermions within nuclear shells, or (2) that nucleons interact

collectively in the form of a liquid-drop. Compromise models

attempt to cluster nucleons into interacting [NP] boson pairs

(e.g., Interacting Boson Model-IBM), or, as in the case of

the Interacting Boson-Fermion Model (IBFM), link boson

clusters [NP] with un-paired and independent nucleons [P]

and [N] acting as fermions.

However, an alternative view, at least since the 1937

Resonating Group Method of Wheeler, and the 1965 Close-

Packed Spheron Model of Pauling, holds that the macro-

scopic structure of atomic nuclei is best described as being

composed of a small number of interacting boson-fermion

nucleon “clusters” (e. g., helium-3 [PNP], triton [NPN], deu-

teron [NP]), as opposed to independent [N] and [P] nucleons

acting as fermions, either independently or collectively.

Mathematically, such clusters represent a spatially localized

mass-charge-spin subsystem composed of strongly correlated

nucleons, for which realistic two- and three body wave funct-

ions can be written. In this view, quark-gluon dynamics are

confined within the formalism of 6-quark bags [NP] and

9-quark bags ([PNP] and [NPN]), as opposed to valance

quarks forming free nucleons. The experimental evidence in

support of nucleons interacting as boson-fermion clusters is

now extensive and well reviewed.

One novel nucleon cluster model is that of R. A. Bright-

sen, which was derived from the identification of mass-

charge symmetry systems of isotopes along the Z-N Serge

plot. According to Brightsen, all beta-stable matter and anti-

matter isotopes are formed by potential combinations of

two- and three nucleon clusters; e.g., ([NP], [PNP], [NPN],

[NN], [PP], [NNN], [PPP], and/or their mirror antimatter

clusters [NˆP ]̂, [PˆNˆP ]̂, [NˆPˆN ]̂, [NˆN ]̂, [PˆP ]̂, [PˆPˆP ]̂,

[NˆNˆN ]̂, where the symbol ˆ here is used to denote anti-

matter. A unique prediction of the Brightsen model is that a

stable union must result between interaction of mass asym-

metrical matter (positive mass) and antimatter (negative

mass) nucleon clusters to form protons and neutrons, for

example the interaction between matter [PNP] + antimatter
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[NˆP ]̂. Why union and not annihilation of mass asymmetrical

matter and antimatter entities? As explained by Brightsen,

independent (unbound) neutron and protons do not exist in

nuclear shells, and the nature of the mathematical series of

cluster interactions (3 [NP] clusters = 1[NPN] cluster + 1

[PNP] cluster), makes it impossible for matter and antimatter

clusters of identical mass to coexist in stable isotopes. Thus,

annihilation cannot take place between mass asymmetrical

two- and three matter and antimatter nucleon clusters, only

strong bonding (attraction).

Here is the Table that tells how unmatter may be formed

from nucleon clusters according to the Brightsen model.

3 A proposed experimental test

As known, Standard Model of Quantum Electrodynamics

explains all known phenomena with high precision, aside

for anomalies in orthopositronium annihilation, discovered

in 1987.

The Brightsen model, like many other models (see Ref-

erences), is outside the Standard Model. They all pretend to

expand the Standard Model in one or another way. Therefore

today, in order to judge the alternative models as true or false,

we should compare their predictions to orthopositronium

annihilation anomalies, the solely unexplained by the Stand-

ard Model. Of those models the Brightsen model has a chance

to be tested in such way, because it includes unmatter entities

(the conjugations of particles and anti-particles) inside an

atomic nucleus that could produce effect in the forming of

orthopositronium by β+-decay positrons and its annihilation.

In brief, the anomalies in orthopositronium annihilation

are as follows.

Positronium is an atom-like orbital system that includes

an electron and its anti-particle, positron, coupled by electro-

static forces. There are two kinds of that: parapositronium
SPs, in which the spins of electron and positron are oppositely

directed and the summary spin is zero, and orthopositronium
TPs, in which the spins are co-directed and the summary spin

is one. Because a particle-antiparticle (unmatter) system is

unstable, life span of positronium is rather small. In vacuum,

parapositronium decays in τ ≃ 1.25×10−10 s, while ortho-

positronium is τ ≃ 1.4×10−7 s after the birth. In a medium

the life span is even shorter because positronium tends to

annihilate with electrons of the media.

In laboratory environment positronium can be obtained

by placing a source of free positrons into a matter, for

instance, one-atom gas. The source of positrons is β+-decay,

self-triggered decays of protons in neutron-deficient atoms∗

p → n+ e+ + νe.

Some of free positrons released from β+-decay source

∗It is also known as positron β+-decay. During β−-decay in nucleus

neutron decays n → p+ e−+ ν̃e.

into gas quite soon annihilate with free electrons and elec-

trons in the container’s walls. Other positrons capture elec-

trons from gas atoms thus producing orthopositronium and

parapositronium (in 3:1 statistical ratio). Time spectrum of

positrons (number of positrons vs. life span) is the basic

characteristic of their annihilation in matter.

In inert gases the time spectrum of annihilation of free

positrons generally reminds of exponential curve with a

plateau in its central part, known as “shoulder” [29, 30]. In

1965 Osmon published [29] pictures of observed time spectra

of annihilation of positrons in inert gases (He, Ne, Ar, Kr,

Xe). In his experiments he used 22NaCl as a source of β+-

decay positrons. Analyzing the results of the experiments,

Levin noted that the spectrum in neon was peculiar compared

to those in other one-atom gases: in neon points in the

curve were so widely scattered, that presence of a “shoulder”

was unsure. Repeated measurements of temporal spectra of

annihilation of positrons in He, Ne, and Ar, later accomplish-

ed by Levin [31, 32], have proven existence of anomaly in

neon. Specific feature of the experiments done by Osmon,

Levin and some other researchers in the UK, Canada, and

Japan is that the source of positrons was 22Na, while the

moment of birth of positron was registered according to γn-
quantum of decay of excited 22∗Ne

22∗Ne → 22Ne+ γn ,

from one of products of β+-decay of 22∗Na.

In his experiments [33, 34] Levin discovered that the

peculiarity of annihilation spectrum in neon (abnormally

wide scattered points) is linked to presence in natural neon of

substantial quantity of its isotope 22Ne (around 9%). Levin

called this effect isotope anomaly. Temporal spectra were

measured in neon environments of two isotopic composit-

ions: (1) natural neon (90.88% of 20Ne, 0.26% of 21Ne,

and 8.86% of 22Ne); (2) neon with reduced content of 22Ne

(94.83% of 20Ne, 0.22% of 21Ne, and 4.91% of 22Ne).

Comparison of temporal spectra of positron decay revealed:

in natural neon (the 1st composition) the shoulder is fuzzy,

while in neon poor with 22Ne (the 2nd composition) the

shoulder is always clearly pronounced. In the part of spectr-

um, to which TPs-decay mostly contributes, the ratio between

intensity of decay in poor neon and that in natural neon (with

much isotope 22Ne) is 1.85±0.1 [34].

Another anomaly is substantially higher measured rate of

annihilation of orthopositronium (the value reciprocal to its

life span) compared to that predicted by QED.

Measurement of orthopositronium annihilation rate is

among the main tests aimed to experimental verification of

QED laws of conservation. In 1987 thanks to new precision

technology a group of researchers based in the University of

Michigan (Ann Arbor) made a breakthrough in this area. The

obtained results showed substantial gap between experiment

and theory. The anomaly that the Michigan group revealed
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was that measured rates of annihilation at λT(exp)= 7.0514±
±0.0014 μs−1 and λT(exp) = 7.0482 ± 0.0016 μs−1 (with

unseen-before precision of 0.02% and 0.023% using vacuum

and gas methods [35–38]) were much higher compared to

λT(theor) = 7.00383 ± 0.00005 μs−1 as predicted by QED

[39–42]. The effect was later called λT-anomaly [43].

Theorists foresaw possible annihilation rate anomaly not

long before the first experiments were accomplished in Mi-

chigan. In 1986 Holdom [44] suggested that “mixed type”

particles may exist, which being in the state of oscillation

stay for some time in our world and for some time in the

mirror Universe, possessing negative masses and energies. In

the same year Glashow [45] gave further development to the

idea and showed that in case of 3-photon annihilation TPs

will “mix up” with its mirror twin thus producing two effects:

(1) higher annihilation rate due to additional mode of decay
TPs → nothing, because products of decay passed into the

mirror Universe can not be detected; (2) the ratio between

orthopositronium and parapositronium numbers will decrease

from TPs : SPs = 3:1 to 1.5 : 1. But at that time (in 1986)

Glashow concluded that no interaction is possible between

our-world and mirror-world particles.

On the other hand, by the early 1990’s these theoretic

studies encouraged many researchers worldwide for experi-

mental search of various “exotic” (unexplained in QED) mo-

des of TPs-decay, which could lit some light on abnormally

high rate of decay. These were, to name just a few, search

for TPs→ nothing mode [46], check of possible contribution

from 2-photon mode [47–49] or from other exotic modes

[50–52]. As a result it has been shown that no exotic modes

can contribute to the anomaly, while contribution of TPs→
nothing mode is limited to 5.8×10−4 of the regular decay.

The absence of theoretical explanation of λT-anomaly

encouraged Adkins et al. [53] to suggest experiments made

in Japan [54] in 1995 as an alternative to the basic Michigan

experiments. No doubt, high statistical accuracy of the Japan-

ese measurements puts them on the same level with the

basic experiments [35–38]. But all Michigan measurements

possessed the property of a “full experiment”, which in this

particular case means no external influence could affect wave

function of positronium. Such influence is inevitable due to

electrodynamic nature of positronium and can be avoided

only using special technique. In Japanese measurements [54]

this was not taken into account and thus they do not possess

property of “full experiment”. Latest experiments of the

Michigans [55], so-called Resolution of Orthopositronium-

Lifetime Pussle, as well do not possess property of “full

experiment”, because the qualitative another statement in-

cluded external influence of electromagnetic field [56, 57].

As early as in 1993 Karshenboim [58] showed that QED

had actually run out of any of its theoretical capabilities to

explain orthopositronium anomaly.

Electric interactions and weak interactions were joined

into a common electroweak interaction in the 1960’s by com-

monly Salam, Glashow, Weinberg, etc. Today’s physicists

attempt to join electroweak interaction and strong interaction

(unfinished yet). They follow an intuitive idea that forces,

connecting electrons and a nucleus, and forces, connecting

nucleons inside a nucleus, are particular cases of a common

interaction. That is the basis of our claim. If that is true, our

claim is that orthopositronium atoms born in neon of different

isotope contents (22Ne, 21Ne, 20Ne) should be different from

each other. There should be an effect of “inner” structure

of neon nuclei if built by the Brightsen scheme, because

the different proton-neutron contents built by different com-

positions of nucleon pairs. As soon as a free positron drags

an electron from a neon atom, the potential of electro-weak

interactions have changed in the atom. Accordingly, there

in the nucleus itself should be re-distribution of strong inter-

actions, than could be once as the re-building of the Brightsen

pairs of nucleons there. So, lost electron of 22Ne should have

a different “inner” structure than that of 21Ne or 20Ne. Then

the life span of orthopositronium built on such electrons

should be as well different.

Of course, we can only qualitatively predict that dif-

ference, because we have no exact picture of what really

happens inside a “structurized” nucleus. Yet only principal

predictions are possible there. However even in such case

we vote for continuation of “isotope anomaly” experiments

with orthopositronium in neon of different isotope contents.

If further experiments will be positive, it could be considered

as one more auxiliary proof that the Brightsen model is true.
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Emergent physics refers to the formation and evolution of collective patterns in systems

that are nonlinear and out-of-equilibrium. This type of large-scale behavior often de-

velops as a result of simple interactions at the component level and involves a dynamic

interplay between order and randomness. On account of its universality, there are credi-

ble hints that emergence may play a leading role in the Tera-ElectronVolt (TeV) sector of

particle physics. Following this path, we examine the possibility of hypothetical high-

energy states that have fractional number of quanta per state and consist of arbitrary

mixtures of particles and antiparticles. These states are similar to “un-particles”, mass-

less fields of non-integral scaling dimensions that were recently conjectured to emerge

in the TeV sector of particle physics. They are also linked to “unmatter”, exotic clusters

of matter and antimatter introduced few years ago in the context of Neutrosophy.

1 Introduction

Quantum Field Theory (QFT) is a framework whose meth-

ods and ideas have found numerous applications in various

domains, from particle physics and condensed matter to cos-

mology, statistical physics and critical phenomena [1, 2]. As

successful synthesis of Quantum Mechanics and Special Rel-

ativity, QFT represents a collection of equilibrium field theo-

ries and forms the foundation for the Standard Model (SM),

a body of knowledge that describes the behavior of all known

particles and their interactions, except gravity. Many broken

symmetries in QFT, such as violation of parity and CP in-

variance, are linked to either the electroweak interaction or

the physics beyond SM [3–5]. This observation suggests that

unitary evolution postulated by QFT no longer holds near or

above the energy scale of electroweak interaction

(� ���GeV) [6,7]. It also suggests that progress on the the-

oretical front requires a framework that can properly handle

non-unitary evolution of phenomena beyond SM. We believe

that fractional dynamics naturally fits this description. It op-

erates with derivatives of non-integer order called fractal op-

erators and is suitable for analyzing many complex processes

with long-range interactions [6–9]. Building on the current

understanding of fractal operators, we take the dimensional

parameter of the regularization program � � ��� to represent

the order of fractional differentiation in physical space-time

(alternatively, � � � � � in one-dimensional space) [10, 11].

It can be shown that � is related to the reciprocal of the cutoff

scale � � �����	, where �� stands for a finite and arbitrary

reference mass and � is the cutoff energy scale. Under these

circumstances, � may be thought as an infinitesimal param-

eter that can be continuously tuned and drives the departure

from equilibrium. The approach to scale invariance demands

that the choice of this parameter is completely arbitrary, as

long as � � �. Full scale invariance and equilibrium field

theory are asymptotically recovered in the limit of physical

space-time �� � �	 as �� � or ��� [11, 12].

2 Definitions

We use below the Riemann-Liouville definition for the one-

dimensional left and right fractal operators [13]. Consider for

simplicity a space-independent scalar field ���	. Taking the

time coordinate to be the representative variable, one writes

��
�
� ���	 �

�


��� �	

�

��

��

�

��� � 	����� 	�� 	 (1)

��
�
� ���	 �

�


��� �	
��

�

��
	

��

�

�� � �	����� 	�� 
 (2)

Here, fractional dimension � � � � � denotes the order

of fractional differentiation. In general, it can be shown that �

is linearly dependent on the dimensionality of the space-time

support [8]. By definition, � assumes a continuous spectrum

of values on fractal supports [11].

3 Fractional dynamics and ‘unparticle’ physics

The classical Lagrangian for the free scalar field theory in

3�1 dimensions reads [1–2, 14]

� � ���������	 (3)

and yields the following expression for the field momentum

� �
�

���
��
	
�

�

�

 (4)
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It is known that the standard technique of canonical quan-

tization promotes a classical field theory to a quantum field

theory by converting the field and momentum variables into

operators. To gain full physical insight with minimal com-

plications in formalism, we work below in 0�1 dimensions.

Ignoring the left/right labels for the time being, we define the

field and momentum operators as

�� �� � � � (5)

� � ��� � � �
��

� ���
�
� ����� (6)

Without the loss of generality, we set � � � in (3). The

Hamiltonian becomes

� � ��� � �
�

�
��� �

�

�
�� �

�

�
����� � ��� � (7)

By analogy with the standard treatment of harmonic oscil-

lator in quantum mechanics, it is convenient to work with the

destruction and creation operators defined through [1–2, 14]

���
�
�

��
�
���� ����� � (8)

����
�
�

��
�
���� � ���� � (9)

Straightforward algebra shows that these operators satisfy

the following commutation rules

���� ��� � ������ ���� � � � � (10)

������ ��� � � � � ��� ��� � � �� �������� (11)

The second relation of these leads to

��� � ���� ��� �
�

�
��������� (12)

In the limit � � � we recover the quantum mechanics of

the harmonic oscillator, namely

�� � ������
�

�
� (13)

It was shown in [6] that the fractional Hamiltonian (12)

leads to a continuous spectrum of states having non-integer

numbers of quanta per state. These unusual flavors of par-

ticles and antiparticles emerging as fractional objects were

named “complexons”. Similar conclusions have recently sur-

faced in a number of papers where the possibility of a scale-

invariant “hidden” sector of particle physics extending be-

yond SM has been investigated. A direct consequence of this

setting is a continuous spectrum of massless fields having

non-integral scaling dimensions called “un-particles”. The

reader is directed to [15–21] for an in-depth discussion of

“un-particle” physics.

4 Mixing properties of fractal operators

Left and right fractal operators (L/R) are natural analogues of

chiral components associated with the structure of quantum

fields [8, 9]. The goal of this section is to show that there is an

inherent mixing of (L/R) operators induced by the fractional

dynamics, as described below. An equivalent representation

of (1) is given by

�	
�

� �	
� �
�


	���� 	�
�

�

�

��
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��	��
�����	� � �� � (14)
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� � (15)
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� � ��	���� �	

�
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Starting from (2) instead, we find

�	
�
� � 	���� �	

�
� � ��	���� �	

�
� � (17)

Consider now the one-dimensional case � � �, take

� �  � ��� and recall that continuous tuning of  does not

impact the physics as a consequence of scale invariance. Let

us iterate (16) and (17) a finite number of times (� � �) under

the assumption that �� �. It follows that the fractal opera-

tor of any infinitesimal order may be only defined up to an ar-

bitrary dimensional factor ��	���� � ��	���� � ����,

that is,

�	
�
��� �	
� �

�
�	

�
��� � ����	
� (18)

or

��	
�
��� �	
� �

�
� �	

�
��� � ���	
� � (19)

where

���
���

	�
��� �	
� � �	
� � (20)

Relations (18–20) indicate that fractional dimension � in-

duces: (a) a new type of mixing between chiral components

of the field and (b) an ambiguity in the very definition of the

field, fundamentally different from measurement uncertain-

ties associated with Heisenberg principle. Both effects are

irreversible (since fractional dynamics describes irreversible

processes) and of topological nature (being based on the con-

cept of continuous dimension). They do not have a counter-

part in conventional QFT.

5 Emergence of “unmatter” states

Using the operator language of QFT and taking into account

(6), (18) can be presented as

����	
� � ����	
�� � ��	
� � (21)
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Relation (21) shows that the fractional momentum op-

erator ��� and the field operator ���������� are no longer

independent entities but linearly coupled through fractional

dimension ��. From (11) it follows that the destruction and

creation operators are also coupled to each other. As a re-

sult, particles and antiparticles can no longer exist as linearly

independent objects. Because �� is continuous, they emerge

as an infinite spectrum of mixed states. This surprising find-

ing is counterintuitive as it does not have an equivalent in

conventional QFT. Moreover, arbitrary mixtures of particles

and antiparticles may be regarded as a manifestation of “un-

matter”, a concept launched in the context of Neutrosophic

Logic [22–24].

6 Definition of unmatter

In short, unmatter is formed by matter and antimatter that

bind together [23, 24].

The building blocks (most elementary particles known to-

day) are 6 quarks and 6 leptons; their 12 antiparticles also

exist.

Then unmatter will be formed by at least a building block

and at least an antibuilding block which can bind together.

Let’s start from neutrosophy [22], which is a generaliza-

tion of dialectics, i.e. not only the opposites are combined

but also the neutralities. Why? Because when an idea is

launched, a category of people will accept it, others will reject

it, and a third one will ignore it (don’t care). But the dynamics

between these three categories changes, so somebody accept-

ing it might later reject or ignore it, or an ignorant will accept

it or reject it, and so on. Similarly the dynamicity of �A�,

�antiA�, �neutA�, where �neutA� means neither �A�

nor �antiA�, but in between (neutral). Neutrosophy consid-

ers a kind not of di-alectics but tri-alectics (based on three

components: �A�, �antiA�, �neutA��.
Hence unmatter is a kind of intermediary (not referring to

the charge) between matter and antimatter, i.e. neither one,

nor the other.

Neutrosophic Logic (NL) is a generalization of fuzzy

logic (especially of intuitionistic fuzzy logic) in which

a proposition has a degree of truth, a degree of falsity, and

a degree of neutrality (neither true nor false); in the normal-

ized NL the sum of these degrees is 1.

7 Exotic atom

If in an atom we substitute one or more particles by other

particles of the same charge (constituents) we obtain an ex-

otic atom whose particles are held together due to the electric

charge. For example, we can substitute in an ordinary atom

one or more electrons by other negative particles (say ��,

anti-Rho meson, D�, D�
�

, muon, tau, ��, ��, etc., gener-

ally clusters of quarks and antiquarks whose total charge is

negative), or the positively charged nucleus replaced by other

positive particle (say clusters of quarks and antiquarks whose

total charge is positive, etc.).

8 Unmatter atom

It is possible to define the unmatter in a more general way,

using the exotic atom.

The classical unmatter atoms were formed by particles

like (a) electrons, protons, and antineutrons, or (b) antielec-

trons, antiprotons, and neutrons.

In a more general definition, an unmatter atom is a system

of particles as above, or such that one or more particles are

replaces by other particles of the same charge.

Other categories would be (c) a matter atom with where

one or more (but not all) of the electrons and/or protons are

replaced by antimatter particles of the same corresponding

charges, and (d) an antimatter atom such that one or more (but

not all) of the antielectrons and/or antiprotons are replaced by

matter particles of the same corresponding charges.

In a more composed system we can substitute a particle

by an unmatter particle and form an unmatter atom.

Of course, not all of these combinations are stable, semi-

stable, or quasi-stable, especially when their time to bind to-

gether might be longer than their lifespan.

9 Examples of unmatter

During 1970–1975 numerous pure experimental verifications

were obtained proving that “atom-like” systems built on nu-

cleons (protons and neutrons) and anti-nucleons (anti-protons

and anti-neutrons) are real. Such “atoms”, where nucleon

and anti-nucleon are moving at the opposite sides of the same

orbit around the common centre of mass, are very unstable,

their life span is no more than 10��� sec. Then nucleon and

anti-nucleon annihilate into gamma-quanta and more light

particles (pions) which can not be connected with one an-

other, see [6, 7, 8]. The experiments were done in mainly

Brookhaven National Laboratory (USA) and, partially,

CERN (Switzerland), where “proton–anti-proton” and

“anti-proton–neutron” atoms were observed, called them ���
and ��� respectively.

After the experiments were done, the life span of such

“atoms” was calculated in theoretical way in Chapiro’s works

[9, 10, 11]. His main idea was that nuclear forces, acting be-

tween nucleon and anti-nucleon, can keep them far way from

each other, hindering their annihilation. For instance, a pro-

ton and anti-proton are located at the opposite sides in the

same orbit and they are moved around the orbit centre. If

the diameter of their orbit is much more than the diameter of

“annihilation area”, they are kept out of annihilation. But be-

cause the orbit, according to Quantum Mechanics, is an actual

cloud spreading far around the average radius, at any radius

between the proton and the anti-proton there is a probability

12 Ervin Goldfain and Florentin Smarandache. On Emergent Physics, “Unparticles” and Exotic “Unmatter”
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that they can meet one another at the annihilation distance.

Therefore nucleon—anti-nucleon system annihilates in any

case, this system is unstable by definition having life span no

more than 10��� sec.

Unfortunately, the researchers limited the research to the

consideration of ��� and ��� nuclei only. The reason was

that they, in the absence of a theory, considered ��� and ���
“atoms” as only a rare exception, which gives no classes of

matter.

The unmatter does exists, for example some messons and

antimessons, through for a trifling of a second lifetime, so the

pions are unmatter (which have the composition uˆd and udˆ,

where by uˆ we mean anti-up quark, d � down quark, and

analogously u � up quark and dˆ � anti-down quark, while

by ˆ means anti), the kaon K� (usˆ), K� (uˆs), Phi (ssˆ), D�

(cdˆ), D�(cuˆ), D�
�

(csˆ), J/Psi (ccˆ), B� (buˆ), B� (dbˆ), B�
�

(sbˆ), Upsilon (bbˆ), where c � charm quark, s � strange

quark, b � bottom quark, etc. are unmatter too.

Also, the pentaquark Theta-plus (���, of charge �1,

uuddsˆ (i.e. two quarks up, two quarks down, and one anti-

strange quark), at a mass of 1.54 GeV and a narrow width of

22 MeV, is unmatter, observed in 2003 at the Jefferson Lab

in Newport News, Virginia, in the experiments that involved

multi-GeV photons impacting a deuterium target. Similar

pentaquark evidence was obtained by Takashi Nakano of Os-

aka University in 2002, by researchers at the ELSA acceler-

ator in Bonn in 1997–1998, and by researchers at ITEP in

Moscow in 1986.

Besides Theta-plus, evidence has been found in one

experiment [25] for other pentaquarks, ��� (ddssuˆ) and

��� (uussdˆ).

D. S. Carman [26] has reviewed the positive and null ev-

idence for these pentaquarks and their existence is still under

investigation.

In order for the paper to be self-contained let’s recall that

the pionium is formed by a �� and �� mesons, the positro-

nium is formed by an antielectron (positron) and an electron

in a semi-stable arrangement, the protonium is formed by a

proton and an antiproton also semi-stable, the antiprotonic

helium is formed by an antiproton and electron together with

the helium nucleus (semi-stable), and muonium is formed by

a positive muon and an electron.

Also, the mesonic atom is an ordinary atom with one or

more of its electrons replaced by negative mesons.

The strange matter is a ultra-dense matter formed by a big

number of strange quarks bounded together with an electron

atmosphere (this strange matter is hypothetical).

From the exotic atom, the pionium, positronium, proto-

nium, antiprotonic helium, and muonium are unmatter.

The mesonic atom is unmatter if the electron(s) are re-

placed by negatively-charged antimessons.

Also we can define a mesonic antiatom as an ordinary

antiatomic nucleous with one or more of its antielectrons re-

placed by positively-charged mesons. Hence, this mesonic

antiatom is unmatter if the antielectron(s) are replaced by

positively-charged messons.

The strange matter can be unmatter if these exists at least

an antiquark together with so many quarks in the nucleous.

Also, we can define the strange antimatter as formed by a

large number of antiquarks bound together with an antielec-

tron around them. Similarly, the strange antimatter can be

unmatter if there exists at least one quark together with so

many antiquarks in its nucleous.

The bosons and antibosons help in the decay of unmatter.

There are 13�1 (Higgs boson) known bosons and 14 anti-

bosons in present.

10 Chromodynamics formula

In order to save the colorless combinations prevailed in the

Theory of Quantum Chromodynamics (QCD) of quarks and

antiquarks in their combinations when binding, we devise the

following formula:

Q�A � �M3 � (22)

where M3 means multiple of three, i.e. �M3��	 ��������
�� � � ��
��������	� �� 	� � �� 
�� � � ��, and Q � number

of quarks, A � number of antiquarks.

But (22) is equivalent to:

Q � A�mod3� (23)

(Q is congruent to A modulo 3).

To justify this formula we mention that 3 quarks form a

colorless combination, and any multiple of three (M3) com-

bination of quarks too, i.e. 6, 9, 12, etc. quarks. In a similar

way, 3 antiquarks form a colorless combination, and any mul-

tiple of three (M3) combination of antiquarks too, i.e. 6, 9,

12, etc. antiquarks. Hence, when we have hybrid combina-

tions of quarks and antiquarks, a quark and an antiquark will

annihilate their colors and, therefore, what’s left should be

a multiple of three number of quarks (in the case when the

number of quarks is bigger, and the difference in the formula

is positive), or a multiple of three number of antiquarks (in

the case when the number of antiquarks is bigger, and the

difference in the formula is negative).

11 Quantum chromodynamics unmatter formula

In order to save the colorless combinations prevailed in the

Theory of Quantum Chromodynamics (QCD) of quarks and

antiquarks in their combinations when binding, we devise the

following formula:

Q�A � �M3 � (24)

where M3 means multiple of three, i.e. �M3��	 ��������
�� � � ��
��������	� �� 	� � �� 
�� � � ��, and Q � number

of quarks, A� number of antiquarks, with Q � 
 and A � 
.
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But (24) is equivalent to:

Q � A�mod3� (25)

(Q is congruent to A modulo 3), and also Q � � and A � �.

12 Quark-antiquark combinations

Let’s note by q � quark � {Up, Down, Top, Bottom, Strange,

Charm}, and by a � antiquark � {Up, Down, Top, Bottom,

Strange, Charm}.

Hence, for combinations of n quarks and antiquarks,

n � 2, prevailing the colorless, we have the following pos-

sibilities:

— if n � 2, we have: qa (biquark — for example the

mesons and antimessons);

— if n � 3, we have qqq, aaa (triquark — for example the

baryons and antibaryons);

— if n � 4, we have qqaa (tetraquark);

— if n � 5, we have qqqqa, aaaaq (pentaquark);

— if n � 6, we have qqqaaa, qqqqqq, aaaaaa (hexaquark);

— if n � 7, we have qqqqqaa, qqaaaaa (septiquark);

— if n � 8, we have qqqqaaaa, qqqqqqaa, qqaaaaaa (oc-

toquark);

— if n � 9, we have qqqqqqqqq, qqqqqqaaa, qqqaaaaaa,

aaaaaaaaa (nonaquark);

— if n � 10, obtain qqqqqaaaaa, qqqqqqqqaa, qqaaaaaaaa

(decaquark);

— etc.

13 Unmatter combinations

From the above general case we extract the unmatter combi-

nations:

— For combinations of 2 we have: qa (unmatter biquark),

(mesons and antimesons); the number of all possible

unmatter combinations will be 6�6 � 36, but not all of

them will bind together.

It is possible to combine an entity with its mirror oppo-

site and still bound them, such as: uuˆ, ddˆ, ssˆ, ccˆ, bbˆ

which form mesons.

It is possible to combine, unmatter � unmatter � un-

matter, as in udˆ � usˆ � uudˆsˆ (of course if they bind

together);

— For combinations of 3 (unmatter triquark) we can not

form unmatter since the colorless can not hold.

— For combinations of 4 we have: qqaa (unmatter tetra-

quark); the number of all possible unmatter combina-

tions will be 6��6� � 1,296, but not all of them will

bind together;

— For combinations of 5 we have: qqqqa, or aaaaq (un-

matter pentaquarks); the number of all possible unmat-

ter combinations will be 6�� 6�6��6 � 15,552, but not

all of them will bind together;

— For combinations of 6 we have: qqqaaa (unmatter hex-

aquarks); the number of all possible unmatter combi-

nations will be 6� � 6� � 46,656, but not all of them

will bind together;

— For combinations of 7 we have: qqqqqaa, qqaaaaa (un-

matter septiquarks); the number of all possible unmat-

ter combinations will be 6� � 6� � 6� � 6� � 559,872,

but not all of them will bind together;

— For combinations of 8 we have: qqqqaaaa, qqqqqqqa,

qaaaaaaa (unmatter octoquarks); the number of all pos-

sible unmatter combinations will be 6� � 6� � 6� � 6�

� 6� � 6� � 5,038,848, but not all of them will bind

together;

— For combinations of 9 we have: qqqqqqaaa, qqqaaaaaa

(unmatter nonaquarks); the number of all possible un-

matter combinations will be 6��6� � 6� � 6� � 2�6� �
20,155,392, but not all of them will bind together;

— For combinations of 10: qqqqqqqqaa, qqqqqaaaaa,

qqaaaaaaaa (unmatter decaquarks); the number of

all possible unmatter combinations will be 3�6�	 �
181,398,528, but not all of them will bind together;

— etc.

I wonder if it is possible to make infinitely many combina-

tions of quarks/antiquarks and leptons/antileptons. . . Unmat-

ter can combine with matter and/or antimatter and the result

may be any of these three.

Some unmatter could be in the strong force, hence part of

hadrons.

14 Unmatter charge

The charge of unmatter may be positive as in the pentaquark

Theta-plus, 0 (as in positronium), or negative as in anti-Rho

meson, i.e. uˆd, (M. Jordan).

15 Containment

I think for the containment of antimatter and unmatter it

would be possible to use electromagnetic fields (a container

whose walls are electromagnetic fields). But its duration is

unknown.

16 Summary and conclusions

It is apparent from these considerations that, in general, both

“unmatter” and “unparticles” are non-trivial states that may

become possible under conditions that substantially deviate

from our current laboratory settings. Unmatter can be thought

14 Ervin Goldfain and Florentin Smarandache. On Emergent Physics, “Unparticles” and Exotic “Unmatter”
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as arbitrary clusters of ordinary matter and antimatter, unpar-

ticles contain fractional numbers of quanta per state and carry

arbitrary spin [6]. They both display a much richer dynamics

than conventional SM doublets, for example mesons (quark-

antiquark states) or lepton pairs (electron-electron antineu-

trino). Due to their unusual properties, “unmatter” and “un-

particles” are presumed to be highly unstable and may lead

to a wide range of symmetry breaking scenarios. In particu-

lar, they may violate well established conservation principles

such as electric charge, weak isospin and color. Future obser-

vational evidence and analytic studies are needed to confirm,

expand or falsify these tentative findings.
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Unlike what some physicists and graduate students used to think, that physics science

has come to the point that the only improvement needed is merely like adding more

numbers in decimal place for the masses of elementary particles or gravitational con-

stant, there is a number of unsolved problems in this field that may require that the

whole theory shall be reassessed. In the present article we discuss thirty of those un-

solved problems and their likely implications. In the first section we will discuss some

well-known problems in cosmology and particle physics, and then other unsolved prob-

lems will be discussed in next section.

1 Unsolved problems related to cosmology

In the present article we discuss some unsolved problems

in the physics of elementary particles, and their likely im-

plications. In the first section we will discuss some well-

known problems in cosmology and particle physics, and then

other unsolved problems will be discussed in next section.

Some of these problems were inspired by and expanded from

Ginzburg’s paper [1]. The problems are:

1. The problem of the three origins. According to Mar-

celo Gleiser (Darthmouth College) there are three un-

solved questions which are likely to play significant

role in 21st-century science: the origin of the universe,

the origin of life, and the origin of mind;

2. The problem of symmetry and antimatter observation.

This could be one of the biggest puzzle in cosmology:

If it’s true according to theoretical physics (Dirac equa-

tion etc.) that there should be equal amounts of matter

and antimatter in the universe, then why our observa-

tion only display vast amounts of matter and very little

antimatter?

3. The problem of dark matter in cosmology model. Do

we need to introduce dark matter to describe galaxy

rotation curves? Or do we need a revised method in

our cosmology model? Is it possible to develop a new

theory of galaxy rotation which agrees with observa-

tions but without invoking dark matter? For example

of such a new theory without dark matter, see Moffat

and Brownstein [2, 3];

4. Cosmological constant problem. This problem repre-

sents one of the major unresolved issues in contempo-

rary physics. It is presumed that a presently unknown

symmetry operates in such a way to enable a vanish-

ingly small constant while remaining consistent with

all accepted field theoretic principles [4];

5. Antimatter hydrogen observation. Is it possible to find

isolated antimatter hydrogen (antihydrogen) in astro-

physics (stellar or galaxies) observation? Is there anti-

hydrogen star in our galaxy?

Now we are going to discuss other seemingly interesting

problems in the physics of elementary particles, in particu-

lar those questions which may be related to the New Energy

science.

2 Unsolved problems in the physics of elementary par-

ticles

We discuss first unsolved problems in the Standard Model

of elementary particles. Despite the fact that Standard Model

apparently comply with most experimental data up to this day,

the majority of particle physicists feel that SM is not a com-

plete framework. E. Goldfain has listed some of the most

cited reasons for this belief [5], as follows:

6. The neutrino mass problem. Some recent discovery in-

dicates that neutrino oscillates which implies that neu-

trino has mass, while QM theories since Pauli predict

that neutrino should have no mass [6]. Furthermore it

is not yet clear that neutrino (oscillation) phenomena

correspond to Dirac or Majorana neutrino [7];

7. SM does not include the contribution of gravity and

gravitational corrections to both quantum field theory

and renormalization group (RG) equations;

8. SM does not fix the large number of parameters that en-

ter the theory (in particular the spectra of masses, gauge

couplings, and fermion mixing angles). Some physi-

cists have also expressed their objections that in the

QCD scheme the number of quarks have increased to

more than 30 particles, therefore they assert that QCD-

quark model cease to be a useful model for elementary

particles;
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9. SM has a gauge hierarchy problem, which requires fine

tuning. Another known fine-tuning problem in SM is

“strong CP problem” [8, p. 18];

10. SM postulates that the origin of electroweak symmetry

breaking is the Higgs mechanism. Unfortunately Higgs

particle has never been found; therefore recently some

physicists feel they ought to introduce more speculative

theories in order to save their Higgs mechanism [9];

11. SM does not clarify the origin of its gauge group

SU(3)�SU(2)�U(1) and why quarks and lepton occur

as representations of this group;

12. SM does not explain why (only) the electroweak inter-

actions are chiral (parity-violating) [8, p. 16];

13. Charge quantization problem. SM does not explain an-

other fundamental fact in nature, i.e. why all particles

have charges which are multiples of ��� [8, p. 16].

Other than the known problems with SM as described

above, there are other quite fundamental problems related to

the physics of elementary particles and mathematical physics

in general, for instance [10]:

14. Is there dynamical explanation of quark confinement

problem? This problem corresponds to the fact that

quarks cannot be isolated. See also homepage by Clay

Institute on this problem;

15. What is the dynamical mechanism behind Koide’s mix-

ing matrix of the lepton mass formula [11]?

16. Does neutrino mass correspond to the Koide mixing

matrix [12]?

17. Does Dirac’s new electron theory in 1951 reconcile the

quantum mechanical view with the classical electrody-

namics view of the electron [13]?

18. Is it possible to explain anomalous ultraviolet hydrogen

spectrum?

19. Is there quaternion-type symmetry to describe neutrino

masses?

20. Is it possible to describe neutrino oscillation dynam-

ics with Bogoliubov-deGennes theory, in lieu of using

standard Schrödinger-type wave equation [6]?

21. Solar neutrino problem — i.e. the seeming deficit of

observed solar neutrinos [14]. The Sun through fusion,

send us neutrinos, and the Earth through fission, an-

tineutrinos. But observation in SuperKamiokande etc.

discovers that the observed solar neutrinos are not as

expected. In SuperKamiokande Lab, it is found that the

number of electron neutrinos which is observed is 0.46

that which is expected [15]. One proposed explanation

for the lack of electron neutrinos is that they may have

oscillated into muon neutrinos;

22. Neutrino geology problem. Is it possible to observe

terrestrial neutrino? The flux of terrestrial neutrino is

a direct reflection of the rate of radioactive decays in

the Earth and so of the associated energy production,

which is presumably the main source of Earth’s

heat [14];

23. Is it possible to explain the origin of electroweak sym-

metry breaking without the Higgs mechanism or Higgs

particles? For an example of such alternative theory to

derive boson masses of electroweak interaction without

introducing Higgs particles, see E. Goldfain [16];

24. Is it possible to write quaternionic formulation [17] of

quantum Hall effect? If yes, then how?

25. Orthopositronium problem [18]. What is the dynamics

behind orthopositronium observation?

26. Is it possible to conceive New Energy generation

method from orthopositronium-based reaction? If yes,

then how?

27. Muonium problem. Muonium is atom consisting of

muon and electron, discovered by a team led by Ver-

non Hughes in 1960 [19]. What is the dynamics behind

muonium observation?

28. Is it possible to conceive New Energy generation

method from muonium-based reaction? If yes, then

how?

29. Antihydrogen problem [20]. Is it possible to conceive

New Energy generation method from antihydrogen-

based reaction? If yes, then how?

30. Unmatter problem [21]. Would unmatter be more use-

ful to conceiving New Energy than antimatter? If yes,

then how?

It is our hope that perhaps some of these questions may

be found interesting to motivate further study of elementary

particles.
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In this short paper, as an extension and consequence of Einstein-Podolski-Rosen

paradox and Bell’s inequality, one promotes the hypothesis (it has been called the

Smarandache Hypothesis [1, 2, 3]) that: There is no speed barrier in the Universe

and one can construct arbitrary speeds, and also one asks if it is possible to have an

infinite speed (instantaneous transmission)? Future research: to study the composition

of faster-than-light velocities and what happens with the laws of physics at faster-than-

light velocities?

This is the new version of an early article. That early version,

based on a 1972 paper [4], was presented at the Universidad

de Blumenau, Brazil, May–June 1993, in the Conference

on “Paradoxism in Literature and Science”; and at the Uni-

versity of Kishinev, in December 1994. See that early ver-

sion in [5].

1 Introduction

What is new in science (physics)?

According to researchers from the common group of the

University of Innsbruck in Austria and US National Institute

of Standards and Technology (starting from December 1997,

Rainer Blatt, David Wineland et al.):

• Photon is a bit of light, the quantum of electromagnetic

radiation (quantum is the smallest amount of energy

that a system can gain or lose);

• Polarization refers to the direction and characteristics

of the light wave vibration;

• If one uses the entanglement phenomenon, in order to

transfer the polarization between two photons, then:

whatever happens to one is the opposite of what hap-

pens to the other; hence, their polarizations are oppos-

ite of each other;

• In quantum mechanics, objects such as subatomic par-

ticles do not have specific, fixed characteristic at any

given instant in time until they are measured;

• Suppose a certain physical process produces a pair

of entangled particles A and B (having opposite or

complementary characteristics), which fly off into spa-

ce in the opposite direction and, when they are billions

of miles apart, one measures particle A; because B is

the opposite, the act of measuring A instantaneously

tells B what to be; therefore those instructions would

somehow have to travel between A and B faster than

the speed of light; hence, one can extend the Einstein-

Podolsky-Rosen paradox and Bell’s inequality and as-

sert that the light speed is not a speed barrier in the

Universe.

Such results were also obtained by: Nicolas Gisin at

the University of Geneva, Switzerland, who successfully

teleported quantum bits, or qubits, between two labs over

2 km of coiled cable. But the actual distance between the

two labs was about 55 m; researchers from the University of

Vienna and the Austrian Academy of Science (Rupert Ursin

et al. have carried out successful teleportation with particles

of light over a distance of 600 m across the River Danube in

Austria); researchers from Australia National University and

many others [6, 7, 8].

2 Scientific hypothesis

We even promote the hypothesis that:

There is no speed barrier in the Universe, which would

theoretically be proved by increasing, in the previous

example, the distance between particles A and B as

much as the Universe allows it, and then measuring

particle A.

It has been called the Smarandache Hypotesis [1, 2, 3].

3 An open question now

If the space is infinite, is the maximum speed infinite?

“This Smarandache hypothesis is controversially inter-

preted by scientists. Some say that it violates the theory of

relativity and the principle of causality, others support the

ideas that this hypothesis works for particles with no mass

or imaginary mass, in non-locality, through tunneling effect,

or in other (extra-) dimension(s).” Kamla John, [9].

