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Abstract. We have defined the Neutrosophic Over-
/Under-/Off-Set and -Logic for the first time in 1995 and 
published in 2007. During 1995-2016 we presented them 
to various national and international conferences and 
seminars ([16]-[37]) and did more publishing during 
2007-2016 ([1]-[15]). These new notions are totally dif-
ferent from other sets/logics/probabilities. 
We extended the neutrosophic set respectively to Neutro-

sophic Overset {when some neutrosophic component is > 
1}, to Neutrosophic Underset {when some neutrosophic 
component is < 0}, and to Neutrosophic Offset {when 
some neutrosophic components are off the interval [0, 1], 
i.e. some neutrosophic component > 1 and other neutro-
sophic component < 0}. This is no surprise since our re-
al-world has numerous examples and applications of 
over-/under-/off-neutrosophic components.

Keywords: Neutrosophic overset, neutrosophic underset, neutrosophic offset, neutrosophic overlogic, neutrosophic underlogic, 
neutrosophic offlogic, neutrosophic overprobability, neutrosophic underprobability, neutrosophic offprobability, overmembership 
(membership degree > 1), undermembership (membership degree < 0), offmembership (membership degree off the interval [0, 1]).

1. Introduction

In the classical set and logic theories, in the fuzzy set and 
logic, and in intuitionistic fuzzy set and logic, the degree of 
membership and degree of nonmembership have to belong 
to, or be included in, the interval [0, 1]. Similarly, in the 
classical probability and in imprecise probability the 
probability of an event has to belong to, or respectively be 
included in, the interval [0, 1]. 
Yet, we have observed and presented to many conferences 
and seminars around the globe {see [16]-[37]} and 
published {see [1]-[15]} that in our real world there are 
many cases when the degree of membership is greater than 
1. The set, which has elements whose membership is over
1, we called it Overset. 
Even worst, we observed elements whose membership 
with respect to a set is under 0, and we called it Underset. 
In general, a set that has elements whose membership is 
above 1 and elements whose membership is below 0, we 
called it Offset (i.e. there are elements whose memberships 
are off (over and under) the interval [0, 1]). 

“Neutrosophic” means based on three components T 

(truth-membership), I (indeterminacy), and F (falsehood-

nonmembership). And “over” means above 1, “under” 
means below 0, while “offset” means behind/beside the set 
on both sides of the interval [0, 1], over and under, more 
and less, supra and below, out of, off the set. Similarly, for 

“offlogic”, “offmeasure”, “offprobability”, “offstatistics” 
etc. 

It is like a pot with boiling liquid, on a gas stove, when 
the liquid swells up and leaks out of pot. The pot (the 
interval [0, 1]) can no longer contain all liquid (i.e., all 
neutrosophic truth / indeterminate / falsehood values), and 
therefore some of them fall out of the pot (i.e., one gets 
neutrosophic truth / indeterminate / falsehood values which 
are > 1), or the pot cracks on the bottom and the liquid 
pours down (i.e., one gets neutrosophic truth / 
indeterminate / falsehood values which are < 0). 

Mathematically, they mean getting values off the 
interval [0, 1]. 

The American aphorism “think outside the box” has a 
perfect resonance to the neutrosophic offset, where the box 
is the interval [0, 1], yet values outside of this interval are 
permitted. 

2. Example of Overmembership and Undermember-
ship. 

In a given company a full-time employer works 40 
hours per week. Let’s consider the last week period. 
Helen worked part-time, only 30 hours, and the other 
10 hours she was absent without payment; hence, her 
membership degree was 30/40 = 0.75 < 1. 

3
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John worked full-time, 40 hours, so he had the 
membership degree 40/40 = 1, with respect to this 
company.  

But George worked overtime 5 hours, so his mem-
bership degree was (40+5)/40 = 45/40 = 1.125 > 1. 
Thus, we need to make distinction between employ-
ees who work overtime, and those who work full-
time or part-time. That’s why we need to associate a 
degree of membership strictly greater than 1 to the 
overtime workers. 

Now, another employee, Jane, was absent without 
pay for the whole week, so her degree of membership 
was 0/40 = 0. 

Yet, Richard, who was also hired as a full-time, not 
only didn’t come to work last week at all (0 worked 
hours), but he produced, by accidentally starting a 
devastating fire, much damage to the company, 
which was estimated at a value half of his salary (i.e. 
as he would have gotten for working 20 hours that 
week). Therefore, his membership degree has to be 
less that Jane’s (since Jane produced no damage). 
Whence, Richard’s degree of membership, with re-
spect to this company, was - 20/40 = - 0.50 < 0.  

Consequently, we need to make distinction be-
tween employees who produce damage, and those 
who produce profit, or produce neither damage no 
profit to the company. 

Therefore, the membership degrees > 1 and < 0 are real 
in our world, so we have to take them into consideration. 