Scott Owens’ answer [10] to Hans Gunter in an e-mail

from January 22, 2001 (the last one forwarded it to the

author): “It appears that the only things the Smarandache

hypothesis can be applied to are entities that do not have real

mass or energy or information. The best example I can come

up with is the difference between the wavefront velocity of
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a photon and the phase velocity. It is common for the phase

velocity to exceed the wavefront velocity c, but that does

not mean that any real energy is traveling faster than c. So,

while it is possible to construct arbitrary speeds from zero

in infinite, the superluminal speeds can only apply to purely

imaginary entities or components.”

Would be possible to accelerate a photon (or another

particle traveling at, say, 0.99c and thus to get speed greater

than c (where c is the speed of light)?

4 Future possible research

It would be interesting to study the composition of two

velocities v and u in the cases when:

v < c and u = c;

v = c and u = c;

v > c and u = c;

v > c and u > c;

v < c and u =∞;

v = c and u =∞;

v > c and u =∞;

v =∞ and u =∞.

What happens with the laws of physics in each of these

cases?
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This article shows, Synge-Weber’s classical problem statement about two particles

interacting by a signal can be reduced to the case where the same particle is located

in two different points A and B of the basic space-time in the same moment of time,

so the states A and B are entangled. This particle, being actual two particles in the

entangled states A and B, can interact with itself radiating a photon (signal) in the

point A and absorbing it in the point B. That is our goal, to introduce entangled states

into General Relativity. Under specific physical conditions the entangled particles in

General Relativity can reach a state where neither particle A nor particle B can be the

cause of future events. We call this specific state Quantum Causality Threshold.

1 Disentangled and entangled particles in General Rel-

ativity. Problem statement

In his article of 2000, dedicated to the 100th anniversary of

the discovery of quanta, Belavkin [1] generalizes definitions

assumed de facto in Quantum Mechanics for entangled and

disentangled particles. He writes:

“The only distinction of the classical theory from

quantum is that the prior mixed states cannot be

dynamically achieved from pure initial states without

a procedure of either statistical or chaotic mixing. In

quantum theory, however, the mixed, or decoherent

states can be dynamically induced on a subsystem

from the initial pure disentangled states of a composed

system simply by a unitary transformation.

Motivated by Eintein-Podolsky-Rosen paper, in

1935 Schrödinger published a three part essay∗ on The

Present Situation in Quantum Mechanics. He turns

to EPR paradox and analyses completeness of the

description by the wave function for the entangled

parts of the system. (The word entangled was intro-

duced by Schrödinger for the description of nonse-

parable states.) He notes that if one has pure states

ψ(σ) and χ(υ) for each of two completely separat-

ed bodies, one has maximal knowledge, ψ1(σ, υ)=
=ψ(σ)χ(υ), for two taken together. But the con-

verse is not true for the entangled bodies, described by

a non-separable wave function ψ1(σ, υ) �=ψ(σ)χ(υ):
Maximal knowledge of a total system does not necess-

ary imply maximal knowledge of all its parts, not

even when these are completely separated one from

another, and at the time can not influence one another

at all.”

In other word, because Quantum Mechanics considers

particles as stochastic clouds, there can be entangled particles

∗Schrödinger E. Naturwissenschaften, 1935, Band 23, 807–812, 823–

828, 844–849.

— particles whose states are entangled, they build a whole

system so that if the state of one particle changes the state

of the other particles changes immediately as they are far

located one from the other.

In particular, because of the permission for entangled

states, Quantum Mechanics permits quantum teleportation —

the experimentally discovered phenomenon. The term

“quantum teleportation” had been introduced into theory

in 1993 [2]. First experiment teleporting massless particles

(quantum teleportation of photons) was done five years later,

in 1998 [3]. Experiments teleporting mass-bearing particles

(atoms as a whole) were done in 2004 by two independ-

ent groups of scientists: quantum teleportation of the ion of

Calcium atom [4] and of the ion of Beryllium atom [5].

There are many followers who continue experiments with

quantum teleportation, see [6–16] for instance.

It should be noted, the experimental statement on quan-

tum teleportation has two channels in which information (the

quantum state) transfers between two entangled particles:

“teleportation channel” where information is transferred in-

stantly, and “synchronization channel” — classical channel

where information is transferred in regular way at the light

speed or lower of it (the classical channel is targeted to inform

the receiving particle about the initial state of the first one).

After teleportation the state of the first particle destroys, so

there is data transfer (not data copying).

General Relativity draws another picture of data transfer:

the particles are considered as point-masses or waves, not

stochastic clouds. This statement is true for both mass-bearing

particles and massless ones (photons). Data transfer between

any two particles is realized as well by point-mass particles,

so in General Relativity this process is not of stochastic

origin.

In the classical problem statement accepted in General

Relativity [17, 18, 19], two mass-bearing particles are con-
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sidered which are moved along neighbour world-lines, a

signal is transferred between them by a photon. One of the

particles radiates the photon at the other, where the photon

is absorbed realizing data transfer between the particles. Of

course, the signal can as well be carried by a mass-bearing

particle.

If there are two free mass-bering particles, they fall freely

along neighbour geodesic lines in a gravitational field. This

classical problem has been developed in Synge’s book [20]

where he has deduced the geodesic lines deviation equation

(Synge’s equation, 1950’s). If these are two particles con-

nected by a non-gravitational force (for instance, by a spring),

they are moved along neighbour non-geodesic world-lines.

This classical statement has been developed a few years later

by Weber [21], who has obtained the world-lines deviation

equation (Synge-Weber’s equation).

Anyway in this classical problem of General Relativity

two interacting particles moved along both neighbour geo-

desic and non-geodesic world-lines are disentangled. This

happens, because of two reasons:

1. In this problem statement a signal moves between two

interacting particles at the velocity no faster than light,

so their states are absolutely separated — these are

disentangled states;

2. Any particle, being considered in General Relativity’s

space-time, has its own four-dimensional trajectory

(world-line) which is the set of the particle’s states

from its birth to decay. Two different particles can not

occupy the same world-line, so they are in absolutely

separated states — they are disentangled particles.

The second reason is much stronger than the first one. In

particular, the second reason leads to the fact that, in General

Relativity, entangled are only neighbour states of the same

particle along its own world-line — its own states separated

in time, not in the three-dimensional space. No two different

particles could be entangled. Any two different particles, both

mass-bearing and massless ones, are disentangled in General

Relativity.

On the other hand, experiments on teleportation evident

that entanglement is really an existing state that happens with

particles if they reach specific physical conditions. This is the

fact, that should be taken into account by General Relativity.

Therefore our task in this research is to introduce en-

tangled states into General Relativity. Of course, because

of the above reasons, two particles can not be in entangled

state if they are located in the basic space-time of General

Relativity — the four-dimensional pseudo-Riemannian space

with sign-alternating label (+−−−) or (−+++). Its metric is

strictly non-degenerated as of any space of Riemannian space

family, namely — there the determinant g= det ‖gαβ‖ of

the fundamental metric tensor gαβ is strictly negative g < 0.
We expand the Synge-Weber problem statement, considering

it in a generalized space-time whose metric can become

degenerated g=0 under specific physical conditions. This

space is one of Smarandache geometry spaces [22–28], be-

cause its geometry is partially Riemannian, partially not.

As it was shown in [29, 30] (Borissova and Rabounski,

2001), when General Relativity’s basic space-time degene-

rates physical conditions can imply observable teleportation

of both a mass-bearing and massless particle — its instant

displacement from one point of the space to another, although

it moves no faster than light in the degenerated space-time

area, outside the basic space-time. In the generalized space-

time the Synge-Weber problem statement about two particles

interacting by a signal (see fig. 1) can be reduced to the case

where the same particle is located in two different points

A and B of the basic space-time in the same moment of

time, so the states A and B are entangled (see fig. 2). This

particle, being actual two particles in the entangled states A

and B, can interact with itself radiating a photon (signal) in

the point A and absorbing it in the point B. That is our goal,

to introduce entangled states into General Relativity.

Moreover, as we will see, under specific physical con-

ditions the entangled particles in General Relativity can reach

a state where neither particle A nor particle B can be the

cause of future events. We call this specific state Quantum

Causality Threshold.

2 Introducing entangled states into General Relativity

In the classical problem statement, Synge [20] considered

two free-particles (fig. 1) moving along neighbour geodesic

world-lines Γ(v) and Γ(v+ dv), where v is a parameter

along the direction orthogonal to the geodesics (it is taken in

the plane normal to the geodesics). There is v= const along

each the geodesic line.

U
α

αη

A  B

world-line A world-line B

Fig. 1 Fig. 2

α
U

αη

A B

Motion of the particles is determined by the well-known

geodesic equation

dUα

ds
+ Γαμν U

μ dx
ν

ds
= 0 , (1)

which is the actual fact that the absolute differential DUα=
= dUα+ΓαμνU

μdxν of a tangential vector Uα (the velocity
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world-vector Uα= dx
α

ds
, in this case), transferred along that

geodesic line to where it is tangential, is zero. Here s is

an invariant parameter along the geodesic (we assume it the

space-time interval), and Γαμν are Christoffel’s symbols of

the 2nd kind. Greek α = 0, 1, 2, 3 sign for four-dimensional

(space-time) indices.

The parameter v is different for the neighbour geodesics,

the difference is dv. Therefore, in order to study relative dis-

placements of two geodesics Γ(v) and Γ(v+ dv), we shall

study the vector of their infinitesimal relative displacement

ηα =
∂xα

∂v
dv , (2)

As Synge had deduced, a deviation of the geodesic line

Γ(v+ dv) from the geodesic line Γ(v) can be found as the

solution of his obtained equation

D2ηα

ds2
+Rα · · ··βγδU

βUδηγ = 0 , (3)

that describes relative accelerations of two neighbour free-

particles (Rα · · ··βγδ is Riemann-Chrostoffel’s curvature tensor).

This formula is known as the geodesic lines deviation equa-

tion or the Synge equation.

In Weber’s statement [21] the difference is that he con-

siders two particles connected by a non-gravitational force

Φα, a spring for instance. So their world-trajectories are non-

geodesic, they are determined by the equation

dUα

ds
+ Γαμν U

μ dx
ν

ds
=

Φα

m0c2
, (4)

which is different from the geodesic equation in that the right

part in not zero here. His deduced improved equation of the

world lines deviation

D2ηα

ds2
+Rα · · ··βγδU

βUδηγ =
1

m0c2
DΦα

dv
dv , (5)

describes relative accelerations of two particles (of the same

rest-massm0), connected by a spring. His deviation equation

is that of Synge, except of that non-gravitational force Φα

in the right part. This formula is known as the Synge-Weber

equation. In this case the angle between the vectors Uα and

ηα does not remain unchanged along the trajectories

∂

∂s
(Uαη

α) =
1

m0c2
Φαη

α. (6)

Now, proceeding from this problem statement, we are

going to introduce entangled states into General Relativity.

At first we determine such states in the space-time of General

Relativity, then we find specific physical conditions under

which two particles reach a state to be entangled.

Definition Two particles A and B, located in the same

spatial section∗ at the distance dxi 	=0 from each other,

∗A three-dimensional section of the four-dimensional space-time,

placed in a given point in the time line. In the space-time there are infinitely

many spatial sections, one of which is our three-dimensional space.

are filled in non-separable states if the observable time

interval dτ between linked events in the particles† is

zero dτ =0. If only dτ =0, the states become non-

separated one from the other, so the particles A and B

become entangled.

So we will refer to dτ =0 as the entanglement condition in

General Relativity.

Let us consider the entanglement condition dτ =0 in

connection with the world-lines deviation equations.

In General Relativity, the interval of physical observable

time dτ between two events distant at dxi one from the other

is determined through components of the fundamental metric

tensor as

dτ =
√
g00 dt+

g0i
c
√
g00

dxi, (7)

see §84 in the well-known The Classical Theory of Fields

by Landau and Lifshitz [19]. The mathematical apparatus of

physical observable quantities (Zelmanov’s theory of chro-

nometric invariants [31, 32], see also the brief account in

[30, 29]) transforms this formula to

dτ =
(

1− w

c2

)

dt− 1

c2
vidx

i, (8)

where w= c2(1−√g00) is the gravitational potential of an

acting gravitational field, and vi=−c g0i√
g00

is the linear

velocity of the space rotation.

So, following the theory of physical observable quanti-

ties, in real observations where the observer accompanies his

references the space-time interval ds2= gαβ dx
αdxβ is

ds2 = c2dτ 2 − dσ2, (9)

where dσ2=
(

−gik+ g0ig0kg00

)

dxidxk is a three-dimensional

(spatial) invariant, built on the metric three-dimensional ob-

servable tensor hik=−gik+ g0ig0kg00 . This metric observable

tensor, in real observations where the observer accompanies

his references, is the same that the analogous built general

covariant tensor hαβ . So, dσ2=hik dx
idxk is the spatial

observable interval for any observer who accompanies his

references.

As it is easy to see from (9), there are two possible cases

where the entanglement condition dτ =0 occurs:

(1) ds=0 and dσ=0,

(2) ds2=−dσ2 	=0, so dσ becomes imaginary,

we will refer to them as the 1st kind and 2nd kind entangle-

ment auxiliary conditions.

Let us get back to the Synge equation and the Synge-

Weber equation.

According to Zelmanov’s theory of physical observable

quantities [31, 32], if an observer accompanies his references

†Such linked events in the particles A and B can be radiation of a signal

in one and its absorbtion in the other, for instance.
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the projection of a general covariant quantity on the observ-

er’s spatial section is its spatial observable projection.

Following this way, Borissova has deduced (see eqs.

7.16–7.28 in [33]) that the spatial observable projection of

the Synge equation is∗

d2ηi

dτ 2
+ 2

(

Di
k + A

·i
k·

)dηk

dτ
= 0 , (10)

she called it the Synge equation in chronometrically invariant

form. The Weber equation is different in its right part con-

taining the non-gravitational force that connects the particles

(of course, the force should be filled in the spatially projected

form). For this reason, conclusions obtained for the Synge

equation will be the same that for the Weber one.

In order to make the results of General Relativity ap-

plicable to practice, we should consider tensor quantities

and equations designed in chronometrically invariant form,

because in such way they contain only chronometrically

invariant quantities — physical quantities and geometrical

properties of space, measurable in real experiment [31, 32].

Let us look at our problem under consideration from this

viewpoint.

As it easy to see, the Synge equation in its chronometric-

ally invariant form (10) under the entanglement condition

dτ =0 becomes nonsense. The Weber equation becomes

nonsense as well. So, the classical problem statement be-

comes senseless as soon as particles reach entangled states.

At the same time, in the recent theoretical research [29]

two authors of the paper (Borissova and Rabounski, 2005)

have found two groups of physical conditions under which

particles can be teleported in non-quantum way. They have

been called the teleportation conditions:

(1) dτ =0 {ds=0 , dσ=0}, the conditions of photon te-

leportation;

(2) dτ =0 {ds2=−dσ2 	=0}, the conditions of substant-

ial (mass-bearing) particles teleportation.

There also were theoretically deduced physical conditions†,

which should be reached in a laboratory in order to teleport

particles in the non-quantum way [29].

As it is easy to see the non-quantum teleportation con-

dition is identical to introduce here the entanglement main

condition dτ =0 in couple with the 1st kind and 2nd kind

auxiliary entanglement conditions!

∗In this formula, according to Zelmanov’s mathematical apparatus of

physical observable quantities [31, 32], Dik=
1

2

∗∂hik
∂t

=
1

2
√
g00

∂hik
∂t

is

the three-dimensional symmetric tensor of the space deformation observable

rate while Aik=
1

2

(

∂vk
∂xi

− ∂vi
∂xk

)

+
1

2c2

(

Fivk−Fkvi
)

is the three-

dimensional antisymmetric tensor of the space rotation observable angular

velocities, which indices can be lifted/lowered by the metric observable

tensor so that Di
k
=himDkm and A·i

k·
=himAkm. See brief account of

the Zelmanov mathematical apparatus in also [30, 33, 34, 35].
†A specific correlation between the gravitational potential w, the space

rotation linear velocity vi and the teleported particle’s velocity ui.

Taking this one into account, we transform the classical

Synge and Weber problem statement into another. In our

statement the world-line of a particle, being entangled to

itself by definition, splits into two different world-lines under

teleportation conditions. In other word, as soon as the tele-

portation conditions occur in a research laboratory, the world-

line of a teleported particle breaks in one world-point A

and immediately starts in the other world-point B (fig. 2).

Both particles A and B, being actually two different states

of the same teleported particle at a remote distance one from

the other, are in entangled states. So, in this statement, the

particles A and B themselves are entangled.

Of course, this entanglement exists in only the moment

of the teleportation when the particle exists in two different

states simultaneously. As soon as the teleportation process

has been finished, only one particle of them remains so the

entanglement disappears.

It should be noted, it follows from the entanglement

conditions, that only substantial particles can reach entangled

states in the basic space-time of General Relativity — the

four-dimensional pseudo-Riemannian space. Not photons.

Here is why.

As it is known, the interval ds2= gαβ dx
αdxβ can not

be fully degenerated in a Riemannian space‡: the condition

is that the determinant of the metric fundamental tensor gαβ
must be strictly negative g= det ‖gαβ‖< 0 by definition of

Riemannian spaces. In other word, in the basic space-time

of General Relativity the fundamental metric tensor must be

strictly non-degenerated as g < 0.
The observable three-dimensional (spatial) interval dσ2=

=hik dx
idxk is positive determined [31, 32], proceeding

from physical sense. It fully degenerates dσ2=0 if only

the space compresses into point (the senseless case) or the

determinant of the metric observable tensor becomes zero

h= det ‖hik‖=0.
As it was shown by Zelmanov [31, 32], in real observ-

ations where an observer accompanies his references, the

determinant of the metric observable tensor is connected with

the determinant of the fundamental one by the relationship

h=− g
g00 . From here we see, if the three-dimensional ob-

servable metric fully degenerates h=0, the four-dimensional

metric degenerates as well g=0.
We have obtained that states of two substantial particles

can be entangled, if dτ =0 {ds2=−dσ2 	=0} in the space

neighbourhood. So h> 0 and g < 0 in the neighbourhood,

hence the four-dimensional pseudo-Riemannian space is not

degenerated.

Conclusion Substantial particles can reach entangled states

in the basic space-time of General Relativity (the four-

dimensional pseudo-Riemannian space) under specific

conditions in the neighbourhood.

‡It can only be partially degenerated. For instance, a four-dimensional

Riemannian space can be degenerated into a three-dimensional one.
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Although ds2=−dσ2 in the neighbourhood (dσ should

be imaginary), the substantial particles remain in regular sub-

light area, they do not become super-light tachyons. It is easy

to see, from the definition of physical observable time (8),

the entanglement condition dτ =0 occurs only if the specific

relationship holds

w+ viu
i= c2 (11)

between the gravitational potential w, the space rotation

linear velocity vi and the particles’ true velocity ui= dxi/dt
in the observer’s laboratory. For this reason, in the neighbour-

hood the space-time metric is

ds2 = −dσ2 = −
(

1− w

c2

)2

c2dt2 + gik dx
idxk, (12)

so the substantial particles can become entangled if the space

initial signature (+−−−) becomes inverted (−+++) in the

neighbourhood, while the particles’ velocities ui remain no

faster than light.

Another case — massless particles (photons). States of

two phonos can be entangled, only if there is in the space

neighbourhood dτ =0 {ds=0 , dσ=0}. In this case the

determinant of the metric observable tensor becomes h=0,
so the space-time metric as well degenerates g=−g00h=0.
This is not the four-dimensional pseudo-Riemannian space.

Where is that area? In the previous works (Borissova

and Rabounski, 2001 [30, 29]) a generalization to the basic

space-time of General Relativity was introduced — the four-

dimensional space which, having General Relativity’s sign-

alternating label (+−−−), permits the space-time metric to be

fully degenerated so that there is g� 0.
As it was shown in those works, as soon as the specific

condition w+ viu
i= c2 occurs, the space-time metric be-

comes fully degenerated: there are ds=0, dσ=0, dτ =0
(it can be easy derived from the above definition for the

quantities) and, hence h=0 and g=0. Therefore, in a space-

time where the degeneration condition w+ viu
i= c2 is per-

mitted the determinant of the fundamental metric tensor is

g� 0. This case includes both Riemannian geometry case

g < 0 and non-Riemannian, fully degenerated one g=0. For

this reason a such space is one of Smarandache geometry

spaces [22–28], because its geometry is partially Riemannian,

partially not∗. In the such generalized space-time the 1st kind

entanglement conditions dτ =0 {ds=0 , dσ=0} (the en-

tanglement conditions for photons) are permitted in that area

∗In foundations of geometry it is known the S-denying of an axiom

[22–25], i. e. in the same space an “axiom is false in at least two dif-

ferent ways, or is false and also true. Such axiom is said to be Smaran-

dachely denied, or S-denied for short” [26]. As a result, it is possible to

introduce geometries, which have common points bearing mixed properties

of Euclidean, Lobachevsky-Bolyai-Gauss, and Riemann geometry in the

same time. Such geometries has been called paradoxist geometries or

Smarandache geometries. For instance, Iseri in his book Smarandache

Manifolds [26] and articles [27, 28] introduced manifolds that support

particular cases of such geometries.

where the space metric fully degenerates (there h=0 and,

hence g=0).

Conclusion Massless particles (photons) can reach entan-

gled states, only if the basic space-time fully dege-

nerates g= det ‖gαβ‖=0 in the neighbourhood. It is

permitted in the generalized four-dimensional space-

time which metric can be fully degenerated g� 0 in

that area where the degeneration conditions occur. The

generalized space-time is attributed to Smarandache

geometry spaces, because its geometry is partially Rie-

mannian, partially not.

So, entangled states have been introduced into General Rel-

ativity for both substantial particles and photons.

3 Quantum Causality Threshold in General Relativity

This term was introduced by one of the authors two years

ago (Smarandache, 2003) in our common correspondence

[36] on the theme:

Definition Considering two particles A and B located in

the same spatial section, Quantum Causality Threshold

was introduced as a special state in which neither A

nor B can be the cause of events located “over” the

spatial section on the Minkowski diagram.

The term Quantum has been added to the Causality

Threshold, because in this problem statement an interaction

is considered between two infinitely far away particles (in

infinitesimal vicinities of each particle) so this statement is

applicable to only quantum scale interactions that occur in

the scale of elementary particles.

Now, we are going to find physical conditions under

which particles can reach the threshold in the space-time of

General Relativity.

Because in this problem statement we look at causal

relations in General Relativity’s space-time from “outside”,

it is required to use an “outer viewpoint” — a point of view

located outside the space-time.

We introduce a such point of outlook in an Euclidean

flat space, which is tangential to our’s in that world-point,

where the observer is located. In this problem statement we

have a possibility to compare the absolute cause relations in

that tangential flat space with those in ours. As a matter, a

tangential Euclidean flat space can be introduced at any point

of the pseudo-Riemannian space.

At the same time, according to Zelmanov [31, 32], within

infinitesimal vicinities of any point located in the pseudo-

Riemannian space a locally geodesic reference frame can be

introduced. In a such reference frame, within infinitesimal

vicinities of the point, components of the metric fundamental

tensor (marked by tilde)

g̃αβ = gαβ+
1

2

(

∂2g̃αβ
∂x̃μ∂x̃ν

)

(x̃μ−xμ)(x̃ν−xν)+ . . . (13)

D. Rabounski, L. Borissova, F. Smarandache. Entangled States and Quantum Causality Threshold in General Relativity 105

35



Volume 2 PROGRESS IN PHYSICS July, 2005

are different from those gαβ at the point of reflection to within

only the higher order terms, which can be neglected. So, in

a locally geodesic reference frame the fundamental metric

tensor can be accepted constant, while its first derivatives

(Christoffel’s symbols) are zeroes. The fundamental metric

tensor of an Euclidean space is as well a constant, so values

of g̃μν , taken in the vicinities of a point of the pseudo-

Riemannian space, converge to values of gμν in the flat

space tangential at this point. Actually, we have a system

of the flat space’s basic vectors e(α) tangential to curved

coordinate lines of the pseudo-Riemannian space. Coordinate

lines in Riemannian spaces are curved, inhomogeneous, and

are not orthogonal to each other (the latest is true if the space

rotates). Therefore the lengths of the basic vectors may be

very different from the unit.

Writing the world-vector of an infinitesimal displacement

as dr =(dx0, dx1, dx2, dx3), we obtain dr=e(α)dx
α, where

the components of the basic vectors e(α) tangential to the co-

ordinate lines are e(0)={e0(0), 0, 0, 0}, e(1)={0, e1(1), 0, 0},
e(2)= {0, 0, e2(2), 0}, e(3)= {0, 0, 0, e2(3)}. Scalar product of

dr with itself is drdr= ds2 or, in another ds2= gαβ dx
αdxβ ,

so gαβ =e(α)e(β)= e(α)e(β)cos (x
α;xβ). We obtain

g00 = e
2
(0) , g0i = e(0)e(i) cos (x

0;xi) , (14)

gik = e(i)e(k) cos (x
i;xk) , i, k = 1, 2, 3 . (15)

Then, substituting g00 and g0i from formulas that det-

ermine the gravitational potential w= c2(1−√g00) and the

space rotation linear velocity vi=−c g0i√
g00

, we obtain

vi = −c e(i) cos (x0;xi) , (16)

hik=e(i)e(k)

[

cos(x0;xi)cos(x0;xk)−cos(xi;xk)
]

. (17)

From here we see: if the pseudo-Riemannian space is free

of rotation, cos (x0;xi)= 0 so the observer’s spatial section

is strictly orthogonal to time lines. As soon as the space

starts to do rotation, the cosine becomes different from zero

so the spatial section becomes non-orthogonal to time lines

(fig. 3). Having this process, the light hypercone inclines

with the time line to the spatial section. In this inclination the

light hypercone does not remain unchanged, it “compresses”

because of hyperbolic transformations in pseudo-Riemannian

space. The more the light hypercone inclines, the more it

symmetrically “compresses” because the space-time’s geo-

metrical structure changes according to the inclination.

In the ultimate case, where the cosine reach the ultimate

value cos (x0;xi)= 1, time lines coincide the spatial section:

time “has fallen” into the three-dimensional space. Of course,

in this case the light hypercone overflows time lines and the

spatial section: the light hypercone “has as well fallen” into

the three-dimensional space.

time line
x = consti

t

A spatial section x = const0,

     ix

Fig. 3

light hypercone, th
e asymptote

of coordinate tra
nsformations

e
0

e
i

As it is easy to see from formula (16), this ultimate case

occurs as soon as the space rotation velocity vi reaches the

light velocity. If particles A and B are located in the space

filled into this ultimate state, neither A nor B can be the cause

of events located “over” the spatial section in the Minkowski

diagrams we use in the pictures. So, in this ultimate case

the space-time is filled into a special state called Quantum

Causality Threshold.

Conclusion Particles, located in General Relativity’s space-

time, reach Quantum Causality Threshold as soon as

the space rotation reaches the light velocity. Quantum

Causality Threshold is impossible if the space does not

rotate (holonomic space), or if it rotates at a sub-light

speed.

So, Quantum Causality Threshold has been introduced into

General Relativity.
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Quantum Quasi-Paradoxes and Quantum Sorites Paradoxes

Florentin Smarandache

Dept. of Mathematics, University of New Mexico, 200 College Road, Gallup, NM 87301, USA

E-mail: fsmarandache@yahoo.com; smarand@unm.edu

There can be generated many paradoxes or quasi-paradoxes that may occur from

the combination of quantum and non-quantum worlds in physics. Even the passage

from the micro-cosmos to the macro-cosmos, and reciprocally, can generate unsolved

questions or counter-intuitive ideas. We define a quasi-paradox as a statement which

has a prima facie self-contradictory support or an explicit contradiction, but which

is not completely proven as a paradox. We present herein four elementary quantum

quasi-paradoxes and their corresponding quantum Sorites paradoxes, which form a

class of quantum quasi-paradoxes.

1 Introduction

According to the Dictionary of Mathematics (Borowski and

Borwein, 1991 [1]), the paradox is “an apparently absurd or

self-contradictory statement for which there is prima facie

support, or an explicit contradiction derived from apparently

unexceptionable premises”. Some paradoxes require the revi-

sion of their intuitive conception (Russell’s paradox, Cantor’s

paradox), others depend on the inadmissibility of their de-

scription (Grelling’s paradox), others show counter-intuitive

features of formal theories (Material implication paradox,

Skolem Paradox), others are self-contradictory — Smarand-

ache Paradox: “All is <A> the <Non-A> too!”, where <A>

is an attribute and <Non-A> its opposite; for example “All

is possible the impossible too!” (Weisstein, 1998 [2]).

Paradoxes are normally true and false in the same time.

The Sorites paradoxes are associated with Eubulides

of Miletus (fourth century B. C.) and they say that there

is not a clear frontier between visible and invisible matter,

determinist and indeterminist principle, stable and unstable

matter, long time living and short time living matter.

Generally, between <A> and <Non-A> there is no clear

distinction, no exact frontier. Where does <A> really end and

<Non-A> begin? One extends Zadeh’s “fuzzy set” concept

to the “neutrosophic set” concept.

Let’s now introduce the notion of quasi-paradox:

A quasi-paradox is a statement which has a prima facia

self-contradictory support or an explicit contradiction, but

which is not completely proven as a paradox. A quasi-

paradox is an informal contradictory statement, while a par-

adox is a formal contradictory statement.

Some of the below quantum quasi-paradoxes can later be

proven as real quantum paradoxes.

2 Quantum Quasi-Paradoxes and Quantum Sorites

Paradoxes

The below quasi-paradoxes and Sorites paradoxes are based

on the antinomies: visible/invisible, determinist/indeterminist,

stable/unstable, long time living/short time living, as well as

on the fact that there is not a clear separation between these

pairs of antinomies.

2.1.1 Invisible Quasi-Paradox: Our visible world is com-

posed of a totality of invisible particles.

2.1.2 Invisible Sorites Paradox: There is not a clear frontier

between visible matter and invisible matter.

(a) An invisible particle does not form a visible ob-

ject, nor do two invisible particles, three invisible

particles, etc. However, at some point, the collec-

tion of invisible particles becomes large enough

to form a visible object, but there is apparently

no definite point where this occurs.

(b) A similar paradox is developed in an opposite

direction. It is always possible to remove a par-

ticle from an object in such a way that what is

left is still a visible object. However, repeating

and repeating this process, at some point, the

visible object is decomposed so that the left part

becomes invisible, but there is no definite point

where this occurs.

2.2.1 Uncertainty Quasi-Paradox: Large matter, which is

at some degree under the “determinist principle”, is

formed by a totality of elementary particles, which are

under Heisenberg’s “indeterminacy principle”.

2.2.2 Uncertainty Sorites Paradox: Similarly, there is not a

clear frontier between the matter under the “determinist

principle” and the matter under “indeterminist prin-

ciple”.

2.3.1 Unstable Quasi-Paradox: “Stable” matter is formed

by “unstable” elementary particles (elementary parti-

cles decay when free).

2.3.2 Unstable Sorites Paradox: Similarly, there is not a

clear frontier between the “stable matter” and the “un-

stable matter”.

2.4.1 Short-Time-Living Quasi-Paradox: “Long-time-

F. Smarandache. Quantum Quasi-Paradoxes and Quantum Sorites Paradoxes 7
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living” matter is formed by very “short-time-living”

elementary particles.

2.4.2 Short-Time-Living Sorites Paradox: Similarly, there

is not a clear frontier between the “long-time-living”

matter and the “short-time-living” matter.

3 Conclusion

“More such quantum quasi-paradoxes and paradoxes can

be designed, all of them forming a class of Smarandache

quantum quasi-paradoxes.” (Dr. M. Khoshnevisan, Griffith

University, Gold Coast, Queensland, Australia [3])
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This article discusses Neutrosophic Logic interpretation of the Schrodinger’s cat

paradox. We argue that this paradox involves some degree of indeterminacy (unknown)

which Neutrosophic Logic could take into consideration, whereas other methods

including Fuzzy Logic could not. For a balanced discussion, other interpretations

have also been discussed.

1 Schrödinger equation

As already known, Schrödinger equation is the most used

equation to describe non-relativistic quantum systems. Its re-

lativistic version was developed by Klein-Gordon and Dirac,

but Schrödinger equation has wide applicability in particular

because it resembles classical wave dynamics. For intro-

duction to non-relativistic quantum mechanics, see [1].

Schrödinger equation begins with definition of total en-

ergy E = p 2/2m. Then, by using a substitution

E = i�
∂

∂t
, P =

�

i
∇, (1)

one gets [2]
[

i�
∂

∂t
+ �

∇̄2
2m

− U (x)
]

ψ = 0 (2)

or
i∂

∂t
ψ = Hψ . (3)

While this equation seems quite clear to represent quan-

tum dynamics, the physical meaning of the wavefunction

itself is not so clear. Soon thereafter Born came up with hy-

pothesis that the square of the wavefunction has the meaning

of chance to find the electron in the region defined by dx
(Copenhagen School). While so far his idea was quickly

adopted as “standard interpretation”, his original “guiding

field” interpretation has been dropped after criticism by Hei-

senberg over its physical meaning [3]. Nonetheless, a de-

finition of “Copenhagen interpretation” is that it gives the

wavefunction a role in the actions of something else, namely

of certain macroscopic objects, called “measurement appa-

ratus”, therefore it could be related to phenomenological

formalism [3].

Nonetheless, we should also note here that there are other

approaches different from Born hypothesis, including:

• The square of the wavefunction represents a measure

of the density of matter in region defined by dx (De-

terminism school [3, 4, 5]). Schrödinger apparently

preferred this argument, albeit his attempt to demon-

strate this idea has proven to be unfruitful;

• The square of wavefunction of Schrödinger equation as

the vorticity distribution (including topological vorti-

city defects) in the fluid [6];

• The wavefunction in Schrödinger equation represents

tendency to make structures;

• The wavemechanics can also be described in terms

of topological Aharonov effect, which then it could

be related to the notion of topological quantization

[7, 8]. Aharonov himself apparently argues in favour

of “realistic” meaning of Schrödinger wave equation,

whose interpretation perhaps could also be related to

Kron’s work [9].

So forth we will discuss solution of this paradox.

2 Solution to Schrödinger’s cat paradox

2.1 Standard interpretation

It is known that Quantum Mechanics could be regarded more

as a “mathematical theory” rather than a physical theory [1,

p. 2]. It is wave mechanics allowing a corpuscular duality.

Already here one could find problematic difficulties: i. e.

while the quantity of wavefunction itself could be computed,

the physical meaning of wavefunction itself remains inde-

finable [1]. Furthermore, this notion of wavefunction corres-

ponds to another fundamental indefinable in Euclidean geo-

metry: the point [1, p. 2]. It is always a baffling question for

decades, whether the electron could be regarded as wave,

a point, or we should introduce a non-zero finite entity [4].

Attempts have been made to describe wave equation in such

non-zero entity but the question of the physical meaning of

wavefunction itself remains mystery.

The standard Copenhagen interpretation advertised by

Bohr and colleagues (see DeBroglie, Einstein, Schrödinger

who advocated “realistic” interpretation) asserts that it is

practically impossible to know what really happens in quan-

tum scale. The quantum measurement itself only represents

reading in measurement apparatus, and therefore it is difficult

to separate the object to be measured and the measurement
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apparatus itself. Bohr’s phenomenological viewpoint perhaps

could be regarded as pragmatic approach, starting with the

request not to attribute a deep meaning to the wave function

but immediately go over to statistical likelihood [10]. Con-

sequently, how the process of “wave collapse” could happen

remains mystery.

Heisenberg himself once emphasized this viewpoint

when asked directly the question: Is there a fundamental

level of reality? He replied as follows:

“This is just the point: I do not know what the words

fundamental reality mean. They are taken from our

daily life situation where they have a good meaning,

but when we use such terms we are usually extrapol-

ating from our daily lives into an area very remote

from it, where we cannot expect the words to have

a meaning. This is perhaps one of the fundamental

difficulties of philosophy: that our thinking hangs in

the language. Anyway, we are forced to use the words

so far as we can; we try to extend their use to the

utmost, and then we get into situations in which they

have no meaning” [11].

A modern version of this interpretation suggests that at

the time of measurement, the wave collapses instantaneously

into certain localized object corresponding to the action of

measurement. In other words, the measurement processes

define how the wave should define itself. At this point, the

wave ceases to become coherent, and the process is known as

“decoherence”. Decoherence may be thought of as a way of

making real for an observer in the large scale world only one

possible history of the universe which has a likelihood that

it will occur. Each possible history must in addition obey the

laws of logic of this large-scale world. The existence of the

phenomenon of decoherence is now supported by laboratory

experiments [12]. It is worthnoting here, that there are also

other versions of decoherence hypothesis, for instance by

Tegmark [13] and Vitiello [14].

In the meantime, the “standard” Copenhagen interpreta-

tion emphasizes the role of observer where the “decoherence

viewpoint” may not. The problem becomes more adverse

because the axioms of standard statistical theory themselves

are not fixed forever [15, 16]. And here is perhaps the

source of numerous debates concerning the interpretation

and philosophical questions implied by Quantum Mechanics.

From this viewpoint, Neutrosophic Logic offers a new view-

point to problems where indeterminacy exists. We will dis-

cuss this subsequently. For a sense of balance, we also

discuss a number of alternative interpretations. Nonetheless

this article will not discuss all existing interpretations of the

quantum wavefunction in the literature.

2.2 Schrödinger’s cat paradox

To make the viewpoint on this paradox a bit clearer, let us

reformulate the paradox in its original form.

According to Uncertainty Principle, any measurement

of a system must disturb the system under investigation,

with a resulting lack of precision in the measurement. Soon

after reading Einstein-Podolsky-Rosen’s paper discussing in-

completeness of Quantum Mechanics, Schrödinger in 1935

came up with a series of papers in which he used the “cat

paradox” to give an illustration of the problem of viewing

these particles in a “thought experiment” [15, 17]:

“One can even set up quite ridiculous cases. A cat

is penned up in a steel chamber, along with the follow-

ing diabolical device (which must be secured against

direct interference by the cat): in a Geiger counter

there is a bit of radioactive substance, so small,

that perhaps in the course of one hour one of the

atoms decays, but also, with equal probability, per-

haps none; if it happens, the counter tube discharges

and through a relay releases a hammer which shatters

a small flask of hydrocyanic acid. If one has left

this entire system to itself for an hour, one would

say that the cat still lives if meanwhile no atom has

decayed. The first atomic decay would have poison-

ed it. The wave-function of the entire system would

express this by having in it the living and the dead

cat (pardon the expression) mixed or smeared into

equal parts.”

In principle, Schrödinger’s thought experiment asks

whether the cat is dead or alive after an hour. The most

logical solution would be to wait an hour, open the box, and

see if the cat is still alive. However once you open the box

to determine the state of the cat you have viewed and hence

disturbed the system and introduced a level of uncertainty

into the results. The answer, in quantum mechanical terms,

is that before you open the box the cat is in a state of being

half-dead and half-alive.

Of course, at this point one could ask whether it is

possible to find out the state of the cat without having to

disturb its wavefunction via action of “observation”.

If the meaning of word “observation” here is defined

by to open the box and see the cat, and then it seems that

we could argue whether it is possible to propose another

equally possible experiment where we introduce a pair of

twin cats, instead of only one. A cat is put in the box while

another cat is located in a separate distance, let say 1 meter

from the box. If the state of the cat inside the box altered

because of poison reaction, it is likely that we could also

observe its effect to its twin, perhaps something like “sixth

sense” test (perhaps via monitoring frequency of the twin

cat’s brain).

This plausible experiment could be viewed as an alter-

native “thought experiment” of well-known Bell-Aspect-type

experiment. One could also consider an entangled pair of

photons instead of twin cats to conduct this “modified” cat

paradox. Of course, for this case then one would get a bit

complicated problem because now he/she should consider

two probable state: the decaying atom and the photon pair.
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We could also say that using this alternative configurat-

ion, we know exact information about the Cat outside, while

indeterminate information about the Cat inside. However,

because both Cats are entangled (twin) we are sure of all

the properties of the Cat inside “knows” the state of the Cat

outside the box, via a kind of “spooky action at distance”

reason (in Einstein’s own word)∗.

Therefore, for experimental purpose, perhaps it would be

useful to simplify the problem by using “modified” Aspect-

type experiment [16]. Here it is proposed to consider a de-

caying atom of Cesium which emits two correlated photons,

whose polarization is then measured by Alice (A) on the

left and by Bob (B) on the right (see Fig. 1). To include

the probable state as in the original cat paradox, we will

use a switch instead of Alice A. If a photon comes to this

switch, then it will turn on a coffee-maker machine, therefore

the observer will get a cup of coffee†. Another switch and

coffee-maker set also replace Bob position (see Fig. 2). Then

we encapsulate the whole system of decaying atom, switch,

and coffee-maker at A, while keeping the system at B side

open. Now we can be sure, that by the time the decaying atom

of Cesium emits photon to B side and triggers the switch at

this side which then turns on the coffee-maker, it is “likely”

that we could also observe the same cup of coffee at A side,

even if we do not open the box.

We use term “likely” here because now we encounter a

“quasi-deterministic” state where there is also small chance

that the photon is shifted different from −0.0116, which is

indeed what the Aspect, Dalibard and Roger experiment de-

monstrated in 1982 using a system of two correlated photons

[16]. At this “shifted” phase, it could be that the switch will

not turn on the coffee-maker at all, so when an observer

opens the box at A side he will not get a cup of coffee.

If this hypothetical experiment could be verified in real

world, then it would result in some wonderful implications,

like prediction of ensembles of multi-particles system, — or

a colony of cats.

Another version of this cat paradox is known as GHZ pa-

radox: “The Greenberger-Horne-Zeilinger paradox exhibits

some of the most surprising aspects of multiparticle entangle-

ment” [18]. But we limit our discussion here on the original

cat paradox.

2.3 Hidden-variable hypothesis

It would be incomplete to discuss quantum paradoxes, in

particular Schrödinger’s cat paradox, without mentioning

hidden-variable hypothesis. There are various versions of

this argument, but it could be summarised as an assertion

∗The authors are grateful to Dmitri Rabounski for his valuable com-

ments discussing a case of entangled twin Cats.
†The “coffee-maker” analogue came to mind after a quote: “A math-

ematician is a device for turning coffee into theorems” — Alfréd Rényi, a

Hungarian mathematician, 1921–1970. (As quoted by Christopher J. Mark.)

that there is “something else” which should be included in

the Quantum Mechanical equations in order to explain thor-

oughly all quantum phenomena. Sometimes this assertion can

be formulated in question form [19]: Can Quantum Mech-

anics be considered complete? Interestingly, however, the

meaning of “complete” itself remains quite abstract (fuzzy).

Figure 1: Aspect-type experiment

Figure 2: Aspect-type experiment in box

An interpretation of this cat paradox suggests that the

problem arises because we mix up the macroscopic systems

(observer’s wavefunction and apparatus’ wavefunction) from

microscopic system to be observed. In order to clarify this,

it is proposed that “. . . the measurement apparatus should

be described by a classical model in our approach, and the

physical system eventually by a quantum model” [20].

2.4 Hydrodynamic viewpoint and diffusion interpre-

tation

In attempt to clarify the meaning of wave collapse and deco-

herence phenomenon, one could consider the process from

(dissipative) hydrodynamic viewpoint [21]. Historically, the

hydrodynamic/diffusion viewpoint of Quantum Mechanics

has been considered by some physicists since the early years

of wave mechanics. Already in 1933, Fuerth showed that

Schrödinger equation could be written as a diffusion equation

with an imaginary diffusion coefficient [1]

Dqm =
i�

2m
. (4)

But the notion of imaginary diffusion is quite difficult

to comprehend. Alternatively, one could consider a classical

Markov process of diffusion type to consider wave mechan-

ics equation. Consider a continuity equation

∂ρ

∂t
= −∇ (ρv) , (5)

where v= v0=D∇ lnρ (see [1]), which is a Fokker-Planck

equation. Then the expectation value for the energy of par-

ticle can be written as [1]
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<E> =

∫ (

mv2

2
+
D2m

2
D ln ρ2 + eV

)

ρd3x . (6)

Alternatively, it could be shown that there is exact mapp-

ing between Schrödinger equation and viscous dissipative

Navier-Stokes equations [6], where the square of the wave-

function of Schrödinger equation as the vorticity distribution

(including topological vorticity defects) in the fluid [6]. This

Navier-Stokes interpretation differs appreciably from more

standard Euler-Madelung fluid interpretation of Schrödinger

equation [1], because in Euler method the fluid is described

only in its inviscid limit.

2.5 How neutrosophy could offer solution to Schrödin-

ger’s paradox

In this regard, Neutrosophic Logic as recently discussed by

one of these authors [22, 23, 24] could offer an interesting

application in the context of Schrödinger’s cat paradox. It

could explain how the “mixed” state could be. It could

be shown, that Neutrosophic probability is useful to those

events, which involve some degree of indeterminacy (un-

known) and more criteria of evaluation — as quantum phys-

ics. This kind of probability is necessary because it provides

a better representation than classical probability to uncertain

events [25]. This new viewpoint for quantum phenomena

is required because it is known that Quantum Mechanics is

governed by uncertainty, but the meaning of “uncertainty”

itself remains uncertain [16].

For example the Schrödinger’s Cat Theory says that the

quantum state of a photon can basically be in more than one

place in the same time which, translated to the neutrosophic

set, means that an element (quantum state) belongs and does

not belong to a set (a place) in the same time; or an element

(quantum state) belongs to two different sets (two different

places) in the same time. It is a problem of “alternative worlds

theory well represented by the neutrosophic set theory.

In Schrödinger’s equation on the behavior of electromag-

netic waves and “matter waves” in quantum theory, the wave

function ψ, which describes the superposition of possible

states, may be simulated by a neutrosophic function, i. e.

a function whose values are not unique for each argument

from the domain of definition (the vertical line test fails,

intersecting the graph in more points).

Now let’s return to our cat paradox [25]. Let’s consider a

Neutrosophic set of a collection of possible locations (posi-

tions) of particle x. And let A and B be two neutrosophic

sets. One can say, by language abuse, that any particle x
neutrosophically belongs to any set, due to the percentages of

truth/indeterminacy/falsity involved, which varies between
−0 and 1+. For example: x (0.5, 0.2, 0.3) belongs to A

(which means, with a probability of 50% particle x is in a

position of A, with a probability of 30% x is not in A, and

the rest is undecidable); or y (0, 0, 1) belongs to A (which

normally means y is not for sure in A); or z (0, 1, 0) belongs

to A (which means one does know absolutely nothing about

z’s affiliation with A). More general, x { (0.2–0.3), (0.40–

0.45)∪ [0.50–0.51], (0.2, 0.24, 0.28) } belongs to the set A,

which mean:

• Owning a likelihood in between 20–30% particle x is

in a position of A (one cannot find an exact approxim-

ate because of various sources used);

• Owning a probability of 20% or 24% or 28% x is not

in A;

• The indeterminacy related to the appurtenance of x to

A is in between 40–45% or between 50–51% (limits

included);

• The subsets representing the appurtenance, indeterm-

inacy, and falsity may overlap, and n_sup= 30%+
+ 51%+ 28%> 100% in this case.

To summarize our proposition [25], given the Schrödin-

ger’s cat paradox is defined as a state where the cat can be

dead, or can be alive, or it is undecided (i. e. we don’t know if

it is dead or alive), then herein the Neutrosophic Logic, based

on three components, truth component, falsehood compo-

nent, indeterminacy component (T, I, F), works very well. In

Schrödinger’s cat problem the Neutrosophic Logic offers the

possibility of considering the cat neither dead nor alive, but

undecided, while the fuzzy logic does not do this. Normally

indeterminacy (I) is split into uncertainty (U) and paradox

(conflicting) (P).

We could expect that someday this proposition based on

Neusotrophic Logic could be transformed into a useful guide

for experimental verification of quantum paradox [15, 10].

Above results will be expanded into details in our book

Multi-Valued Logic, Neutrosophy, and Schrödinger Equation

that is in print.
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The present article discusses Neutrosophic logic view to Schrödinger’s cat paradox.

We argue that this paradox involves some degree of indeterminacy (unknown) which

Neutrosophic logic can take into consideration, whereas other methods including Fuzzy

logic cannot. To make this proposition clear, we revisit our previous paper by offering

an illustration using modified coin tossing problem, known as Parrondo’s game.

1 Introduction

The present article discusses Neutrosophic logic view to

Schrödinger’s cat paradox. In this article we argue that this

paradox involves some degree of indeterminacy (unknown)

which Neutrosophic logic can take into consideration,

whereas other methods including Fuzzy logic cannot.

In the preceding article we have discussed how Neutro-

sophic logic view can offer an alternative method to solve the

well-known problem in Quantum Mechanics, i.e. the Schrö-

dinger’s cat paradox [1, 2], by introducing indeterminacy of

the outcome of the observation.

In other article we also discuss possible re-interpretation

of quantum measurement using Unification of Fusion Theo-

ries as generalization of Information Fusion [3, 4, 5], which

results in proposition that one can expect to neglect the prin-

ciple of “excluded middle”; therefore Bell’s theorem can be

considered as merely tautological. [6] This alternative view

of Quantum mechanics as Information Fusion has also been

proposed by G. Chapline [7]. Furthermore this Information

Fusion interpretation is quite consistent with measurement

theory of Quantum Mechanics, where the action of measure-

ment implies information exchange [8].

In the first section we will discuss basic propositions of

Neutrosophic probability and Neutrosophic logic. Then we

discuss solution to Schrödinger’s cat paradox. In subsequent

section we discuss an illustration using modified coin tossing

problem, and discuss its plausible link to quantum game.

While it is known that derivation of Schrödinger’s equa-

tion is heuristic in the sense that we know the answer to which

the algebra and logic leads, but it is interesting that Schrö-

dinger’s equation follows logically from de Broglie’s grande

loi de la Nature [9, p.14]. The simplest method to derive

Schrödinger’s equation is by using simple wave as [9]:

�
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�
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By deriving twice the wave and defining:
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where ��, � represents momentum at � direction, and ratio-

nalised Planck constants respectively.

By introducing kinetic energy of the moving particle, � ,

and wavefunction, as follows [9]:
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and
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 (4)

Then one has the time-independent Schrödinger equation

from [1, 3, 4]:
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 (5)

It is interesting to remark here that by convention physi-

cists assert that “the wavefunction is simply the mathematical

function that describes the wave” [9]. Therefore, unlike the

wave equation in electromagnetic fields, one should not con-

sider that equation [5] has any physical meaning. Born sug-

gested that the square of wavefunction represents the prob-

ability to observe the electron at given location [9, p.56].

Although Heisenberg rejected this interpretation, apparently

Born’s interpretation prevails until today.

Nonetheless the founding fathers of Quantum Mechanics

(Einstein, De Broglie, Schrödinger himself) were dissatisfied

with the theory until the end of their lives. We can summarize

the situation by quoting as follows [9, p.13]:

“The interpretation of Schrödinger’s wave function

(and of quantum theory generally) remains a matter of

continuing concern and controversy among scientists

who cling to philosophical belief that the natural world

is basically logical and deterministic.”

Furthermore, the “pragmatic” view of Bohr asserts that for a

given quantum measurement [9, p.42]:

“A system does not possess objective values of its phys-

ical properties until a measurement of one of them is

made; the act of measurement is asserted to force the

system into an eigenstate of the quantity being mea-

sured.”
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In 1935, Einstein-Podolsky-Rosen argued that the axiomatic

basis of Quantum Mechanics is incomplete, and subsequently

Schrödinger was inspired to write his well-known cat para-

dox. We will discuss solution of his cat paradox in subsequent

section.

2 Cat paradox and imposition of boundary conditions

As we know, Schrödinger’s deep disagreement with the Born

interpretation of Quantum Mechanics is represented by his

cat paradox, which essentially questioning the “statistical” in-

terpretation of the wavefunction (and by doing so, denying

the physical meaning of the wavefunction). The cat paradox

has been written elsewhere [1, 2], but the essence seems quite

similar to coin tossing problem:

“Given �� 0.5 for each side of coin to pop up, we

will never know the state of coin before we open our

palm from it; unless we know beforehand the “state”

of the coin (under our palm) using ESP-like phenom-

ena. Prop. (1).”

The only difference here is that Schrödinger asserts that the

state of the cat is half alive and half dead, whereas in the coin

problem above, we can only say that we don’t know the state

of coin until we open our palm; i.e. the state of coin is inde-

terminate until we open our palm. We will discuss the solu-

tion of this problem in subsequent section, but first of all we

shall remark here a basic principle in Quantum Mechanics,

i.e. [9, p.45]:

“Quantum Concept: The first derivative of the wave-

function � of Schrödinger’s wave equation must be

single-valued everywhere. As a consequence, the

wavefunction itself must be single-valued everywhere.”

The above assertion corresponds to quantum logic, which can

be defined as follows [10, p.30; 11]:

� �� � � ��� �� � (6)

As we will see, it is easier to resolve this cat paradox

by releasing the aforementioned constraint of “single-

valuedness” of the wavefunction and its first derivative. In

fact, nonlinear fluid interpretation of Schrödinger’s equation

(using the level set function) also indicates that the physical

meaning of wavefunction includes the notion of multivalued-

ness [12]. In other words, one can say that observation of

spin-half electron at location � does not exclude its possibility

to pop up somewhere else. This counter-intuitive proposition

will be described in subsequent section.

3 Neutrosophic solution of the Schrödinger cat paradox

In the context of physical theory of information [8], Barrett

has noted that “there ought to be a set theoretic language

which applies directly to all quantum interactions”. This is

because the idea of a bit is itself straight out of classical set

theory, the definitive and unambiguous assignment of an el-

ement of the set {0,1}, and so the assignment of an informa-

tion content of the photon itself is fraught with the same dif-

ficulties [8]. Similarly, the problem becomes more adverse

because the fundamental basis of conventional statistical the-

ories is the same classical set {0,1}.

For example the Schrödinger’s cat paradox says that the

quantum state of a photon can basically be in more than one

place in the same time which, translated to the neutrosophic

set, means that an element (quantum state) belongs and does

not belong to a set (a place) in the same time; or an ele-

ment (quantum state) belongs to two different sets (two dif-

ferent places) in the same time. It is a question of “alternative

worlds” theory very well represented by the neutrosophic set

theory. In Schrödinger’s equation on the behavior of electro-

magnetic waves and “matter waves” in quantum theory, the

wave function, which describes the superposition of possible

states may be simulated by a neutrosophic function, i.e. a

function whose values are not unique for each argument from

the domain of definition (the vertical line test fails, intersect-

ing the graph in more points).

Therefore the question can be summarized as follows [1]:

“How to describe a particle � in the infinite micro-

universe that belongs to two distinct places �� and ��
in the same time? � � �� and � � ��� is a true con-

tradiction, with respect to Quantum Concept described

above.”

Now we will discuss some basic propositions in Neutrosophic

logic [1].

3a Non-standard real number and subsets

Let T,I,F be standard or non-standard real subsets�]�0, 1�[,

with sup T = t sup, inf T= t inf,

sup I = i sup, inf I = i inf,

sup F = f sup, inf F = f inf,

and n sup = t sup + i sup + f sup,

n inf = t inf + i inf + f inf.

Obviously, t sup, i sup, f sup� ��; and t inf, i inf, f inf���,

whereas n sup� �� and n inf���. The subsets T, I, F are not

necessarily intervals, but may be any real subsets: discrete or

continuous; single element; finite or infinite; union or inter-

section of various subsets etc. They may also overlap. These

real subsets could represent the relative errors in determining

t, i, f (in the case where T, I, F are reduced to points).

For interpretation of this proposition, we can use modal

logic [10]. We can use the notion of “world” in modal logic,

which is semantic device of what the world might have been

like. Then, one says that the neutrosophic truth-value of a

statement A, ����	�� �� if A is “true in all possible

worlds.” (syntagme first used by Leibniz) and all conjunc-

tures, that one may call “absolute truth” (in the modal logic
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it was named necessary truth, as opposed to possible truth),

whereas ������� � if A is true in at least one world at some

conjuncture, we call this “relative truth” because it is related

to a “specific” world and a specific conjuncture (in the modal

logic it was named possible truth). Because each “world” is

dynamic, depending on an ensemble of parameters, we in-

troduce the sub-category “conjuncture” within it to reflect a

particular state of the world.

In a formal way, let’s consider the world W as being gen-

erated by the formal system FS. One says that statement A

belongs to the world W if A is a well-formed formula (wff )

in W, i.e. a string of symbols from the alphabet of W that

conforms to the grammar of the formal language endowing

W. The grammar is conceived as a set of functions (formation

rules) whose inputs are symbols strings and outputs “yes” or

“no”. A formal system comprises a formal language (alpha-

bet and grammar) and a deductive apparatus (axioms and/or

rules of inference). In a formal system the rules of inference

are syntactically and typographically formal in nature, with-

out reference to the meaning of the strings they manipulate.

Similarly for the Neutrosophic falsehood-value,

��� ���� �� if the statement A is false in all possible

worlds, we call it “absolute falsehood”, whereas��� ���� �
if the statement A is false in at least one world, we call it

“relative falsehood”. Also, the Neutrosophic indeterminacy

value ������ � � if the statement A is indeterminate in all

possible worlds, we call it “absolute indeterminacy”, whereas

������ � � if the statement A is indeterminate in at least

one world, we call it “relative indeterminacy”.

3b Neutrosophic probability definition

Neutrosophic probability is defined as: “Is a generalization

of the classical probability in which the chance that an event

A occurs is t% true — where t varies in the subset T, i% in-

determinate — where i varies in the subset I, and f% false

— where f varies in the subset F. One notes that NP(A) �
(T, I, F)”. It is also a generalization of the imprecise probabil-

ity, which is an interval-valued distribution function.

The universal set, endowed with a Neutrosophic probabil-

ity defined for each of its subset, forms a Neutrosophic prob-

ability space.

3c Solution of the Schrödinger’s cat paradox

Let’s consider a neutrosophic set a collection of possible lo-

cations (positions) of particle �. And let A and B be two

neutrosophic sets. One can say, by language abuse, that any

particle � neutrosophically belongs to any set, due to the per-

centages of truth/indeterminacy/falsity involved, which varies

between �0 and 1�. For example: � (0.5, 0.2, 0.3) belongs

to A (which means, with a probability of 50% particle � is in

a position of A, with a probability of 30% � is not in A, and

the rest is undecidable); or � (0, 0, 1) belongs to A (which

normally means � is not for sure in A); or � (0, 1, 0) belongs

to A (which means one does know absolutely nothing about

�’s affiliation with A).

More general, � ((0.2–0.3), (0.40–0.45) � [0.50–0.51],

{0.2, 0.24, 0.28}) belongs to the set A, which means:

— with a probability in between 20-30% particle � is in

a position of A (one cannot find an exact approximate

because of various sources used);

— with a probability of 20% or 24% or 28% � is not in A;

— the indeterminacy related to the appurtenance of � to

A is in between 40–45% or between 50–51% (limits

included).

The subsets representing the appurtenance, indeterminacy,

and falsity may overlap, and n sup� 30%� 51%� 28%�

100% in this case.

To summarize our proposition [1, 2], given the Schrö-

dinger’s cat paradox is defined as a state where the cat can be

dead, or can be alive, or it is undecided (i.e. we don’t know

if it is dead or alive), then herein the Neutrosophic logic,

based on three components, truth component, falsehood com-

ponent, indeterminacy component (T, I, F), works very well.

In Schrödinger’s cat problem the Neutrosophic logic offers

the possibility of considering the cat neither dead nor alive,

but undecided, while the fuzzy logic does not do this. Nor-

mally indeterminacy (I) is split into uncertainty (U) and para-

dox (conflicting) (P).

We have described Neutrosophic solution of the Schrö-

dinger’s cat paradox. Alternatively, one may hypothesize

four-valued logic to describe Schrödinger’s cat paradox, see

Rauscher et al. [13, 14].

In the subsequent section we will discuss how this Neu-

trosophic solution involving “possible truth” and “indetermi-

nacy” can be interpreted in terms of coin tossing problem

(albeit in modified form), known as Parrondo’s game. This

approach seems quite consistent with new mathematical for-

mulation of game theory [20].

4 An alternative interpretation using coin toss problem

Apart from the aforementioned pure mathematics-logical ap-

proach to Schrödinger’s cat paradox, one can use a well-

known neat link between Schrödinger’s equation and Fokker-

Planck equation [18]:

�
	�


	��
�
	�

	�

� �

	


	�
�
	


	�
� �  (7)

A quite similar link can be found between relativistic clas-

sical field equation and non-relativistic equation, for it is

known that the time-independent Helmholtz equation and

Schrödinger equation is formally identical [15]. From this

reasoning one can argue that it is possible to explain Aharo-

nov effect from pure electromagnetic field theory; and there-

fore it seems also possible to describe quantum mechan-

18 F. Smarandache and V. Christianto. The Neutrosophic Logic View to Schrödinger’s Cat Paradox, Revisited

47



July, 2008 PROGRESS IN PHYSICS Volume 3

ical phenomena without postulating the decisive role of

“observer” as Bohr asserted. [16, 17]. In idiomatic form, one

can expect that quantum mechanics does not have to mean

that “the Moon is not there when nobody looks at”.

With respect to the aforementioned neat link between

Schrödinger’s equation and Fokker-Planck equation, it is in-

teresting to note here that one can introduce “finite differ-

ence” approach to Fokker-Planck equation as follows. First,

we can define local coordinates, expanded locally about a

point (��, ��� we can map points between a real space (�� �)
and an integer or discrete space (�� �). Therefore we can sam-

ple the space using linear relationship [19]:

��� �� � ��� � ��� �� � �� � � (8)

where � is the sampling length and � is the sampling time.
Using a set of finite difference approximations for the Fokker-
Planck PDE:

��

��
� �� �

� ��� � �� �� � � �� � ��� � �� �� � � �

��
� (9)

���

���
� ��� �

�
� ������ ���� � ��� ���� ���� � �� ������ ���� �

��
� (10)

and
�	

��
� 
� �

	 ���� ���� 	 ���� �� � � �

�
� (11)

We can apply the same procedure to obtain:

��

��
� � �

� ������ ���� � �� ������ ���� �

��
� (12)

Equations (9–12) can be substituted into equation (7) to

yield the required finite partial differential equation [19]:

	 ���� ��� � �
�� � 	 ������ ���� � ��� � 	 ���� ���� � �

� ��� � 	 ��� � �� �� � � � � (13)

This equation can be written in terms of discrete space by

using [8], so we have:

	��� � �
�� � 	������� � �� � 	����� � ��� � 	������� � (14)

Equation (14) is precisely the form required for Parron-

do’s game. The meaning of Parrondo’s game can be described

in simplest way as follows [19]. Consider a coin tossing prob-

lem with a biased coin:

	���� �
�

�
� � � (15)

where � is an external bias that the game has to “overcome”.
This bias is typically a small number, for instance 1/200. Now
we can express equation (15) in finite difference equation (14)
as follows:

���� �
�
�

�
� 	

�
�������������������

�
�

�
� 	

�
��������� 
 (16)

Furthermore, the bias parameter can be related to an ap-

plied external field.

With respect to the aforementioned Neutrosophic solu-

tion to Schrödinger’s cat paradox, one can introduce a new

“indeterminacy” parameter to represent conditions where the

outcome may be affected by other issues (let say, apparatus

setting of Geiger counter). Therefore equation (14) can be

written as:

	��� �

�
�

�
� �� �

�
� 	������� �

� �� � 	����� �

�
�

�
� �� �

�
� 	������� � (17)

where unlike the bias parameter (�1/200), the indeterminacy

parameter can be quite large depending on the system in ques-

tion. For instance in the Neutrosophic example given above,

we can write that:

� � 0.2 � 0.3 � �

�
�

�

�
��

� �

�
�

�

�
� 0.50� (18)

The only problem here is that in original coin tossing, one

cannot assert an “intermediate” outcome (where the outcome

is neither A nor B). Therefore one shall introduce modal logic

definition of “possibility” into this model. Fortunately, we

can introduce this possibility of intermediate outcome into

Parrondo’s game, so equation (17) shall be rewritten as:

	��� �

�
�

�
� �� �

�
� 	������� �

� ���� � 	����� �

�
�

�
� �� �

�
� 	������� � (19)

For instance, by setting � � 0.25, then one gets the finite

difference equation:

	��� � �0.25 � �� � 	������� � �0.5� � 	����� �

� �0.25 � �� � 	������� � (20)

which will yield more or less the same result compared with

Neutrosophic method described in the preceding section.

For this reason, we propose to call this equation (19):

Neutrosophic-modified Parrondo’s game. A generalized ex-

pression of equation [19] is:

	��� � �	� � �� �� � 	������� � ���� � 	����� �

� �	� � �� �� � 	������� � (21)

where 	�, � represents the probable outcome in standard coin

tossing, and a real number, respectively. For the practical

meaning of �, one can think (by analogy) of this indetermi-

nacy parameter as a variable that is inversely proportional to

the “thickness ratio” (���) of the coin in question. There-

fore using equation (18), by assuming �� 0.2, coin thick-

ness� 1.0 mm, and coin diameter �� 50 mm, then we get

���� 50, or �� 0.2�50���� 0.004, which is negligible. But

if we use a thick coin (for instance by gluing 100 coins alto-

gether), then by assuming �� 0.2, coin thickness� 100 mm,
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and coin diameter �� 50 mm, we get ���� 0.5, or

�� 0.2�0.5���� 0.4, which indicates that chance to get out-

come neither A nor B is quite large. And so forth.

It is worth noting here that in the language of “modal

logic” [10, p.54], the “intermediate” outcome described here

is given name ‘possible true’, written ��, meaning that “it is

not necessarily true that not-A is true”. In other word, given

that the cat cannot be found in location �, does not have to

mean that it shall be in �.

Using this result (21), we can say that our proposition in

the beginning of this paper (Prop. 1) has sufficient reason-

ing; i.e. it is possible to establish link from Schrödinger wave

equation to simple coin toss problem, albeit in modified form.

Furthermore, this alternative interpretation, differs apprecia-

bly from conventional Copenhagen interpretation.

It is perhaps more interesting to remark here that Heisen-

berg himself apparently has proposed similar thought on this

problem, by introducing “potentia”, which means “a world

devoid of single-valued actuality but teeming with unreal-

ized possibility” [4, p.52]. In Heisenberg’s view an atom is

certainly real, but its attributes dwell in an existential limbo

“halfway between an idea and a fact”, a quivering state of

attenuated existence. Interestingly, experiments carried out

by � . Hutchison seem to support this view, that a piece of

metal can come in and out from existence [23].

In this section we discuss a plausible way to represent the

Neutrosophic solution of cat paradox in terms of Parrondo’s

game. Further observation and theoretical study is recom-

mended to explore more implications of this plausible link.

5 Concluding remarks

In the present paper we revisit the Neutrosophic logic view of

Schrödinger’s cat paradox. We also discuss a plausible way

to represent the Neutrosophic solution of cat paradox in terms

of Parrondo’s game.

It is recommended to conduct further experiments in order

to verify and explore various implications of this new propo-

sition, including perhaps for the quantum computation theory.
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In this paper we present four possible extensions of Bell’s Theorem: Bayesian and

Fuzzy Bayesian intrepretation, Information Fusion interpretation, Geometric interpre-

tation, and the viewpoint of photon fluid as medium for quantum interaction.

1 Introduction

It is generally accepted that Bell’s theorem [1] is quite exact

to describe the linear hidden-variable interpretation of quan-

tum measurement, and hence “quantum reality”. Therefore

null result of this proposition implies that no hidden-variable

theory could provide good explanation of “quantum reality”.

Nonetheless, after further thought we can find that Bell’s

theorem is nothing more than another kind of abstraction

of quantum observation based on a set of assumptions and

propositions [7]. Therefore, one should be careful before

making further generalization on the null result from exper-

iments which are “supposed” to verify Bell’s theorem. For

example, the most blatant assumption of Bell’s theorem is

that it takes into consideration only the classical statistical

problem of chance of outcome A or outcome B, as result of

adoption of Von Neumann’s definition of “quantum logic”.

Another critic will be discussed here, i. e. that Bell’s theorem

is only a reformulation of statistical definition of correlation;

therefore it is merely tautological [5].

Therefore in the present paper we will discuss a few

plausible extension of Bell’s theorem:

(a) Bayesian and Fuzzy Bayesian interpretation.

(b) Information Fusion interpretation. In particular, we

propose a modified version of Bell’s theorem, which

takes into consideration this multivalued outcome, in

particular using the information fusion Dezert-

Smarandache Theory (DSmT) [2, 3, 4]. We suppose

that in quantum reality the outcome of P (A ∪B) and

also P (A ∩ B) shall also be taken into consideration.

This is where DSmT and Unification of Fusion Theor-

ies (UFT) could be found useful [2, 17].

(c) Geometric interpretation, using a known theorem con-

necting geometry and imaginary plane. In turn, this

leads us to 8-dimensional extended-Minkowski metric.

(d) As an alternative to this geometric interpretation, we

submit the viewpoint of photon fluid as medium for

∗Note: The notion “hronir wave” introduced here was inspired from

Borges’ Tlon, Uqbar, Orbis Tertius.

quantum interaction. This proposition leads us to

Gross-Piteavskii equation which is commonly used to

describe bose condensation phenomena. In turn we

provide a route where Maxwell equations and Schrödi-

nger equation could be deduced from Gross-Pitaevskii

equation by using known algebra involving bi-quater-

nion number. In our opinion, this new proposition pro-

vides us a physical mechanism of quantum interaction,

beyond conventional “quantum algebra” which hides

causal explanation.

By discussing these various approaches, we use an ex-

panded logic beyond “yes” or “no” type logic [3]. In other

words, there could be new possibilities to describe quantum

interaction: “both can be wrong”, or “both can be right”, as

described in Table 1 below.

In Belnap’s four-valued logic there are, besides Truth (T)

and Falsehood (F), also Uncertainty (U) and Contradiction

(C) but they are inter-related [30]. Belnap’s logic is a parti-

cular case of Neutrosophic Logic (which considers three

components: Truth, Falsehood, and Indeterminacy (I)) when

indeterminacy is split into Uncertainty and Contradiction. In

our article we have: Yes (Y), No (N), and Indeterminacy

(I, which means: neither Yes nor No), but Indeterminacy is

split into “both can be wrong” and “both can be right”.

It could be expected that a combined interpretation re-

presents multiple-facets of quantum reality. And hopefully it

could bring better understanding on the physical mechanism

beneath quantum measurement, beyond simple algebraic no-

tions. Further experiments are of course recommended in

order to verify or refute this proposition.

2 Bell’s theorem. Bayesian and fuzzy Bayesian inter-

pretation

Despite widespread belief of its ability to describe hidden-

variables of quantum reality [1], it shall be noted that Bell’s

theorem starts with a set of assumptions inherent in its for-

mulation. It is assumed that each pair of particles possesses

a particular value of λ, and we define quantity p (λ) so that

probability of a pair being produced between λ and λ+ dλ
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Alternative Bell’s theorem Implications Special relativity

QM is nonlocal Invalid Causality breaks down; Observer

determines the outcome

Is not always applicable

QM is local with hidden

variable

Valid Causality preserved; The moon

is there even without observer

No interaction can exceed the speed of

light

Both can be right Valid, but there is a way to

explain QM without violat-

ing Special Relativity

QM, special relativity and Max-

well electromagnetic theory can

be unified. New worldview shall

be used

Can be expanded using 8-dimensional

Minkowski metric with imaginary

plane

Both can be wrong Invalid, and so Special Rel-

ativity is. We need a new

theory

New nonlocal QM theory is re-

quired, involving quantum po-

tential

Is not always applicable

Table 1: Going beyond classical logic view of QM

is p (λ)dλ. It is also assumed that this is normalized so that:
∫

p (λ) dλ = 1 . (1)

Further analysis shows that the integral that measures the

correlation between two spin components that are at an angle

of (δ − φ) with each other, is therefore equal to C ′′(δ − φ).
We can therefore write:

|C ′′(φ)− C ′′(δ)| − C ′′(δ − φ) � 1 (2)

which is known as Bell’s theorem, and it was supposed to

represent any local hidden-variable theorem. But it shall be

noted that actually this theorem cannot be tested completely

because it assumes that all particle pairs have been detected.

In other words, we find that a hidden assumption behind

Bell’s theorem is that it uses classical probability assertion

[12], which may or may be not applicable to describe Quan-

tum Measurement.

It is wothnoting here that the standard interpretation of

Bell’s theorem includes the use of Bayesian posterior proba-

bility [13]:

P (α |x) = p (α) p (x |α)
∑

β p (β) p (x |β)
. (3)

As we know Bayesian method is based on classical two-

valued logic. In the meantime, it is known that the restriction

of classical propositional calculus to a two-valued logic has

created some interesting paradoxes. For example, the Barber

of Seville has a rule that all and only those men who do not

shave themselves are shaved by the barber. It turns out that

the only way for this paradox to work is if the statement is

both true and false simultaneously [14]. This brings us to

fuzzy Bayesian approach [14] as an extension of (3):

P (si|M) =
p (M |si) p (si)

p (M)
, (4)

where [14, p. 339]:

p (M |si) =
r
∑

k=1

p (xk |si)μM (xk) . (5)

Nonetheless, it should also be noted here that there is

shortcoming of this Bayesian approach. As Kracklauer points

out, Bell’s theorem is nothing but a reformulation of statist-

ical definition of correlation [5]:

Corr (A,B) =
〈|AB|〉 − 〈A〉〈B〉
√

〈A2〉〈B2〉
. (6)

When 〈A〉 or 〈B〉 equals to zero and 〈A2〉〈B2〉=1 then

equation (6) reduces to Bell’s theorem. Therefore as such it

could be considered as merely tautological [5].

3 Information fusion interpretation of Bell’s theorem.

DSmT modification

In the context of physical theory of information [8], Barrett

has noted that “there ought to be a set theoretic language

which applies directly to all quantum interactions”. This is

because the idea of a bit is itself straight out of classical

set theory, the definitive and unambiguous assignment of

an element of the set {0, 1}, and so the assignment of an

information content of the photon itself is fraught with the

same difficulties [8]. Similarly, the problem becomes more

adverse because the fundamental basis of conventional stat-

istal theories is the same classical set {0, 1}.
Not only that, there is also criticism over the use of

Bayesian approach, i. e.: [13]

(a) In real world, neither class probabilities nor class den-

sities are precisely known;

(b) This implies that one should adopt a parametric model

for the class probabilities and class densities, and then

use empirical data.

(c) Therefore, in the context where multiple sensors can

be used, information fusion approach could be a better

alternative to Bayes approach.

In other words, we should find an extension to standard

proposition in statistical theory [8, p. 388]:
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P (AB |C) = P (A |BC)P (B |C) (7)

= P (B |AC)P (A |C) (8)

P (A |B) + P (Ā |B) = 1 . (9)

Such an extension is already known in the area of infor-

mation fusion [2], known as Dempster-Shafer theory:

m(A) +m(B) +m(A ∪B) = 1 . (10)

Interestingly, Chapline [13] noted that neither Bayesian

theory nor Dempster-Shafer could offer insight on how to

minimize overall energy usage in the network. In the mean-

time, Dezert-Smarandache (DSmT) [2] introduced further

improvement of Dempster-Shafer theory by taking into con-

sideration chance to observe intersection between A and B:

m(A) +m(B) +m(A ∪B) +m(A ∩B) = 1 . (11)

Therefore, introducing this extension from equation (11)

into equation (2), one finds a modified version of Bell’s the-

orem in the form:

|C ′′(φ)− C ′′(δ)| −
−C ′′(δ − φ) + C ′′(δ ∪ φ) + C ′′(δ ∩ φ) � 1 ,

(12)

which could be called as modified Bell’s theorem according

to Dezert-Smarandache (DSmT) theory [2]. Its direct impli-

cations suggest that it could be useful to include more sen-

sors in order to capture various possibilities beyond simple

{0, 1} result, which is typical in Bell’s theorem.

Further generalization of DSmT theory (11) is known as

Unification of Fusion Theories [15, 16, 17]:

m(A) +m(B) +m(A ∪B) +m(A ∩B)+
+m(Ā) +m(B̄) +m(Ā ∪ B̄) +m(Ā ∩ B̄) = 1 ,

(13)

where Ā is the complement of A and B̄ is the complement

of B (if we consider the set theory).

(But if we consider the logical theory then Ā is the

negation of A and B̄ is the negation of B. The set theory and

logical theory in this example are equivalent, hence doesn’t

matter which one we use from them.) In equation (13) above

we have a complement/negation for A. We might define the

Ā as the entangle of particle A. Hence we could expect

to further extend Bell’s inequality considering UFT; non-

etheless we leave this further generalization for the reader.

Of course, new experimental design is recommended in

order to verify and to find various implications of this new

proposition.

4 An alternative geometric interpretation of Bell-type

measurement. Gross-Pitaevskii equation and the

“hronir wave”

Apart from the aforementioned Bayesian interpretation of

Bell’s theorem, we can consider the problem from purely

geometric viewpoint. As we know, there is linkage between

geometry and algebra with imaginary plane [18]:

x+ iy = ρeiφ. (14)

Therefore one could expect to come up with geometrical

explanation of quantum interaction, provided we could gen-

eralize the metric using imaginary plane:

X + iX ′ = ρeiφ . (15)

Interestingly, Amoroso and Rauscher [19] have proposed

exactly the same idea, i. e. generalizing Minkowski metric to

become 8-dimensional metric which can be represented as:

Zμ = Xμ
re + iX

μ
im = ρe

iφ . (16)

A characteristic result of this 8-dimensional metric is that

“space separation” vanishes, and quantum-type interaction

could happen in no time.

Another viewpoint could be introduced in this regard,

i. e. that the wave nature of photon arises from “photon fluid”

medium, which serves to enable photon-photon interaction.

It has been argued that this photon-fluid medium could be

described using Gross-Pitaevskii equation [20]. In turns, we

could expect to “derive” Schrödinger wave equation from

the Gross-Pitaevskii equation.

It will be shown, that we could derive Schrödinger wave

equation from Gross-Pitaevskii equation. Interestingly,

a new term similar to equation (14) arises here, which then

we propose to call it “hronir wave”. Therefore one could

expect that this “hronir wave” plays the role of “invisible

light” as postulated by Maxwell long-time ago.

Consider the well-known Gross-Pitaevskii equation in

the context of superfluidity or superconductivity [21]:

i h̄
∂Ψ

∂t
= − h̄

2

2m
ΔΨ+

(

V (x)− γ |Ψ|p−1
)

Ψ, (17)

where p < 2N/(N−2) if N� 3. In physical problems, the

equation for p=3 is known as Gross-Pitaevskii equation.

This equation (17) has standing wave solution quite similar

to Schrödinger equation, in the form:

Ψ(x, t) = e−iEt/h̄ · u(x) . (18)

Substituting equation (18) into equation (17) yields:

− h̄
2

2m
Δu+

(

V (x)− E
)

u = |u|p−1 u , (19)

which is nothing but time-independent linear form of Schrö-

dinger equation, except for term |u|p−1 [21]. In case the

right-hand side of this equation is negligible, equation (19)

reduces to standard Schrödinger equation. Using Maclaurin

series expansion, we get for (18):

Ψ(x, t)=

(

1− iEt
h̄
+

(

iEt
h̄

)2

2!
+

(

− iEt
h̄

)3

3!
+ . . .

)

·u(x) . (20)

Therefore we can say that standing wave solution of

Gross-Pitaevskii equation (18) is similar to standing wave
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solution of Schrödinger equation (u), except for nonlinear

term which comes from Maclaurin series expansion (20).

By neglecting third and other higher order terms of equation

(20), one gets an approximation:

Ψ(x, t) =
[

1− iEt/h̄
]

· u(x) . (21)

Note that this equation (21) is very near to hyperbolic

form z=x+ iy [18]. Therefore one could conclude that

standing wave solution of Gross-Pitaevskii equation is mere-

ly an extension from ordinary solution of Schrödinger equa-

tion into Cauchy (imaginary) plane. In other words, there

shall be “hronir wave” part of Schrödinger equation in order

to describe Gross-Pitaevskii equation. We will use this result

in the subsequent section, but first we consider how to derive

bi-quaternion from Schrödinger equation.

It is known that solutions of Riccati equation are loga-

rithmic derivatives of solutions of Schrödinger equation, and

vice versa [22]:
u′′ + vu = 0 . (22)

Bi-quaternion of differentiable function of x=(x1,x2,x3)
is defined as [22]:

Dq = −div(q) + grad(q0) + rot(q) . (23)

By using alternative representation of Schrödinger equa-

tion [22]:
[

−Δ+ u
]

f = 0 , (24)

where f is twice differentiable, and introducing quaternion

equation:
Dq + q2 = −u . (25)

Then we could find q, where q is purely vectorial diffe-

rentiable bi-quaternion valued function [22].

We note that solutions of (24) are related to (25) as fol-

lows [22]:

• For any nonvanishing solution f of (24), its logarithm-

ic derivative:

q =
Df

f
, (26)

is a solution of equation (25), and vice versa [22].

Furthermore, we also note that for an arbitrary scalar

twice differentiable function f , the following equality is per-

mitted [22]:

[

−Δ+ u
]

f =
[

D +Mh
][

D −Mh
]

f , (27)

provided h is solution of equation (25).

Therefore we can summarize that given a particular solu-

tion of Schrödinger equation (24), the general solution redu-

ces to the first order equation [22, p. 9]:

[

D +Mh
]

F = 0 , (28)

where

h =
D
√
ε

ε
. (29)

Interestingly, equation (28) is equivalent to Maxwell eq-

uations. [22] Now we can generalize our result from the

preceding section, in the form of the following conjecture:

Conjecture 1 Given a particular solution of Schrödinger

equation (24), then the approximate solution of Gross-

Pitaevskii equation (17) reduces to the first order equation:

[

1− iEt/h̄
][

D +Mh
]

F = 0 . (30)

Therefore we can conclude here that there is neat linkage

between Schrödinger equation, Maxwell equation, Riccati

equation via biquaternion expression [22, 23, 24]. And ap-

proximate solution of Gross-Pitaevskii equation is similar to

solution of Schrödinger equation, except that it exhibits a

new term called here “the hronir wave” (30).

Our proposition is that considering equation (30) has im-

aginary plane wave, therefore it could be expected to pro-

vided “physical mechanism” of quantum interaction, in the

same sense of equation (14). Further experiments are of

course recommended in order to verify or refute this

5 Some astrophysical implications of Gross-Pitaevskii

description

Interestingly, Moffat [25, p. 9] has also used Gross-Pitaevskii

in his “phion condensate fluid” to describe CMB spectrum.

Therefore we could expect that this equation will also yield

interesting results in cosmological scale.

Furthermore, it is well-known that Gross-Pitaevskii equa-

tion could exhibit topologically non-trivial vortex solutions

[26, 27], which can be expressed as quantized vortices:
∮

p • dr = Nv 2πh̄ . (31)

Therefore an implication of Gross-Pitaevskii equation

[25] is that topologically quantized vortex could exhibit in

astrophysical scale. In this context we submit the viewpoint

that this proposition indeed has been observed in the form

of Tifft’s quantization [28, 29]. The following description

supports this assertion of topological quantized vortices in

astrophysical scale.

We start with standard definition of Hubble law [28]:

z =
δλ

λ
=
Hr

c
(32)

or

r =
c

H
z . (33)

Now we suppose that the major parts of redshift data

could be explained via Doppler shift effect, therefore [28]:

z =
δλ

λ
=
v

c
. (34)

In order to interpret Tifft’s observation of quantized red-

shift corresponding to quantized velocity 36.6 km/sec and
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72.2 km/sec, then we could write from equation (34):

δv

c
= δz = δ

(

δλ

λ

)

. (35)

Or from equation (33) we get:

δr =
c

H
δz . (36)

In other words, we submit the viewpoint that Tifft’s ob-

servation of quantized redshift implies a quantized distance

between galaxies [28], which could be expressed in the form:

rn = r0 + n (δr) . (35a)

It is proposed here that this equation of quantized distan-

ce (5) is resulted from topological quantized vortices (31),

and agrees with Gross-Pitaevskii (quantum phion condensa-

te) description of CMB spectrum [25]. Nonetheless, further

observation is recommended in order to verify the above

proposition.

Concluding remarks

In the present paper we review a few extension of Bell’s

theorem which could take into consideration chance to ob-

serve outcome beyond classical statistical theory, in parti-

cular using the information fusion theory. A new geometrical

interpretation of quantum interaction has been considered,

using Gross-Pitaevskii equation. Interestingly, Moffat [25]

also considered this equation in the context of cosmology.

It is recommended to conduct further experiments in

order to verify and also to explore various implications of

this new proposition, including perhaps for the quantum com-

putation theory [8, 13].
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Abstract. 

In this paper we extend Inagaki Weighted Operators fusion rule (WO) in information fusion by 

doing redistribution of not only the conflicting mass, but also of masses of non-empty 

intersections, that we call Double Weighted Operators (DWO). 

Then we propose a new fusion rule Class of Proportional Redistribution of Intersection Masses 

(CPRIM), which generates many interesting particular fusion rules in information fusion. 

Both formulas are presented for 2 and for n � 3 sources. 

 

1. Introduction. 

Let { }1 2, ,..., nθ θ θ θ= , for 2n ≥ , be the frame of discernment, and ( ), , ,Sθ θ τ= ∪ ∩  its 

super-power set, where �(x) means complement of x with respect to the total ignorance.  

Let total ignorancetI = = �1� �2�…��n. 

2Sθ = ^�refined = 2^(2^�) = D
���c

, when refinement is possible, where �c = {�(�1), �(�2), 

…, �(�n)}.  

 We consider the general case when the domain is Sθ , but Sθ  can be replaced by Dθ = 

(�,�,�) or by 2θ = (�,�) in all formulas from below. 