Then, similarly, the Neutrosophic Log-
ic/Measure/Probability/Statistics etc. were extended to re-
spectively Neutrosophic Over-/Under-/Off-Logic, -

Measure, -Probability, -Statistics etc. [Smarandache, 
2007]. 

Another Example of Membership Above 1 and 
Membership Below 0. 

Let’s consider a spy agency S = {S1, S2, …, S1000} 
of a country Atara against its enemy country Batara. Each 
agent Sj, j ∈ {1, 2, …, 1000}, was required last week to 
accomplish 5 missions, which represent the full-time 
contribution/membership.  

Last week agent S27 has successfully 
accomplished his 5 missions, so his membership was 
T(A27) = 5/5 = 1 = 100% (full-time membership). 

Agent S32 has accomplished only 3 missions, so 
his membership is T(S32) = 3/5 = 0.6 = 60% (part-time 
membership). 

Agent S41 was absent, without pay, due to his 
health problems; thus T(S41) = 0/5 = 0 = 0% (null-
membership).  

Agent S53 has successfully accomplished his 5 
required missions, plus an extra mission of another agent 
that was absent due to sickness, therefore T(S53) = (5+1)/5 
= 6/5 = 1.2 > 1 (therefore, he has membership above 1, 
called over-membership). 

Yet, agent S75 is a double-agent, and he leaks 
highly confidential information about country Atara to the 
enemy country Batara, while simultaneously providing 
misleading information to the country Atara about the 
enemy country Batara. Therefore S75 is a negative agent 
with respect to his country Atara,  since he produces 
damage to Atara, he was estimated to having intentionally 
done wrongly all his 5 missions, in addition of 
compromising a mission of another agent  of country Atara, 
thus his membership T(S75) = - (5+1)/5 = - 6/5 = -1.2 < 0 
(therefore, he has a membership below 0, called under-
membership). 

3. Definitions and the main work

1. Definition of Single-Valued Neutrosophic
Overset.

Let U be a universe of discourse and the neutrosophic set 
A1   U.
Let T(x), I(x), F(x) be the functions that describe the 
degrees of membership, indeterminate-membership, and 
nonmembership respectively, of a generic element x ∈ U, 
with respect to the neutrosophic set A1: 
T(x), I(x), F(x) : U  [0, ]  
where 0  < 1 <  , and  is called overlimit, 
T(x), I(x), F(x) ∈ [0, ] . 
A Single-Valued Neutrosophic Overset A1 is defined as: 
A1 = {(x, <T(x), I(x), F(x)>), x ∈ U}, 
such that there exists at least one element in A1 that has at 
least one neutrosophic component that is > 1, and no 
element has neutrosophic components that are < 0. 
For example: A1 = {(x1, <1.3, 0.5, 0.1>), (x2, <0.2, 1.1, 
0.2>)}, since T(x1) = 1.3 > 1, I(x2) = 1.1 > 1, and no 
neutrosophic component is < 0. 
Also O2 = {(a, <0.3, -0.1, 1.1>)}, since I(a) = - 0.1 < 0 and 
F(a) = 1.1 > 1. 

2. Definition of Single-Valued Neutrosophic
Underset.

Let U be a universe of discourse and the neutrosophic set 
A2   U.
Let T(x), I(x), F(x) be the functions that describe the 
degrees of membership, indeterminate-membership, and 
nonmembership respectively, of a generic element x ∈ U, 
with respect to the neutrosophic set A2: 
T(x), I(x), F(x) : U  [ ,1]  
where  < 0  < 1, and   is called underlimit, 
T(x), I(x), F(x) ∈ [ ,1] . 
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A Single-Valued Neutrosophic Underset A2 is defined as: 
A2 = {(x, <T(x), I(x), F(x)>), x ∈ U}, 
such that there exists at least one element in A2 that has at 
least one neutrosophic component that is < 0, and no 
element has neutrosophic components that are > 1. 
For example: A2 = {(x1, <-0.4, 0.5, 0.3>), (x2, <0.2, 0.5, -
0.2>)}, since T(x1) = -0.4 < 0, F(x2) = -0.2 < 0, and no 
neutrosophic component is > 1. 

3. Definition of Single-Valued Neutrosophic
Offset.

Let U be a universe of discourse and the neutrosophic set 
A3   U.
Let T(x), I(x), F(x) be the functions that describe the 
degrees of membership, indeterminate-membership, and 
nonmembership respectively, of a generic element x ∈ U, 
with respect to the set A3: 
T(x), I(x), F(x) : U  [ , ]   
where  < 0  < 1 <  , and   is called underlimit, 
while   is called overlimit, 
T(x), I(x), F(x) ∈ [ , ]  . 
A Single-Valued Neutrosophic Offset A3 is defined as: 
A3 = {(x, <T(x), I(x), F(x)>), x ∈ U}, 
such that there exist some elements in A3 that have at least 
one neutrosophic component that is > 1, and at least 
another neutrosophic component that is < 0. 
For examples: A3 = {(x1, <1.2, 0.4, 0.1>), (x2, <0.2, 0.3, -
0.7>)}, since T(x1) = 1.2 > 1 and F(x2) = -0.7 < 0. 
Also B3 = {(a, <0.3, -0.1, 1.1>)}, since I(a) = - 0.1 < 0 and 
F(a) = 1.1 > 1. 

4. Single Valued Neutrosophic Overset / Underset
/ Offset Operators.

Let U be a universe of discourse and A = {(x, <TA(x), IA(x), 
FA(x)>), x ∈ U} and  
and B = {(x, <TB(x), IB(x), FB(x)>), x ∈ U} be two single-
valued neutrosophic oversets / undersets / offsets. 
TA(x), IA(x), FA(x), TB(x), IB(x), FB(x): U  [ , ]   
where  ≤ 0  < 1 ≤  , and   is called underlimit, 
while   is called overlimit, 
TA(x), IA(x), FA(x), TB(x), IB(x), FB(x) ∈ [ , ]  . 
We take the inequality sign ≤ instead of < on both 
extremes above, in order to comprise all three cases: 
overset {when = 0, and 1 <  }, underset {when < 0, 
and 1 =  }, and offset {when < 0, and 1 <  }. 

4.1. Single Valued Neutrosophic Overset / Underset / 
Offset Union. 
Then A∪B = {(x, <max{TA(x), TB(x)}, min{IA(x), IB(x)}, 
min{FA(x), FB(x)}>), x∈ U} 

4.2. Single Valued Neutrosophic Overset / Underset / 
Offset Intersection. 
Then A∩B = {(x, <min{TA(x), TB(x)}, max{IA(x), IB(x)}, 
max{FA(x), FB(x)}>), x∈ U} 

4.3. Single Valued Neutrosophic Overset / Underset / 
Offset Complement. 
The neutrosophic complement of the neutrosophic set A is  
C(A) = {(x, <FA(x),  +   - IA(x), TA(x)>), x ∈ U}.

5. Definition of Interval-Valued Neutrosophic
Overset.

Let U be a universe of discourse and the neutrosophic set 
A1   U.
Let T(x), I(x), F(x) be the functions that describe the 
degrees of membership, indeterminate-membership, and 
nonmembership respectively, of a generic element x ∈ U, 
with respect to the neutrosophic set A1: 
T(x), I(x), F(x) : U  P( [0, ] ), 
where 0  < 1 <  , and  is called overlimit,  
T(x), I(x), F(x) ⊆[0, ] , and P( [0, ] ) is the set of all 
subsets of [0, ] . 
An Interval-Valued Neutrosophic Overset A1 is defined as: 
A1 = {(x, <T(x), I(x), F(x)>), x ∈ U}, 
such that there exists at least one element in A1 that has at 
least one neutrosophic component that is partially or totally 
above 1, and no element has neutrosophic components that 
is partially or totally below 0. 
For example: A1 = {(x1, <(1, 1.4], 0.1, 0.2>), (x2, <0.2, 
[0.9, 1.1], 0.2>)}, since T(x1) = (1, 1.4] is totally above 1, 
I(x2) = [0.9, 1.1] is partially above 1, and no neutrosophic 
component is partially or totally below 0. 

6. Definition of Interval-Valued Neutrosophic
Underset.

Let U be a universe of discourse and the neutrosophic set 
A2   U.
Let T(x), I(x), F(x) be the functions that describe the 
degrees of membership, indeterminate-membership, and 
nonmembership respectively, of a generic element x ∈ U, 
with respect to the neutrosophic set A2: 
T(x), I(x), F(x) : U  [ ,1] , 
where  < 0  < 1, and   is called underlimit, 
T(x), I(x), F(x) ⊆[ ,1] , and P([ ,1] ) is the set of all 
subsets of [ ,1] . 
An Interval-Valued Neutrosophic Underset A2 is defined 
as: 
A2 = {(x, <T(x), I(x), F(x)>), x ∈ U}, 
such that there exists at least one element in A2 that has at 
least one neutrosophic component that is partially or totally 
below 0, and no element has neutrosophic components that 
are partially or totally above 1. 
For example: A2 = {(x1, <(-0.5,-0.4), 0.6, 0.3>), (x2, <0.2, 
0.5, [-0.2, 0.2]>)}, since T(x1) = (-0.5, -0.4) is totally 
below 0, F(x2) = [-0.2, 0.2] is partially below 0, and no 
neutrosophic component is partially or totally above 1. 