 Let 1 2( ) and ( ) m m⋅ ⋅  be two normalized masses defined from Sθ  to [ ]0,1 . 

 We use the conjunction rule to first combine 1( )m ⋅  with 2 ( )m ⋅  and then we redistribute 

the mass of ( ) 0m X Y ≠� , when X Y = Φ� . 

 Let’s denote ( )

( )

2 1 2 1 2

,

( ) ( ) ( ) ( )
X Y S
X Y A

m A m m A m X m Y
θ∈
=

= ⊕ = ��

�

 using the conjunction rule. 

 Let’s note the set of intersections by: 
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2

 

{ }| ,  where , \ ,

 is in a canonical form, and  

 contains at least an  symbol in its formula

X S X y z y z S

S X

X

θ θ� �∈ = ∈ Φ
� �

= � �
� �
� 	

�

�

�

.                                                (1) 

 

In conclusion, S� is a set of formulas formed with singletons (elements from the frame of 

discernment), such that each formula contains at least an intersection symbol �, and each 

formula is in a canonical form (easiest form). 

 For example: A A S∉
�

�  since A A�  is not a canonical form, and A A A=� . Also, 

( )A B B� �  is not in a canonical form but ( )A B B A B S= ∈
�

� � � . 

 Let  

S Φ =
�

 the set of all empty intersections from S
�

, 

 and 

,

non

rS Φ =
�

 {the set of all non-empty intersections from nonS Φ

�
 whose masses are 

redistributed to other sets, which actually depends on the sub-model of each 

application}. 

2. Extension of Inagaki General Weighted Operators (WO). 

 

Inagaki general weighted operator ( )WO  is defined for two sources as: 

{ }  2 \A θ∀ ∈ Φ , 

( )

( ) 1 2 2

, 2

( ) ( ) ( ) ( ) ( )WO m

X Y
X Y A

m A m X m Y W A m
θ∈
=

= + ⋅ Φ� �

�

,                     (2) 

where 

2

( ) 1m

X

W X
θ∈

=�  and all [ ]( ) 0,1mW ⋅ ∈ .                                                                    (3) 

 So, the conflicting mass is redistributed to non-empty sets according to these weights 

( )mW ⋅ . 

 In the extension of this WO , which we call the Double Weighted Operator ( )DWO , we 

redistribute not only the conflicting mass 2 ( )m Φ
�

 but also the mass of some (or all) non-empty 

intersections, i.e. those from the set ,

non

rS Φ

�
, to non-empty sets from Sθ  according to some weights 

( )mW ⋅  for the conflicting mass (as in WO), and respectively according to the weights Vm(.) for 

the non-conflicting mass of the elements from the set ,

non

rS Φ

�
: 

( ) { }

( )
,

, 1 2 2 2

,

  \ \ ,  ( ) ( ) ( ) ( ) ( ) ( ) ( )
non

r

non

r DWO m m

X Y S z S
X Y A

A S S m A m X m Y W A m V A m z
θ

θ

Φ

Φ

∈ ∈
=

∀ ∈ Φ = + ⋅ Φ + ⋅� �
�

� � �

�

, 

                                                                                                                                                      (4) 

where 

( ) 1m

X S

W X
θ∈

=�  and all [ ]( ) 0,1mW ⋅ ∈ , as in (3) 
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and  

,

( ) 1
non

r

m

z S

V z
Φ∈

=�
�

 and all [ ]( ) 0,1mV ⋅ ∈ .                                                                    (5) 

 In the free and hybrid modes, if no non-empty intersection is redistributed, i.e. ,

non

rS Φ

�
 

contains no elements, DWO  coincides with WO . 

 In the Shafer’s model, always DWO  coincides with WO . 

 For 2s ≥ sources, we have a similar formula: 

( ) { }
1 2 ,

1

,

1, ,...,

  \ \ ,  ( ) ( ) ( ) ( ) ( ) ( )
non

n r
s

i

i

s
non

r DWO i i m s m s

iX X X S z S

X A

A S S m A m X W A m V A m z
θ

θ

Φ

=

Φ

=∈ ∈

=

∀ ∈ Φ = + ⋅ Φ + ⋅� �∏
�

� � �

�

                                                                                                                                                       (6) 

with the same restrictions on ( )mW ⋅  and ( )mV ⋅ . 

 

 

3. A Fusion Rule Class of Proportional Redistribution of Intersection Masses
 

 For ( ) { }, \ \ ,non

r tA S S Iθ Φ∈ Φ
�

 for two sources we have: 

{ }

{ },

1 2
\ 2

                  ,
         and 

or  and   

( ) ( )
( ) ( ) ( )

( )

non
r

CPR M

X Y S
X Y A M z M

X Y S A N

m X m Y
m A m A f A

f zθ

Φ

∈
Φ= ⊆ ⊆

Φ≠ ∈ ⊆

= + ⋅ �
�

�

�

�

�

,                           (7) 

where ( )f X  is a function directly proportional to [ ],  : 0,X f Sθ → ∞ .                                        (8) 

For example,  2( ) ( )f X m X=
�

, or                                                                                   (9) 

( ) ( )f X card X= , or  

( )
( )

( )

card X
f X

card M
=  (ratio of cardinals), or  

2( ) ( ) ( )f X m X card X= +
�

, etc.;  

and M  is a subset of Sθ , for example:                                                                                       (10) 

( )M X Yτ= � , or  

( )M X Y= � , or  

M  is a subset of X Y� , etc.,  

where N  is a subset of Sθ , for example:                                                                                   (11) 

N X Y= � , or  

N is a subset of X Y� , etc. 

 

And  

\ 2 1 2

                             ,

         and (  or ( ) 0)   

( ) ( ) ( ) ( )

z M

CPR M t t

X Y S

X Y M f z

m I m I m X m Y
θ

⊆

∈
� �� �

=Φ =Φ =� �
� �� 	

= +

�

��

�

.                   (12) 

57



4

 These formulas are easily extended for any 2s ≥  sources 1 2( ), ( ),..., ( )sm m m⋅ ⋅ ⋅ . 

Let’s denote, using the conjunctive rule: 

( )
1 2

1

1 2

, ,..., ^ 1

( ) ... ( )   ( )
s

s

i

i

s

i is s

X X X S i

X A

m A m m m A m x

=

∈ Θ =

=

= ⊕ ⊕ ⊕ = � ∏�

�

                             (13) 

 

1 2

1

,

1

1

             , ,...,

          and 

   or  and  

( )

( ) ( )  +f(A)
( ) 0

n
s

i

i
s

non
i r

i

s

i i

i
ss

X X X S

z M
X A M

X S A N

m X

m A m A
f zθ

=

Φ

=

=
∩

∈

� � ⊆� �
Φ= ⊆� �
� �� 	
� �� �

Φ≠ ∈ ⊆� �
� �� 	

= ⋅
≠

∏
�

�

�

�

�

�

                            (14) 

 

where ( ),  ,  and f M N⋅  are similar to the above where instead of X Y�  (for two sources) we 

take 1 2 ... sX X X� � �  (for s sources), and instead of 2 ( )m X
�

 for two sources we take ( )sm X
�

 

for s  sources. 

 

This new fusion rule Class of Proportional Redistribution of Intersection Masses (CPRIM) 

generates many interesting particular fusion rules in information fusion. 
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Abstract.

We extend Knuth's 16 Boolean binary logic operators to fuzzy logic and neutrosophic 

logic binary operators.  Then we generalize them to n-ary fuzzy logic and neutrosophic logic 

operators using the smarandache codification of the Venn diagram and a defined vector 

neutrosophic law.  In such way, new operators in neutrosophic logic/set/probability are built. 

Keywords: binary/trinary/n-ary fuzzy logic operators, T-norm, T-conorm, 

binary/trinary/n-ary neutrosophic logic operators, N-norm, N-conorm 

Introduction.

For the beginning let’s consider the Venn Diagram of two variables x  and y , for each possible 

operator, as in Knuth’s table, but we adjust this table to the Fuzzy Logic (FL). 

 Let’s denote the fuzzy logic values of these variables as  

1 1( ) ( , )FL x t f�

where

1t  = truth value of variable x ,

1f  = falsehood value of variable x, 

with 1 1 1 10 ,  1 and 1t f t f� � � � ;

and similarly for y :

2 2( ) ( , )FL y t f�

with the same 2 2 2 20 ,  1 and 1t f t f� � � � .

 We can define all 16 Fuzzy Logical Operators with respect to two FL  operators: FL

conjunction ( )FLC  and FL  negation ( )FLN .

 Since in FL  the falsehood value is equal to 1- truth value , we can deal with only one 

component: the truth value. 

 The Venn Diagram for two sets X and Y

1 2
12

O
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�

�

2�

has 22 4�  disjoint parts: 

0 =  the part that does not belong to any set (the complement or negation) 

1 =  the part that belongs to 1
st
 set only; 

2 =  the part that belongs to 2
nd

 set only; 

12 = the part that belongs to 1
st
 and 2

nd
 set only; 

{called Smarandache’s codification [1]}. 

 Shading none, one, two, three, or four parts in all possible combinations will make 
24 22 2 16� �  possible binary operators. 

 We can start using a T norm�  and the negation operator. 

 Let’s take the binary conjunction or intersection (which is a T norm� ) denoted as 

( , )Fc x y :

� � � �� 	 � � � �
2

: 0,1 0,1 0,1 0,1Fc 
 � 


and unary negation operator denoted as ( )Fn x , with: 

� � � � � � � �: 0,1 0,1 0,1 0,1Fn 
 � 


 The fuzzy logic value of each part is: 

12 12P part� �  intersection of x  and y ; so ( 12) ( , )FFL P c x y� .

1 1P part� �  intersection of x  and negation of y ; ( 1) ( , ( ))F FFL P c x n y� .

2 2P part� �  intersection of negation of x  and y ; ( 2) ( ( ), )F FFL P c n x y� .

0 0P part� �  intersection of negation of x  and the negation of y ; ( 0) ( ( ), ( ))F F FFL P c n x n y� ,

and for normalization we set the condition: 

� 	 � 	 � 	( , ) ( ( ), , ( ) ( ), ( ) (1,0)F F F F F F Fc x y c n x y c x n y c n x n y� � � � .

� 	( ( ), ( )F Fc n x n yO

1 2

� 	, ( )F Fc x n y � 	( ),F Fc n x y

12

( , )Fc x y
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 Then consider a binary T conorm�  (disjunction or union), denoted by ( , )Fd x y :

� � � �� 	 � � � �
2

: 0,1 0,1 0,1 0,1Fd 
 � 


� 	 � 	1 2 1 2, , 1Fd x y t t f f� � � �

if x  and y are disjoint and 1 2 1t t� � .

 This fuzzy disjunction operator of disjoint variables allows us to add the fuzzy truth-

values of disjoint parts of a shaded area in the below table. When the truth-value increases, the 

false value decreases. More general, � 	1 2, ,...,k

F kd x x x , as a k-ary disjunction (or union), for 

2k � , is defined as: 

� � � �� 	 � � � �: 0,1 0,1 0,1 0,1
kk

Fd 
 � 


� 	 � 	1 2 1 2 1 2, ,..., ... , ... 1k

F k k kd x x x t t t f f f k� � � � � � � � �

if all ix  are disjoint two by two and 1 2 ... 1kt t t� � � � .

 As a particular case let’s take as a binary fuzzy conjunction:

� 	 � 	1 2 1 2 1 2, ,Fc x y t t f f f f� � �

and as unary fuzzy negation: 

� 	 � 	1 1 1 1( ) 1 ,1 ,Fn x t f f t� � � � ,

where

1 1( ) ( , )FL x t f� , with 1 1 1t f� � , and 1 10 ,  1t f� � ;

2 2( ) ( , )FL y t f� , with 2 2 1t f� � , and 2 20 ,  1t f� � .

whence:

� 	1 2 1 2 1 2( 12) ,FL P t t f f f f� � �

� 	1 2 1 2 1 2( 1) ,FL P t f f t f t� � �

� 	1 2 1 2 1 2( 2) ,FL P f t t f t f� � �

� 	1 2 1 2 1 2( 0) ,FL P f f t t t t� � �

 The Venn Diagram for 2n �  and considering only the truth values, becomes: 

1 2

1 1 2t t t� 2 1 2t t t�

12

1 2t t

O

1 2 1 21 t t t t� � � �
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since

1 2 1 2 1 1 2(1 )t f t t t t t� � � �

1 2 1 2 2 1 2(1 )f t t t t t t� � � �

1 2 1 2 1 2 1 2(1 )(1 ) 1f f t t t t t t� � � � � � �
.

We now use: 

� 	 � 	� � 	 � 	 � 	1 2 1 1 2 2 1 2 1 2 1 212, 1, 2, 0 1k

Fd P P P P t t t t t t t t t t t t� � � � � � � � � ,

� 	 � 	 � 	 � 	 	 � 	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 1,0f f f f f t f t t f t f t t t t� � � � � � � � � � � � �
.

So, the whole fuzzy space is normalized under ( )FL  .

 For the neurosophic logic, we consider 

1 1 1( ) ( , , )NL x T I F� , with 1 1 10 , , 1T I F� � ;

2 2 2( ) ( , , )NL y T I F� , with 2 2 20 , , 1T I F� � ;

if the sum of components is 1 as in Atanassov’s intuitionist fuzzy logic, i.e. 1i i iT I F� � � , they 

are considered normalized; otherwise non-normalized, i.e. the sum of the components is <1 (sub-

normalized) or >1 (over-normalized). 

We define a binary neutrosophic conjunction (intersection) operator, which is a particular 

case of an N-norm (neutrosophic norm, a generalization of the fuzzy t-norm): 

� � � � � �� 	 � � � � � �
2

: 0,1 0,1 0,1 0,1 0,1 0,1Nc 
 
 � 
 


� 	1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1( , ) , ,Nc x y TT I I I T T I F F F I FT F T F I� � � � � � � .

The neutrosophic conjunction (intersection) operator Nx y�  component truth, indeterminacy, 

and falsehood values result from the multiplication 

� 	 � 	1 1 1 2 2 2T I F T I F� �  � �

since we consider in a prudent way T I F� � , where “� ” means “weaker”, i.e. the products 

i jT I  will go to I , i jT F  will go to F , and i jI F  will go to F  (or reciprocally we can say that F

prevails in front of I  and of T ,

So, the truth value is 1 2TT , the indeterminacy value is 1 2 1 2 1 2I I I T T I� �  and the false value is 

1 2 1 2 1 2 2 1 2 1F F F I FT F T F I� � � � . The norm of Nx y�  is � � � �1 1 1 2 2 2T I F T I F� � � � � . Thus, if x

and y  are normalized, then Nx y�  is also normalized. Of course, the reader can redefine the 

neutrosophic conjunction operator, depending on application, in a different way, for example in a 

more optimistic way, i.e. I T F� �  or T  prevails with respect to I , then we get: 

� �1 2 1 2 2 1 1 2 1 2 1 2 1 2 2 1 2 1( , ) , ,
N

ITFc x y TT T I T I I I F F F I FT F T F I� � � � � � � .

Or, the reader can consider the order T F I� � , etc. 

 Let’s also define the unary neutrosophic negation operator: 

� 	 � 	 � 	 � 	 � 	 � 	: 0,1 0,1 0,1 0,1 0,1 0,1Nn 
 
 � 
 


(T1          I1         F1)

(T2          I2         F2)

(T1          I1         F1)

(T2          I2         F2)

(T1          I1         F1)

(T2          I2         F2)
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� � � �, , , ,Nn T I F F I T�

by interchanging the truth T  and falsehood F  vector components. 

Then:

� �1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 2 1( 12) , ,NL P TT I I I T I T F F F I FT F T F I� � � � � � �

� �1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 2 1( 1) , ,NL P T F I I I F I T FT F I F F T T T I� � � � � � �

� �1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 2 1( 2) , ,NL P FT I I I T I F T F T I TT F F F I� � � � � � �

� �1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 2 1( 0) , ,NL P F F I I I F I F TT T I T F T F T I� � � � � � �

Similarly as in our above fuzzy logic work, we now define a binary N conorm�  (disjunction or 

union), i.e. neutrosophic conform. 

� 	 � 	 � 	� � � 	 � 	 � 	
2

: 0,1 0,1 0,1 0,1 0,1 0,1Nd 
 
 � 
 


� � � �1 2 1 2
1 2 1 2 1

1 2 1 2 1 2 1 2

( , ) , ,N

T T T T
d x y T T I I F F

I I F F I I F F

� � �� � � � �� �� � � � � �� �� �� � � � � � �� �

if x  and y  are disjoint, and 1 2 1T T� �  where �  is the neutrosophic norm of Nx y� , i.e.

� � � �1 1 1 2 2 2T I F T I F� � � � � � � .

 We consider as neutrosophic norm of x , where 1 1 1( )NL x T I F� � � , the sum of its 

components: 1 1 1T I F� � , which in many cases is 1, but can also be positive <1 or >1. 

 When the truth value increases � �1 2T T�  is the above definition, the indeterminacy and 

falsehood values decrease proportionally with respect to their sums 1 2I I�  and respectively 

1 2F F� .

 This neutrosophic disjunction operator of disjoint variables allows us to add neutrosophic 

truth values of disjoint parts of a shaded area in a Venn Diagram. 

� Now, we complete Donald E. Knuth’s Table of the Sixteen Logical Operators on two 

variables with Fuzzy Logical operators on two variables with Fuzzy Logic truth values, and 

Neutrosophic Logic truth/indeterminacy/false values (for the case T I F� � ).
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Table 1 
Fuzzy�Logic�

Truth�Values�

Venn�

Diagram�

Notations� Operator�

symbol�

Name(s)�

�

0 �

�

�

�

�

0 �

�

� �

Contradiction,�

falsehood;�constant�0�

�

1 2t t �

�

�

�

�

,  ,  &xy x y x y� �

�

� � Conjunction;�and��

�

1 1 2t t t� �

�

�

�

�

, ,[ ],x y x y x y x y� �� � �

�

�

� �

Nonimplication;�

difference,�but�not�

�

1t �

�

�

�

�

x �
�

L � Left�projection�

�

2 1 2t t t� �

�

�

�

�

, ,[ ],x y x y x y y x� �� � �

�

�

� �

Converse�

nonimplication;�

not…but�

�

2t �

�

�

�

�
y �

�

R � Right�projection�

�

1 2 1 22t t t t� � �

�

�

�

�

, ,x y x y x y�� �� �

�

� �

Exclusive�disjunction;�

nonequivalence;�“xor”�

�

1 2 1 2t t t t� � �

�

�

�

�

, |x y x y� �

�

� �

(Inclusive)�disjunction;�

or;�and/or�

�

1 2 1 21 t t t t� � � �

� � �

�

�

�

, , ,x y x y x y x y� � � �

�

�

� �

Nondisjunction,�joint�

denial,�neither…nor�

�

1 2 1 21 2t t t t� � �

�

� � �

�

�

�
, ,x y x y x y� � � �

�

� �

Equivalence;�if�and�

only�if�

�

21 t� �

�

�

�

�

, ,! ,y y y y � �

�

R �

Right�

complementation�

�

2 1 21 t t t� � �

�

�

�

, , ,x y x y x y� � !

[ ], yx y x" �

�

� �

Converse�implication�

if�

�

11 t� �

�

�

�

�

, ,! ,x x x x � �

�

L �

Left�

complementation�

�

1 1 21 t t t� � �

�

�

�

, , ,x y x y x y� � #

[ ], xx y y� �

�

� �

Implication;�only�if;�

if..then�
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�

1 21 t t� �

�

�

�

�

, , , |x y x y x y x y� � � �

�

� �

Nonconjunction,�not�

both…and;�“nand”�

�

1�

�

�

�

1

�

T

Affirmation;�validity;�

tautology;�constant�1�

�
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�

Table�2�

Venn�Diagram� Neutrosophic�Logic�Values�

�

�

�

�

(0,0,1) �

�

�

�

�

� �1 2 1 2 1 2, ,T T I I IT F F F I F T� � � ,�where�
1 2 2 1IT I T I T� � �similarly ,F I F T ;

�

�

�

� 1 2

1 2 1 2, ,

P P

y y y y y

I F

T F I I IT F F F I F T

 ��� �� �� � �� �� �� ��� �
��������� �����������������

�

�

�

�

�

� �1 1 1, ,T I F �

�

�

�
2 2

1 2 1 2, ,

P P

x x x x x

I F

FT I I IT F F F I F T

 ��� �� � � � �� �� ���� �
��������� �����������������

�

�

�

�

�

� �2 2 2, ,T I F �

�

�

�

� � � �1 2 1 2

1 2 1 2 1 2 1 2

, ,P P P P

P P P P P P P P

T F T F
T F I I F F

I I F F I I F F

� � �� � �� �� � � �� �� �� � � � � � �� �

Where� � � � �1 1 1 2 2 2T I F T I F� � � � � � � which�is�the�neutrosophic�norm�

�

�

�

�

� �1 2 1 2 1 2, ,T T T I T F I I IF F F� � � �

�

�

�

�

� �1 2 1 2 1 2, ,F F I I IF T T T I T F� � � �

�

�

�

� � � �1 2 1 2

1 2 1 2 1 2 1 2

, ,P P P P

P P P P P P P P

T F T F
F F I I T F

I I F F I I F F

� � �� � �� �� � � �� �� �� � � � � � �� �

�

�

�

�

�

� �2 2 2, ,F I T �

�

�

�

�

� �1 2 1 2, ,x x x x xF F F I F T I I IT F T� � � �

�

�

�

�

� �1 1 1, ,F I T �

�

�

�

� �1 2 1 2, ,y y y y yF F F I F T I I IT T F� � � �
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9�

�

�

�

�

� �1 2 1 2 1 2, ,F F FI FT I I IT T T� � � �

�

�

�

�

(1,0,0) �

These 16 neutrosophic binary operators are approximated, since the binary  

N-conorm gives an approximation because of ‘indeterminacy’ component. 

Tri-nary Fuzzy Logic and Neutrosophic Logic Operators 

In a more general way, for 2k " :

� 	 � 	 � 	� � � 	 � 	 � 	: 0,1 0,1 0,1 0,1 0,1 0,1
N

kkd 
 
 � 
 
 ,

� �
� � � �

1 1
1 2

1 1 1

1 1

, ,..., , ,

k k

k i k ik k k
k i i
N k i i ik k

i i i
i i i i

i i

T T

d x x x T I F

I F I F

� �
� �

� � �

� �

 ��� � � �� � �  �� �� � �� � �� � �� �� �� �� �� �� �� �� � � �� ��� � � �� ��� �

$ $
$ $ $

$ $

if all ix  are disjoint two by two, and 
1

1
k

i

i

T
�

�$ .

 We can extend Knuth’s Table from binary operators to tri-nary operators (and we get 
322 256�  tri-nary operators) and in general to n-ary operators (and we get 22

n

 n-ary operators). 

 Let’s present the tri-nary Venn Diagram, with 3 variables , ,x y z

using the name Smarandache codification. 

 This has 32 8�  disjoint parts, and if we shade none, one, two, …, or eight of them and 

consider all possible combinations we get 82 256�  tri-nary operators in the above tri-nary Venn 

Diagram. 

 For n=3 we have: 

O�

1 2

3

13 

12 

23 

123 
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�

10�

� �

� �

� �

� �

� �

� �

� �

123 ( , , )

12 , , ( )

13 , ( ),

23 ( ), ,

1 , ( ), ( )

2 ( ), , ( )

3 ( ), ( ),

0 ( ), ( ), ( )

F

F F

F F

F F

F F F

F F F

F F F

F F F F

P c x y z

P c x y n z

P c x n y z

P c n x y z

P c x n y n z

P c n x y n z

P c n x n y z

P c n x n y n z

�

�

�

�

�

�

�

�

Let

1 1( ) ( , )FL x t f� , with 1 1 1 11,   0 , 1t f t f� � � � ,

2 2( ) ( , )FL y t f� , with 2 2 2 21,   0 , 1t f t f� � � � ,

3 3( ) ( , )FL z t f� , with 3 3 3 31,   0 , 1t f t f� � � � .

We consider the particular case defined by tri-nary conjunction fuzzy operator: 

� 	 � 	� � � 	 � 	
3

: 0,1 0,1 0,1 0,1Fc 
 � 


� �1 2 3 1 2 3 1 2 2 3 3 1 1 2 3( , , ) ,Fc x y z t t t f f f f f f f f f f f f� � � � � � �

because

� � � �� � � � � � � �1 1 2 2 3 3 1 2 1 2 1 2 3 3, , , , ,F F Ft f t f t f t t f f f f t f� � � � � � �

� �1 2 3 1 2 3 1 2 2 3 3 1 1 2 3,t t t f f f f f f f f f f f f� � � � � � �

and the unary negation operator:

� 	 � 	� � � 	 � 	: 0,1 0,1 0,1 0,1Fn 
 � 


1 1 1 1( ) (1 ,1 ) ( , )Fn x t f f t� � � �
.

 We define the function: 

� 	 � 	 � 	 � 	1 : 0,1 0,1 0,1 0,1L 
 
 �

1( , , )L � � � � � �� � �

and the function 

� 	 � 	 � 	 � 	2 : 0,1 0,1 0,1 0,1L 
 
 �

2 ( , , )L � � � � � � �� �� �� ���� � � � � � �

then:
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�

11�

� �

� �

� �

� �

� �

� �

1 1 2 3 2 1 2 3

1 1 2 3 2 1 2 3

1 1 2 3 2 1 2 3

1 1 2 3 2 1 2 3

1 1 2 3 2 1 2 3

1 1 2 3 2 1 2 3

( 123) ( , , ), ( , , )

( 12) ( , , ), ( , , )

( 13) ( , , ), ( , , )

( 23) ( , , ), ( , , )

( 1) ( , , ), ( , , )

( 2) ( , , ), ( , , )

(

FL P L t t t L f f f

FL P L t t f L f f t

FL P L t f t L f t f

FL P L f t t L t f f

FL P L t f f L f t t

FL P L f t f L t f t

FL

�

�

�

�

�

�

� �

� �
1 1 2 3 2 1 2 3

1 1 2 3 2 1 2 3

3) ( , , ), ( , , )

( 0) ( , , ), ( , , )

P L f f t L t t f

FL P L f f f L t t t

�

�

We thus get the fuzzy truth-values as follows: 

1 2 3

1 2 3 1 2 1 2 3

1 2 3 1 3 1 2 3

1 2 3 2 3 1 2 3

1 2 3 1 1 2 1 3 1 2 3

1 2 3 2 1 2 2 3 1 2 3

( 123)

( 12) (1 )

( 13) (1 )

( 23) (1 )

( 1) (1 )(1 )

( 2) (1 ) (1 )

( 3)

t

t

t

t

t

t

t

FL P t t t

FL P t t t t t t t t

FL P t t t t t t t t

FL P t t t t t t t t

FL P t t t t t t t t t t t

FL P t t t t t t t t t t t

FL P

�

� � � �

� � � �

� � � �

� � � � � � �

� � � � � � �

1 2 3 3 1 3 2 3 1 2 3

1 2 3 1 2 3 1 2 1 3 2 3 1 2 3

(1 )(1 )

( 0) (1 )(1 )(1 ) 1t

t t t t t t t t t t t

FL P t t t t t t t t t t t t t t t

� � � � � � �

� � � � � � � � � � � �
.

We, then, consider the same disjunction or union operator 1 2 1 2( , ) , 1Fd x y t t f f� � � � , if x and

y  are disjoint, and 1 2 1t t� �  allowing us to add the fuzzy truth values of each part of a shaded 

area. 

Neutrophic Composition Law 

Let’s consider 2k "  neutrophic variables, � �, ,i i i ix T I F , for all % &1, 2,...,i k' . Let denote

� �

� �

� �

1

1

1

,...,

,...,

,...,

k

k

k

T T T

I I I

F F F

�

�

�
.

 We now define a neutrosophic composition law No  in the following way: 

% & � 	: , , 0,1No T I F �

If % &, ,z T I F'  then 
1

N

k

o i

i

z z z
�

�( .

If % &, , ,z w T I F'  then
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% & % &
� � � �

� � � �

1 1

1 1

1

1

1

                      1

   ,..., , ,..., 1,2,...,

           ,..., 1,2,...,

       ,..., 1,2,...,

     ... ...
N N r r k

r r k
r

r
k r

r k

k

o o i i j j

r
i i j j k

i i C k

j j C k

z w w z z z w w
�

�

�
�

�

�
�

'

'

� � $

where � �1,2,...,rC k  means the set of combinations of the elements % &1, 2,..., k  taken by r .

[Similarly for � �1,2,...,k rC k� ].

 In other words, 
Noz w  is the sum of all possible products of the components of vectors z

and w , such that each product has at least a iz  factor and at least jw  factor, and each product has 

exactly k  factors where each factor is a different vector component of z  or of w . Similarly if 

we multiply three vectors: 

% & % &
� � � � � �

1 ... 11

1 1 1

1 1

...

                              , , 1

             ,..., , ,..., , ,..., 1,2,...,

              ,..., 1,2,..., , ,...,

        

...
N N u j j u v ku u v

u u u v u v k
u

u u u v

o o i i l l

u v k u v
i i j j l l k

i i C k j j

T I F T I F F
� �� �

� � � �

� �

� � �
�

' '

�

� � � � � �1

2

      1,2,..., , ,..., 1,2,...,v k u v
u v k

k

C k l l C k� �
� �

�

' '

$

Let’s see an example for 3k � .

� �

� �

� �

1 1 1 1

2 2 2 2

3 3 3 3

, ,

, ,

, ,

x T I F

x T I F

x T I F

1 2 3 1 2 3 1 2 3,   ,     F
N N N

o o oT T TT T I I I I I F F F F� � �

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
N

oT I T I I I T I I I T TT I T I T I T T� � � � � �

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
N

oT F T F F F T F F F T T T F T F T F T T� � � � � �

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
N

oI F I F F F I F F F I I I F I F I F I I� � � � � �

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
N N

o oT I F T I F T F I I T F I F T F I T FT I� � � � � �

 For the case when indeterminacy I  is not decomposed in subcomponents {as for 

example I P U� )  where P =paradox (true and false simultaneously) and U =uncertainty (true 

or false, not sure which one)}, the previous formulas can be easily written using only three 

components as: 

, , (1,2,3)
N N

o o i j r

i j r

T I F T I F
'

� $
P

where (1,2,3)P  means the set of permutations of (1,2,3)  i.e.

% &(1, 2,3), (1,3, 2), (2,1,3), (2,3,1, ), (3,1, 2), (3, 2,1)

2

3

 i 1
( , , ) (1,2,3)

( , ) (1,2,3)

rN
o i j j i j r

i j r

j r

z w z w w w z z
�

�
'

� �$

P

This neurotrophic law is associative and commutative. 

Neutrophic Logic Operators 
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Let’s consider the neutrophic logic cricy values of variables , ,x y z  (so, for 

3n� )
� �1 1 1 1 1 1( ) , ,  with 0 , , 1NL x T I F T I F� � �

� �2 2 2 2 2 2( ) , ,  with 0 , , 1NL y T I F T I F� � �

� �3 3 3 3 3 3( ) , ,  with 0 , , 1NL z T I F T I F� � �

In neutrosophic logic it is not necessary to have the sum of components equals to 1, as in 

intuitionist fuzzy logic, i.e. k k kT I F� �  is not necessary 1, for 1 3k� �

 As a particular case, we define the tri-nary conjunction neutrosophic operator: 

� 	 � 	 � 	� � � 	 � 	 � 	
3

: 0,1 0,1 0,1 0,1 0,1 0,1Nc 
 
 � 
 


� �( , ) , ,
N N N N N N

N o o o o o oc x y T T I I I T F F F I F T� � � �

If x  or y  are normalized, then ( , )Nc x y  is also normalized. 

If x  or y  are non-normalized then ( , )Nc x y x y� �  where �  means norm. 

Nc  is an N-norm (neutrosophic norm, i.e. generalization of the fuzzy t-norm). 

Again, as a particular case, we define the unary negation neutrosophic operator: 

� 	 � 	 � 	 � 	 � 	 � 	: 0,1 0,1 0,1 0,1 0,1 0,1Nn 
 
 � 
 


� � � �1 1 1 1 1 1( ) , , , ,N Nn x n T I F F I T� � .

 We take the same Venn Diagram for 3n� .

So,

� �1 1 1( ) , ,NL x T I F�

� �2 2 2( ) , ,NL y T I F�

� �3 3 3( ) , ,NL z T I F� .

Vectors 

1

2

3

  T=  

T

T

T

 ��� �� �� �� �� �� ���� �

,

1

2

3

  I= 

I

I

I

 ��� �� �� �� �� �� ���� �

 and 

1

2

3

F=

F

F

F

 ��� �� �� �� �� �� ���� �

.

We note 

1

2

3

T = x

F

T

T

 ��� �� �� �� �� �� ���� �

,

1

2

3

 T = y

T

F

T

 ��� �� �� �� �� �� ���� �

,

1

2

3

T = z

T

T

F

 ��� �� �� �� �� �� ���� �

,

1

2

3

T = xy

F

F

T

 ��� �� �� �� �� �� ���� �

, etc.

and similarly 

1

2

3

 F = x

T

F

F

 ��� �� �� �� �� �� ���� �

,

1

2

3

 = y

F

F T

F

 ��� �� �� �� �� �� ���� �

,

1

2

3

 F = xz

T

F

T

 ��� �� �� �� �� �� ���� �

, etc. 

For shorter and easier notations let’s denote 
Noz w zw�  and respectively 

N No oz w v zwv�

for the vector neutrosophic law defined previously. 

Then

� � � �123 ( , ) , ,NNL P c x y TT II IT FF FI FT FIT� � � � � � �
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� 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3, ,T T T I I I I I T I T I T I I I T T T I T TT I� � � � � � �

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3F F F F F I F I F I F F F I I I F I I I F� � � � � � �

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3F F T FT F T F F FT T T F T TT F� � � � � � �

�1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3T I F T F I I F T I T F F I T FT I� � � � � �

� � � � � �12 , , ( ) , ,N N z z z z z z z z z zNL P c x y n z T T II IT F F F I F T F IT� � � � � �

� � � � � �13 , ( ), , ,N N y y y y y y y y y yNL P c x n y z T T II IT F F F I F T F IT� � � � � �

� � � � � �23 ( ), , , ,N N x x x x x x x x x yNL P c n x y z T T II IT F F F I F T F IT� � � � � �

� � � � � �1 , ( ), ( ) , ,N N N yz yz yz yz yz yz yz yz yz yzNL P c x n y n z T T II IT F F F I F T F IT� � � � � �

� � � � � �2 ( ), , ( ) , ,N N N xz xz xz xz xz xz xz xz xz xzNL P c n x y n z T T II IT F F F I F T F IT� � � � � �

� � � � � �0 ( ), ( ), ( ) , ,N N N N xyz xyz xyz xyz xyz xyz xyz xyz xyz xyzNL P c n x n y n z T T II IT F F F I F T F IT� � � � � � �

� �, ,FF II IF TT TI TF TIF� � � � � .

n-ary Fuzzy Logic and Neutrosophic Logic Operators 

 We can generalize for any integer 2n" .

 The Venn Diagram has 22
n

 disjoint parts. Each part has the form 1 1... ...k k nPi i j j�  , where 

0 k n� �  , and of course 0 n k n� � � ; % &1,..., ki i  is a combination of k  elements of the set 

% &1, 2,..., n , while % &1,...,k nj j� the n k�  elements left, i.e. % & % & % &1 1,..., 1, 2,..., \ ,...,k k kj j n i i� � .

% &1,..., ki i  are replaced by the corresponding numbers from % &1, 2,..., n , while % &1,...,k nj j�  are 

replaced by blanks. 

 For example, when 3n� ,

% & % &1 2 3 1 213  if  , 1,3Pi i j P i i� � ,

% & % &1 2 3 11  if  1Pi j j P i� � .

 Hence, for fuzzy logic we have: 

� � � �� �
1 11 1... ... ,..., , ,...,

k k nk k n F i i F j F jPi i j j c x x n x n x
�� �

whence

� � � � � �1 1 1 2

1 1

... ... 1 , ,...,
r s

k n

k k n i j n

r s k

FL Pi i j j t t f f f��
� � �

 � � � �� ���� ��� ��� �� ���� ��� �� ��� �� �� �
( (

where � 	 � 	: 0,1 0,1
n

� � ,

� � 1 1

1 2 1 2 3

1

, ,..., ... ( 1) ( 1)
n

n l

n n l

l

S S S S S� � � � � �

�

� � � � � � � �$
where
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1 2

1 2

1

1

2

1

1 ...

1 2

.........................................

...

.........................................

...

l

l

n

i

i

i j

i j n

l i i i

i i i n

n n

S

S

S

S

�

��

� � �

� � �

�

� � �

� � � � �

�

�

�

� � � �

$

$

$

And for neutrosophic logic we have: 

� � � �� �
1 11 1... ... ,..., , ,...,

k k nk k n N i i N j N jPi i j j c x x n x n x
�� �

whence:

� � � �1 1 12... 12... 12...... ... , ,k k n n n nNL Pi i j j T I F� � ,

where

1 1
12... ... ...

1 1
j j j j r sn nk k

k n

n x x x x i j

r s k

T T T T F
� �

� � �

 ���� � ��� ���� �
( ( .

1
12... ...j jnk

n x xI II IT
�

� � ,

1 1 1 1 1 1 1
12... ... ... ... ... ... ... ...j j j j j j j j j j j j j jn n n n n n nk k k k k k k

n x x x x x x x x x x x x x xF F F F I F T F IT
� � � � � � �

� � � �

Conclusion:

 A generalization of Knuth’s Boolean binary operations is presented in this paper, i.e. we 

present n-ary Fuzzy Logic Operators and Neutrosophic Logic Operators based on Smarandache’s 

codification of the Venn Diagram and on a defined vector neutrosophic law which helps in 

calculating fuzzy and neutrosophic operators.

 Better neutrosophic operators than in [2] are proposed herein. 
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In the present article, we argue that it is possible to generalize Schrödinger equation

to describe quantization of celestial systems. While this hypothesis has been described

by some authors, including Nottale, here we argue that such a macroquantization was

formed by topological superfluid vortice. We also provide derivation of Schrödinger

equation from Gross-Pitaevskii-Ginzburg equation, which supports this superfluid

dynamics interpretation.

1 Introduction

In the present article, we argue that it is possible to generalize

Schrödinger equation to describe quantization of celestial

systems, based on logarithmic nature of Schrödinger equa-

tion, and also its exact mapping to Navier-Stokes equa-

tions [1].

While this notion of macro-quantization is not widely ac-

cepted yet, as we will see the logarithmic nature of Schrödin-

ger equation could be viewed as a support of its applicability

to larger systems. After all, the use of Schrödinger equation

has proved itself to help in finding new objects known as

extrasolar planets [2, 3]. And we could be sure that new

extrasolar planets are to be found in the near future. As an

alternative, we will also discuss an outline for how to derive

Schrödinger equation from simplification of Ginzburg-

Landau equation. It is known that Ginzburg-Landau equation

exhibits fractal character, which implies that quantization

could happen at any scale, supporting topological interpret-

ation of quantized vortices [4].

First, let us rewrite Schrödinger equation in its common

form [5]
[

i
∂

∂t
+
∇̄2
2m

− U (x)
]

ψ = 0 (1)

or

i
∂ψ

∂t
= Hψ . (2)

Now, it is worth noting here that Englman and Yahalom

[5] argues that this equation exhibits logarithmic character

lnψ(x, t) = ln
(

|ψ(x, t)|
)

+ i arg
(

ψ(x, t)
)

. (3)

Schrödinger already knew this expression in 1926, which

then he used it to propose his equation called “eigentliche

Wellengleichung” [5]. Therefore equation (1) can be re-

written as follows

2m
∂
(

ln|ψ|
)

∂t
+2∇̄ ln |ψ|∇̄arg

[

ψ
]

+∇̄∇̄arg
[

ψ
]

=0 . (4)

Interestingly, Nottale’s scale-relativistic method [2, 3]

was also based on generalization of Schrödinger equation

to describe quantization of celestial systems. It is known

that Nottale-Schumacher’s method [6] could predict new

exoplanets in good agreement with observed data. Nottale’s

scale-relativistic method is essentially based on the use of

first-order scale-differentiation method defined as follows [2]

∂V

∂(lnδt)
= β (V ) = a+ b V + . . . . (5)

Now it seems clear that the natural-logarithmic derivat-

ion, which is essential in Nottale’s scale-relativity approach,

also has been described properly in Schrödinger’s original

equation [5]. In other words, its logarithmic form ensures

applicability of Schrödinger equation to describe macro-

quantization of celestial systems. [7, 8]

2 Quantization of celestial systems and topological

quantized vortices

In order to emphasize this assertion of the possibility to de-

scribe quantization of celestial systems, let us quote Fischer’s

description [4] of relativistic momentum from superfluid

dynamics. Fischer [4] argues that the circulation is in the

relativistic dense superfluid, defined as the integral of the

momentum

γs =

∮

pμ dx
μ = 2πNv � , (6)

and is quantized into multiples of Planck’s quantum of action.

This equation is the covariant Bohr-Sommerfeld quantization

of γs. And then Fischer [4] concludes that the Maxwell

equations of ordinary electromagnetism can be written in

the form of conservation equations of relativistic perfect fluid

hydrodynamics [9]. Furthermore, the topological character of

equation (6) corresponds to the notion of topological elect-

ronic liquid, where compressible electronic liquid represents

superfluidity [25]. For the plausible linkage between super-

fluid dynamics and cosmological phenomena, see [16–24].
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It is worth noting here, because vortices could be defined

as elementary objects in the form of stable topological exci-

tations [4], then equation (6) could be interpreted as Bohr-

Sommerfeld-type quantization from topological quantized

vortices. Fischer [4] also remarks that equation (6) is quite

interesting for the study of superfluid rotation in the context

of gravitation. Interestingly, application of Bohr-Sommerfeld

quantization for celestial systems is known in literature [7, 8],

which here in the context of Fischer’s arguments it has

special meaning, i. e. it suggests that quantization of celestial

systems actually corresponds to superfluid-quantized vortices

at large-scale [4]. In our opinion, this result supports known

experiments suggesting neat correspondence between con-

densed matter physics and various cosmology phen-

omena [16–24].

To make the conclusion that quantization of celestial

systems actually corresponds to superfluid-quantized vortices

at large-scale a bit conceivable, let us consider the problem

of quantization of celestial orbits in solar system.

In order to obtain planetary orbit prediction from this

hypothesis we could begin with the Bohr-Sommerfeld’s con-

jecture of quantization of angular momentum. This con-

jecture may originate from the fact that according to BCS

theory, superconductivity can exhibit macroquantum phen-

omena [26, 27]. In principle, this hypothesis starts with

observation that in quantum fluid systems like superfluidity

[28]; it is known that such vortexes are subject to quantization

condition of integer multiples of 2π, or
∮

vsdl= 2πn�/m.

As we know, for the wavefunction to be well defined and

unique, the momenta must satisfy Bohr-Sommerfeld’s quant-

ization condition [28]

∮

Γ

p dx = 2πn� (6a)

for any closed classical orbit Γ. For the free particle of unit

mass on the unit sphere the left-hand side is [28]

∫ T

0

v2dτ = ω2T = 2πω , (7)

where T = 2π/ω is the period of the orbit. Hence the quantiz-

ation rule amounts to quantization of the rotation frequency

(the angular momentum): ω=n�. Then we can write the

force balance relation of Newton’s equation of motion [28]

GMm

r2
=
mv2

r
. (8)

Using Bohr-Sommerfeld’s hypothesis of quantization of

angular momentum, a new constant g was introduced [28]

mvr =
ng

2π
. (9)

Just like in the elementary Bohr theory (before Schrödin-

ger), this pair of equations yields a known simple solution

for the orbit radius for any quantum number of the form [28]

r =
n2g2

4π2GMm2
, (10)

which can be rewritten in the known form of gravitational

Bohr-type radius [2, 7, 8]

r =
n2GM

v20
, (11)

where r, n, G,M , v0 represents orbit radii, quantum number

(n= 1, 2, 3, . . . ), Newton gravitation constant, and mass of

the nucleus of orbit, and specific velocity, respectively. In

this equation (11), we denote [28]

v0 =
2π

g
GMm. (12)

The value of m is an adjustable parameter (similar to g)
[7, 8]. In accordance with Nottale, we assert that the specific

velocity v0 is 144 km/sec for planetary systems. By noting

that m is meant to be mass of celestial body in question, then

we could find g parameter (see also [28] and references cited

therein).

Using this equation (11), we could predict quantization of

celestial orbits in the solar system, where for Jovian planets

we use least-square method and use M in terms of reduced

mass μ= (M1+M2)
M1M2

. From this viewpoint the result is shown

in Table 1 below [28].

For comparison purpose, we also include some recent

observation by Brown-Trujillo team from Caltech [29–32].

It is known that Brown et al. have reported not less than four

new planetoids in the outer side of Pluto orbit, including

2003EL61 (at 52 AU), 2005FY9 (at 52 AU), 2003VB12 (at

76 AU, dubbed as Sedna). And recently Brown-Trujillo team

reported a new planetoid finding, called 2003UB31 (97 AU).

This is not to include their previous finding, Quaoar (42 AU),

which has orbit distance more or less near Pluto (39.5 AU),

therefore this object is excluded from our discussion. It is

interesting to remark here that all of those new “planetoids”

are within 8% bound from our prediction of celestial quant-

ization based on the above Bohr-Sommerfeld quantization

hypothesis (Table 1). While this prediction is not so precise

compared to the observed data, one could argue that the

8% bound limit also corresponds to the remaining planets,

including inner planets. Therefore this 8% uncertainty could

be attributed to macroquantum uncertainty and other local

factors.

While our previous prediction only limits new planet

finding until n= 9 of Jovian planets (outer solar system),

it seems that there are sufficient reasons to suppose that

more planetoids in the Oort Cloud will be found in the near

future. Therefore it is recommended to extend further the

same quantization method to larger n values. For prediction

purpose, we include in Table 1 new expected orbits based
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Object No. Titius Nottale CSV Observ. ∆, %

1 0.4 0.43

2 1.7 1.71

Mercury 3 4 3.9 3.85 3.87 0.52

Venus 4 7 6.8 6.84 7.32 6.50

Earth 5 10 10.7 10.70 10.00 −6.95

Mars 6 16 15.4 15.4 15.24 −1.05

Hungarias 7 21.0 20.96 20.99 0.14

Asteroid 8 27.4 27.38 27.0 1.40

Camilla 9 34.7 34.6 31.5 −10.00

Jupiter 2 52 45.52 52.03 12.51

Saturn 3 100 102.4 95.39 −7.38

Uranus 4 196 182.1 191.9 5.11

Neptune 5 284.5 301 5.48

Pluto 6 388 409.7 395 −3.72

2003EL61 7 557.7 520 −7.24

Sedna 8 722 728.4 760 4.16

2003UB31 9 921.8 970 4.96

Unobserv. 10 1138.1

Unobserv. 11 1377.1

Table 1: Comparison of prediction and observed orbit distance of

planets in Solar system (in 0.1AU unit) [28].

on the same quantization procedure we outlined before. For

Jovian planets corresponding to quantum number n= 10 and

n= 11, our method suggests that it is likely to find new

orbits around 113.81 AU and 137.71 AU, respectively. It is

recommended therefore, to find new planetoids around these

predicted orbits.

As an interesting alternative method supporting this pro-

position of quantization from superfluid-quantized vortices

(6), it is worth noting here that Kiehn has argued in favor of

re-interpreting the square of the wavefunction of Schrödinger

equation as the vorticity distribution (including topological

vorticity defects) in the fluid [1]. From this viewpoint, Kiehn

suggests that there is exact mapping from Schrödinger equa-

tion to Navier-Stokes equation, using the notion of quantum

vorticity [1]. Interestingly, de Andrade and Sivaram [33] also

suggest that there exists formal analogy between Schrödinger

equation and the Navier-Stokes viscous dissipation equation:

∂V

∂t
= ν∇2V , (13)

where ν is the kinematic viscosity. Their argument was based

on propagation torsion model for quantized vortices [23].

While Kiehn’s argument was intended for ordinary fluid,

nonetheless the neat linkage between Navier-Stokes equation

and superfluid turbulence is known in literature [34, 24].

At this point, it seems worth noting that some criticism

arises concerning the use of quantization method for de-

scribing the motion of celestial systems. These criticism

proponents usually argue that quantization method (wave

mechanics) is oversimplifying the problem, and therefore

cannot explain other phenomena, for instance planetary mig-

ration etc. While we recognize that there are phenomena

which do not correspond to quantum mechanical process, at

least we can argue further as follows:

1. Using quantization method like Nottale-Schumacher

did, one can expect to predict new exoplanets (extra-

solar planets) with remarkable result [2, 3];

2. The “conventional” theories explaining planetary mig-

ration normally use fluid theory involving diffusion

process;

3. Alternatively, it has been shown by Gibson et al. [35]

that these migration phenomena could be described via

Navier-Stokes approach;

4. As we have shown above, Kiehn’s argument was based

on exact-mapping between Schrödinger equation and

Navier-Stokes equations [1];

5. Based on Kiehn’s vorticity interpretation one these

authors published prediction of some new planets in

2004 [28]; which seems to be in good agreement with

Brown-Trujillo’s finding (March 2004, July 2005) of

planetoids in the Kuiper belt;

6. To conclude: while our method as described herein

may be interpreted as an oversimplification of the real

planetary migration process which took place some-

time in the past, at least it could provide us with useful

tool for prediction;

7. Now we also provide new prediction of other planet-

oids which are likely to be observed in the near future

(around 113.8 AU and 137.7 AU). It is recommended

to use this prediction as guide to finding new objects

(in the inner Oort Cloud);

8. There are of course other theories which have been

developed to explain planetoids and exoplanets [36].

Therefore quantization method could be seen as merely

a “plausible” theory between others.

All in all, what we would like to emphasize here is

that the quantization method does not have to be the true

description of reality with regards to celestial phenomena.

As always this method could explain some phenomena, while

perhaps lacks explanation for other phenomena. But at least

it can be used to predict something quantitatively, i. e. mea-

surable (exoplanets, and new planetoids in the outer solar

system etc.).

In the meantime, it seems also interesting here to consider

a plausible generalization of Schrödinger equation in partic-

ular in the context of viscous dissipation method [1]. First,

we could write Schrödinger equation for a charged particle

F. Smarandache, V. Christianto. Schrödinger Equation and the Quantization of Celestial Systems 65

76



Volume 2 PROGRESS IN PHYSICS April, 2006

interacting with an external electromagnetic field [1] in the

form of Ulrych’s unified wave equation [14]

[

(−i�∇− qA)μ(−i�∇− qA)μψ
]

=

=

[

−i2m ∂

∂t
+ 2mU(x)

]

ψ .
(14)

In the presence of electromagnetic potential, one could

include another term into the LHS of equation (14)

[

(−i�∇− qA)μ(−i�∇− qA)μ + eA0
]

ψ =

= 2m

[

−i ∂
∂t
+ U(x)

]

ψ .
(15)

This equation has the physical meaning of Schrödinger

equation for a charged particle interacting with an external el-

ectromagnetic field, which takes into consideration Aharonov

effect [37]. Topological phase shift becomes its immediate

implication, as already considered by Kiehn [1].

As described above, one could also derived equation

(11) from scale-relativistic Schrödinger equation [2, 3]. It

should be noted here, however, that Nottale’s method [2,

3] differs appreciably from the viscous dissipative Navier-

Stokes approach of Kiehn [1], because Nottale only considers

his equation in the Euler-Newton limit [3]. Nonetheless,

it shall be noted here that in his recent papers (2004 and

up), Nottale has managed to show that his scale relativistic

approach has linkage with Navier-Stokes equations.

3 Schrödinger equation derived from Ginzburg-

Landau equation

Alternatively, in the context of the aforementioned superfluid

dynamics interpretation [4], one could also derive Schrödin-

ger equation from simplification of Ginzburg-Landau equa-

tion. This method will be discussed subsequently. It is known

that Ginzburg-Landau equation can be used to explain vari-

ous aspects of superfluid dynamics [16, 17]. For alternative

approach to describe superfluid dynamics from Schrödinger-

type equation, see [38, 39].

According to Gross, Pitaevskii, Ginzburg, wavefunction

of N bosons of a reduced mass m∗ can be described as [40]

−
(

�
2

2m∗

)

∇2ψ + κ |ψ|2ψ = i� ∂ψ
∂t
. (16)

For some conditions, it is possible to replace the potential

energy term in equation (16) with Hulthen potential. This

substitution yields

−
(

�
2

2m∗

)

∇2ψ + VHulthenψ = i�
∂ψ

∂t
, (17)

where

VHulthen = −Ze2
δ e−δr

1− e−δr . (18)

This equation (18) has a pair of exact solutions. It could

be shown that for small values of δ, the Hulthen potential (18)

approximates the effective Coulomb potential, in particular

for large radius

V eff

Coulomb = −
e2

r
+
ℓ(ℓ+ 1) �2

2mr2
. (19)

By inserting (19), equation (17) could be rewritten as

−
(

�
2

2m∗

)

∇2ψ+
[

−e
2

r
+
ℓ(ℓ+1)�2

2mr2

]

ψ = i�
∂ψ

∂t
. (20)

For large radii, second term in the square bracket of LHS

of equation (20) reduces to zero [41],

ℓ(ℓ+ 1)�2

2mr2
→ 0 , (21)

so we can write equation (20) as
[

−
(

�
2

2m∗

)

∇2 + U(x)
]

ψ = i�
∂ψ

∂t
, (22)

where Coulomb potential can be written as

U(x) = −e
2

r
. (22a)

This equation (22) is nothing but Schrödinger equation

(1), except for the mass term now we get mass of Cooper

pairs. In other words, we conclude that it is possible to re-

derive Schrödinger equation from simplification of (Gross-

Pitaevskii) Ginzburg-Landau equation for superfluid dyn-

amics [40], in the limit of small screening parameter, δ.
Calculation shows that introducing this Hulthen effect (18)

into equation (17) will yield essentially similar result to (1),

in particular for small screening parameter. Therefore, we

conclude that for most celestial quantization problems the

result of TDGL-Hulthen (20) is essentially the same with the

result derived from equation (1). Now, to derive gravitational

Bohr-type radius equation (11) from Schrödinger equation,

one could use Nottale’s scale-relativistic method [2, 3].

4 Concluding remarks

What we would emphasize here is that this derivation of

Schrödinger equation from (Gross-Pitaevskii) Ginzburg-

Landau equation is in good agreement with our previous con-

jecture that equation (6) implies macroquantization corres-

ponding to superfluid-quantized vortices. This conclusion is

the main result of this paper. Furthermore, because Ginzburg-

Landau equation represents superfluid dynamics at low-

temperature [40], the fact that we can derive quantization

of celestial systems from this equation seems to support

the idea of Bose-Einstein condensate cosmology [42, 43].

Nonetheless, this hypothesis of Bose-Einstein condensate

cosmology deserves discussion in another paper.

Above results are part of our book Multi-Valued Logic,

Neutrosophy, and Schrödinger Equation that is in print.

66 F. Smarandache, V. Christianto. Schrödinger Equation and the Quantization of Celestial Systems

77



April, 2006 PROGRESS IN PHYSICS Volume 2

Acknowledgments

The authors would like to thank to Profs. C. Castro, A. Rub-

cic, R. M. Kiehn, M. Pitkänen, E. Scholz, A. Kaivarainen and

E. Bakhoum for valuable discussions.

References

1. Kiehn R. M. An interpretation of wavefunction as a measure

of vorticity. http://www22.pair.com/csdc/pdf/cologne.pdf.

2. Nottale L., et al., Astron. Astrophys., 1997, v. 322, 1018.

3. Nottale L. Astron. Astrophys., 1997, v. 327, 867-889.

4. Fischer U. W. arXiv: cond-mat/9907457 (1999).

5. Englman R. and Yahalom H. arXiv: physics/0406149 (2004).

6. Nottale L., Schumacher G., Levefre E. T. Astron. Astrophys.,

2000, v. 361, 379–387.

7. Rubcic A. and Rubcic J. The quantization of solar-like gravi-

tational systems. Fizika B, 1998, v. 7(1), 1–13.

8. Agnese A. G. and Festa R. Discretization of the cosmic scale

inspired from the Old Quantum Mechanics. Proc. Workshop

on Modern Modified Theories of Grav. and Cosmology, 1997;

arXiv: astro-ph/9807186.

9. Fischer U. W. arXiv: cond-mat/9907457.

10. Aharonov Y., et al. arXiv: quant-ph/0311155.

11. Hofer W. A. arXiv: physics/9611009; quant-ph/9801044.

12. Hooft G. arXiv: quant-ph/0212095.

13. Blasone M., et al. arXiv: quant-ph/0301031.

14. Rosu H. C. arXiv: gr-qr-qc/9411035.

15. Oudet X. The quantum state and the doublets. Annales de la

Fondation Louis de Broglie, 2000, v. 25(1).

16. Zurek W. Cosmological experiments in superfluids and super-

conductors. Proc. Euroconference Formation and Interaction

of Topological Defects, ed. A. Davis and R. Brandenberger,

Plenum, 1995; arXiv: cond-mat/9502119.

17. Volovik G. Superfluid analogies of cosmological phenomena.

arXiv: gr-qc/0005091.

18. Volovik G. Links between gravity and dynamics of quantum

liquids. Int. Conf. Cosmology. Relativ. Astrophysics. Cosmo-

particle Physics (COSMION-99); arXiv: gr-qc/0004049.

19. Volovik G. arXiv: gr-qc/0104046.

20. Nozieres P. and Pines D. The theory of quantum liquids:

Superfluid Bose Liquid. Addison-Wesley, 1990, 116–124.

21. Winterberg F. Z. Naturforsch., 2002, v. 57a, 202–204; presented

at 9th Canadian Conf. on General Relativity and Relativ.

Astrophysics, Edmonton, May 24–26, 2001.

22. Winterberg F. Maxwell’s aether, the Planck aether hypo-

thesis, and Sommerfeld’s fine structure constant. http://www.

znaturforsch.com/56a/56a0681.pdf.

23. Kaivarainen A. arXiv: physics/020702.

24. Kaivarainen A. Hierarchic models of turbulence, superfluidity

and superconductivity. arXiv: physics/0003108.

25. Wiegmann P. arXiv: cond-mat/9808004.

26. Schrieffer J. R. Macroscopic quantum phenomena from pairing

in superconductors. Lecture, December 11th, 1972.

27. Coles P. arXiv: astro-ph/0209576.

28. Christianto V. Apeiron, 2004, v. 11(3).

29. NASA News Release (Jul 2005), http://www.nasa.gov/vision/

universe/solarsystem/newplanet-072905.html.

30. BBC News (Oct 2004), http://news.bbc.co.uk/1/hi/sci/tech/

4730061.stm.

31. Brown M., et al. ApJ. Letters, Aug. 2004; arXiv: astro-ph/

0404456; ApJ., forthcoming issue (2005); astro-ph/0504280.

32. Brown M. (July 2005), http://www.gps.caltech.edu/∼mbrown/

planetlila/.

33. de Andrade L. G. and Sivaram C. arXiv: hep-th/9811067.

34. Godfrey S. P., et al. A new interpretation of oscillating flow

experiments in superfluid Helium II, J. Low Temp. Physics,

Nos. 112, Oct 2001.

35. Gibson C. and Schild R. arXiv: astro-ph/0306467.

36. Griv E. and Gedalin M. The formation of the Solar System by

Gravitational Instability. arXiv: astro-ph/0403376.

37. Anandan J. S. Quantum Coherence and Reality, Proc. Conf.

Fundamental Aspects of Quantum Theory, Columbia SC., ed.

by J. S. Anandan and J. L. Safko, World Scientific, 1994; arXiv:

gr-qc/9504002.

38. Varma C. M. arXiv: cond-mat/0109049.

39. Lipavsky P., et al. arXiv: cond-mat/0111214.

40. Infeld E., et al. arXiv: cond-mat/0104073.

41. Pitkänen M. http://www.physics.helsinki.fi/∼matpitka/articles/

nottale.pdf.

42. Trucks M. arXiv: gr-qc/9811043.

43. Castro C., et al. arXiv: hep-th/0004152.

F. Smarandache, V. Christianto. Schrödinger Equation and the Quantization of Celestial Systems 67

78



October, 2006 PROGRESS IN PHYSICS Volume 4

Plausible Explanation of Quantization of Intrinsic Redshift from Hall Effect

and Weyl Quantization

Florentin Smarandache∗ and Vic Christianto†

∗Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA

E-mail: smarand@unm.edu
†Sciprint.org — a Free Scientific Electronic Preprint Server, http://www.sciprint.org

E-mail: admin@sciprint.org

Using phion condensate model as described by Moffat [1], we consider a plausible

explanation of (Tifft) intrinsic redshift quantization as described by Bell [6] as result

of Hall effect in rotating frame. We also discuss another alternative to explain redshift

quantization from the viewpoint of Weyl quantization, which could yield Bohr-

Sommerfeld quantization.

1 Introduction

In a recent paper by Moffat [1] it is shown that quantum

phion condensate model with Gross-Pitaevskii equation

yields an approximate fit to data corresponding to CMB

spectrum, and it also yields a modified Newtonian accelera-

tion law which is in good agreement with galaxy rotation

curve data. It seems therefore interesting to extend further

this hypothesis to explain quantization of redshift, as shown

by Tifft et al. [2, 6, 7]. We also argue in other paper that

this redshift quantization could be explained as signature

of topological quantized vortices, which also agrees with

Gross-Pitaevskiian description [3, 5].

Nonetheless, there is remaining question in this quantiz-

ed vortices interpretation, i. e. how to provide explanation

of “intrinsic redshift” argument by Bell [6]. In the present

paper, we argue that it sounds reasonable to interpret the

intrinsic redshift data from the viewpoint of rotating Hall

effect, i. e. rotational motion of clusters of galaxies exhibit

quantum Hall effect which can be observed in the form

of “intrinsic redshift”. While this hypothesis is very new,

it could be expected that we can draw some prediction,

including possibility to observe small “blue-shift” effect ge-

nerated by antivortex part of the Hall effect [5a].

Another possibility is to explain redshift quantization

from the viewpoint of Weyl-Moyal quantization theory [25].

It is shown that Schrödinger equation can be derived from

Weyl approach [8], therefore quantization in this sense comes

from “graph”-type quantization. In large scale phenomena

like galaxy redshift quantization one could then ask whether

there is possibility of “super-graph” quantization.

Further observation is of course recommended in order

to verify or refute the propositions outlined herein.

2 Interpreting quantized redshift from Hall effect.

Cosmic String

In a recent paper, Moffat [1, p. 9] has used Gross-Pitaevskii

in conjunction with his phion condensate fluid model to

describe CMB spectrum data. Therefore we could expect

that this equation will also yield interesting results in gala-

xies scale. See also [1b, 1c, 13] for other implications of

low-energy phion fluid model.

Interestingly, it could be shown, that we could derive

(approximately) Schrödinger wave equation from Gross-

Pitaevskii equation. We consider the well-known Gross-

Pitaevskii equation in the context of superfluidity or super-

conductivity [14]:

ih̄
∂Ψ

∂t
= − h̄

2

2m
ΔΨ+

(

V (x)− γ |Ψ|p−1
)

Ψ, (1)

where p < 2N/(N − 2) if N � 3. In physical problems, the

equation for p = 3 is known as Gross-Pitaevskii equation.

This equation (1) has standing wave solution quite similar to

solution of Schrödinger equation, in the form:

Ψ(x, t) = e−iEt/h̄ · u(x) (2)

Substituting equation (2) into equation (1) yields:

− h̄
2

2m
Δu+

(

V (x)− E
)

u = |u|p−1 u , (3)

which is nothing but a time-independent linear form of

Schrödinger equation, except for term |u|p−1 [14]. If the

right-hand side of this equation is negligible, equation (3)

reduces to standard Schrödinger equation.

Now it is worth noting here that from Nottale et al. we

can derive a gravitational equivalent of Bohr radius from ge-

neralized Schrödinger equation [4]. Therefore we could also

expect a slight deviation of this gravitational Bohr radius in

we consider Gross-Pitaevskii equation instead of generalized

Schrödinger equation.

According to Moffat, the phion condensate model im-

plies a modification of Newtonian acceleration law to be-

come [1, p. 11]:

a(r) = −G∞M
r2

+K
exp (−μφr)

r2
(1 + μφr) , (4)
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where

G∞ = G

[

1 +

√

M0

M

]

. (5)

Therefore we can conclude that the use of phion con-

densate model implies a modification of Newton gravitation-

al constant, G, to become (5). Plugging in this new equation

(5) into a Nottale’s gravitational Bohr radius equation [4]

yields:

rn ≈ n2
GM

v20

[

1 +

√

M0

M

]

≈ χ · n2 GM
v20

, (6)

where n is integer (1,2,3 . . . ) and:

χ =

[

1 +

√

M0

M

]

. (7)

Therefore we conclude that — provided the higher order

Yukawa term of equation (4) could be neglected — one has

a modified gravitational Bohr-radius in the form of (6). It

can be shown (elsewhere) that using similar argument one

could expect to explain a puzzling phenomenon of receding

Moon at a constant rate of ±1.5′′ per year. And from this

observed fact one could get an estimate of this χ factor. It

is more interesting to note here, that a number of coral reef

data also seems to support the same idea of modification

factor in equation (5), but discussion of this subject deserves

another paper.

A somewhat similar idea has been put forward by Mas-

reliez [18] using the metric:

ds2 = eαβ
[

dx2 + dy2 + dz2 − (icdt)2
]

. (8)

Another alternative of this metric has been proposed by

Socoloff and Starobinski [19] using multi-connected hyper-

surface metric:

ds2 = dx2 + e−2x (dy2 + dz2) (9)

with boundaries: e−x = Λ.

Therefore one can conclude that the use of phion con-

densate model has led us to a form of expanding metric,

which has been discussed by a few authors.

Furthermore, it is well-known that Gross-Pitaevskii eq-

uation could exhibit topologically non-trivial vortex solu-

tions [4, 5], which also corresponds to quantized vortices:
∮

p · dr = Nv 2πh̄ . (10)

Therefore an implication of Gross-Pitaevskii equation

[1] is that topologically quantized vortex could exhibit in

astrophysical scale. In this context we submit the viewpoint

that this proposition indeed has been observed in the form

of Tifft’s redshift quantization [2, 6]:

δr =
c

H
δz . (11)

In other words, we submit the viewpoint that Tifft’s ob-

servation of quantized redshift implies a quantized distance

between galaxies [2, 5], which could be expressed in the

form:
rn = r0 + n(δr) , (12)

where n is integer (1,2,3, . . . ) similar to quantum number.

Because it can be shown using standard definition of Hubble

law that redshift quantization implies quantized distance

between galaxies in the same cluster, then one could say

that this equation of quantized distance (11) is a result of

topological quantized vortices (9) in astrophysical scale [5];

and it agrees with Gross-Pitaevskii (quantum phion condens-

ate) description of CMB spectrum [1]. It is perhaps more

interesting if we note here, that from (11) then we also get

an equivalent expression of (12):

c

H
zn =

c

H
z0 + n

( c

H
δz
)

(13)

or

zn = z0 + n(δz) (14)

or

zn = z0

[

1 + n

(

δz

z0

)]

. (15)

Nonetheless, there is a problem here, i. e. how to explain

intrinsic redshift related to Tifft quantization as observed in

Fundamental Plane clusters and also from various quasars

data [6, 6a]:

ziQ = zf
[

N − 0.1MN

]

(16)

where zf=0.62 is assumed to be a fundamental redshift con-

stant, and N (=1, 2, 3 . . . ), and M is function of N [6a].

Meanwhile, it is interesting to note here similarity between

equation (15) and (16). Here, the number M seems to play

a rôle similar to second quantum number in quantum

physics [7].

Now we will put forward an argument that intrinsic red-

shift quantization (16) could come from rotating quantum

Hall effect [5a].

It is argued by Fischer [5a] that “Hall quantization is

of necessity derivable from a topological quantum number

related to this (quantum) coherence”. He used total particle

momentum [5a]:

p = mv +mΩ× r + qA . (17)

The uniqueness condition of the collective phase repre-

sented in (9) then leads, if we take a path in the bulk of el-

ectron liquid, for which the integral of mv can be neglected,

to the quantization of the sum of a Sagnac flux, and the

magnetic flux [5a]:

Φ = q

∮

A · dr +m
∮

Ω× r · dr =

=

∫∫

B · dS = Nv 2πh̄ .
(18)
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This flux quantization rule corresponds to the fact that a

vortex is fundamentally characterised by the winding number

N alone [5a]. In this regard the vortex could take the form of

cosmic string [22]. Now it is clear from (15) that quantized

vortices could be formed by different source of flux.

After a few more reasonable assumptions one could

obtain a generalised Faraday law, which in rotating frame

will give in a non-dissipative Hall state the quantization of

Hall conductivity [5a].

Therefore one could observe that it is quite natural to

interpret the quantized distance between galaxies (11) as an

implication of quantum Hall effect in rotating frame (15).

While this proposition requires further observation, one

could think of it in particular using known analogy between

condensed matter physics and cosmology phenomena [10,

22]. If this proposition corresponds to the facts, then one

could think that redshift quantization is an imprint of gene-

ralized quantization in various scales from microphysics to

macrophysics, just as Tifft once put it [2]:

“The redshift has imprinted on it a pattern that appears

to have its origin in microscopic quantum physics, yet

it carries this imprint across cosmological boundaries”.

In the present paper, Tifft’s remark represents natural im-

plication of topological quantization, which could be formed

at any scale [5]. We will explore further this proposition in

the subsequent section, using Weyl quantization.

Furthermore, while this hypothesis is new, it could be ex-

pected that we can draw some new prediction, for instance,

like possibility to observe small “blue-shift” effect generated

by the Hall effect from antivortex-galaxies [23]. Of course,

in order to observe such a “blue-shift” one shall first exclude

other anomalous effects of redshift phenomena [6]. (For in-

stance: one could argue that perhaps Pioneer spacecraft ano-

maly’s blue-shifting of Doppler frequency may originate

from the same effect as described herein.)

One could expect that further observation in particular

in the area of low-energy neutrino will shed some light on

this issue [20]. In this regard, one could view that the Sun

is merely a remnant of a neutron star in the past, therefore

it could be expected that it also emits neutrino similar to

neutron star [21].

3 An alternative interpretation of astrophysical quanti-

zation from Weyl quantization. Graph and quanti-

zation

An alternative way to interpret the above proposition con-

cerning topological quantum number and topological quan-

tization [5a], is by using Weyl quantization.

In this regards, Castro [8, p. 5] has shown recently that

one could derive Schrödinger equation from Weyl geometry

using continuity equation:

∂ρ

∂t
+

1√
g
∂i
(√
gρvi

)

(19)

and Weyl metric:

RWeyl = (d− 1)(d− 2)
(

AkA
k
)

− 2(d− 1) ∂kAk . (20)

Therefore one could expect to explain astrophysical

quantization using Weyl method in lieu of using generalised

Schrödinger equation as Nottale did [4]. To our knowledge

this possibility has never been explored before elsewhere.

For instance, it can be shown that one can obtain Bohr-

Sommerfeld type quantization rule from Weyl approach [24,

p. 12], which for kinetic plus potential energy will take the

form:

2πNh̄ =

∞
∑

j=0

h̄jSj(E) , (21)

which can be solved by expressing E=
∑

h̄kEk as power

series in h̄ [24]. Now equation (10) could be rewritten as

follows:

∮

p · dr = Nv 2πh̄ =
∞
∑

j=0

h̄jSj (E) . (22)

Or if we consider quantum Hall effect, then equation (18)

can be used instead of equation (10), which yields:

Φ = q

∮

A · dr +m
∮

Ω× r · dr =

=

∫∫

B · dS =
∞
∑

j=0

h̄jSj (E) .
(23)

The above method is known as “graph kinematic” [25]

or Weyl-Moyal’s quantization [26]. We could also expect to

find Hall effect quantization from this deformation quantiza-

tion method.

Consider a harmonic oscillator, which equation can be

expressed in the form of deformation quantization instead of

Schrödinger equation [26]:

(

(

x+
ih̄

2
∂p

)2

+
(

p− ih̄
2
∂x

)2

− 2E
)

f (x, p) = 0 . (24)

This equation could be separated to become two simple

PDEs. For imaginary part one gets [26]:

(x∂p − p∂x) f = 0 . (25)

Now, considering Hall effect, one can introduce our defi-

nition of total particle momentum (17), therefore equation

(25) may be written:

(

x∂p − (mv +mΩ× r + qA) ∂x
)

f = 0 . (26)

Our proposition here is that in the context of deformation

quantization it is possible to find quantization solution of

harmonic oscillator without Schrödinger equation. And
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because it corresponds to graph kinematic [25], generalized

Bohr-Sommerfeld quantization rule for quantized vortices

(22) in astrophysical scale could be viewed as signature of

“super-graph”quantization.

This proposition, however, deserves further theoretical

considerations. Further experiments are also recommended

in order to verify and explore further this proposition.

Concluding remarks

In a recent paper, Moffat [1] has used Gross-Pitaevskii in his

“phion condensate fluid” to describe CMB spectrum data.

We extend this proposition to explain Tifft redshift quanti-

zation from the viewpoint of topological quantized vortices.

In effect we consider that the intrinsic redshift quantization

could be interpreted as result of Hall effect in rotating frame.

Another alternative to explain redshift quantization is

to consider quantized vortices from the viewpoint of Weyl

quantization (which could yield Bohr-Sommerfeld quanti-

zation).

It is recommended to conduct further observation in

order to verify and also to explore various implications of

our propositions as described herein.
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In recent years, there are attempts to describe quantization of planetary distance

based on time-independent gravitational Schrödinger equation, including Rubcic &

Rubcic’s method and also Nottale’s Scale Relativity method. Nonetheless, there is

no solution yet for time-dependent gravitational Schrödinger equation (TDGSE). In

the present paper, a numerical solution of time-dependent gravitational Schrödinger

equation is presented, apparently for the first time. These numerical solutions

lead to gravitational Bohr-radius, as expected. In the subsequent section, we also

discuss plausible extension of this gravitational Schrödinger equation to include

the effect of phion condensate via Gross-Pitaevskii equation, as described recently

by Moffat. Alternatively one can consider this condensate from the viewpoint

of Bogoliubov-deGennes theory, which can be approximated with coupled time-

independent gravitational Schrödinger equation. Further observation is of course

recommended in order to refute or verify this proposition.

1 Introduction

In the past few years, there have been some hypotheses sug-

gesting that quantization of planetary distance can be derived

from a gravitational Schrödinger equation, such as Rubcic

& Rubcic and also Nottale’s scale relativity method [1, 3].

Interestingly, the gravitational Bohr radius derived from this

gravitational Schrödinger equation yields prediction of new

type of astronomical observation in recent years, i.e. extra-

solar planets, with unprecedented precision [2].

Furthermore, as we discuss in preceding paper [4], using

similar assumption based on gravitational Bohr radius, one

could predict new planetoids in the outer orbits of Pluto

which are apparently in good agreement with recent observa-

tional finding.. Therefore one could induce from this observ-

ation that the gravitational Schrödinger equation (and gravi-

tational Bohr radius) deserves further consideration.

In the meantime, it is known that all present theories

discussing gravitational Schrödinger equation only take its

time-independent limit. Therefore it seems worth to find out

the solution and implication of time-dependent gravitational

Schrödinger equation (TDGSE). This is what we will discuss

in the present paper.

First we will find out numerical solution of time-inde-

pendent gravitational Schrödinger equation which shall yield

gravitational Bohr radius as expected [1, 2, 3]. Then we ex-

tend our discussion to the problem of time-dependent grav-

itational Schrödinger equation.

In the subsequent section, we also discuss plausible ex-

tension of this gravitational Schrödinger equation to include the

effect of phion condensate via Gross-Pitaevskii equation,

as described recently by Moffat [5]. Alternatively one can

consider this phion condensate model from the viewpoint of

Bogoliubov-deGennes theory, which can be approximated

with coupled time-independent gravitational Schrödinger

equation. To our knowledge this proposition of coupled time-

independent gravitational Schrödinger equation has never

been considered before elsewhere.

Further observation is of course recommended in order

to verify or refute the propositions outlined herein.

All numerical computation was performed using Maple.

Please note that in all conditions considered here, we use

only gravitational Schrödinger equation as described in Rub-

cic & Rubcic [3], therefore we neglect the scale relativistic

effect for clarity.

2 Numerical solution of time-independent gravitational

Schrödinger equation and time-dependent gravita-

tional Schrödinger equation

First we write down the time-independent gravitational

Schrödinger radial wave equation in accordance with Rubcic

& Rubcic [3]:

d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2GMm2

H2
R− ℓ (ℓ+ 1)

r2
R = 0 .

(1)

When H , V , E′ represents gravitational Planck constant,

Newtonian potential, and the energy per unit mass of the
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orbiting body, respectively, and [3]:

H = h

(

2π f
Mmn

m2
0

)

, (2)

V (r) = −GMm
r

, (3)

E′ =
E

m
. (4)

By assuming that R takes the form:

R = e−αr (5)

and substituting it into equation (1), and using simplified

terms only of equation (1), one gets:

Ψ = α2 e−αr − 2αe
−αr

r
+
8πGMm2 e−αr

rH2
. (6)

After factoring this equation (7) and solving it by equat-

ing the factor with zero, yields:

RR = −2
(

4πGMm2 −H2α
)

α2H2
= 0 , (7)

or

RR = 4πGMm2 −H2α = 0 , (8)

and solving for α, one gets:

a =
4π2GMm2

H2
. (9)

Gravitational Bohr radius is defined as inverse of this

solution of α, then one finds (in accordance with Rubcic &

Rubcic [3]):

r1 =
H2

4π2GMm2
, (10)

and by substituting back equation (2) into (10), one gets [3]:

r1 =

(

2πf

αc

)2

GM . (11)

Equation (11) can be rewritten as follows:

r1 =
GM

ν20
, (11a)

where the “specific velocity” for the system in question can

be defined as:

ν0 =

(

2πf

αc

)−1

= αg c . (11b)

The equations (11a)-(11b) are equivalent with Nottale’s

result [1, 2], especially when we introduce the quantization

number: rn= r1n
2 [3]. For complete Maple session of these

all steps, see Appendix 1. Furthermore, equation (11a) may

be generalised further to include multiple nuclei, by rewrit-

ing it to become: r1=(GM)/v
2 ⇒ r1=(GΣM)/v

2, where

ΣM represents the sum of central masses.

Solution of time-dependent gravitational Schrödinger

equation is more or less similar with the above steps, except

that we shall take into consideration the right hand side

of Schrödinger equation and also assuming time dependent

form of r:
R = e−αr(t) . (12)

Therefore the gravitational Schrödinger equation now

reads:

d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2GMm2

H2
R− ℓ (ℓ+ 1)

r2
R = H

dR

dt
,

(13)

or by using Leibniz chain rule, we can rewrite equation

(15) as:

−H dR

dr (t)

dr (t)

dt
+
d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2GMm2

H2
R− ℓ (ℓ+ 1)

r2
R = 0 .

(14)

The remaining steps are similar with the aforementioned

procedures for time-independent case, except that now one

gets an additional term for RR:

RR′ = H3α

(

d

dt
r(t)

)

r(t)− α2r(t)H2+

+8πGMm2 − 2H2α = 0 .

(15)

At this point one shall assign a value for d
dt r(t) term,

because otherwise the equation cannot be solved. We choose
d
dt r(t)= 1 for simplicity, then equation (15) can be rewritten

as follows:

RR′ : =
rH3α

2
+
rH2α2

2
+4π2GMm2−H2α = 0 . (16)

The roots of this equation (16) can be found as follows:

a1 : = −r2H+2H+
√
r4H4−4H3r+4H2−32rGMm2π2

2rH
,

a2 : = −r2H+2H−
√
r4H4−4H3r+4H2−32rGMm2π2

2rH
.

(17)

Therefore one can conclude that there is time-dependent

modification factor to conventional gravitational Bohr radius

(10). For complete Maple session of these steps, see Ap-

pendix 2.

3 Gross-Pitaevskii effect. Bogoliubov-deGennes appro-

ximation and coupled time-independent gravitational

Schrödinger equation

At this point it seems worthwhile to take into consideration a

proposition by Moffat, regarding modification of Newtonian

acceleration law due to phion condensate medium, to include

Yukawa type potential [5, 6]:

a(r) = −G∞M
r2

+K
exp (−μφ r)

r2
(1 + μφ r) . (18)
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Therefore equation (1) can be rewritten to become:

d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2
(

GM −K exp(−μφ r)(1 + μφ r)
)

m2

H2
R−

− ℓ(ℓ+ 1)
r2

R = 0 ,

(19)

or by assuming μ = 2μ0 = μ0r for the exponential term,

equation (19) can be rewritten as:

d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2
(

GM−Ke−2μ0(1+μ0r)
)

m2

H2
R−ℓ(ℓ+1)

r2
R=0 .

(20)

Then instead of equation (8), one gets:

RR′′=8πGMm2−2H2α−8π2m2Ke−μ0(1+μ)= 0 . (21)

Solving this equation will yield a modified gravitational

Bohr radius which includes Yukawa effect:

r1 =
H2

4π2(GM −Ke−2μ0)m2
(22)

and the modification factor can be expressed as ratio between

equation (22) and (10):

χ =
GM

(GM −Ke−2μ0) . (23)

(For complete Maple session of these steps, see Appendix 3.)

A careful reader may note that this “Yukawa potential

effect” as shown in equation (20) could be used to explain

the small discrepancy (around ±8%) between the “observed

distance” and the computed distance based on gravitational

Bohr radius [4, 6a]. Nonetheless, in our opinion such an

interpretation remains an open question, therefore it may be

worth to explore further.

There is, however, an alternative way to consider phion

condensate medium i.e. by introducing coupled Schrödinger

equation, which is known as Bogoliubov-deGennes theory

[7]. This method can be interpreted also as generalisation of

assumption by Rubcic-Rubcic [3] of subquantum structure

composed of positive-negative Planck mass. Therefore,

taking this proposition seriously, then one comes to hypo-

thesis that there shall be coupled Newtonian potential, in-

stead of only equation (3).

To simplify Bogoliubov-deGennes equation, we neglect

the time-dependent case, therefore the wave equation can be

written in matrix form [7, p.4]:

[A] [Ψ] = 0 , (24)

where [A] is 2×2 matrix and [Ψ] is 2×1 matrix, respectively,
which can be represented as follows (using similar notation

with equation 1):

[

A
]

=

⎛

⎜

⎝

8πGMm2e−αr

rH2
α
2
e
−αr

−
2αe−αr

r

α
2
e
−αr

−
2αe−αr

r
−
8πGMm2 e−αr

rH2

⎞

⎟

⎠
(25)

and
[

Ψ
]

=

(

f (r)

g (r)

)

. (26)

Numerical solution of this matrix differential equation

can be found in the same way with the previous methods,

however we leave this problem as an exercise for the readers.

It is clear here, however, that Bogoliubov-deGennes ap-

proximation of gravitational Schrödinger equation, taking

into consideration phion condensate medium will yield non-

linear effect, because it requires solution of matrix differen-

tial equation∗ (21) rather than standard ODE in conventional

Schrödinger equation (or time-dependent PDE in 3D-

condition). This perhaps may explain complicated structures

beyond Jovian Planets, such as Kuiper Belt, inner and outer

Oort Cloud etc. which of course these structures cannot be

predicted by simple gravitational Schrödinger equation. In

turn, from the solution of (21) one could expect that there are

numerous undiscovered celestial objects in the Oort Cloud.

Further observation is also recommended in order to

verify and explore further this proposition.

4 Concluding remarks

In the present paper, a numerical solution of time-dependent

gravitational Schrödinger equation is presented, apparently

for the first time. This numerical solution leads to gravita-

tional Bohr-radius, as expected.

In the subsequent section, we also discuss plausible ex-

tension of this gravitational Schrödinger equation to include

the effect of phion condensate via Gross-Pitaevskii equation,

as described recently by Moffat. Alternatively one can con-

sider this condensate from the viewpoint of Bogoliubov-

deGennes theory, which can be approximated with coupled

time-independent gravitational Schrödinger equation.