7. Definition of Interval-Valued Neutrosophic
Offset.

Let U be a universe of discourse and the neutrosophic set 
A3   U.
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Let T(x), I(x), F(x) be the functions that describe the 
degrees of membership, indeterminate-membership, and 
nonmembership respectively, of a generic element x ∈ U, 
with respect to the set A3: 
T(x), I(x), F(x) : U  P( [ , ]  ), 
where  < 0  < 1 <  , and   is called underlimit, 
while   is called overlimit, 
T(x), I(x), F(x) ⊆[ , ]  , and P( [ , ]  ) is the set of 
all subsets of [ , ]  . 
An Interval-Valued Neutrosophic Offset A3 is defined as: 
A3 = {(x, <T(x), I(x), F(x)>), x ∈ U}, 
such that there exist some elements in A3 that have at least 
one neutrosophic component that is partially or totally 
above 1, and at least another neutrosophic component that 
is partially or totally below 0. 
For examples: A3 = {(x1, <[1.1, 1.2], 0.4, 0.1>), (x2, <0.2, 
0.3, (-0.7, -0.3)>)}, since T(x1) = [1.1, 1.2] that is totally 
above 1, and F(x2) = (-0.7, -0.3) that is totally below 0. 
Also B3 = {(a, <0.3, [-0.1, 0.1], [1.05, 1.10]>)}, since I(a) 
= [- 0.1, 0.1] that is partially below 0, and F(a) = [1.05, 
1.10] that is totally above 1. 

8. Interval-Valued Neutrosophic Overset / 
Underset / Offset Operators.

Let U be a universe of discourse and A = {(x, <TA(x), IA(x), 
FA(x)>), x ∈ U}   
and B = {(x, <TB(x), IB(x), FB(x)>), x ∈ U} be two 
interval-valued neutrosophic oversets / undersets / offsets. 
TA(x), IA(x), FA(x), TB(x), IB(x), FB(x): U P( [ , ]  ), 
where P( [ , ]  ) means the set of all subsets of 
[ , ]  , 
and TA(x), IA(x), FA(x), TB(x), IB(x), FB(x) ⊆ [ , ]  , 
with  ≤ 0  < 1 ≤  , and   is called underlimit, while 
  is called overlimit. 
We take the inequality sign ≤ instead of < on both 
extremes above, in order to comprise all three cases: 
overset {when = 0, and 1 <  }, underset {when < 0, 
and 1 =  }, and offset {when < 0, and 1 <  }. 

8.1. Interval-Valued Neutrosophic Overset / Underset / 
Offset Union. 
Then A∪B =  
{(x, <[max{inf(TA(x)), inf(TB(x))}, max{sup(TA(x)), 
sup(TB(x)}],   

      [min{inf(IA(x)), inf(IB(x))}, min{sup(IA(x)), 
sup(IB(x)}], 

      [min{inf(FA(x)), inf(FB(x))}, min{sup(FA(x)), 
sup(FB(x)}]>, x ∈ U}. 

8.2. Interval-Valued Neutrosophic Overset / Underset / 
Offset Intersection. 
Then A∩B =  
{(x, <[min{inf(TA(x)), inf(TB(x))}, min{sup(TA(x)), 
sup(TB(x)}],   

      [max{inf(IA(x)), inf(IB(x))}, max{sup(IA(x)), 
sup(IB(x)}], 

      [max{inf(FA(x)), inf(FB(x))}, max{sup(FA(x)), 
sup(FB(x)}]>, x ∈ U}. 

8.3. Interval-Valued Neutrosophic Overset / Underset / 
Offset Complement. 
The complement of the neutrosophic set A is  
C(A) = {(x, <FA(x),  [  +   - sup{IA(x)},  +   -
inf{IA(x)}],  TA(x)>), x ∈ U}. 

Conclusion 

The membership degrees over 1 (overmembership), or 
below 0 (undermembership) are part of our real world, so 
they deserve more study in the future. 

The neutrosophic overset / underset / offset together 
with neutrosophic overlogic / underlogic / offlogic and es-
pecially neutrosophic overprobability / underprobability / 
and offprobability have many applications in technology, 
social science, economics and so on that the readers may 
be interested in exploring. 

After designing the neutrosophic operators for single-
valued neutrosophic overset/underset/offset, we extended 
them to interval-valued neutrosophic over-
set/underset/offset operators. We also presented another 
example of membership above 1 and membership below 0. 

Of course, in many real world problems the neutro-
sophic union, neutrosophic intersection, and neutrosophic 
complement for interval-valued neutrosophic over-
set/underset/offset can be used. Future research will be fo-
cused on practical applications. 
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Abstract. IT projects hold a huge importance to econom-
ic growth. Today, half of the capital investments are in IT 
technology. IT systems and projects are extensive and 
time consuming; thus implying that its failure is not af-
fordable, so proper feasibility study of assessing project 
success factors is required. A current methodology like 
Fuzzy Cognitive Maps has been experimented for identi-
fying and evaluating the success factors in IT projects, 

but this technique has certain limitations. This paper dis-
cusses two new approaches to evaluate IT project suc-
cess: Extended Fuzzy Cognitive Maps (E-FCM) & Neu-
trosophic Cognitive Maps (NCM).The limitations of 
FCM like non consideration for non-linear, conditional, 
time delay weights and indeterminate relations are target-
ed using E-FCM and NCM in this paper.  