It is recommended to conduct further observation in order

to verify and also to explore various implications of our pro-

positions as described herein.
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Appendix 1 Time-independent gravitational Schrödinger equation

> restart;

> with (linalg);

> R:= exp (−(alpha*r));

R := e
−αr

> D1R:=diff (R,r); D2R:=diff (D1R,r);

D1R := −αe
−αr

D2R := −α
2
e
−αr

> SCHEQ1:=D2R+D1R*2/r+8*piˆ2*m*E*R/hˆ2+8*piˆ2*G*M*mˆ2*R/(r*hˆ2)−

l*(l+1)*R/rˆ2=0;

> XX1:=factor (SCHEQ1);

> #Using simplified terms only from equation (A*8, of Rubcic & Rubcic, 1998)

> ODESCHEQ:=D2R+D1R*2/r+8*piˆ2*G*M*mˆ2*R/(r*hˆ2)=0;

ODESCHEQ := α
2
e
−αr

−
2αe−α r

r
+
8π2GMm2e−α r

rH2
= 0

> XX2:=factor (SCHEQ2);

XX2 :=
e−αr

(

α2rH2 − 2H2α+ 8π2GMm2
)

rH2
= 0

> RR:= solve (XX2, r);

RR := −
2(4π2GMm2 −H2α)

α2H2

> #Then solving for RR=0, yields:

> SCHEQ3:=4*piˆ2*G*M*mˆ2−hˆ2*alpha=0;

SCHEQ3 := 4π2GMm2
−H2α = 0

> a:= solve (SCHEQ3, alpha);

a :=
4π2GMm2

H2

> #Gravitational Bohr radius is defined as inverse of alpha:

> gravBohrradius:=1/a;

rgravBohr :=
H2

4π2GMm2

Appendix 2 Time-dependent gravitational Schrödinger equation

> #Solution of gravitational Schrodinger equation (Rubcic, Fizika 1998);

> restart;

> #with time evolution (Hagendorn’s paper);

> S:=r(t); R:=exp(−(alpha*S)); R1:=exp(−(alpha*r));

S := r(t)

R := e
−αr

> D4R:=diff(S,t); D1R:=−alpha*exp(−(alpha*S)); D2R:=−alphaˆ2*

exp(−(alpha*S)); D5R:=D1R*D4R;

D4R :=
d

dt
r(t)

D1R := −αe
−αr(t)

D2R := −α
2
e
−αr(t)

D1R := −αe
−αr(t) d

dt
r(t)

> #Using simplified terms only from equation (A*8)

> SCHEQ3:=−h*D5R+D2R+D1R*2/S+8*piˆ2*G*M*mˆ2*R/(S*hˆ2);

> XX2:=factor(SCHEQ3);

XX2 :=
e−αr(t)

(

H3α
dr(t)
dt

r(t)−α2r(t)H2−2H2α+8π2GMm2
)

r(t)H2
= 0

> #From standard solution of gravitational Schrodinger equation, we know (Rubcic,

Fizika 1998):

> SCHEQ4:=4*piˆ2*G*M*mˆ2−hˆ2*alpha;

SCHEQ4 := 4π
2
GMm

2
−H

2
α

> #Therefore time-dependent solution of Schrodinger equation may introduce new

term to this gravitational Bohr radius.

> SCHEQ5:=(XX2*(S*hˆ2)/(exp(−(alpha*S))))−2*SCHEQ4;

ODESCHEQ5 := H
3
α
dr(t)

dt
r(t)− α

2
r(t)H

2

> #Then we shall assume for simplicity by assigning value to d[r(t)]/dt:

> D4R:=1;

> Therefore SCHEQ5 can be rewritten as:

> SCHEQ5:= Hˆ3*alpha*r/2+alphaˆ2*r*Hˆ2/2−4*piˆ2*G*M*mˆ2−Hˆ2*alpha=0;

SCHEQ5 :=
rH3α

2
+
rH2α2

2
+ 4π

2
GMm

2
−H

2
α = 0

> Then we can solve again SCHEQ5 similar to solution of SCHEQ4:

> a1:=solve(SCHEQ5,alpha);

a1 :=
−r2H + 2H +

√

r4H4 − 4H3r + 4H2 − 32rGMm2π2

2rH

a2 :=
−r2H + 2H −

√

r4H4 − 4H3r + 4H2 − 32rGMm2π2

2rH

> #Therefore one could expect that there is time-dependent change of gravitational

Bohr radius.
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Appendix 3 Time-independent gravitational Schrödinger equation

with Yukawa potential [5]

> #Extension of gravitational Schrodinger equation (Rubcic, Fizika 1998);

> restart;

> #departure from Newton potential;

> R:=exp (−(alpha*r));

R := e
−αr

> D1R:=diff (R,r); D2R:=diff (D1R,r);

D1R := −αe
−αr

D2R := −α
2
e
−αr

> SCHEQ2:=D2R+D1R*2/r+8*piˆ2*(G*M−K*exp (−2*mu)*(1+mu*r))*mˆ2*R/

(r*hˆ2)=0;

ODESCHEQ := α2 e−αr −
2αe−α r

r
+

+
8π2(GM −Ke−2µ(1 + μr))m2e−α r

rH2
= 0

> XX2:=factor(SCHEQ2);

> RR1:=solve(XX2,r);

RR1 := −
2(−H2α+ 4π2GMm2 − 4π2m2Ke−2µ)

−α2H2 + 8π2m2Ke−2µ

> #from standard gravitational Schrodinger equation we know:

> SCHEQ3:=4*piˆ2*G*M*mˆ2−hˆ2*alpha=0;

> a:=solve(SCHEQ3, alpha);

> #Gravitational Bohr radius is defined as inverse of alpha:

> gravBohrradius:=1/a;

rgravBohr :=
H2

4π2GMm2

> #Therefore we conclude that the new terms of RR shall yield new terms (YY) into

this gravitational Bohr radius:

> PI:= (RR*(alphaˆ2*hˆ2)−(−8*piˆ2*G*M*mˆ2+2*hˆ2*alpha));

> #This new term induced by pion condensation via Gross-Pitaevskii equation may

be observed in the form of long-range potential effect. (see Moffat J., arXiv: astro-

ph/0602607, 2006; also Smarandache F. and Christianto V. Progress in Physics, v. 2,

2006, & v. 1, 2007, www.ptep-online.com)

> #We can also solve directly:

> SCHEQ5:=RR*(alphaˆ2*hˆ2)/2;

SCHEQ5 :=
α2H2(−H2α+ 4π2GMm2 − 4π2m2Ke−2µ)

−α2H2 + 8π2m2Ke−2µ

> a1:=solve(SCHEQ5, alpha);

a1 := 0, 0,
4π2m2(GM −Ke−2µ)

H2

> #Then one finds modified gravitational Bohr radius in the form:

> modifgravBohrradius:=1/(4*piˆ2*(G*M−K*exp (−2*mu))*mˆ2/hˆ2);

rmodified.gravBohr :=
H2

4π2m2(GM −Ke−2µ)

> #This modification can be expressed in chi-factor:

> chi:=modifgravBohrradius/gravBohrradius;

χ :=
GM

GM −Ke−2µ
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It was known for quite long time that a quaternion space can be generalized to a Clifford

space, and vice versa; but how to find its neat link with more convenient metric form

in the General Relativity theory, has not been explored extensively. We begin with a

representation of group with non-zero quaternions to derive closed FLRW metric [1],

and from there obtains Carmeli metric, which can be extended further to become 5D

and 6D metric (which we propose to call Kaluza-Klein-Carmeli metric). Thereafter

we discuss some plausible implications of this metric, beyond describing a galaxy’s

spiraling motion and redshift data as these have been done by Carmeli and Hartnett

[4, 5, 6]. In subsequent section we explain Podkletnov’s rotating disc experiment. We

also note possible implications to quantum gravity. Further observations are of course

recommended in order to refute or verify this proposition.

1 Introduction

It was known for quite long time that a quaternion space can

be generalized to a Clifford space, and vice versa; but how to

find its neat link to more convenient metric form in the Gen-

eral Relativity theory, has not been explored extensively [2].

First it is worth to remark here that it is possible to find

a flat space representation of quaternion group, using its al-

gebraic isomorphism with the ring division algebra [3, p.3]:

���� � � ��� � ������ � (1)

Working for R���, we get the following metric [3]:

��� � �����
�� (2)

imposing the condition:

���
�
� ��� (3)

This rather elementary definition is noted here because it

was based on the choice to use the square of the radius to

represent the distance (��), meanwhile as Riemann argued

long-time ago it can also been represented otherwise as the

square of the square of the radius [3a].

Starting with the complex � � �, then we get [3]:

� � �� � ���� � ���� � ���� � (4)

With this special choice of �� we can introduce the spe-

cial metric [3]:

�	� � ���
���������� (5)

This is apparently most direct link to describe a flat metric

from the ring division algebra. In the meantime, it seems very

interesting to note that Trifonov has shown that the geometry

of the group of nonzero quaternions belongs to closed FLRW

metric. [1] As we will show in the subsequent Section, this

approach is more rigorous than (5) in order to describe neat

link between quaternion space and FLRW metric.

We begin with a representation of group with non-zero

quaternions to derive closed FLRW metric [1], and from there

we argue that one can obtain Carmeli 5D metric [4] from this

group with non-zero quaternions. The resulting metric can

be extended further to become 5D and 6D metric (which we

propose to call Kaluza-Klein-Carmeli metric).

Thereafter we discuss some plausible implications of this

metric, beyond describing a galaxy’s spiraling motion and

redshift data as these have been done by Carmeli and Hartnett

[4–7]. Possible implications to the Earth geochronometrics

and possible link to coral growth data are discussed. In the

subsequent Section we explain Podkletnov’s rotating disc ex-

periment. We also note a possible near link between Kaluza-

Klein-Carmeli and Yefremov’s Q-Relativity, and also possi-

ble implications to quantum gravity.

The reasons to consider this Carmeli metric instead of the

conventional FLRW are as follows:

• One of the most remarkable discovery from WMAP

is that it reveals that our Universe seems to obey Eu-

clidean metric (see Carroll’s article in Nature, 2003);

• In this regards, to explain this observed fact, most ar-

guments (based on General Relativity) seem to agree

that in the edge of Universe, the metric will follow Eu-

clidean, because the matter density tends to approach-

ing zero. But such a proposition is of course in contra-

diction with the basic “assumption” in GTR itself, i.e.

that the Universe is homogenous isotropic everywhere,

meaning that the matter density should be the same too

in the edge of the universe. In other words, we need

a new metric to describe the inhomogeneous isotropic

spacetime.
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��� �

�
�����

� ����
��
�
�� � � �

� �� ��� � �

� � �� ��� ������� �

� � � �� ��� ������� �������

�
����� � (6)

• Furthermore, from astrophysics one knows that spiral

galaxies do not follow Newtonian potential exactly.

Some people have invoked MOND or modified (Post-)

Newton potential to describe that deviation from New-

tonian potential [8, 9]. Carmeli metric is another pos-

sible choice [4], and it agrees with spiral galaxies, and

also with the redshift data [5–7].

• Meanwhile it is known, that General Relativity is strict-

ly related to Newtonian potential (Poisson’s equation).

All of this seems to indicate that General Relativity is

only applicable for some limited conditions, but it may

not be able to represent the rotational aspects of gravi-

tational phenomena. Of course, there were already ex-

tensive research in this area of the generalized gravita-

tion theory, for instance by introducing a torsion term,

which vanishes in GTR [10].

Therefore, in order to explain spiral galaxies’ rotation

curve and corresponding “dark matter”, one can come up with

a different route instead of invoking a kind of strange matter.

In this regards, one can consider dark matter as a property of

the metric of the spacetime, just like the precession of the first

planet is a property of the spacetime in General Relativity.

Of course, there are other methods to describe the inho-

mogeneous spacetime, see [15, 16], for instance in [16] a

new differential operator was introduced: �
��

� �

��

�

�
�
��

, which

seems at first glance as quite similar to Carmeli method. But

to our present knowledge Carmeli metric is the most con-

sistent metric corresponding to generalized FLRW (derived

from a quaternion group).

Further observations are of course recommended in order

to refute or verify this proposition.

2 FLRW metric associated to the group of non-zero

quaternions

The quaternion algebra is one of the most important and well-

studied objects in mathematics and physics; and it has natural

Hermitian form which induces Euclidean metric [1]. Mean-

while, Hermitian symmetry has been considered as a method

to generalize the gravitation theory (GTR), see Einstein paper

in Ann. Math. (1945).

In this regards, Trifonov has obtained that a natural exten-

sion of the structure tensors using nonzero quaternion bases

will yield formula (6). (See [1, p.4].)

Interestingly, by assuming that [1]:

� ���

�
��

�

��
� 	 � (7)

then equation (6) reduces to closed FLRW metric [1, p.5].

Therefore one can say that closed FLRW metric is neatly as-

sociated to the group of nonzero quaternions.

Now consider equation (7), which can be rewritten as:

� ���� ���� � ��� (8)

Since we choose (8), then the radial distance can be ex-

pressed as:

	�� � 	
� 
 	�� 
 	��� (9)

Therefore we can rewrite equation (8) in terms of (9):

� ����	 ���� � �	��� � 	
� 
 	�� 
 	��� (10)

and by defining

� ��� � � � �
	

�
� ���

�
	

���
� �

�
� (11)

Then we can rewrite equation (10) in the form:

� ����	 ���� � � ��	��� � 	
� 
 	�� 
 	��� (12)

or
�� ��	��� 
 	
� 
 	�� 
 	�� � � � (13)

which is nothing but an original Carmeli metric [4, p.3, equa-

tion (4)] and [6, p.1], where � represents Hubble constant

(by setting ����	, while in [12] it is supposed that ��	��,

� � 	). Further extension is obviously possible, where equa-

tion (13) can be generalized to include the (��	�) component

in the conventional Minkowski metric, to become (Kaluza-

Klein)-Carmeli 5D metric [5, p.1]:

�� ��	��� 
 	
� 
 	�� 
 	�� 
 ���	��� � � � (14)

Or if we introduce equation (13) in the general relativistic

setting [4, 6], then one obtains:

	�� � � ��	��� � �	 � 	�� ���
� �	�� 
 ����� � 	���� (15)

The solution for (15) is given by [6, p.3]:

	�

	�
� � � ��

�
�

�

�

�
� (16)

which can be written as:

	 ��

	�
�

	�

	�
� ���

� ��

�
�

�

�
� (17)

This result implies that there shall be a metric deforma-

tion, which may be associated with astrophysics observation,

such as the possible AU differences [11, 12].
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Furthermore, this proposition seems to correspond neatly

to the Expanding Earth hypothesis, because [13]:

“In order for expansion to occur, the moment of inertia

constraints must be overcome. An expanding Earth would

necessarily rotate more slowly than a smaller diameter planet

so that angular momentum would be conserved.” (Q.1)

We will discuss these effects in the subsequent Sections.

We note however, that in the original Carmeli metric,

equation (14) can be generalized to include the potentials to

be determined, to become [5, p.1]:

��� �

�
� �

�

� �

�
� � ����� � ��� �

�
� �

�

��

�
������ (18)

where

��� � �	� � �
� � ���� (19)

The line element represents a spherically symmetric inho-

mogeneous isotropic universe, and the expansion is a result of

the spacevelocity component. In this regards, metric (18) de-

scribes funfbein (“five-legs”) similar to the standard Kaluza-

Klein metric, for this reason we propose the name Kaluza-

Klein-Carmeli for all possible metrics which can be derived

or extended from equations (8) and (10).

To observe the expansion at a definite time, the (���)

term in equation (14) has been ignored; therefore the met-

ric becomes “phase-space” Minkowskian. [5, p.1]. (A simi-

lar phase-space Minkowskian has been considered in various

places, see for instance [16] and [19].) Therefore the metric

in (18) reduces to (by taking into consideration the isotropic

condition):

��� �

�
� �

�

� �

�
� � ����� � � � (20)

Alternatively, one can suppose that in reality this assump-

tion may be reasonable by setting � � �, such as by consid-

ering the metric for the phonon speed �� instead of the light

speed �; see Volovik, etc. Therefore (18) can be rewritten as:

��������� �

�
� �

�

� �

�
� � ����� � ����

�

�
� �

�

���

�
��� ��

��

(21)

To summarize, in this Section we find out that not only

closed FLRW metric is associated to the group of nonzero

quaternions [1], but also the same group yields Carmeli met-

ric. In the following Section we discuss some plausible im-

plications of this proposition.

3 Observable A: the Earth geochronometry

One straightforward implication derived from equation (8) is

that the ratio between the velocity and the radius is directly

proportional, regardless of the scale of the system in question:

�
	�

�

��
� � ����� � (22)

or �
��

	��

�
�

�
��

	��

�
�
�
� ��� � (23)

Therefore, one can say that there is a direct proportion-

ality between the spacevelocity expansion of, let say, Virgo

galaxy and the Earth geochronometry. Table 1 displays the

calculation of the Earth’s radial expansion using the formula

represented above [17]:

Therefore, the Earth’s radius increases at the order of

� 0.166 cm/year, which may correspond to the decreasing

angular velocity (Q.1). This number, albeit very minute, may

also correspond to the Continental Drift hypothesis of A. We-

gener [13, 17]. Nonetheless the reader may note that our cal-

culation was based on Kaluza-Klein-Carmeli’s phase-space

spacevelocity metric.

Interestingly, there is a quite extensive literature suggest-

ing that our Earth experiences a continuous deceleration rate.

For instance, J. Wells [14] described a increasing day-length

of the Earth [14]:

“It thus appears that the length of the day has been in-

creasing throughout geological time and that the number of

days in the year has been decreasing. At the beginning of the

Cambrian the length of the day would have been 21�.” (Q.2)

Similar remarks have been made, for instance by

G. Smoot [13]:

“In order for this to happen, the lunar tides would have to

slow down, which would affect the length of the lunar month.

. . . an Earth year of 447 days at 1.9 Ga decreasing to an Earth

year of 383 days at 290 Ma to 365 days at this time. However,

the Devonian coral rings show that the day is increasing by

24 seconds every million years, which would allow for an

expansion rate of about 0.5% for the past 4.5 Ga, all other

factors being equal.” (Q.3)

Therefore, one may compare this result (Table 1) with the

increasing day-length reported by J. Wells [13].

4 Observable B: the Receding Moon from the Earth

It is known that the Moon is receding from the Earth at a

constant rate of � 4cm/year [17, 18].

Using known values: � � 6.6724�10�� cm�/(g � sec�)

and � � 5.5�10� g/m�, and the Moon’s velocity �7.9 km/sec,

then one can calculate using known formulas:


�� �


�
� � �������� (24)

� ��� � 
�� � � � (25)

� ��� �
� � �� ����

��
� (26)

where �, �, � each represents the distance from the Moon to

the Earth, the Moon’s orbital velocity, and the Earth’s mass,
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Nebula Radial velocity

(mile/s)

Distance

(10� kly)

Ratio

(10�� cm/yr)

the Earth dist.

(R, km)

Predicted the Earth exp.

(�R, cm/year)

Virgo 750 39 2.617 6371 0.16678

Ursa Mayor 9300 485 2.610 6371 0.166299

Hydra 38000 2000 2.586 6371 0.164779

Bootes 2 86000 4500 2.601 6371 0.165742

Average 2.604 0.1659

Table 1: Calculation of the radial expansion from the Galaxy velocity/distance ratio. Source: [17].

respectively. Using this formula we obtain a prediction of the

Receding Moon at the rate of 0.00497 m/year. This value is

around 10% compared to the observed value 4 cm/year.

Therefore one can say that this calculation shall take into

consideration other aspects. While perhaps we can use other

reasoning to explain this discrepancy between calculation and

prediction, for instance using the “conformal brane” method

by Pervushin [20], to our best knowledge this effect has neat

link with the known paradox in astrophysics, i.e. the observed

matter only contributes around �1–10% of all matter that is

supposed to be “there” in the Universe.

An alternative way to explain this discrepancy is that there

is another type of force different from the known Newtonian

potential, i.e. by taking into consideration the expansion of

the “surrounding medium” too. Such a hypothesis was pro-

posed recently in [21]. But we will use here a simple argu-

ment long-time ago discussed in [22], i.e. if there is a force

other than the gravitational force acting on a body with mass,

then it can be determined by this equation [22, p.1054]:

������

��
� � � ���� (27)

where �� is the velocity of the particle relative to the absolute

space [22a]. The gravitational force can be defined as before:

��� � ���� � (28)

where the function � is solution of Poisson’s equation:

�
� � � ��	
 � (29)

and 	 represents Newtonian gravitational constant. For sys-

tem which does not obey Poisson’s equation, see [15].

It can be shown, that the apparent gravitational force that

is produced by an aether flow is [22]:

��� � �
��

��
���

�
��

�

�
���� ��� �� �

��

��
� (30)

which is an extended form of Newton law:

�� �
�

��
������ � �

�
���

��

�
� �

�
���

��

�
 (31)

If the surrounding medium be equivalent to Newton’s the-

ory, this expression shall reduce to that given in (27). Suppos-

ing the aether be irrotational relative to the particular system

of the coordinates, and �� const, then (29) reduces [22]:

��� � ��

�
�
��

��
��

�
��

�

��
� (32)

which will be equivalent to equation (27) only if:

�� �
��

��
��

�
��

�

�
 (33)

Further analysis of this effect to describe the Receding

Moon from the Earth will be discussed elsewhere. In this Sec-

tion, we discuss how the calculated expanding radius can de-

scribe (at least partially) the Receding Moon from the Earth.

Another possible effect, in particular the deformation of the

surrounding medium, shall also be considered.

5 Observable C: Podkletnov’s rotation disc experiment

It has been discussed how gravitational force shall take into

consideration the full description of Newton’s law. In this

Section, we put forth the known equivalence between New-

ton’s law (31) and Lorentz’ force [23], which can be written

(supposing � to be constant) as follows:

�� �
�

��
�� ����� � ��

�
���

��

�
� �

�
�� �

�

�
�� � ��

�
� (34)

where the relativistic factor is defined as:

� � �

�
�

�� ��
 (35)

while we can expand this equation in the cylindrical coordi-

nates [23], we retain the simplest form in this analysis. In

accordance with Spohn, we define [24]:

� � ���  (36)

� � �� �  (37)

For Podkletnov’s experiment [26–28], it is known that

there in a superconductor � � � [25], and by using the mass

� in lieu of the charge ratio �

�
in the right hand term of (34)

called the “gravitational Lorentz force”, we get:

�

�
���

��

�
�

�

�

�
�� � ��

�
�

�

�

�
��� ��

�
 (38)
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Let us suppose we conduct an experiment with the weight

�� 700 g, the radius �� 0.2 m, and it rotates at � � 2 cps

(cycle per second), then we get the velocity at the edge of

the disc as:
� � �� � � � � 2.51 m/sec� (39)

and with known values for �� 6.67�10���, �� 3�10�m/sec,

	������ 5.98�10�� kg, ������� 3�10� m, then we get:


�� �
�

���
	� � 3.71�10�� newton/kgm sec� (40)

Because ��
meter, then from (39), the force on the

disc is given by:


��	
 � ������� � ����	
 � ������ �

�
�

�

�

�
� (41)

High-precision muon experiment suggests that its speed

can reach around � 0.99 �. Let us suppose in our disc, the

particles inside have the speed 0.982 �, then ���� 0.1889.

Now inserting this value into (40), yields:


��	
 � �3.71�10��� � �0.7� � �3�10�� � 0.189 �

� 0.147 newton � 14.7 gr�
(42)

Therefore, from the viewpoint of a static observer, the

disc will get a mass reduction as large as ����
���

� 2.13%, which

seems quite near with Podkletnov’s result, i.e. the disc can

obtain a mass reduction up to 2% of the static mass.

We remark here that we use a simplified analysis using

Lorentz’ force, considering the fact that superconductivity

may be considered as a relativistic form of the ordinary elec-

tromagnetic field [25].

Interestingly, some authors have used different methods to

explain this apparently bizarre result. For instance, using Taj-

mar and deMatos’ [29] equation: �� �
�	
�
� �����

�
� ���. In

other words, it predicts a mass reduction around � ���
���

���,

which is quite similar to Podkletnov’s result.

Another way to describe those rotating disc experiments

is by using simple Newton law [33]. From equation (31) one

has (by setting 
 �� and because � � ��
��

):

��

��
� �

�

�
� � �

�

��
� � (43)

Therefore one can expect a mass reduction given by an

angular velocity (but we’re not very how Podkletnov’s exper-

iment can be explained using this equation).

We end this section by noting that we describe the rotating

disc experiment by using Lorentz’ force in a rotating system.

Further extension of this method in particular in the context

of the (extended) Q-relativity theory, will be discussed in the

subsequent Section.

6 Possible link with Q-Relativity. Extended 9D metric

In the preceding Section, we have discussed how closed

FLRW metric is associated to the group with nonzero quater-

nions, and that Carmeli metric belongs to the group. The only

problem with this description is that it neglects the directions

of the velocity other than against the � line.

Therefore, one can generalize further the metric to be-

come [1, p.5]:

� �
������

� � ��� � ��� � ��� � � � (44)

or by considering each component of the velocity vector [23]:

��� ����
� � ��� ��� �

� � ��� ����
��

� ��� � ��� � ��� � � 	
(45)

From this viewpoint one may consider it as a generaliza-

tion of Minkowski’s metric into biquaternion form, using the

modified Q-relativity space [30, 31, 32], to become:

�
 � ���� � �� ���� ��	 (46)

Please note here that we keep using definition of Yefre-

mov’s quaternion relativity (Q-relativity) physics [30], albeit

we introduce �� instead of �� in the right term. We propose

to call this metric quaternionic Kaluza-Klein-Carmeli metric.

One possible further step for the generalization this equa-

tion, is by keep using the standard Q-relativistic �� term, to

become:
�
 � ���� � ���� � �� ���� �� � (47)

which yields 9-Dimensional extension to the above quater-

nionic Kaluza-Klein-Carmeli metric. In other words, this

generalized 9D KK-Carmeli metric is seemingly capable to

bring the most salient features in both the standard Carmeli

metric and also Q-relativity metric. Its prediction includes

plausible time-evolution of some known celestial motion in

the solar system, including but not limited to the Earth-based

satellites (albeit very minute). It can be compared for instance

using Arbab’s calculation, that the Earth accelerates at rate

3.05 arcsec/cy�, and Mars at 1.6 arcsec/cy� [12]. Detailed

calculation will be discussed elsewhere.

We note here that there is quaternionic multiplication rule

which acquires the compact form [30–32]:

��� � ��� � �� � ���� � ���� � ������ � (48)

where ��� and ���� represent 3-dimensional symbols of Kro-

necker and Levi-Civita, respectively [30]. It may also be

worth noting here that in 3D space Q-connectivity has clear

geometrical and physical treatment as movable Q-basis with

behavior of Cartan 3-frame [30].

In accordance with the standard Q-relativity [30, 31], it

is also possible to write the dynamics equations of Classical

Mechanics for an inertial observer in the constant Q-basis, as

follows:

�
��

���
������ � ���� 	 (49)

Because of the antisymmetry of the connection (the gen-

eralized angular velocity), the dynamics equations can be

written in vector components, by the conventional vector no-
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tation [30, 32]:

�
�
��� ���� �� � ��� �� � ��� ���� ���

�
� �� � (50)

which represents known types of classical acceleration, i.e.

the linear, the Coriolis, the angular, and the centripetal acce-

leation, respectively.

Interestingly, as before we can use the equivalence be-

tween the inertial force and Lorentz’ force (34), therefore

equation (50) becomes:

�

�
���

�	
� ���� �� � ��� �� � ��� ���� ���

�
�

� 
�

�
�� �

�

�
�� � �

�
�

(51)

or �
���

�	

�
�


�

�

�
�� �

�

�
�� � �

�
�

�

���� �� � ��� �� � ��� ���� ���

�
�

(52)

Please note that the variable 
 here denotes electric

charge, not quaternion number.

Therefore, it is likely that one can expect a new effects

other than Podkletnov’s rotating disc experiment as discussed

in the preceding Section.

Further interesting things may be expected, by using (34):

�� � �

�
���

�	

�
� 


�
�� �

�

�
�� � �

�
�

� � ����� � 


�
�� �

�

�
�� � �

�
�	 �

(53)

Therefore, by introducing this Lorentz’ force instead of

the velocity into (44), one gets directly a plausible extension

of Q-relativity:

�� �

�
��� � ��




�

�
��� �

�

�
��� � ��

�
�	�

�

� � (54)

This equation seems to indicate how a magnetic worm-

hole can be induced in 6D Q-relativity setting [16, 19]. The

reason to introduce this proposition is because there is known

link between magnetic field and rotation [34]. Nonetheless

further experiments are recommended in order to refute or

verify this proposition.

7 Possible link with quantum gravity

In this Section, we remark that the above procedure to de-

rive the closed FLRW-Carmeli metric from the group with

nonzero quaternions has an obvious advantage, i.e. one can

find Quantum Mechanics directly from the quaternion frame-

work [35]. In other words, one can expect to put the gravita-

tional metrical (FLRW) setting and the Quantum Mechanics

setting in equal footing. After all, this may be just a goal

sought in “quantum gravity” theories. See [4a] for discussion

on the plausible quantization of a gravitational field, which

may have observable effects for instance in the search of ex-

trasolar planets [35a].

Furthermore, considering the “phonon metric” described

in (20), provided that it corresponds to the observed facts,

in particular with regards to the “surrounding medium” vor-

tices described by (26–29), one can say that the “surrounding

medium” is comprised of the phonon medium. This proposi-

tion may also be related to the superfluid-interior of the Sun,

which may affect the Earth climatic changes [35b]. Therefore

one can hypothesize that the signatures of quantum gravity,

in the sense of the quantization in gravitational large-scale

phenomena, are possible because the presence of the phonon

medium. Nonetheless, further theoretical works and observa-

tions are recommended to explore this new proposition.

8 Concluding remarks

In the present paper we begun with a representation of a group

with non-zero quaternions to derive closed FLRW metric [1],

and we obtained Carmeli 5D metric [4] from this group. The

resulting metric can be extended further to become 5D and

6D metric (called by us Kaluza-Klein-Carmeli metric).

Thereafter we discussed some plausible implications of

this metric. Possible implications to the Earth geochrono-

metrics and possible link to the coral growth data were dis-

cussed. In subsequent Section we explained Podkletnov’s

rotating disc experiment. We also noted possible neat link

between Kaluza-Klein-Carmeli metric and Yefremov’s

Q-Relativity, in particular we proposed a further extension

of Q-relativity to become 9D metric. Possible implications to

quantum gravity, i.e. possible observation of the quantization

effects in gravitation phenomena was also noted.

Nonetheless we do not pretend to have the last word on

some issues, including quantum gravity, the structure of the

aether (phonon) medium, and other calculations which re-

main open. There are also different methods to describe the

Receding Moon or Podkletnov’s experiments. What this pa-

per attempts to do is to derive some known gravitational phe-

nomena, including Hubble’s constant, in a simplest way as

possible, without invoking a strange form of matter. Further-

more, the Earth geochronometry data may enable us to verify

the cosmological theories with unprecedented precision.

Therefore, it is recommended to conduct further observa-

tions in order to verify and also to explore the implications of

our propositions as described herein.
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It has been known for quite long time that the electrodynamics of Maxwell equations

can be extended and generalized further into Proca equations. The implications of in-

troducing Proca equations include an alternative description of superconductivity, via

extending London equations. In the light of another paper suggesting that Maxwell

equations can be written using quaternion numbers, then we discuss a plausible exten-

sion of Proca equation using biquaternion number. Further implications and experi-

ments are recommended.

1 Introduction

It has been known for quite long time that the electrody-

namics of Maxwell equations can be extended and general-

ized further into Proca equations, to become electrodynamics

with finite photon mass [11]. The implications of introduc-

ing Proca equations include description of superconductivity,

by extending London equations [18]. In the light of another

paper suggesting that Maxwell equations can be generalized

using quaternion numbers [3, 7], then we discuss a plausi-

ble extension of Proca equations using biquaternion number.

It seems interesting to remark here that the proposed exten-

sion of Proca equations by including quaternion differential

operator is merely the next logical step considering already

published suggestion concerning the use of quaternion differ-

ential operator in electromagnetic field [7, 8]. This is called

Moisil-Theodoresco operator (see also Appendix A).

2 Maxwell equations and Proca equations

In a series of papers, Lehnert argued that the Maxwell pic-

ture of electrodynamics shall be extended further to include a

more “realistic” model of the non-empty vacuum. In the pres-

ence of electric space charges, he suggests a general form of

the Proca-type equation [11]:�
�

��
�

���
��

�

�
�� � ����� � � �� �� �� �� (1)

Here �� � ��� 	
���, where A and 
 are the magnetic

vector potential and the electrostatic potential in three-space,

and:
�� � ��� 	� �
� � (2)

However, in Lehnert [11], the right-hand terms of equa-

tions (1) and (2) are now given a new interpretation, where
�
 is the nonzero electric charge density in the vacuum, and �
stands for an associated three-space current-density.

The background argument of Proca equations can be sum-

marized as follows [6]. It was based on known definition of

derivatives [6, p. 3]:
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�

��
�

�
�

��
	
�

�
�
�

��
�
�

��

�
�
�
��	��

�

�� �
�

��
�
�
��	�

�

����
���

� (3)
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��� � (4)
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��
�
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�

��

���
� ��

�
��

� � ���� � (5)

where �� is Laplacian and ���
� is d’Alembertian operator.

For a massive vector boson (spin-1) field, the Proca equation

can be written in the above notation [6, p. 7]:

���
���

� ������
�� 
���� � �� � (6)

Interestingly, there is also a neat link between Maxwell

equations and quaternion numbers, in particular via the

Moisil-Theodoresco � operator [7, p. 570]:

� � 	�
�

��

 	�

�

��

 	�

�

��
� (7)

There are also known links between Maxwell equations

and Einstein-Mayer equations [8]. Therefore, it seems plau-

sible to extend further the Maxwell-Proca equations to bi-

quaternion form too; see also [9, 10] for links between Proca

equation and Klein-Gordon equation. For further theoretical

description on the links between biquaternion numbers, Max-

well equations, and unified wave equation, see Appendix A.

3 Proca equations and superconductivity

In this regards, it has been shown by Sternberg [18], that the

classical London equations for superconductors can be writ-

ten in differential form notation and in relativistic form, where
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they yield the Proca equations. In particular, the field itself

acts as its own charge carrier [18].

Similarly in this regards, in a recent paper Tajmar has

shown that superconductor equations can be rewritten in

terms of Proca equations [19]. The basic idea of Tajmar ap-

pears similar to Lehnert’s extended Maxwell theory, i.e. to

include finite photon mass in order to explain superconduc-

tivity phenomena. As Tajmar puts forth [19]:

“In quantum field theory, superconductivity is explain-

ed by a massive photon, which acquired mass due to

gauge symmetry breaking and the Higgs mechanism.

The wavelength of the photon is interpreted as the Lon-

don penetration depth. With a nonzero photon mass,

the usual Maxwell equations transform into the so-

called Proca equations which will form the basis for

our assessment in superconductors and are only valid

for the superconducting electrons.”

Therefore the basic Proca equations for superconductor

will be [19, p. 3]:

�� �� � �
� ��

��
� (8)

and

��� � ���� �
�

��
� ��

��
�

�

	�
�
 � (9)

The Meissner effect is obtained by taking curl of equation

(9). For non-stationary superconductors, the same equation

(9) above will yield second term, called London moment.

Another effects are recognized from the finite Photon

mass, i.e. the photon wavelength is then interpreted as the

London penetration depth and leads to a photon mass about

1/1000 of the electron mass. This furthermore yields the

Meissner-Ochsenfeld effect (shielding of electromagnetic

fields entering the superconductor) [20].

Nonetheless, the use of Proca equations have some known

problems, i.e. it predicts that a charge density rotating at an-

gular velocity should produce huge magnetic fields, which is

not observed [20]. One solution of this problem is to recog-

nize that the value of photon mass containing charge density

is different from the one in free space.

4 Biquaternion extension of Proca equations

Using the method we introduced for Klein-Gordon equation

[2], then it is possible to generalize further Proca equations

(1) using biquaternion differential operator, as follows:

�����
� � ���� � � � � � �� �� 	� 
� (10)

where (see also Appendix A):
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Another way to generalize Proca equations is by using

its standard expression. From d’Alembert wave equation we

get [6]:�
�

��
�

���
���

�

� � ���� � � � �� �� 	� 
� (12)

where the solution is Liennard-Wiechert potential. Then the

Proca equations are [6]:��
�

��
�

���
���

�
�
����

�

���

� � � � � � �� �� 	� 
� (13)

where � is the photon mass, � is the speed of light, and � is

the reduced Planck constant. Equation (13) and (12) imply

that photon mass can be understood as charge density:

�� �
�

��

����

�

��
� (14)

Therefore the “biquaternionic” extended Proca equations

(13) become:�
����

����

�

���

� � � � � � �� �� 	� 
� (15)

The solution of equations (10) and (12) can be found us-

ing the same computational method as described in [2].

Similarly, the generalized structure of the wave equation

in electrodynamics — without neglecting the finite photon

mass (Lehnert-Vigier) — can be written as follows (instead

of eq. 7.24 in [6]):�
����

����

�

���

�

�
� �
�

�
� � � �� �� 	� 
� (16)

It seems worth to remark here that the method as de-

scribed in equation (15)-(16) or ref. [6] is not the only pos-

sible way towards generalizing Maxwell equations. Other

methods are available in literature, for instance by using topo-

logical geometrical approach [14, 15].

Nonetheless further experiments are recommended in or-

der to verify this proposition [23,24]. One particular implica-

tion resulted from the introduction of biquaternion differential

operator into the Proca equations, is that it may be related to

the notion of “active time” introduced by Paine & Pensinger

sometime ago [13]; the only difference here is that now the

time-evolution becomes nonlinear because of the use of 8-

dimensional differential operator.

5 Plausible new gravitomagnetic effects from extended

Proca equations

While from Proca equations one can expect to observe gravi-

tational London moment [4,22] or other peculiar gravitational

shielding effect unable to predict from the framework of Gen-

eral Relativity [5, 16, 22], one can expect to derive new grav-

itomagnetic effects from the proposed extended Proca equa-

tions using the biquaternion number as described above.

V. Christianto, F. Smarandache, F. Lichtenberg. A Note of Extended Proca Equations and Superconductivity 41

96



Volume 1 PROGRESS IN PHYSICS January, 2009

Furthermore, another recent paper [1] has shown that

given the finite photon mass, it would imply that if � is

due to a Higgs effect, then the Universe is effectively simi-

lar to a Superconductor. This may support De Matos’s idea

of dark energy arising from superconductor, in particular via

Einstein-Proca description [1, 5, 16].

It is perhaps worth to mention here that there are some

indirect observations [1] relying on the effect of Proca energy

(assumed) on the galactic plasma, which implies the limit:

�� � ����
��� eV� (17)

Interestingly, in the context of cosmology, it can be shown

that Einstein field equations with cosmological constant are

approximated to the second order in the perturbation to a

flat background metric [5]. Nonetheless, further experiments

are recommended in order to verify or refute this proposi-

tion.

6 Some implications in superconductivity research

We would like to mention the Proca equation in the follow-

ing context. Recently it was hypothesized that the creation of

superconductivity at room temperature may be achieved by

a resonance-like interaction between an everywhere present

background field and a special material having the appropri-

ate crystal structure and chemical composition [12]. Accord-

ing to Global Scaling, a new knowledge and holistic approach

in science, the everywhere present background field is given

by oscillations (standing waves) in the universe or physical

vacuum [12].

The just mentioned hypothesis how superconductivity at

room temperature may come about, namely by a resonance-

like interaction between an everywhere present background

field and a special material having the appropriate crystal

structure and chemical composition, seems to be supported

by a statement from the so-called ECE Theory which is pos-

sibly related to this hypothesis [12]:

“. . . One of the important practical consequences is that

a material can become a superconductor by absorption

of the inhomogeneous and homogeneous currents of

ECE space-time . . . ” [6].

This is a quotation from a paper with the title “ECE Gen-

eralizations of the d’Alembert, Proca and Superconductivity

Wave Equations . . . ” [6]. In that paper the Proca equation is

derived as a special case of the ECE field equations.

These considerations raises the interesting question about

the relationship between (a possibly new type of) supercon-

ductivity, space-time, an everywhere-present background

field, and the description of superconductivity in terms of the

Proca equation, i.e. by a massive photon which acquired mass

by symmetry breaking. Of course, how far these suggestions

are related to the physical reality will be decided by further

experimental and theoretical studies.

7 Concluding remarks

In this paper we argue that it is possible to extend further

Proca equations for electrodynamics of superconductivity to

biquaternion form. It has been known for quite long time that

the electrodynamics of Maxwell equations can be extended

and generalized further into Proca equations, to become elec-

trodynamics with finite photon mass. The implications of in-

troducing Proca equations include description of supercon-

ductivity, by extending London equations. Nonetheless, fur-

ther experiments are recommended in order to verify or refute

this proposition.

Acknowledgement

Special thanks to Prof. M. Pitkanen for comments on the draft

version of this paper.

Submitted on September 01, 2008 / Accepted on October 06, 2008

Appendix A: Biquaternion, Maxwell equations and uni-

fied wave equation [3]

In this section we’re going to discuss Ulrych’s method to describe

unified wave equation [3], which argues that it is possible to define

a unified wave equation in the form [3]:

����� � �
�

� � ����� �����

where unified (wave) differential operator D is defined as:

� �
�
�� � �	��

�
�� � �	

���
� �����

To derive Maxwell equations from this unified wave equation,

he uses free photon expression [3]:

�	��� � �� ���	�

where potential A(x) is given by:

	��� � 	
���� 
 
	

����� �����

and with electromagnetic fields:

�
���� � ��
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����� �
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���� �����

��	����� ����

Inserting these equations (A.4)-(A.6) into (A.3), one finds

Maxwell electromagnetic equation [3]:

�� � ����� �
�
���� 
 �
� �����

� 
������� ��������������

� �������� 
 �
�
���� � ��

�����

For quaternion differential operator, we define quaternion Nabla

operator:
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And for biquaternion differential operator, we may define a dia-

mond operator with its conjugate [3]:

��� �

�
�
�� �

��
� �

��
�
�

��

�
� ����� �����

where Nabla-star-bracket operator is defined as:
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In other words, equation (A.9) can be rewritten as follows:
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From this definition, it shall be clear that there is neat link be-

tween equation (A.11) and the Moisil-Theodoresco � operator, i.e.

[7, p. 570]:

��� �
�
�
�� �

��
� �

��
�
�

��

�
� ���� � ����� 	

	
�
�
�� �

��
��

��
�
�

��

�
�
�
��

�

���
���

�

���
���

�

���

�
�

� �

�
��

�

���

� ��
�

���

� ��
�

���

�
�

����
�

In order to define biquaternionic representation of Maxwell

equations, we could extend Ulrych’s definition of unified differential

operator [3,17,21] to its biquaternion counterpart, by using equation

(A.2) and (A.10), to become:
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or by definition � 	 � ���, equation (A.13) could be written as:
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where each component is now defined in term of biquaternionic rep-

resentation. Therefore the biquaternionic form of the unified wave

equation [3] takes the form:

��� � ���� 	 �
�

� � ���� � �����

which is a wave equation for massive electrodynamics, quite similar

to Proca representation.

Now, biquaternionic representation of free photon fields could

be written as follows:

��� � ���� 	 � � ������
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There have been various explanations of Pioneer blueshift anomaly in the past few

years; nonetheless no explanation has been offered from the viewpoint of Q-relativity

physics. In the present paper it is argued that Pioneer anomalous blueshift may

be caused by Pioneer spacecraft experiencing angular shift induced by similar Q-

relativity effect which may also affect Jupiter satellites. By taking into consideration

“aether drift” effect, the proposed method as described herein could explain Pioneer

blueshift anomaly within ∼0.26% error range, which speaks for itself. Another new

proposition of redshift quantization is also proposed from gravitational Bohr-radius

which is consistent with Bohr-Sommerfeld quantization. Further observation is of

course recommended in order to refute or verify this proposition.

1 Introduction

In the past few years, it is becoming well-known that Pioneer

spacecraft has exhibited an anomalous Doppler frequency

blueshifting phenomenon which cannot be explained from

conventional theories, including General Relativity [1, 4].

Despite the nature of such anomalous blueshift remains un-

known, some people began to argue that a post-einsteinian

gravitation theory may be in sight, which may be considered

as further generalisation of pseudo-Riemannian metric of

general relativity theory.

Nonetheless, at this point one may ask: Why do we re-

quire a generalization of pseudo-Riemannian tensor, instead

of using “patch-work” as usual to modify general relativity

theory? A possible answer is: sometimes too much path-

work doesn’t add up. For instance, let us begin with a

thought-experiment which forms the theoretical motivation

behind General Relativity, an elevator was put in free-falling

motion [8a]. The passenger inside the elevator will not feel

any gravitational pull, which then it is interpreted as formal

analogue that “inertial acceleration equals to gravitational

acceleration” (Equivalence Principle). More recent experi-

ments (after Eötvös) suggest, however, that this principle is

only applicable at certain conditions.

Further problem may arise if we ask: what if the elevator

also experiences lateral rotation around its vertical axis?

Does it mean that the inertial acceleration will be slightly

higher or lower than gravitational pull? Similarly we observe

that a disc rotating at high speed will exert out-of-plane

field resemble an acceleration field. All of this seems to

indicate that the thought-experiment which forms the basis

of General Relativity is only applicable for some limited

conditions, in particular the F =mdv
dt part (because General

Relativity is strictly related to Newtonian potential), but it

may not be able to represent the rotational aspects of gravita-

tional phenomena. Einstein himself apparently recognizes

this limitation [8a, p.61]:

“. . . all bodies of reference K ′ should be given prefer-

ence in this sense, and they should be exactly equiva-

lent to K for the formation of natural laws, provided

that they are in a state of uniform rectilinear and non-

rotary motion with respect to K.” (Italic by Einstein).

Therefore, it shall be clear that the restriction of non-

rotary motion remains a limitation for all considerations by

relativity theory, albeit the uniform rectilinear part has been

relaxed by general relativity theory.

After further thought, it becomes apparent that it is re-

quired to consider a new kind of metric which may be able

to represent the rotational aspects of gravitation phenomena,

and by doing so extends the domain of validity of general

relativity theory.

In this regard, the present paper will discuss the afore-

mentioned Pioneer blueshift anomaly from the viewpoint of

Q-relativity physics, which has been proposed by Yefremov

[2] in order to bring into application the quaternion number.

Despite the use of quaternion number in physical theories

is very scarce in recent years — apart of Pauli matrix —

it has been argued elsewhere that using quaternion number

one could expect to unify all known equations in Quantum

Mechanics into the same framework, in particular via the

known isomorphism between Dirac equation and Maxwell

equations [5].

Another problem that was often neglected in most treat-

ises on Pioneer spacecraft anomaly is the plausible role of

aether drift effect [6]. Here it can be shown that taking

this effect into consideration along with the aforementioned

Q-relativity satellite’s apparent shift could yield numerical

prediction of Pioneer blueshift within ∼0.26% error range,

which speaks for itself.
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We also suggest a new kind of Doppler frequency shift

which can be predicted using Nottale-type gravitational Bohr-

radius, by taking into consideration varying G parameter as

described by Moffat [7]. To our knowledge this proposition

of new type of redshift corresponding to gravitational Bohr-

radius has never been considered before elsewhere.

Further observation is of course recommended in order

to verify or refute the propositions outlined herein.

2 Some novel aspects of Q-relativity physics. Pioneer

blueshift anomaly

In this section, first we will review some basic concepts of

quaternion number and then discuss its implications to qua-

ternion relativity (Q-relativity) physics [2]. Then we discuss

Yefremov’s calculation of satellite time-shift which may be

observed by precise measurement [3]. We however introduce

a new interpretation here that such a satellite Q-timeshift is

already observed in the form of Pioneer spacecraft blueshift

anomaly.

Quaternion number belongs to the group of “very good”

algebras: of real, complex, quaternion, and octonion [2].

While Cayley also proposed new terms such as quantic, it

is less known than the above group. Quaternion number can

be viewed as an extension of Cauchy imaginary plane to

become [2]:
Q ≡ a+ bi+ cj + dk , (1)

where a, b, c, d are real numbers, and i, j, k are imaginary

quaternion units. These Q-units can be represented either via

2×2 matrices or 4×4 matrices [2].

It is interesting to note here that there is quaternionic

multiplication rule which acquires compact form:

1qk = qk1 = qk , qjqk = −δjk + εjknqn , (2)

where δkn and εjkn represent 3-dimensional symbols of

Kronecker and Levi-Civita, respectively [2]. Therefore it

could be expected that Q-algebra may have neat link with

pseudo-Riemannian metric used by General Relativity. Inte-

restingly, it has been argued in this regard that such Q-units

can be generalised to become Finsler geometry, in particular

with Berwald-Moor metric. It also can be shown that Finsler-

Berwald-Moor metric is equivalent with pseudo-Riemannian

metric, and an expression of Newtonian potential can be

found for this metric [2a].

It may also be worth noting here that in 3D space Q-

connectivity has clear geometrical and physical treatment as

movable Q-basis with behaviour of Cartan 3-frame [2].

It is also possible to write the dynamics equations of

Classical Mechanics for an inertial observer in constant Q-

basis. SO(3, R)-invariance of two vectors allow to represent

these dynamics equations in Q-vector form [2]:

m
d2

dt2
(xkqk) = Fkqk . (3)

Because of antisymmetry of the connection (generalised

angular velocity) the dynamics equations can be written in

vector components, by conventional vector notation [2]:

m
(

a+ 2Ω× v + Ω× r + Ω×
(

Ω× r
)

)

= F . (4)

Therefore, from equation (4) one recognizes known types

of classical acceleration, i.e. linear, coriolis, angular, centri-

petal. Meanwhile it is known that General Relativity intro-

duces Newton potential as rigid requirement [2a, 6b]. In

other words, we can expect — using Q-relativity — to predict

new effects that cannot be explained with General Relativity.

From this viewpoint one may consider a generalisation

of Minkowski metric into biquaternion form [2]:

dz = (dxk + idtk) qk , (5)

with some novel properties, i.e.:

• temporal interval is defined by imaginary vector;

• space-time of the model appears to have six dimen-

sions (6D);

• vector of the displacement of the particle and vector

of corresponding time change must always be normal

to each other, or:

dxkdtk = 0 . (6)

It is perhaps quite interesting to note here that Einstein

himself apparently once considered similar approach, by pro-

posing tensors with Riemannian metric with Hermitian sym-

metry [8]. Nonetheless, there is difference with Q-relativity

described above, because in Einstein’s generalised Riemann-

ian metric it has 8-dimensions, rather than 3d-space and 3d-

imaginary time.

One particularly interesting feature of this new Q-relativ-

ity (or rotational relativity) is that there is universal character

of motion of the bodies (including non-inertial motions),

which can be described in unified manner (Hestenes also

considers Classical Mechanics from similar spinor language).

For instance advanced perihelion of planets can be described

in term of such rotational precession [2].

Inspired by this new Q-relativity physics, it can be argued

that there should be anomalous effect in planets’ satellite

motion. In this regard, Yefremov argues that there should

be a deviation of the planetary satellite position, due to

discrepancy between calculated and observed from the Earth

motion magnitudes characterizing cyclic processes on this

planet or near it. He proposes [2]:

Δϕ ≈ ωVeVp
c2

t , (7)

or

Δϕ′ ≈ −ωVeVp
c2

t′. (8)

Therefore, given a satellite orbit radius r, its position

shift is found in units of length Δl = rΔϕ. His calculation
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Satellites Cycle frequency ω, 1/s Angular shift ∆ϕ, ′′/100 yrs Linear shift ∆l, km/100 yrs Linear size a, km

Phobos (Mars) 0.00023 18.2 54 20

Deimos (Mars) 0.00006 4.6 34 12

Metis (Jupiter) 0.00025 10.6 431 40

Adrastea (Jupiter) 0.00024 10.5 429 20

Amalthea (Jupiter) 0.00015 6.3 361 189

Table 1: The following table gives values of the effect for five fast satellites of Mars and Jupiter. Orbital linear velocities are: of the

Earth VE = 29.8 km/s, of Mars VP = 24.1 km/s, of Jupiter VP = 13.1 km/s; the value of the light velocity is c= 299 793 km/s; observation

period is chosen 100 years. Courtesy of A. Yefremov, 2006 [3].

for satellites of Mars and Jupiter is given in Table 1. None-

theless he gave no indication as to how to observe this

anomalous effect.

In this regard, we introduce here an alternative interpreta-

tion of the aforementioned Q-satellite time-shift effect by

Yefremov, i.e. this effect actually has similar effect with Pio-

neer spacecraft blueshift anomaly. It is known that Pioneer

spacecraft exhibits this anomalous Doppler frequency while

entering Jupiter orbit [1, 4], therefore one may argue that

this effect is caused by Jupiter planetary gravitational effect,

which also may cause similar effect to its satellites.

Despite the apparent contradiction with Yefremov’s own

intention, one could find that the aforementioned Q-satellite

time-shift could yield a natural explanation of Pioneer space-

craft blueshift anomaly. In this regard, Taylor [9] argues that

there is possibility of a mundane explanation of anomal-

ous blueshift of Pioneer anomaly (5.99×10−9 Hz/sec). The

all-angle formulae for relativistic Doppler shift is given

by [9a, p.34]:

v′ = v0γ
(1− β cosφ)
√

1− β2
, (9)

where β= v/c. By neglecting the
√

1−β2 term because of

low velocity, one gets the standard expression:

v′ = v0γ (1− β cosφ) . (9a)

The derivative with respect to φ is:

dv′

dφ
= v0γ β sinφ , (10)

where dv′

dφ = 5.99×10−9 Hz/sec, i.e. the observed Pioneer

anomaly. Introducing this value into equation (10), one gets

requirement of an effect to explain Pioneer anomaly:

dφ =
arcsin (5.99×10−9 Hz)

v0γ β
= 1.4×10−12 deg/sec. (11)

Therefore, we can conclude that to explain 5.99×10−9

Hz/sec blueshift anomaly, it is required to find a shift of

emission angle at the order 1.4×10−12 degree/sec only (or

around 15.894
′′

per 100 years).

Interestingly this angular shift can be explained with the

same order of magnitude from the viewpoint of Q-satellite

angular shift (see Table 1), in particular for Jupiter’s Adrastea

(10.5
′′

per 100 years). There is however, a large discrepancy

at the order of 50% from the expected angular shift.

It is proposed here that such discrepancy between Q-

satellite angular shift and expected angular shift required

to explain Pioneer anomaly can be reduced if we take into

consideration the “aether drift” effect [6]. Interestingly we

can use experimental result of Thorndike [6, p.9], saying

that the aether drift effect implies a residual apparent Earth

velocity is vobs= 15 ± 4 km/sec. Therefore the effective Ve
in equation (8) becomes:

Ve.eff = vobs + Ve = 44.8 km/sec. (12)

Using this improved value for Earth velocity in equation

(8), one will get larger values than Table 1, which for Adras-

tea satellite yields:

Δϕobs =
ωVe.effVp

c2
t =

Ve.eff
Ve

Δϕ = 15.935
′′

/100 yrs. (13)

Using this improved prediction, the discrepancy with

required angular shift only (15.894
′′

per 100 years) becomes

∼ 0.26%, which speaks for itself. Therefore one may con-

clude that this less mundane explanation of Pioneer blueshift

anomaly with Q-relativity may deserve further consideration.

3 A new type of redshift from gravitational Bohr radius.

Possible observation in solar system.

In preceding paper [10, 11] we argued in favour of an alter-

native interpretation of Tifft redshift quantization from the

viewpoint of quantized distance between galaxies. A method

can be proposed as further test of this proposition both at

solar system scale or galaxies scale, by using the known

quantized Tifft redshift [14, 15, 16]:

δr ≈ c

H
δz . (14)

In this regards, we use gravitational Bohr radius equation:

rn = n
2GM

v20
. (15)
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Inserting equation (15) into (14), then one gets quantized

redshift expected from gravitational Bohr radius:

zn =
H

c
n2
GM

v20
(16)

which can be observed either in solar system scale or galax-

ies scale. To our present knowledge, this effect has never

been described elsewhere before.

Therefore, it is recommended to observe such an accele-

rated Doppler-freequency shift, which for big jovian planets

this effect may be detected. It is also worth noting here

that according to equation (16), this new Doppler shift is

quantized.

At this point one may also take into consideration a

proposition by Moffat, regarding modification of Newtonian

acceleration law to become [7]:

a(r) = −G∞M
r2

+K
exp(−μφr)

r2
(1 + μφr) (17)

where

G∞ = G

[

1 +

√

M0

M

]

. (17a)

Therefore equation (16) may be rewritten to become:

zn ≈
H

c
n2
GM

v20

[

1 +

√

M0

M

]

≈ χ H
c
n2
GM

v20
(18)

where n is integer (1, 2, 3, . . . ) and:

χ =

[

1 +

√

M0

M

]

. (18a)

To use the above equations, one may start by using Bell’s

suggestion that there is fundamental redshift z= 0.62 which

is typical for various galaxies and quasars [14]. Assuming

we can use equation (16), then by setting n= 1, we can

expect to predict the mass of quasar centre or galaxy centre.

Then the result can be used to compute back how time-

variation parameter affects redshift pattern in equation (18).

In solar system scale, time-varying radius may be observed

in the form of changing Astronomical Unit [4].

This proposition, however, deserves further theoretical

considerations. Further observation is also recommended in

order to verify and explore further this proposition.

4 Concluding remarks

In the present paper it is argued that Pioneer anomalous

blueshift may be caused by Pioneer spacecraft experiencing

angular shift induced by similar Q-relativity effect which

may also affect Jupiter satellites. By taking into considera-

tion aether drift effect, the proposed method as described

herein could predict Pioneer blueshift within ∼0.26% error

range, which speaks for itself. Further observation is of course

recommended in order to refute or verify this proposition.

Another new proposition of redshift quantization is also

proposed from gravitational Bohr-radius which is consistent

with Bohr-Sommerfeld quantization. It is recommended to

conduct further observation in order to verify and also to

explore various implications of our propositions as described

herein.
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Notes on Pioneer Anomaly Explanation by Sattellite-Shift Formula of
Quaternion Relativity: Remarks on “Less Mundane Explanation
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Use of satellite shift formula emerging in Quaternion (Q-) model of relativity theory

for explanation of Pioneer anomaly [1] is critically discussed. A cinematic scheme

more suitable for the case is constructed with the help of Q-model methods. An

appropriate formula for apparent deceleration resulting from existence of observer-

object relative velocity is derived. Preliminary quantitative assessments made on the

base of Pioneer 10/11 data demonstrate closure of the assumed “relativistic decele-

ration” and observed “Doppler deceleration” values.

1 Introduction. Limits of satellite-shift formula

Recently [1] there was an attempt to give an explanation

of Pioneer anomaly essentially using formula for relativistic

shift of planet’s fast satellites observed from the Earth. This

formula was derived within framework of Q-method deve-

loped to calculate relativistic effects using SO(1, 2) form-

invariant quaternion square root from space-time interval

rather than the interval itself [2]; in particular this advanta-

geously permits to describe relativistic motions of any non-

inertial frames. The last option was used to find mentioned

formula that describes cinematic situation comprising three

Solar System objects: the Earth (with observer on it), a

planet, and its satellite revolving with comparatively large

angular velocity. Due to existence of Earth-planet relative

velocity, not great though and variable but permanent, the

cycle frequency of satellite rotation (observed from the

Earth) is apparently less that in realty, i.e. the “planet’s

clock” is slowing down, and calculation shows that the gap is

growing linearly with time. Visually it looks that the satellite

position on its orbit is apparently behind an expected place.

For very fast satellites (like Jupiter’s Metis and Adrastea)

and for sufficiently long period of time the effect can probab-

ly be experimentally detected. Same effect exists of course

for Mars’s satellites and it is computed that monthly apparent

shift on its orbit of e.g. Phobos is about 50 meters (that is

by the way can be important and taken into account when

planning expedition of spacecraft closely approaching the

moon).

In paper of F. Smarandache and V. Christianto [1] the dis-

cussed formula was used to describe famous Pioneer effect,

implying that the last great acceleration the space probe

received when approached very close to Jupiter; in particular

data concerning Adrastea, whose location was as close to

Jupiter as the space probe, were cited in [1]. Combined with

ether drift effect the formula gives good coincidence (up to

0.26%) with value of emission angle shift required to explain

observation data of Pioneer’s signal Doppler residuals [3].

This surprisingly exact result nevertheless should not

lead to understanding that obtained by Q-method mathema-

tical description of a specific mechanical model can bear uni-

versal character and fit to arbitrary relativistic situation. One

needs to recognize that Pioneer cinematic scheme essentially

differs from that of the Earth-planet-satellite model; but if

one tries to explain the Pioneer effect using the same rela-

tivistic idea as for satellite shift then an adequate cinematic

scheme should be elaborated. Happily the Q-method readily

offers compact and clear algorithm for construction and de-

scription of any relativistic models. In Section 2 a model

referring observed frequency shift of Pioneer spacecraft sig-

nals to purely relativistic reasons is regarded; some quantita-

tive assessments are made as well as conclusions on ability

of the model to explain the anomaly. In Section 3 a short

discussion is offered.

2 Earth-Pioneer Q-model and signal frequency shift

Paper [3] enumerates a number of factors attracted to analyze

radio data received from Pioneer 10/11 spacecraft, among

them gravitational planetary perturbations, radiation pres-

sure, interplanetary media, General Relativity∗, the Earth’s

precession and nutation. It is worth noting here that one sig-

nificant factor, time delay caused by relative probe-observer

motion, is not distinguished in [3]. The fact is understand-

able: relative motion of spacecraft and observer on the Earth

is utterly non-inertial one; Special Relativity is not at all

able to cope with the case while General Relativity methods

involving specific metric and geodesic lines construction

∗Unfortunately paper [3] does not indicate to what depth General

Relativity is taken into account: whether only Newtonian gravity is modi-

fied by Schwarzschild, Kerr (or other) metrics, or cinematic effects are

regarded too.
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(with all curvature tensor components zero) or additional

vector transport postulates are mathematically difficult. Con-

trary to this the Q-relativity method easily allows building of

any non-inertial relativistic scheme; an example describing

a spacecraft (probe) and an Earth’s observer is given below.

Assume that Pioneer anomaly is a purely relativistic ef-

fect caused by existence of Earth-Pioneer relative velocity,

variable but permanent. Construct respective model using the

Q-method algorithm. Choose Q-frames. Let Σ=(q1,q2,q3)
be the Earth’s frame whose Cartesian directing vectors are

given by quaternion “imaginary” units qk obeying the multi-

plication rule∗

1qk = qk 1 = qk , qkql = −δkl + εklj qj . (1)

Let Q-frame Σ′ = {qk′} belong to a probe. Suppose for

simplicity that vectors q2, q3 are in the ecliptic plane as

well as (approximately) the probe’s trajectory. Assume that

vector q2 of Σ is always parallel to Earth-probe relative

velocity V . Now one is able to write rotational equation,

main relation of Q-relativity, which ties two frames

Σ′ = O
−iψ
1 Σ , (2)

here O
−iψ
1 is 3×3 orthogonal matrix of rotation about axis

No.1 at imaginary angle −iψ

O
−iψ
1 =

⎛

⎝

cos(iψ) − sin(iψ) 0

sin(−iψ) cos(iψ) 0

0 0 1

⎞

⎠=

⎛

⎝

coshψ −i sinhψ 0

i sinhψ coshψ 0

0 0 1

⎞

⎠

thus “converting” frame Σ into Σ′. The first row in the

matrix equation (2)

q1′ = q1 coshψ − q2 i sinhψ

after straightforward algebra

q1′ = coshψ (q1−q2 i tanhψ) ⇒ q1′ =
dt

dt′
(q1−q2 iV ψ)

with usual relativistic relations

V = tanhψ, dt = dt′ coshψ (3)

acquires the form of basic cinematic space-time object of

Q-relativity
idt′q1′ = idtq1 + drq2 ,

a specific quaternion square root from space-time interval of

Special Relativity

(idt′q1′)(idt
′q1′) = (idtq1 + drq2)(idtq1 + drq2) ⇒

⇒ dt′2 = dt2 − dr2,

dt′ being proper time segment of the probe. Eq. (3) yields

ratio for probe-Earth signal period (small compared to time

of observation) T = T ′ coshψ, i.e. observed from Earth the

∗Latin indices are 3-dimensional (3D), δkl is 3D Kroneker symbol,

εjkl is 3D Levi-Civita symbol; summation convention is assumed.

period is apparently longer than it really is. Vice versa, ob-

served frequency f =1/T is smaller than the real one f ′

f =
1

T
=

1

T coshψ
=

f ′

coshψ
= f ′

√

1− (V/c)2, (4)

or for small relative velocity

f ∼= f ′
(

1− V 2

2c2

)

.

This means that there exists certain purely apparent re-

lativistic shift of the probe’s signal detected by the Earth

observer

Δ f = f ′ − f = f ′ V
2

2c2
, or

Δ f

f ′
=
V 2

2c2
=
ε

c2
, (5)

ε being the probe’s kinetic energy per unit mass computed

in a chosen frame. Contrary to pure Doppler effect the shift

given by Eq. (5) does not depend on the direction of relative

velocity of involved objects since in fact it is just another

manifestation of relativistic delay of time. Light coming to

observer from any relatively (and arbitrary) moving body is

universally “more red” than originally emitted signal; as well

all other frequencies attributed to observed moving bodies

are smaller then original ones, and namely this idea was

explored for derivation of satellite shift formula.

Experimental observation of the frequency change (5)

must lead to conclusion that there exists respective “Doppler

velocity” VD entering formula well known from Special Re-

lativity

f =
f ′

√

1− (VD/c)2

(

1− VD
c
cosβ

)

, (6)

β being angle between velocity vector and wave vector of

emitted signal. If β=0 and smaller relativistic correction are

neglected then Eq. (6) can be rewritten in the form similar

to Eq. (5)
Δ f

f ′
∼= VD
c2
; (7)

comparison of Eqs. (7) and (5) yields very simple formula

for calculated (and allegedly existent) “Doppler velocity”

corresponding to observed relativistic frequency change

VD ∼=
ε

c
. (8)

Estimation of the value of VD can be done using picture

of Pioneer 10/11 trajectories (Fig.1) projected upon ecliptic

plane (provided in NASA report [4]); other spacecraft traces

are also shown, the Earth’s orbit radius too small to be

indicated.

Schematically the cinematic situation for Pioneer 10 is

shown at Fig. 2 where the trajectory looks as a straight line

inclined at constant angle λ to axis q2, while the Earth’s

position on its orbit is determined by angle α=Ωt, Ω=
= 3.98×10−7 s−1 being the Earth’s orbital angular velocity.

Vectors of the probe’s and Earth’s velocities in Solar Ecliptic
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Fig. 1: Spacecraft trajectories on the ecliptic plane. (After NASA

original data [4]. Used by permission.)

(SE) coordinate system∗ are respectively denoted as VP
and VE ; their vector subtraction gives relative Earth-probe

velocity V = VP −VE so that

VD(t) =
V 2

2c
=
V 2P + V

2
E − 2VPVE cos(Ωt−λ)

2c
, (9)

and respective “Doppler acceleration” is

aD = V̇D(t) =

=
VP V̇P−V̇PVE cos(Ωt−λ)+ΩVPVE sin(Ωt−λ)

c
.

(10)

In Eq. (10) the first term in the numerator claims exist-

ence of secular deceleration, since escaping from the Sun’s

and Jupiter’s gravity the probe is permanently decelerated,

V̇p< 0; the result is that the frequency gap shrinks giving

rise to pure relativistic blue shift. Other sign-changing terms

in right-hand-side of Eq. (10) are periodic (annual) ones;

they may cause blue shift as well as red shift. Thus Eq. (10)

shows that, although relative probe-Earth velocity incorpo-

rates into difference between real and observed frequency,

nevertheless secular change of the difference is to be related

only to relative probe-Sun velocity. Distinguish this term

temporary ignoring the annual modulations; then the secular

deceleration formula is reduced as

aSD ∼=
V̇P VP
c

. (11)

∗The SE is a heliocentric coordinate system with the z-axis normal to

and northward from the ecliptic plane. The x-axis extends toward the first

point of Aries (Vernal Equinox, i.e. to the Sun from Earth in the first day

of Spring). The y-axis completes the right handed set.

Fig. 2: Earth-Pioneer 10 cinematic scheme, where the trajectory

looks as a straight line inclined at constant angle λ to axis q2.

Below only radial components of the probe’s velocity

and acceleration in Newtonian gravity are taken into account

in Eq. (11); it is quite a rough assessment but it allows to

conceive order of values. The probe’s acceleration caused

by the Sun’s Newtonian gravity is

V̇P = −
GM⊙

R2
, (12)

G= 6.67×10−11 m3/kg×s2, M⊙= 1.99×1030 kg are respec-

tively gravitational constant and mass of the Sun. NASA

data [5] show that in the very middle part (1983–1990) of the

whole observational period of Pioneer 10 its radial distance

from the Sun changes from R∼= 28.8 AU= 4.31×1012 m to

R∼= 48.1 AU= 7.2×1012 m, while year-mean radial velocity

varies from VP = 15.18×103 m/s to VP = 12.81×103 m/s. Re-

spective values of the secular “relativistic deceleration” va-

lues for this period computed with the help of Eqs. (11), (12)

vary from aSD =−3.63×10−10 m/s2 to aSD =−1.23×10−10

m/s2. It is interesting (and surprising as well) that these re-

sults are very close in order to anomalous “Doppler decele-

ration” of the probe aP =−(8±3)×10−10 m/s2 cited in [3].

Analogous computations for Pioneer 11, as checking

point, show the following. Full time of observation of Pio-

neer 11 is shorter so observational period is taken from 1984

to 1989, with observational data from the same source [5].

Radial distances for beginning and end of the period are

R∼=15.1AU=2.26×1012m, R∼=25.2AU=3.77×1012m; re-

spective year-mean radial velocities are VP = 11.86×103 m/s,

VP = 12.80×103 m/s. Computed “relativistic deceleration”

values for this period are then aSD =−10.03×10−10 m/s2,
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aSD =−5.02×10−10 m/s2: this is even in much better cor-

relation (within limits of the cited error) with experimental

value of aP .

3 Discussion

Quantitative estimations presented above allow to conclude:

additional blue shift, experimentally registered in Pioneer 10

and 11 signals, and interpreted as Sun-directed acceleration

of the spacecraft to some extent, support the assumption

of pure relativistic nature of the anomaly. Of course one

notes that while Pioneer 11 case shows good coincidence

of observed and calculated values of deceleration, values of

aSD for Pioneer 10 constitute only (45–15)% of observed

Doppler residual; moreover generally in this approach “rela-

tivistic deceleration” is a steadily decreasing function, while

experimentally (though not directly) detected deceleration

aP is claimed nearly constant. These defects could find ex-

planation first of all in the fact that a primitive “Newtonian

radial model” was used for assessments. Preliminary but

more attentive reference to NASA data allows noticing that

observed angular acceleration of the probes too could signi-

ficantly incorporate to values of “relativistic deceleration”.

This problem remains to be regarded elsewhere together with

analysis of the angular acceleration itself.
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In the present article we would like to make a few comments on a recent paper

by A. Yefremov in this journal [1]. It is interesting to note here that he concludes his

analysis by pointing out that using full machinery of Quaternion Relativity it is possible

to explain Pioneer XI anomaly with excellent agreement compared with observed data,

and explain around 45% of Pioneer X anomalous acceleration. We argue that perhaps

it will be necessary to consider extension of Lorentz transformation to Finsler-Berwald

metric, as discussed by a number of authors in the past few years. In this regard, it

would be interesting to see if the use of extended Lorentz transformation could also

elucidate the long-lasting problem known as Ehrenfest paradox. Further observation is

of course recommended in order to refute or verify this proposition.

1 Introduction

We are delighted to read A. Yefremov’s comments on our

preceding paper [3], based on his own analysis of Pioneer

anomalous “apparent acceleration” [1]. His analysis made

use of a method called Quaternion Relativity, which essen-

tially is based on SO(1, 2) form invariant quaternion square

root from space-time interval rather than the interval itself

[1, 2]. Nonetheless it is interesting to note here that he con-

cludes his analysis by pointing out that using full machinery

of Quaternion Relativity it is possible to explain Pioneer XI

anomaly with excellent agreement compared with observed

data, and explain around 45% of Pioneer X anomalous acce-

leration [1].

In this regard, we would like to emphasize that our pre-

ceding paper [3] was based on initial “conjecture” that in

order to explain Pioneer anomaly, it would be necessary

to generalize pseudo-Riemann metric of General Relativity

theory into broader context, which may include Yefremov’s

Quaternion Relativity for instance. It is interesting to note

here, however, that Yefremov’s analytical method keeps use

standard Lorentz transformation in the form Doppler shift

effect (Eq. 6):

f =
f ′

√

1−
(

vD
c

)2

(

1− vD
c
cosβ

)

. (1)

While his method using relativistic Doppler shift a la

Special Relativity is all right for such a preliminary analysis,

in our opinion this method has a drawback that it uses

“standard definition of Lorentz transformation” based on 2-

dimensional problem of rod-on-rail as explained in numer-

ous expositions of relativity theory [5]. While this method of

rod-on-rail seems sufficient to elucidate why “simultaneity”

is ambiguous term in physical sense, it does not take into con-

sideration 3-angle problem in more general problem.

This is why we pointed out in our preceding paper that

apparently General Relativity inherits the same drawback

from Special Relativity [3].

Another problem of special relativistic definition of Lo-

rentz transformation is known as “reciprocity postulate”,

because in Special Relativity it is assumed that: x↔x′,
t↔ t′, v↔−v′ [6]. This is why Doppler shift can be derived

without assuming reciprocity postulate (which may be re-

garded as the “third postulate” of Special Relativity) and

without special relativistic argument, see [7]. Nonetheless, in

our opinion, Yefremov’s Quaternion Relativity is free from

this “reciprocity” drawback because in his method there is

difference between moving-observer and static-observer [2].

An example of implications of this drawback of 1-angle

problem of Lorentz transformation is known as Ehrenfest

paradox, which can be summarized as follows: “According

to Special Relativity, a moving rod will exhibit apparent

length-reduction. This is usually understood to be an obser-

vational effect, but if it is instead considered to be a real

effect, then there is a paradox. According to Ehrenfest,

the perimeter of a rotating disk is like a sequence of rods.

So does the rotating disk shatter at the rim?” Similarly,

after some thought Klauber concludes that “The second re-

lativity postulate does not appear to hold for rotating

systems” [8].

While it is not yet clear whether Quaternion-Relativity

is free from this Ehrenfest paradox, we would like to point

out that an alternative metric which is known to be nearest

to Riemann metric is available in literature, and known

as Finsler-Berwald metric. This metric has been discussed

adequately by Pavlov, Asanov, Vacaru and others [9–12].
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2 Extended Lorentz-transformation in Finsler-Berwald

metric

It is known that Finsler-Berwald metric is subset of Finsler-

ian metrics which is nearest to Riemannian metric [12],

therefore it is possible to construct pseudo-Riemann metric

based on Berwald-Moor geometry, as already shown by Pav-

lov [4]. The neat link between Berwald-Moor metric and

Quaternion Relativity of Yefremov may also be expected

because Berwald-Moor metric is also based on analytical

functions of the H4 variable [4].

More interestingly, there was an attempt in recent years

to extend 2d-Lorentz transformation in more general frame-

work on H4 of Finsler-Berwald metric, which in limiting

cases will yield standard Lorentz transformation [9, 10]. In

this letter we will use extension of Lorentz transformation

derived by Pavlov [9]. For the case when all components

but one of the velocity of the new frame in the old frame

coordinates along the three special directions are equal to

zero, then the transition to the frame moving with velocity

V1 in the old coordinates can be expressed by the new frame

as [9, p.13]:
⎛

⎜

⎜

⎝

x0
x1
x2
x3

⎞

⎟

⎟

⎠

=

[
[

F
] [

0
]

[

0
] [

F
]

]

=

⎛

⎜

⎜

⎝

x′0
x′1
x′2
x′3

⎞

⎟

⎟

⎠

(2)

where the transformation matrix for Finsler-Berwald metric

is written as follows [9, p.13]:

[

F
]

=

⎛

⎜

⎝

1
√

1−V 2
1

V1
√

1−V 2
1

V1
√

1−V 2
1

1
√

1−V 2
1

⎞

⎟

⎠
(3)

and
[

0
]

=

(

0 0

0 0

)

. (4)

Or

x0 =
x′0 + V x

′
1

√

1− V 21
x1 =

V x′0 + x
′
1

√

1− V 21
, (5)

and

x2 =
x′2 + V x

′
3

√

1− V 21
x3 =

V x′2 + x
′
3

√

1− V 21
. (6)

It shall be clear that equation (5) (x′0, x
′
1) ↔ (x0, x1)

coincides with the corresponding transformation of Special

Relativity, while the transformation in equation (6) differs

from the corresponding transformation of Special Relativity

where x2=x
′
2, x3=x

′
3 [9].

While we are not yet sure whether the above extension of

Lorentz transformation could explain Pioneer anomaly better

than recent analysis by A. Yefremov [1], at least it can be

expected to see whether Finsler-Berwald metric could shed

some light on the problem of Ehrenfest paradox. This propo-

sition, however, deserves further theoretical considerations.

In order to provide an illustration on how the transforma-

tion keeps the Finslerian metric invariant, we can use Maple

algorithm presented by Asanov [10, p.29]:

> c1:=cos(tau);c2:=cos(psi);c3:=cos(phi);

> u1:=sin(tau);u2:=sin(psi);u3:=sin(phi);

> l1:=c2*c3−c1*u2*u3;l2:=−c2*u3−c1*u2*c3;l3:=u1*u2;

> m1:=u2*c3+c1*c2*u3;m2:=−u2*u3+c1*c2*c3;m3:=−u1*c2;

> n1:=u1*u3; u1*c3; c1;

> F1:=(e1)ˆ((l1+m1+n1+l2+m2+n2+l3+m3+n3+1)/4)*

(e2)ˆ((−l1−m1−n1+l2+m2+n2−l3−m3−n3+1)/4)*

(e3)ˆ((l1+m1+n1−l2−m2−n2−l3−m3−n3+1)/4)*

(e4)ˆ((−l1−m1−n1−l2−m2−n2+l3+m3+n3+1)/4):

> F2:=(e1)ˆ((−l1+m1−n1−l2+m2−n2−l3+m3−n3+1)/4)*

(e2)ˆ((l1−m1+n1−l2+m2−n2+l3−m3+n3+1)/4)*

(e3)ˆ((−l1+m1−n1+l2−m2+n2+l3−m3+n3+1)/4)*

(e4)ˆ((l1−m1+n1+l2−m2+n2−l3+m3−n3+1)/4):

> F3:=(e1)ˆ((l1−m1−n1+l2−m2−n2+l3−m3−n3+1)/4)*

(e2)ˆ((−l1+m1+n1+l2−m2−n2−l3+m3+n3+1)/4)*

(e3)ˆ((l1−m1−n1−l2+m2+n2−l3+m3+n3+1)/4)*

(e4)ˆ((−l1+m1+n1−l2+m2+n2+l3−m3−n3+1)/4):

> F4:=(e1)ˆ((−l1−m1+n1−l2−m2+n2−l3−m3+n3+1)/4)*

(e2)ˆ((l1+m1−n1−l2−m2+n2+l3+m3−n3+1)/4)*

(e3)ˆ((−l1−m1+n1+l2+m2−n2+l3+m3−n3+1)/4)*

(e4)ˆ((l1+m1−n1+l2+m2−n2−l3−m3+n3+1)/4):

> a:=array(1..4,1..4):

for i from 1 to 4

do

for j from 1 to 4

do

a[i,j]:=diff(F||i,e||j);
end do:

end do:

> b:=array(1..4,1..4):

for i from 1 to 4

do

for j from 1 to 4

do

b[i,j]:=simplify(add(1/F||k*diff(a[k,i],e||j),k=1..4),symbolic);

end do:

end do:

> print(b);

The result is as follows:

⎡

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎦

.

This result showing that all the entries of the matrix are

zeroes support the argument that the metricity condition is

true [10].

3 Concluding remarks

In the present paper we noted that it is possible to gene-

ralise standard Lorentz transformation into H4 framework of

Finsler-Berwald metric. It could be expected that this ex-

tended Lorentz transformation could shed some light not

only to Pioneer anomaly, but perhaps also to the long-lasting

problem of Ehrenfest paradox which is also problematic in

General Relativity theory, or by quoting Einstein himself:
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“. . . Thus all our previous conclusions based on gen-

eral relativity would appear to be called in question.

In reality we must make a subtle detour in order to

be able to apply the postulate of general relativity

exactly” [5].

This reply is not intended to say that Yefremov’s preli-

minary analysis is not in the right direction, instead we only

highlight a possible way to improve his results (via extend-

ing Lorentz transformation). Furthermore, it also does not

mean to say that Finsler-Berwald metric could predict better

than Quaternion Relativity. Nonetheless, further observation

is of course recommended in order to refute or verify this

proposition.
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Analysis of covariant derivatives of vectors in quaternion (Q-) spaces performed

using Q-unit spinor-splitting technique and use of SL(2C)-invariance of quaternion

multiplication reveals close connexion of Q-geometry objects and Yang-Mills (YM)

field principle characteristics. In particular, it is shown that Q-connexion (with

quaternion non-metricity) and related curvature of 4 dimensional (4D) space-times

with 3D Q-space sections are formally equivalent to respectively YM-field potential

and strength, traditionally emerging from the minimal action assumption. Plausible

links between YM field equation and Klein-Gordon equation, in particular via its

known isomorphism with Duffin-Kemmer equation, are also discussed.

1 Introduction

Traditionally YM field is treated as a gauge, “auxiliary”, field

involved to compensate local transformations of a ‘main’

(e.g. spinor) field to keep invariance of respective action

functional. Anyway there are a number of works where YM-

field features are found related to some geometric properties

of space-times of different types, mainly in connexion with

contemporary gravity theories.

Thus in paper [1] violation of SO(3, 1)-covariance in

gauge gravitation theory caused by distinguishing time di-

rection from normal space-like hyper-surfaces is regarded as

spontaneous symmetry violation analogous to introduction of

mass in YM theory. Paper [2] shows a generic approach to

formulation of a physical field evolution based on description

of differential manifold and its mapping onto “model” spaces

defined by characteristic groups; the group choice leads to

gravity or YM theory equations. Furthermore it can be shown

[2b] that it is possible to describe altogether gravitation in

a space with torsion, and electroweak interactions on 4D

real spacetime C2, so we have in usual spacetime with torsion

a unified theory (modulo the non treatment of the strong

forces).

Somewhat different approach is suggested in paper [3]

where gauge potentials and tensions are related respectively

to connexion and curvature of principle bundle, whose base

and gauge group choice allows arriving either to YM or to

gravitation theory. Paper [4] dealing with gravity in Riemann-

Cartan space and Lagrangian quadratic in connexion and cur-

vature shows possibility to interpret connexion as a mediator

of YM interaction.

In paper [5] a unified theory of gravity and electroweak

forces is built with Lagrangian as a scalar curvature of space-

time with torsion; if trace and axial part of the torsion vanish

the Lagrangian is shown to separate into Gilbert and YM

parts. Regardless of somehow artificial character of used

models, these observations nonetheless hint that there may

exist a deep link between supposedly really physical object,

YM field and pure math constructions. A surprising analogy

between main characteristics of YM field and mathematical

objects is found hidden within geometry induced by quater-

nion (Q-) numbers.

In this regard, the role played by Yang-Mills field cannot

be overemphasized, in particular from the viewpoint of the

Standard Model of elementary particles. While there are a

number of attempts for describing the Standard Model of

hadrons and leptons from the viewpoint of classical electro-

magnetic Maxwell equations [6, 7], nonetheless this question

remains an open problem. An alternative route toward

achieving this goal is by using quaternion number, as describ-

ed in the present paper. In fact, in Ref. [7] a somewhat similar

approach with ours has been described, i.e. the generalized

Cauchy-Riemann equations contain 2-spinor and C-gauge

structures, and their integrability conditions take the form of

Maxwell and Yang-Mills equations.

It is long ago noticed that Q-math (algebra, calculus and

related geometry) naturally comprise many features attribut-

ed to physical systems and laws. It is known that quaternions

describe three “imaginary” Q-units as unit vectors directing

axes of a Cartesian system of coordinates (it was initially de-

veloped to represent subsequent telescope motions in astro-

nomical observation). Maxwell used the fact to write his
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equations in the most convenient Q-form. Decades later

Fueter discovered a formidable coincidence: a pure math

Cauchy-Riemann type condition endowing functions of Q-

variable with analytical properties turned out to be identical

in shape to vacuum equations of electrodynamics [9].

Later on other surprising Q-math — physics coincidences

were found. Among them: “automatic” appearance of Pauli

magnetic field-spin term with Bohr magneton as a coefficient

when Hamiltonian for charged quantum mechanical particle

was built with the help of Q-based metric [10]; possibility to

endow “imaginary” vector Q-units with properties of not only

stationary but movable triad of Cartan type and use it for a

very simple description of Newtonian mechanics in rotating

frame of reference [11]; discovery of inherited in Q-math

variant of relativity theory permitting to describe motion of

non-inertial frames [12]. Preliminary study shows that YM

field components are also formally present in Q-math.

In Section 2 notion of Q-space is given in necessary de-

tail. Section 3 discussed neat analogy between Q-geometric

objects and YM field potential and strength. In Section 4

YM field and Klein-Gordon correspondence is discussed.

Concluding remarks can be found in Section 5.

Part of our motivation for writing this paper was to

explicate the hidden electromagnetic field origin of YM

fields. It is known that the Standard Model of elementary

particles lack systematic description for the mechanism of

quark charges. (Let alone the question of whether quarks do

exist or they are mere algebraic tools, as Heisenberg once

puts forth: If quarks exist, then we have redefined the word

“exist”.) On the other side, as described above, Maxwell

described his theory in quaternionic language, therefore it

seems natural to ask whether it is possible to find neat link

between quaternion language and YM-fields, and by doing

so provide one step toward describing mechanism behind

quark charges.

Further experimental observation is of course recom-

mended in order to verify or refute our propositions as

described herein.

2 Quaternion spaces

Detailed description of Q-space is given in [13]; shortly

but with necessary strictness its notion can be presented as

following.

Let UN be a manifold, a geometric object consisting of

points M ∈ UN each reciprocally and uniquely correspond-

ing to a set of N numbers-coordinates {yA} : M ↔ {yA},
(A=1, 2 . . . N). Also let the sets of coordinates be trans-

formed so that the map becomes a homeomorphism of a

class Ck. It is known that UN may be endowed with a

proper tangent manifold TN described by sets of orthogonal

unite vectors e(A) generating in TN families of coordinate

lines M→{X(A)}, indices in brackets being numbers of

frames’ vectors. Differentials of coordinates in UN and TN

are tied as dX(A)= g
(A)
B dyB , with Lamé coefficients g

(A)
B ,

functions of yA, so that X(A) are generally non-holonomic.