Keywords: IT project success factors, Fuzzy Cognitive Maps, Extended FCM, Neutrosophic Cognitive Maps. 

1 Introduction 

IT projects have become so essential that its applica-
tions can be seen in every domain of life [1] [2] [3]. The 
various success factors are time, budget, quality, owner 
satisfaction, cooperation, etc., among which the most ac-
cepted assessment criteria in measuring the IT projects 
success are: meeting the specification, delivery on time and 
within budget [4]. 

A project can be completed on time, within cost and 
satisfy the given specifications, but if it is not liked and 
used by the customers then IT project will be a failure[5]. 
The various causes of failure are poor methodology, over-
optimism, complexity, weak ownership etc. [6].Therefore, 
there is a need to identify the important factors contrib-
uting to the success rate of IT projects. In 1986, Pinto and 
Slevin considered both the internal factors i.e. cost, time 
and technical specifications and external factors i.e. use, 
satisfaction and effectiveness, to be the success factors of 
IT projects [7].  

Many researchers [8] [9] have used different tech-
niques to evaluate IT project success factors. Soft compu-
ting techniques are equipped to handle uncertainties which 
are frequent in IT projects, so the authors have experi-
mented with the newly proposed methodology by Vasantha 
and Smarandache (2003), i.e. Neutrosophic Cognitive 
Maps for evaluating IT projects success in this paper. A 
comparative study is conducted where it is shown that 
NCM methodology is preferred over Fuzzy Cognitive 
Maps (FCM) mainly because NCM facilitates the compu-

tation of indeterminate cause-effect relationships that FCM 
does not permit. 

The NCM based technique of evaluating IT project 
success has been tested on a small case study: Mobile 
Payment System Project [10]. The same case study was 
discussed by Rodriguez-Repiso et al. [10] where they used 
FCM methodology to evaluate IT project success factors. 

FCM methodology has certain drawbacks which are 
highlighted by researcher Hagiwara [11] .It is proposed in 
his research that the limitations can be overcome by Ex-
tended FCM. The authors used two techniques Extended 
FCM and NCM and compare their results with the work 
done by Rodriguez- Repiso et. al. 

The remaining of the paper is organised as follows. 
Section 2 gives the literature review of project success and 
cognitive maps. Section 3 describes the case study of MPS 
(Mobile payment system). Section 4, 5 and 6 discusses the 
FCM, E-FCM and NCM methodology with its implemen-
tation on MPS project. Section 7 presents discussion of re-
sults. Section 8 outlines the conclusion & future work. 

2 Literature Review 

2.1 Project Success 

There are various factors that determine the success of 
a project but a project is said to be successful if it meets the 
basic three criteria i.e. delivery on time, within budget and 
meeting the specification [12] [13].  
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Table 1 gives the compilation of the various prominent 
factors listed by different researchers that contribute to-
wards the success of project [14] [15] [16] [17]. 

Success factor Description 
Time Some respondents noted that the measure 

of estimated time should include exten-
sions and/or reductions due to variations 
in the original scope of the works, rather 
than measuring against the original base-
line. 

Budget Some respondents noted comparison 
should be made between agreed project 
costs, not necessarily the contracted 
price. 

Quality/Specification Respondents noted that success could be 
measured by determining “was the pro-
ject completed to specifications” or 
whether the project demonstrated “fitness 
for purpose”. 

Owner Satisfac-
tion/Meeting Own-
er’s Needs. 

Some respondents stated that owner sat-
isfaction is ultimately all that matters and 
that all other success criteria are subordi-
nate to this measure. 

Cooperation Cooperation includes smooth project 
team coordination, an efficient and har-
monious project team, good relations 
with the owner, no unresolved disputes, 
and cooperation between stakeholders, 
authorities, vendors and purchasers. 

Risks Managed Respondents specifically looked for clear 
risk identification, allocation & manage-
ment; risk mitigation; along with only 
identified risks occurring i.e. no unpleas-
ant surprises or crises occurring. 

Safety Safety criteria included safety targets 
were met or exceeded, a safe project, no 
accidents, excellent safety 
record, no accidents or injuries during 
delivery, and achieving satisfactory safe-
ty. 