Irrespectively of properties of UN each its point may be

attached to the origin of a frame, in particular presented by

“imaginary” Q-units qk, this attachment accompanied by a

rule tying values of coordinates of this point with the triad

orientation M ↔ {yA,Φξ}. All triads {qk} so defined on

UN form a sort of “tangent” manifold T (U,q), (really tangent

only for the base U3). Due to presence of frame vectors

qk(y) existence of metric and at least proper (quaternionic)

connexion ωjkn=−ωjnk, ∂jqk=ωjknqn, is implied, hence

one can tell of T (U,q) as of a Q-tangent space on the base

UN . Coordinates xk defined along triad vectors qk in T (U,q)
are tied with non-holonomic coordinates X(A) in proper

tangent space TN by the transformation dxk≡hk(A)dX(A)

with hk(A) being locally depending matrices (and generally

not square) of relative e(A) ↔ qk rotation. Consider a special

case of unification U ⊕ T (U,q) with 3-dimensional base

space U =U3. Moreover, let quaternion specificity of T3
reflects property of the base itself, i.e. metric structure of U3
inevitably requires involvement of Q-triads to initiate Car-

tesian coordinates in its tangent space. Such 3-dimensional

space generating sets of tangent quaternionic frames in each

its point is named here “quaternion space” (or simply Q-

space). Main distinguishing feature of a Q-space is non-

symmetric form of its metric tensor∗ gkn ≡ qkqn=− δkn+
+ εknjqj being in fact multiplication rule of “imaginary”

Q-units. It is easy to understand that all tangent spaces

constructed on arbitrary bases as designed above are Q-

spaces themselves. In most general case a Q-space can be

treated as a space of affine connexion Ωjkn=Γjkn+Qjkn+
+Sjkn+ωjnk+σjkn comprising respectively Riemann

connexion Γjkn, Cartan contorsion Qjkn, segmentary cur-

vature (or ordinary non-metricity) Sjkn, Q-connexion ωjnk,
and Q-non-metricity σjkn; curvature tensor is given by stand-

ard expression Rknij = ∂iΩj kn − ∂jΩi kn + Ωi kmΩj mn−
−Ωj nmΩimk. Presence or vanishing of different parts of

connexion or curvature results in multiple variants of Q-

spaces classification [13]. Further on only Q-spaces with

pure quaternionic characteristics (Q-connexion and Q-non-

metricity) will be considered.

3 Yang-Mills field from Q-space geometry

Usually Yang-Mills field ABμ is introduced as a gauge field

in procedure of localized transformations of certain field, e.g.

spinor field [14, 15]

ψa → U(yβ)ψa . (1)

If in the Lagrangian of the field partial derivative of ψa
is changed to “covariant” one

∂β → Dβ ≡ ∂β − gAβ , (2)

∗Latin indices are 3D, Greek indices are 4D; δkn, εknj are Kronecker

and Levi-Civita symbols; summation convention is valid.
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Aβ ≡ iAC βTC , (3)

where g is a real constant (parameter of the model), TC are

traceless matrices (Lie-group generators) commuting as

[TB , TC ] = ifBCDTD (4)

with structure constants fBCD , then

DβU ≡ (∂β − gAβ)U = 0 , (5)

and the Lagrangian keeps invariant under the transformations

(1). The theory becomes “self consistent” if the gauge field

terms are added to Lagrangian

LYM ∼ FαβFαβ , (6)

Fαβ ≡ FC αβ TC . (7)

The gauge field intensity F
μν
B expressed through poten-

tials ABμ and structure constants as

FC αβ = ∂αAC β − ∂βAC α + fCDE ADαAE β . (8)

Vacuum equations of the gauge field

∂α F
αβ +

[

Aα, F
αβ
]

= 0 (9)

are result of variation procedure of action built from Lagran-

gian (6).

Group Lie, e.g. SU(2) generators in particular can be

represented by “imaginary” quaternion units given by e.g.

traceless 2×2-matrices in special representation (Pauli-type)

iTB → qk̃ = −iσk (σk are Pauli matrices),

Then the structure constants are Levi-Civita tensor com-

ponents fBCD → εknm, and expressions for potential and

intensity (strength) of the gauge field are written as:

Aβ = g
1

2
Ak̃ β qk̃ , (10)

Fkαβ = ∂αAk β − ∂βAkα + εkmnAmαAnβ . (11)

It is worthnoting that this conventional method of intro-

duction of a Yang-Mills field type essentially exploits heu-

ristic base of theoretical physics, first of all the postulate

of minimal action and formalism of Lagrangian functions

construction. But since description of the field optionally

uses quaternion units one can assume that some of the above

relations are appropriate for Q-spaces theory and may have

geometric analogues. To verify this assumption we will use

an example of 4D space-time model with 3D spatial quater-

nion section.

Begin with the problem of 4D space-time with 3D spatial

section in the form of Q-space containing only one geometric

object: proper quaternion connexion. Q-covariant derivative

of the basic (frame) vectors qm identically vanish in this

space:
D̃αqk ≡ (δmk ∂α + ωαmk)qm = 0 . (12)

This equation is in fact equivalent to definition of the

proper connexion ωαmk. If a transformation of Q-units is

given by spinor group (leaving quaternion multiplication rule

invariant)
qk = U(y)qk̃U

−1(y) (13)

(qk̃ are constants here) then Eq. (12) yields

∂αU qk̃U
−1 + U qk̃ ∂αU

−1 = ωαknU qñU
−1. (14)

But one can easily verify that each “imaginary” Q-unit qk̃
can be always represented in the form of tensor product of its

eigen-functions (EF) ψ(k̃), ϕ(k̃) (no summation convention

for indices in brackets):

qk̃ψ(k̃) = ±iψ(k̃), ϕ(k̃)qk̃ = ±iϕ(k̃) (15)

having spinor structure (here only EF with positive parity

(with sign +) are shown)

qk̃ = i(2ψ(k̃)ϕ(k̃) − 1); (16)

this means that left-hand-side (lhs) of Eq. (14) can be equiv-

alently rewritten in the form

1

2
(∂αU qk̃U

−1 + U qk̃ ∂αU
−1) =

= (∂αU ψ(k̃))ϕ(k̃)U
−1 + U ψ(k̃) (ϕ(k̃)∂αU

−1)
(17)

which strongly resembles use of Eq. (1) for transformations

of spinor functions.

Here we for the first time underline a remarkable fact:

form-invariance of multiplication rule of Q-units under their

spinor transformations gives expressions similar to those

conventionally used to initiate introduction of gauge fields

of Yang-Mills type.

Now in order to determine mathematical analogues of

these “physical fields”, we will analyze in more details Eq.

(14). Its multiplication (from the right) by combination U qk̃
with contraction by index k̃ leads to the expression

−3 ∂αU + U qk̃ ∂αU
−1Uqk̃ = ωαknU qñqk̃ . (18)

This matrix equation can be simplified with the help of

the always possible development of transformation matrices

U ≡ a + bk qk̃ , U−1 = a − bk qk̃ , (19)

UU−1 = a2 + bk bk = 1 , (20)

where a, bk are real scalar and 3D-vector functions, qk̃ are Q-

units in special (Pauli-type) representation. Using Eqs. (19),

the second term in lhs of Eq. (18) after some algebra is

reduced to remarkably simple expression

U qk̃ ∂αU
−1Uqk̃ =

= (a+ bnqñ)qk̃(∂αa− ∂αbmqm̃) (a+ blql̃)qk̃ =
= ∂α(a+ bnqñ) = −∂αU

(21)
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so that altogether lhs of Eq. (18) comprises −4 ∂αU while

right-hand-side (rhs) is

ωαknU qñqk̃ = −εknmωαknU qm̃ ; (22)

then Eq. (18) yields

∂αU −
1

4
εknmωαknU qm̃ = 0 . (23)

If now one makes the following notations

Ak α ≡
1

2
εknmωαkn , (24)

Aα ≡
1

2
Anqñ , (25)

then notation (25) exactly coincides with the definition (10)

(provided g=1), and Eq. (23) turns out equivalent to Eq. (5)

U
←

Dα ≡ U(
←

∂α − Aα) = 0 . (26)

Expression for “covariant derivative” of inverse matrix

follows from the identity:

∂αU U
−1 = −U∂αU−1. (27)

Using Eq. (23) one easily computes

−∂αU−1 −
1

4
εknmωαkn qm̃U

−1 = 0 (28)

or

DαU
−1 ≡ (∂α + Aα)U−1 = 0 . (29)

Direction of action of the derivative operator is not essen-

tial here, since the substitution U−1 → U и U → U−1 is

always possible, and then Eq. (29) exactly coincides with

Eq. (5).

Now let us summarize first results. We have a remarkable

fact: form-invariance of Q-multiplication has as a corollary

“covariant constancy” of matrices of spinor transformations

of vector Q-units; moreover one notes that proper Q-conne-

xion (contracted in skew indices by Levi-Civita tensor) plays

the role of “gauge potential” of some Yang-Mills-type field.

By the way the Q-connexion is easily expressed from Eq. (24)

ωαkn = εmknAmα . (30)

Using Eq. (25) one finds expression for the gauge field

intensity (11) (contracted by Levi-Civita tensor for conve-

nience) through Q-connexion

εkmnFkαβ =

= εkmn(∂αAk β − ∂βAkα) + εkmnεmljAl αAj β =
= ∂αωβmn − ∂βωαmn + AmαAnβ − AmβAnα .

(31)

If identically vanishing sum

−δmnAj αAj β + δmnAjβAjα = 0 (32)

is added to rhs of (31) then all quadratic terms in the right

hand side can be given in the form

AmαAnβ − AmβAnα − δmnAj αAj β + δmnAjβAjα =
= (δmpδqn − δmnδqp)(ApαAq β − ApβAq α) =
= εkmqεkpn(ApαAq β − ApβAq α) =
= −ωαkn ωβ km + ωβ knAαkm .

Substitution of the last expression into Eq. (31) accom-

panied with new notation

Rmnαβ ≡ εkmnFkαβ (33)

leads to well-known formula:

Rmnαβ = ∂αωβmn − ∂βωαmn+
+ωαnk ωβ km − ωβ nk ωαkm .

(34)

This is nothing else but curvature tensor of Q-space built

out of proper Q-connexion components (in their turn being

functions of 4D coordinates). By other words, Yang-Mills

field strength is mathematically (geometrically) identical to

quaternion space curvature tensor. But in the considered

case of Q-space comprising only proper Q-connexion, all

components of the curvature tensor are identically zero. So

Yang-Mills field in this case has potential but no intensity.

The picture absolutely changes for the case of quaternion

space with Q-connexion containing a proper part ωβ kn and

also Q-non-metricity σβ kn

Ωβ kn(y
α) = ωβ kn + σβ kn (35)

so that Q-covariant derivative of a unite Q-vector with conne-

xion (35) does not vanish, its result is namely the Q-non-

metricity

D̂αqk ≡ (δmk∂α +Ωαmk)qm = σαmk qk . (36)

For this case “covariant derivatives” of transformation

spinor matrices may be defined analogously to previous case

definitions (26) and (29)

U
←̂

Dα ≡ Û(
←

∂α − Âα), D̂αU
−1 ≡ (∂α + Âα)U . (37)

But here the “gauge field” is built from Q-connexion (35)

Âk α ≡
1

2
εknmΩαkn, Âα ≡

1

2
Ânqñ . (38)

It is not difficult to verify whether the definitions (37) are

consistent with non-metricity condition (36). Action of the

“covariant derivatives” (37) onto a spinor-transformed unite

Q-vector

D̂αqk → (D̂αU)qk̃ ∂αU
−1 + U qk̃ (D̂αU

−1) =

=

(

U
←

Dα −
1

4
εjnmΩαnmUqj̃ qk̃

)

U−1+

+ U qk̃

(

DαU
−1 +

1

4
εjnmΩαnmqj̃U

−1

)
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together with Eqs. (26) and (29) demand:

U
←

Dα = DαU
−1 = 0 (39)

leads to the expected results

D̂αqk →
1

2
εjnmσαnmUεjklql̃ U

−1 =

= σαklU ql̃ U
−1 = σαkl ql

i.e. “gauge covariant” derivative of any Q-unit results in Q-

non-metricity in full accordance with Eq. (36).

Now find curvature tensor components in this Q-space; it

is more convenient to calculate them using differential forms.

Given Q-connexion 1-form

Ω kn = Ωβ kndy
β (40)

from the second equation of structure

1

2
R̂knαβ dy

α ∧ dyβ = dΩkn +Ωkm ∧ Ωmn (41)

one gets the curvature tensor component

R̂knαβ = ∂αΩβ kn − ∂βΩαkn+
+ΩαkmΩβmn − ΩαnmΩβmk

(42)

quite analogously to Eq. (34). Skew-symmetry in 3D indices

allows representing the curvature part of 3D Q-section as 3D

axial vector

F̂mαβ ≡
1

2
εknmR̂knαβ (43)

and using Eq. (38) one readily rewrites definition (43) in

the form

F̂mαβ = ∂αÂmβ − ∂βÂmα + εknmÂkαÂnβ (44)

which exactly coincides with conventional definition (11).

QED.

4 Klein-Gordon representation of Yang-Mills field

In the meantime, it is perhaps more interesting to note here

that such a neat linkage between Yang-Mills field and quater-

nion numbers is already known, in particular using Klein-

Gordon representation [16]. In turn, this neat correspondence

between Yang-Mills field and Klein-Gordon representation

can be expected, because both can be described in terms of

SU(2) theory [17]. In this regards, quaternion decomposition

of SU(2) Yang-Mills field has been discussed in [17], albeit

it implies a different metric from what is described herein:

ds2 = dα21 + sin
2α1 dβ

2
1 + dα

2
2 + sin

2α2 dβ
2
2 . (45)

However, the O(3) non-linear sigma model appearing in

the decomposition [17] looks quite similar (or related) to the

Quaternion relativity theory (as described in the Introduction,

there could be neat link between Q-relativity and SO(3, 1)).

Furthermore, sometime ago it has been shown that four-

dimensional coordinates may be combined into a quaternion,

and this could be useful in describing supersymmetric exten-

sion of Yang-Mills field [18]. This plausible neat link be-

tween Klein-Gordon equation, Duffin-Kemmer equation and

Yang-Mills field via quaternion number may be found useful,

because both Duffin-Kemmer equation and Yang-Mills field

play some kind of significant role in description of standard

model of particles [16].

In this regards, it has been argued recently that one

can derive standard model using Klein-Gordon equation, in

particular using Yukawa method, without having to introduce

a Higgs mass [19, 20]. Considering a notorious fact that

Higgs particle has not been observed despite more than three

decades of extensive experiments, it seems to suggest that

an alternative route to standard model of particles using

(quaternion) Klein-Gordon deserves further consideration.

In this section we will discuss a number of approaches

by different authors to describe the (quaternion) extension

of Klein-Gordon equation and its implications. First we will

review quaternion quantum mechanics of Adler. And then

we discuss how Klein-Gordon equation leads to hypothetical

imaginary mass. Thereafter we discuss an alternative route

for quaternionic modification of Klein-Gordon equation, and

implications to meson physics.

4.1 Quaternion Quantum Mechanics

Adler’s method of quaternionizing Quantum Mechanics grew

out of his interest in the Harari-Shupe’s rishon model for

composite quarks and leptons [21]. In a preceding paper [22]

he describes that in quaternionic quantum mechanics (QQM),

the Dirac transition amplitudes are quaternion valued, i.e.

they have the form

q = r0 + r1i+ r2j + r3k (46)

where r0, r1, r2, r3 are real numbers, and i, j, k are

quaternion imaginary units obeying

i2 = j2 = k2 = −1, ij = −ji = k,
jk = −kj = i, ki = −ik = j .

(47)

Using this QQM method, he described composite fermion

states identified with the quaternion real components [23].

4.2 Hypothetical imaginary mass problem in Klein-

Gordon equation

It is argued that dynamical origin of Higgs mass implies

that the mass of W must always be pure imaginary [19,

20]. Therefore one may conclude that a real description for

(composite) quarks and leptons shall avoid this problem, i.e.

by not including the problematic Higgs mass.

Nonetheless, in this section we can reveal that perhaps

the problem of imaginary mass in Klein-Gordon equation is

not completely avoidable. First we will describe an elemen-
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tary derivation of Klein-Gordon from electromagnetic wave

equation, and then by using Bakhoum’s assertion of total

energy we derive alternative expression of Klein-Gordon

implying the imaginary mass.

We can start with 1D-classical wave equation as derived

from Maxwell equations [24, p.4]:

∂2E

∂x2
− 1

c2
∂2E

∂t2
= 0 . (48)

This equation has plane wave solutions:

E(x, t) = E0e
i(kx−ωt) (49)

which yields the relativistic total energy:

ε2 = p2c2 +m2c4. (50)

Therefore we can rewrite (48) for non-zero mass particles

as follows [24]:

(

∂2

∂x2
− 1

c2
∂2

∂t2
− m

2c2

�2

)

Ψe
i
�
(px−Et) = 0 . (51)

Rearranging this equation (51) we get the Klein-Gordon

equation for a free particle in 3-dimensional condition:

(

∇− m
2c2

�2

)

Ψ =
1

c2
∂2Ψ

∂t2
. (52)

It seems worthnoting here that it is more proper to use

total energy definition according to Noether’s theorem in lieu

of standard definition of relativistic total energy. According

to Noether’s theorem [25], the total energy of the system

corresponding to the time translation invariance is given by:

E = mc2 +
cw

2

∫ ∞

0

(

γ2 4πr2 dr
)

= kμc2 (53)

where k is dimensionless function. It could be shown, that

for low-energy state the total energy could be far less than

E = mc2. Interestingly Bakhoum [25] has also argued in

favor of using E = mv2 for expression of total energy,

which expression could be traced back to Leibniz. Therefore

it seems possible to argue that expression E = mv2 is more

generalized than the standard expression of special relativity,

in particular because the total energy now depends on actual

velocity [25].

From this new expression, it is possible to rederive Klein-

Gordon equation. We start with Bakhoum’s assertion that it

is more appropriate to use E = mv2, instead of more con-

venient form E = mc2. This assertion would imply [25]:

H2 = p2c2 −m2
0c
2v2. (54)

A bit remark concerning Bakhoum’s expression, it does

not mean to imply or to interpret E = mv2as an assertion

that it implies zero energy for a rest mass. Actually the prob-

lem comes from “mixed” interpretation of what we mean

with “velocity”. In original Einstein’s paper (1905) it is

defined as “kinetic velocity”, which can be measured when

standard “steel rod” has velocity approximates the speed of

light. But in quantum mechanics, we are accustomed to make

use it deliberately to express “photon speed”= c. Therefore,

in special relativity 1905 paper, it should be better to interpret

it as “speed of free electron”, which approximates c. For

hydrogen atom with 1 electron, the electron occupies the

first excitation (quantum number n = 1), which implies that

their speed also approximate c, which then it is quite safe

to assume E ∼ mc2. But for atoms with large number of

electrons occupying large quantum numbers, as Bakhoum

showed that electron speed could be far less than c, therefore

it will be more exact to use E = mv2, where here v should

be defined as “average electron speed” [25].

In the first approximation of relativistic wave equation,

we could derive Klein-Gordon-type relativistic equation from

equation (54), as follows. By introducing a new parameter:

ζ = i
v

c
, (55)

then we can use equation (55) in the known procedure to

derive Klein-Gordon equation:

E2 = p2c2 + ζ2m2
0c
4, (56)

where E = mv2. By using known substitution:

E = i�
∂

∂t
, p =

�

i
∇ , (57)

and dividing by (�c)
2
, we get Klein-Gordon-type relativistic

equation [25]:

−c−2 ∂Ψ
∂t
+∇2Ψ = k′20 Ψ , (58)

where

k
′

0 =
ζm0c

�
. (59)

Therefore we can conclude that imaginary mass term

appears in the definition of coefficient k
′

0 of this new Klein-

Gordon equation.

4.3 Modified Klein-Gordon equation and meson obser-

vation

As described before, quaternionic Klein-Gordon equation has

neat link with Yang-Mills field. Therefore it seems worth to

discuss here how to quaternionize Klein-Gordon equation.

It can be shown that the resulting modified Klein-Gordon

equation also exhibits imaginary mass term.

Equation (52) is normally rewritten in simpler form (by

asserting c = 1):
(

∇− ∂2

∂t2

)

Ψ =
m2

�2
. (60)
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Interestingly, one can write the Nabla-operator above in

quaternionic form, as follows:

A. Define quaternion-Nabla-operator as analog to quaternion

number definition above (46), as follows [25]:

∇q = −i ∂
∂t
+ e1

∂

∂x
+ e2

∂

∂y
+ e3

∂

∂z
, (61)

where e1, e2, e3 are quaternion imaginary units. Note that

equation (61) has included partial time-differentiation.

B. Its quaternion conjugate is defined as follows:

∇̄q = −i ∂
∂t
− e1

∂

∂x
− e2

∂

∂y
− e3

∂

∂z
. (62)

C. Quaternion multiplication rule yields:

∇q ∇̄q = − ∂
2

∂t2
+
∂2

∂2x
+
∂2

∂2y
+
∂2

∂2z
. (63)

D. Then equation (63) permits us to rewrite equation (60) in

quaternionic form as follows:

∇q∇̄qΨ = m2

�2
. (64)

Alternatively, one used to assign standard value c=1 and

also �=1, therefore equation (60) may be written as:

(

∂2

∂t2
−∇2 +m2

)

ϕ(x, t) = 0 , (65)

where the first two terms are often written in the form of

square Nabla operator. One simplest version of this equa-

tion [26]:

−
(

∂S0
∂t

)2

+m2 = 0 (66)

yields the known solution [26]:

S0 = ±mt+ constant . (67)

The equation (66) yields wave equation which describes

a particle at rest with positive energy (lower sign) or with

negative energy (upper sign). Radial solution of equation

(66) yields Yukawa potential which predicts meson as obser-

vables.

It is interesting to note here, however, that numerical 1-D

solution of equation (65), (66) and (67) each yields slightly

different result, as follows. (All numerical computation was

performed using Mathematica [28].)

• For equation (65) we get:

(−D[#,x,x]+mˆ2+D[#,t,t])&[y[x,t]]==

m2 + y(0,2)[x, t]− y(2,0)[x, t] = 0
DSolve[%,y[x,t],{x,t}]

{{

y[x, t]→ m2x2

2
+ C[1][t− x] + C[2][t+ x]

}}

• For equation (66) we get:

( mˆ2−D[#,t,t])&[y[x,t]]==

m2 + y(0,2)[x, t] = 0

DSolve[%,y[x,t],{x,t}]
{{

y[x, t]→ m2t2

2
+ C[1][x] + tC[2][x]

}}

One may note that this numerical solution is in quadratic

form m2t2

2 + constant, therefore it is rather different from

equation (67) in [26].

In the context of possible supersymetrization of Klein-

Gordon equation (and also PT-symmetric extension of Klein-

Gordon equation [27, 29]), one can make use biquaternion

number instead of quaternion number in order to generalize

further the differential operator in equation (61):

E. Define a new “diamond operator” to extend quaternion-

Nabla-operator to its biquaternion counterpart, according to

the study [25]:

♦ = ∇q+i∇q =
(

−i ∂
∂t
+e1

∂

∂x
+e2

∂

∂y
+e3

∂

∂z

)

+

+ i

(

−i ∂
∂T
+e1

∂

∂X
+e2

∂

∂Y
+e3

∂

∂Z

)

,

(68)

where e1, e2, e3 are quaternion imaginary units. Its conjugate

can be defined in the same way as before.

To generalize Klein-Gordon equation, one can generalize

its differential operator to become:
[(

∂2

∂t2
−∇2

)

+i

(

∂2

∂t2
−∇2

)]

ϕ(x, t)=−m2ϕ(x, t), (69)

or by using our definition in (68), one can rewrite equation

(69) in compact form:
(

♦♦̄+m2
)

ϕ(x, t) = 0, (70)

and in lieu of equation (66), now we get:
[

(

∂S0
∂t

)2

+ i

(

∂S0
∂t

)2
]

= m2. (71)

Numerical solutions for these equations were obtained in

similar way with the previous equations:

• For equation (70) we get:

(−D[#,x,x]+D[#,t,t]−I*D[#,x,x]+I*D[#,t,t]+mˆ2)

&[y[x,t]]==

m2 + (1 + i) y(0,2)[x, t]− (1 + i) y(2,0)[x, t] = 0

DSolve[%,y[x,t],{x,t}
{{

y[x, t]→
(

1

4
− i
4

)

m2x2+C[1][t− x]+C[2][t+ x]
}}
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• For equation (71) we get:

(−mˆ2+D[#,t,t]+I*D[#,t,t])&[y[x,t]]==

m2 + (1 + i) y(0,2)[x, t] = 0

DSolve[%,y[x,t],{x,t}]

{{

y[x, t]→
(

1

4
− i

4

)

m2x2 + C[1][x] + tC[2][x]

}}

Therefore, we may conclude that introducing biquater-

nion differential operator (in terms of “diamond operator”)

yield quite different solutions compared to known standard

solution of Klein-Gordon equation [26]:

y(x, t) =

(

1

4
− i

4

)

m2t2 + constant . (72)

In other word: we can infer hat t = ± 1
m

√

y/
(

1
4 − i

4

)

,

therefore it is likely that there is imaginary part of time

dimension, which supports a basic hypothesis of the afore-

mentioned BQ-metric in Q-relativity.

Since the potential corresponding to this biquaternionic

KGE is neither Coulomb, Yukawa, nor Hulthen potential,

then one can expect to observe a new type of matter, which

may be called “supersymmetric-meson”. If this new type

of particles can be observed in near future, then it can be

regarded as early verification of the new hypothesis of PT-

symmetric QM and CT-symmetric QM as considered in some

recent reports [27, 29]. In our opinion, its presence may be

expected in particular in the process of breaking of Coulomb

barrier in low energy schemes.

Nonetheless, further observation is recommended in

order to support or refute this proposition.

5 Concluding remarks

If 4D space-time has for its 3D spatial section a Q-space with

Q-connexion Ωβ kn containing Q-non-metricity σβ kn, then

the Q-connexion, geometric object, is algebraically identical

to Yang-Mills potential

Âkα ≡
1

2
εknmΩαkn ,

while respective curvature tensor R̂knαβ , also a geometric

object, is algebraically identical to Yang-Mills “physical

field” strength

F̂mαβ ≡
1

2
εknmR̂knαβ .

Thus Yang-Mills gauge field Lagrangian

LYM ∼ F̂αβk F̂kαβ=
1

4
εkmnεkjl R̂

αβ
mnR̂jlαβ=

1

2
R̂αβmnR̂mnαβ

can be geometrically interpreted as a Lagrangian of “non-

linear” or “quadratic” gravitational theory, since it contains

quadratic invariant of curvature Riemann-type tensor con-

tracted by all indices. Hence Yang-Mills theory can be re-

garded as a theory of pure geometric objects: Q-connexion

and Q-curvature with Lagrangian quadratic in curvature (as:

Einstein’s theory of gravitation is a theory of geometrical

objects: Christoffel symbols and Riemann tensor, but with

linear Lagrangian made of scalar curvature).

Presence of Q-non-metricity is essential. If Q-non-

metricity vanishes, the Yang-Mills potential may still exist,

then it includes only proper Q-connexion (in particular, com-

ponents of Q-connexion physically manifest themselves as

“forces of inertia” acting onto non-inertially moving ob-

server); but in this case all Yang-Mills intensity components,

being in fact components of curvature tensor, identically are

equal to zero.

The above analysis of Yang-Mills field from Quaternion

Space geometry may be found useful in particular if we

consider its plausible neat link with Klein-Gordon equation

and Duffin-Kemmer equation. We discuss in particular a

biquaternionic-modification of Klein-Gordon equation. Since

the potential corresponding to this biquaternionic KGE is

neither Coulomb, Yukawa, nor Hulthen potential, then one

can expect to observe a new type of matter. Further obser-

vation is recommended in order to support or refute this

proposition.
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In the preceding article we argue that biquaternionic extension of Klein-Gordon equa-

tion has solution containing imaginary part, which differs appreciably from known so-

lution of KGE. In the present article we present numerical /computer solution of ra-

dial biquaternionic KGE (radialBQKGE); which differs appreciably from conventional

Yukawa potential. Further observation is of course recommended in order to refute or

verify this proposition.

1 Introduction

In the preceding article [1] we argue that biquaternionic ex-

tension of Klein-Gordon equation has solution containing

imaginary part, which differs appreciably from known solu-

tion of KGE. In the present article we presented here for the

first time a numerical/computer solution of radial biquater-

nionic KGE (radialBQKGE); which differs appreciably from

conventional Yukawa potential.

This biquaternionic effect may be useful in particular to

explore new effects in the context of low-energy reaction

(LENR) [2]. Nonetheless, further observation is of course

recommended in order to refute or verify this proposition.

2 Radial biquaternionic KGE (radial BQKGE)

In our preceding paper [1], we argue that it is possible to

write biquaternionic extension of Klein-Gordon equation

as follows:��
�
�

���
��

�

�
� �

�
�
�

���
��

�

��
���� �� �

� ��� ���� �� �

(1)

or this equation can be rewritten as:�
������

�
���� �� � �� (2)

provided we use this definition:

� � �� � ��� �

�
��

�

��
� ��

�

��
� ��

�

��
� ��

�

��

�
�

� �

�
��

�

��
� ��

�

��
� ��

�

��
� ��

�

�	

�

 (3)

where ��, ��, �� are quaternion imaginary units obeying

(with ordinary quaternion symbols: ��� �, ��� �, ��� �):

�� � �� � �� � �� 
 �� � ��� � � 


�� � ��� � � 
 �� � ��� � � 
(4)

and quaternion Nabla operator is defined as [1]:

�
� � ��

�

��
� ��

�

��
� ��

�

��
� ��

�

��
 (5)

(Note that (3) and (5) included partial time-differentiation.)

In the meantime, the standard Klein-Gordon equation

usually reads [3, 4]:�
��

���
��

�

�
���
 �� � ������
 ��  (6)

Now we can introduce polar coordinates by using the

following transformation:

� �
�

��
�

��

�
��

�

��

�
�

��

��
 (7)

Therefore, by substituting (7) into (6), the radial Klein-

Gordon equation reads — by neglecting partial-time differen-

tiation — as follows [3, 5]:�
�

��
�

��

�
��

�

��

�
�

���� ��

��
���

�
���
 �� � � 
 (8)

and for � � �, then we get [5]:�
�

��
�

��

�
��

�

��

�
���

�
���
 �� � �  (9)

The same method can be applied to equation (2) for radial

biquaternionic KGE (BQKGE), which for the 1-dimensional

situation, one gets instead of (8):�
�

��

�
�

��

�
� �

�

��

�
�

��

�
���

�
���
 �� � �  (10)

In the next Section we will discuss numerical/computer

solution of equation (10) and compare it with standard solu-

tion of equation (9) using Maxima software package [6]. It

can be shown that equation (10) yields potential which differs

appreciably from standard Yukawa potential. For clarity, all

solutions were computed in 1-D only.
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3 Numerical solution of radial biquaternionic Klein-

Gordon equation

Numerical solution of the standard radial Klein-Gordon equa-

tion (9) is given by:

(%i1) diff(y,t,2)-’diff(y,r,2)+mˆ2*y;

(%o1) �� � � � �
�

���
�

(%i2) ode2 (%o1, y , r);

(%o2) � � ��� ��������� � ��� ���������� (11)

In the meantime, numerical solution of equation (10) for

radial biquaternionic KGE (BQKGE), is given by:

(%i3) diff(y,t,2)- (%i+1)*’diff(y,r,2)+mˆ2*y;

(%o3) �� � � � ��� 	� �
�

���
�

(%i4) ode2 (%o3, y , r);

(%o4) � � ��� � 
��
�

�����
�����

�
���� � �


�
�����
�����

�
(12)

Therefore, we conclude that numerical solution of radial

biquaternionic extension of Klein-Gordon equation yields

different result compared to the solution of standard Klein-

Gordon equation; and it differs appreciably from the well-

known Yukawa potential [3, 7]:

���� � �
�
�

�
�
���

� (13)

Meanwhile, Comay puts forth argument that the Yukawa

lagrangian density has theoretical inconsistency within

itself [3].

Interestingly one can find argument that biquaternion

Klein-Gordon equation is nothing more than quadratic form

of (modified) Dirac equation [8], therefore BQKGE describ-

ed herein, i.e. equation (12), can be considered as a plausible

solution to the problem described in [3]. For other numerical

solutions to KGE, see for instance [4].

Nonetheless, we recommend further observation [9] in or-

der to refute or verify this proposition of new type of potential

derived from biquaternion Klein-Gordon equation.
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As we know, it has been quite common nowadays for particle physicists to think of

six impossible things before breakfast, just like what their cosmology fellows used to

do. In the present paper, we discuss a number of those impossible things, including

PT-symmetric periodic potential, its link with condensed matter nuclear science, and

possible neat link with Quark confinement theory. In recent years, the PT-symmetry

and its related periodic potential have gained considerable interests among physicists.

We begin with a review of some results from a preceding paper discussing derivation of

PT-symmetric periodic potential from biquaternion Klein-Gordon equation and proceed

further with the remaining issues. Further observation is of course recommended in

order to refute or verify this proposition.

1 Introduction

As we know, it has been quite common nowadays for parti-

cle physicists to think of six impossible things before break-

fast [1], just like what their cosmology fellows used to do.

In the present paper, we discuss a number of those impossi-

ble things, including PT-symmetric periodic potential, its link

with condensed matter nuclear science, and possible neat link

with Quark Confinement theory.

In this regards, it is worth to remark here that there were

some attempts in literature to generalise the notion of sym-

metries in Quantum Mechanics, for instance by introducing

CPT symmetry, chiral symmetry etc. In recent years, the PT-

symmetry and its related periodic potential have gained con-

siderable interests among physicists [2, 3]. It is expected that

the discussions presented here would shed some light on these

issues.

We begin with a review of results from our preceding pa-

pers discussing derivation of PT-symmetric periodic potential

from biquaternion Klein-Gordon equation [4–6]. Thereafter

we discuss how this can be related with both Gribov’s theory

of Quark Confinement, and also with EQPET/TSC model for

condensed matter nuclear science (aka low-energy reaction

or “cold fusion”) [7]. We also highlight its plausible impli-

cation to the calculation of Gamow integral for the (periodic)

non-Coulomb potential.

In other words, we would like to discuss in this paper,

whether there is PT symmetric potential which can be ob-

served in Nature, in particular in the context of condensed

matter nuclear science (CMNS) and Quark confinement

theory.

Nonetheless, further observation is of course recommend-

ed in order to refute or verify this proposition.

2 PT-symmetric periodic potential

It has been argued elsewhere that it is plausible to derive a

new PT-symmetric Quantum Mechanics (PT-QM; sometimes

it is called pseudo-Hermitian Quantum Mechanics [3, 9])

which is characterized by a PT-symmetric potential [2]

� ��� � � ���� � (1)

One particular example of such PT-symmetric potential

can be found in sinusoidal-form potential

� � ���� � (2)

PT-symmetric harmonic oscillator can be written accord-

ingly [3]. Znojil has argued too [2] that condition (1) will

yield Hulthen potential

� ��� �
�

��� �����
�
�

�

��� �����
� (3)

Interestingly, a similar periodic potential has been known

for quite a long time as Posch-Teller potential [9], although

it is not always related to PT-Symmetry considerations. The

Posch-Teller system has a unique potential in the form [9]

	��� � �
 	
���� � � (4)

It appears worth to note here that Posch-Teller periodic

potential can be derived from conformal D’Alembert equa-

tions [10, p.27]. It is also known as the second Posch-Teller

potential

����� �
� ��� ��

����� �
�
� ��� ��

	
��� �
� (5)

The next Section will discuss biquaternion Klein-Gordon

equation [4, 5] and how its radial version will yield a sinu-

soidal form potential which appears to be related to equa-

tion (2).
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3 Solution of radial biquaternion Klein-Gordon equa-

tion and a new sinusoidal form potential

In our preceding paper [4], we argue that it is possible to

write biquaternionic extension of Klein-Gordon equation as

follows��
��

���
���

�
� �

�
��

���
���

��
���� �� �

� ������� �� � (6)

or this equation can be rewritten as�������
�
���� �� � � (7)

provided we use this definition

� � �� � ��� �

�
� �

�

��
� ��

�

��
� ��

�

�	
� ��

�

�


�
�

� �

�
� �

�

��
� ��

�

��
� ��

�

�
� ��

�

��

�
� (8)

where ��, ��, �� are quaternion imaginary units obeying

(with ordinary quaternion symbols ��� �, ��� �, ��� �):

�� � �� � �� � �� � �� � ��� � � � (9)

�� � ��� � � � �� � ��� � � � (10)

and quaternion Nabla operator is defined as [4]
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� (11)

Note that equation (11) already included partial time-

differentiation.

Thereafter one can expect to find solution of radial bi-

quaternion Klein-Gordon Equation [5, 6].

First, the standard Klein-Gordon equation reads�
��

���
���

�
���� �� � ������� �� � (12)

At this point we can introduce polar coordinate by using

the following transformation

� �
�
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Therefore by introducing this transformation (13) into

(12) one gets (setting � � �)�
�

��
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By using the same method, and then one gets radial ex-

pression of BQKGE (6) for 1-dimensional condition as fol-

lows [5, 6]�
�
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Using Maxima computer package we find solution of

equation (15) as a new potential taking the form of sinusoidal

potential

	 � �� �	
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where �� and �� are parameters to be determined. It appears

very interesting to remark here, when �� is set to 0, then equa-

tion (16) can be written in the form of equation (2)

� � �� �	
� � (17)

by using definition

� � �	


� ��� ����� �

�
� (18)

In retrospect, the same procedure which has been tradi-

tionally used to derive the Yukawa potential, by using radial

biquaternion Klein-Gordon potential, yields a PT-symmetric

periodic potential which takes the form of equation (1).

4 Plausible link with Gribov’s theory of Quark Confine-

ment

Interestingly, and quite oddly enough, we find the solution

(17) may have deep link with Gribov’s theory of Quark con-

finement [8, 11]. In his Third Orsay Lectures he described a

periodic potential in the form [8, p.12]

� � � �	
� � � � (19)

By using Maxima package, the solution of equation (19)

is given by
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while Gribov argues that actually the equation shall be like

nonlinear oscillation with damping, the equation (19) indi-

cates close similarity with equation (2).

Therefore one may think that PT-symmetric periodic po-

tential in the form of (2) and also (17) may have neat link

with the Quark Confinement processes, at least in the con-

text of Gribov’s theory. Nonetheless, further observation is

of course recommended in order to refute or verify this pro-

position.

5 Implication to condensed matter nuclear science.

Comparing to EQPET/TSC model. Gamow integral

In accordance with a recent paper [6], we interpret and com-

pare this result from the viewpoint of EQPET/TSC model

which has been suggested by Prof. Takahashi in order to ex-

plain some phenomena related to Condensed matter nuclear

Science (CMNS).
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Takahashi [7] has discussed key experimental results

in condensed matter nuclear effects in the light of his

EQPET/TSC model. We argue here that his potential model

with inverse barrier reversal (STTBA) may be comparable to

the periodic potential described above (17).

In [7] Takahashi reported some findings from condensed

matter nuclear experiments, including intense production of

helium-4, �He atoms, by electrolysis and laser irradiation ex-

periments. Furthermore he [7] analyzed those experimental

results using EQPET (Electronic Quasi-Particle Expansion

Theory). Formation of TSC (tetrahedral symmetric conden-

sate) were modeled with numerical estimations by STTBA

(Sudden Tall Thin Barrier Approximation). This STTBA

model includes strong interaction with negative potential near

the center.

One can think that apparently to understand the physics

behind Quark Confinement, it requires fusion of different

fields in physics, perhaps just like what Langland program

wants to fuse different branches in mathematics.

Interestingly, Takahashi also described the Gamow inte-

gral of his STTBA model as follows [7]

�� � �����
�
����

� ��

��

��� � ���
���

�� � (21)

Using � � 	�
 fm and � � 	 fm, he obtained [7]

��� � ����	 (22)

and

�� � ���	� MeV	 (23)

which gave significant underestimate for 4D fusion rate when

rigid constraint of motion in 3D space attained. Nonetheless

by introducing different values for 
�� the estimate result can

be improved. Therefore we may conclude that Takahashi’s

STTBA potential offers a good approximation (just what the

name implies, STTBA) of the fusion rate in condensed matter

nuclear experiments.

It shall be noted, however, that his STTBA lacks sufficient

theoretical basis, therefore one can expect that a sinusoidal

periodic potential such as equation (17) may offer better re-

sult.

All of these seem to suggest that the cluster deuterium

may yield a different inverse barrier reversal which cannot be

predicted using the D-D process as in standard fusion theory.

In other words, the standard procedure to derive Gamow fac-

tor should also be revised [12]. Nonetheless, it would need

further research to determine the precise Gamow energy and

Gamow factor for the cluster deuterium with the periodic po-

tential defined by equation (17); see for instance [13].

In turn, one can expect that Takahashi’s EQPET/TSC

model along with the proposed PT-symmetric periodic poten-

tial (17) may offer new clues to understand both the CMNS

processes and also the physics behind Quark confinement.

6 Concluding remarks

In recent years, the PT-symmetry and its related periodic po-

tential have gained considerable interests among physicists.

In the present paper, it has been shown that one can find

a new type of PT-symmetric periodic potential from solu-

tion of the radial biquaternion Klein-Gordon Equation. We

also have discussed its plausible link with Gribov’s theory of

Quark Confinement and also with Takahashi’s EQPET/TSC

model for condensed matter nuclear science. All of which

seems to suggest that the Gribov’s Quark Confinement the-

ory may indicate similarity, or perhaps a hidden link, with the

Condensed Matter Nuclear Science (CMNS). It could also be

expected that thorough understanding of the processes behind

CMNS may also require revision of the Gamow factor to take

into consideration the cluster deuterium interactions and also

PT-symmetric periodic potential as discussed herein.

Further theoretical and experiments are therefore recom-

mended to verify or refute the proposed new PT symmetric

potential in Nature.
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NEUTROSOPHIC LOGIC, WAVE MECHANICS AND 

OTHER STORIES: SELECTED WORKS 2005-2008 
 
 
There is beginning for anything; we used to hear that phrase. 
The same wisdom word applies to us too. What began in 2005 as 
a short email on some ideas related to interpretation of the Wave 
Mechanics results in a number of papers and books up to now. 
Some of these papers can be found in Progress in Physics or 
elsewhere.  
 
Our purpose here is to present a selection of those papers in a 
compilation which enable the readers to find some coherent 
ideas which appeared in those articles. For this reason, the 
ordering of the papers here is based on categories of ideas. 
 
While some of these articles have been published in book format 
elsewhere, we hope that reading this book will give the readers 
impression of progression of our thoughts. 
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