Table 1: Factors for success of project 

2.2 Cognitive Maps 

The concept of Cognitive Maps was introduced and 
applied by a political scientist Axelrod in 1976 to rectify 
those desired states which are unclear [18].These states are 
called as ill-structured problems. He developed signed di-
graphs design to extract the casual assertions of person 
with respect to certain area and then used them in order to 
find out the facts of alternative.  

It has only two basic types of elements. First are the 
concepts and second are casual beliefs. In simple term they 

are known as nodes & arcs. Nodes describe the behavior of 
system and can be represented as variables. On the other 
side arcs are the relationships among the concepts which 
are either positive or negative. The positive relation means 
that the effect variable undergoes change in the same direc-
tion and negative relation means that the effect variable 
undergoes change in the opposite direction with respect to 
the change in cause variable [19].  

2.3 Fuzzy Cognitive Maps 
Kosko introduced the concept of fuzzy cognitive maps 

(FCM) [20]. It is an extension of cognitive maps consisting 
of elements (concepts / nodes) which represent the im-
portant attributes of the mapped system. FCM is a very 
simple and effective tool that is used in lots of applications 
like business [21] [22], banking [23], medical field [24] 
[25] , sports [26] , robotics [27], expert systems [28], deci-
sion making [29] [30], risk assessment [31]. 

Fuzzy cognitive maps (FCMs) are more applicable 
when the data in the first place is an unsupervised one. The 
FCMs work on the opinion of experts. FCMs model the 
world as a collection of classes and causal relation between 
classes. 
2.3.1 Basics of FCM 

 Assume
iC  and 

jC  denote two nodes of the 
FCM. The directed edge from 

iC  to 
jC  denote 

the causality of 
iC  on 

jC  called connections. 
Each edge in the FCM is weighted with a number 
{-1, 0, 1}. Assume 

ija  is the weight of the di-
rected edge

iC
jC ,  

ija  ∈ {-1, 0, 1}. 
ija  = 0 if iC  does not have any effect on 
jC

ija = 1 if increase (or decrease) in 
iC

causes increase (or decrease) in 
jC

ija = -1 if increase (or decrease) in iC
causes decrease (or increase) in 

jC
 Let 1 2C C , 3 4C C , i jC C , be a cycle when iC

is switched on and if the causality flows through 
the edges of a cycle and if it again causes 

iC , We 
say that the dynamical system goes round and 
round. This is true for any node iC , for 

1,2, ,ni  . The equilibrium state for this dy-
namical system is called the hidden pattern.  

 If the equilibrium state of a dynamical system is a
unique state vector, then it is called a fixed point.
Consider a FCM with 1C , 2C  ,...., nC  as nodes. 
For example let us start the dynamical system by
switching on 1C . 

 Let us assume that the FCM settles down with 1C
and nC  on, i.e. the state vector remains as (1, 0, 
0,…, 0, 1) this state vector (1, 0, 0, …, 0, 1) is 
called the fixed point. 

 If the FCM settles down with a state vector re-
peating in the form 1 2 1iA A A A   .
Then this equilibrium is called limit cycle.
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3 Case study on Mobile Payment system 
Nowadays people need to make dozens of payments 

every day. This requires the availability of cash or plastic 
cards any time and everywhere. Though it is not always 
easy to have cash available and if the price of the purchase 
does not exceed a certain minimum value, the plastic cards 
are not accepted.  

The basic idea  behind  the  MPS  project  is  to  allow  
mobile  phone  users  to  make  small  and medium pay-
ments using their mobile phones. The user will send SMS 
to the mobile phone number of the payment recipient. The 
SMS sent will contain the code given to the user by the 
system provider of Mobile Payment System; followed by 
the amount to be paid. This amount of money will be di-
rectly debited from the bank  account  of  the  user  and  
credited  to  the  bank  account  associated with  the mobile 
phone  number  that  receives  the  SMS[10]. 

Rodriguez-Repiso et.al [10] considered the MPS pro-
ject and FCM methodology was used to check its feasibil-
ity. The authors conducted a survey from 40 individuals 
belonging to different continents to identify various factors 
and their degree of importance to MPS project success.  

The authors identified following factors that contribute 
to the success of MPS project [10]: 

C1. Ability to store money in your mobile 
C2. Avoid using coins (you won’t need coins in your 

pocket as you will use your mobile to 
pay) 
C3. Less to carry with you 
C4. Independence of time and place (subject to the area 

covered by the network operator) 
C5. Getting rid of plastic cards 
C6. Convenience 
C7. Security 
C8. Comfort 
C9. Able to make small payments (up to 40 GBP) 
C10. Able to make medium sized payments (up to 300 

GBP) 
C11. Interface easy to use 
C12. Direct debiting from account 
C13. Ability to pay using a mobile phone in store 
C14. Avoid using cash 
C15. Possibility of multiple mobile cash accounts to 

divide own and company purse 
C16. Flexibility 
C17. Efficiency 
C18. Economy 
C19. Your phone is always with you 
C20. Remote control for everyday things 
C21. The cost of the payment for the user is the cost of 

1 SMS. 
C22. The user does not pay credit/debit card mainte-

nance costs to the bank 
C23. The cost of the payment for the shop is the cost of 

1 SMS 

C24. The bank receives a commission from the net-
work operator processing each payment transaction. 

The following steps were broadly executed by Rodri-
guez-Repiso et.al [10] to check the feasibility of MPS us-
ing FCM:- 

1) The results of the survey is recorded in Initial matrix
of success (IMS).The dimension of the IMS matrix is 
24 , where  24 is the number of success factors and 
40 corresponds to the number of experts. 

2) The values in the IMS matrix are fuzzified in the in-
terval [0,1] which is recorded in Fuzzified matrix of suc-
cess (FZMS). 

3) The strength of relationship matrix of success
(SRMS) was constructed which is a 24matrix. The 
rows and columns of the matrix are the success factors and 
each element 

ijS in the matrix indicates the relationship 
between factor “ i ” and factor “ j ”. 

ijS can accept values 
in the interval [-1, 1] . 

4) Once the SRMS matrix is completed, some of the
data contained in it could be misleading data. Not all suc-
cess factors represented in the matrix are related, and not 
always there is a relationship of causality between them. 
An expert opinion is required to analyse the data and con-
vert the SRMS matrix into the FMS (Final matrix of suc-
cess) matrix, which contains only those numerical fuzzy 
components representing relationships of causality be-
tween the success factors. 

Thus, the model developed in the paper [10] is easy to 
understand and can be used to evaluate, and test the effect 
of factors and predict the performance of the MPS system. 

4 Working of FCM methodology in MPS 

4.1 Computation of hidden pattern using FCM 

The authors determine the hidden pattern for the FCM 
methodology used in the MPS project [10] and is described 
as: 

 Let 1A  be the initial state vector where 1C  and 19C
are in ON state. 

1A   (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ) 
D =FCM matrix shown in Table 2 [10]. 

 
 
 
 
 
 
 

Table 2. FCM Matrix 

Success 
factors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0.66 0.65 0.7 0.73 0.63
2 0.66 0.72
3 0.72 0.7 0.79 0.74
4 0.79 0.87 0.83 0.74
5 0.65 0.7
6 0.79 0.79 0.79 0.7 0.75 0.76 0.76
7 0.66
8 0.79 0.85 0.78
9 0.7 0.7

10 0.73 0.75
11 0.76 0.85 0.89
12 0.66 0.62 0.74 0.7
13 0.78 0.82
14 0.63 0.74
15 0.62 0.65 0.61
16 0.87 0.65 0.88 0.78
17 0.89 0.74 0.82 0.61 0.88
18 0.72 0.83 0.65 -0.6
19 0.83 0.78 0.71
20 0.74 0.76 0.71
21 0.72
22 0.83
23 0.65
24 0.7 -0.6
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1A D   (0 0.68 0 0.83 0.65 0 0 0 0.70 0.73 0 0 0 0.63 
0 0.78 0 0 0 0.71 0 0 0 0 )  (1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 
1 0 0 1 1 0 0 0 0 )  2A  

2A D  (3.39 0.68 2.16 2.44 0.65 3 0 0 0.70 0.73 0 0 0 
0.63 0.65 1.65 0.88 0 2.32 1.45 0 0 0 0)  (1 1 1 1 1 1 0 0 
1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 0) = 3A

3A D   (3.39 1.4 2.95 3.23 1.35 3.79 0 0.79 1.40 1.48 
1.65 1.36 0.82 1.37 1.26 3.18 1.49 0 2.32 2.21 0 0 0 0) 
(1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0) = 4A  

4A D   (3.39 1.4 2.95 3.23 1.35 5.34 0.66 2.42 1.40 
1.48 2.5 1.36 1.6 1.37 1.88 3.18 3.94 0 2.32 2.21 0 0 0 
0.70)   (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1) = 

5A

5A D   (3.39 1.4 2.95 3.23 1.35 5.34 0.66 2.42 1.40
1.48 2.5 2.72 1.6 1.37 1.88 3.18 3.94 0 2.32 2.21 0 0 0 
0.70)   (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1) = 

6A  = 5A
As 6A   5A , so this is a fixed point. 
This implies that the concepts 1C  and 19C   does not 

have any effect on concepts 18C , 21C , 22C  and 23C . This 
is a saturation point. By making further iterations, there is 
no change in the results. 

4.2 Limitations of FCM 

There are three important drawbacks in the conven-
tional FCMs [11]:   

1) Connections in FCMs are just numeric ones: rela-
tionship of two events should be linear. 

In MPS [10], the relation 19C   4C  is considered as 
linear. 

2) Lack of a concept of time; practically each causal
has different time delay. 

In MPS [10], the relation 24C   12C  tends to have 
some time delay, but is not considered. 

3) They cannot deal with co-occurrence of multiple
causes such as expressed by “and" conditions. 

In MPS [10], the concepts 1C  and 19C  can be com-
bined to create an overall effect on 9C ,but this idea is not 
considered and implemented in the system. 

The drawbacks of FCM can be overcome by the pro-
posed methodology E-FCM and NCM. 

5 EXTENDED FUZZY COGNITIVE MAPS (E-FCM) 

 E-FCM has certain features [11]: 
1) Weights have nonlinear membership functions.
2) Conditional weights
3) Time delay weights.

Authors have considered features of E-FCM: one non-
linear weight, conditional weight and time delay weight for 
evaluating the success of MPS [10]. 

5.1 Non-linear membership functions 

The relationship between the concepts is not always 
linear stating that change in concept iC will not always 
lead to the change in jC even if there exists a relation be-
tween them. The change occurs till certain limit and after 
that there will be no/inverse effect. 

Consider the relation, 19C (Your phone is always with 
you)  4C (Independence of time and place) 

This relationship used in MPS [10] always considered 
linear relationship. Consider a situation, if there is no prop-
er network or the phone is switched off due to low battery, 
so FCM will not give realistic results. So this relation holds 
a non-linear relationship which can be represented in E-
FCM. 

Non-linear activation function i.e. sinusoidal function 
is used to show non linear relationship. In non linear rela-
tion, eq. (1) is used to get the saturation point [32].  

( 1) ( ) ( )
1 2( . )k k T k

v f v w v    (1) (1)

where 

( ) ( ) ( ) ( )
1 2[ ]k k k k T

nv v v v is the state vector 

n = number of concepts 
k= kth state vector used to derive the succeeding states. 

Weight matrix , 

( ) ( ) ( ) T
1( ) [ ( ( ] .k k k

nf v f v f v (2) (2)

Sinusoidal function is given as, 

( ) 0.5(sin( ) 1)f x x  (3) (3)  

where, 

1/2
1 2

1.5708
( )w n M


 


 (4) (4)

  is calculated using 1 21, 1, 1, 24M n    
(number of concepts).The domain of sinusoidal function is 
restricted within the range [ / 2, / 2]   so the val-
ue of / 2 =1.5708 is used in calculation of    . Since
classification or logistic regression aims to have 1 and 0 
extremities, both sigmoid and sinusoidal functions achieve 
that. Instead sinusoidal does a better job in that its extremi-
ties are absolute instead of being asymptotic. 

w =max Eigen value of T
w w . 

[ ]ij n nw w  1 , ,i j n 
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  is calculated as 0.03. 
Using eq. (3) in eq. (1) the saturation state is reached. 

Initially, the state of the concepts is taken as the average i.e. 

1
/

k

j i

i

C C i



(5)          (5) 

k =number of experts which is taken as 40 in the paper 
[10]. iC  is the value given to the concept 

jC by th
i expert.

(In the paper, the FZMS matrix gives the value of the con-
cepts given by different experts). 

Initially, all the values given to the concepts using eq. 
(5) are taken at time instant 0. In further iterations eq. (1) is 
used until saturation state is not reached (saturation means 
that the concept state vectors at time instant a , matching 
with the subsequent concept state vectors i.e. from time in-
stant 1a ,… ). The saturation state using the non linear 
relation is found at instant 4 which is shown in Table 3. 
Linear membership function is used for all concepts except 

4C . As 19 4C C  holds a non-linear relationship so, 
non-linear membership is used to determine the saturation 
state of 4C . 

 
 
 

Table 3. Results using non-linear relation ( )

Hence, for handling non-linear relations (like
19 4C C ), FCM would not suffice; rather E-FCM 

should be used. 

5.2 Conditional weights 

Sometimes, different concepts can affect a single con-
cept, so the concepts can be combined to show the com-
bined effect on the concept which is considered in E-FCM. 

In this case AND function is used to represent the 
combined effect on the concepts, where two or more con-

cepts can together create an overall effect on a particular 
concept. 

In MPS [10], there is a direct connection between 1C
and 9C (consider 19w ) and 19C  is not having a direct 
connection to 9C , so authors wanted to show the com-
bined effect of 1C  and 19C on 9C . 

If (Ability to store money in your mobile) AND 

(Your phone is always with you ) then (Able to make 
small payments) means that if you have mobile with you 
and you have money too in your mobile then only you will 
be able to make payments. If any of the conditions in the 
antecedent part is not true then you will not be able to 
make payments. 

So, 

1 19 9,C C C with a proportion 19 0.70 / 3w 

Ability to store money in your mobile ( 1C ) in the con-
ventional FCM (Table 4) is saturated from time 3, that is 
why 3 is taken as a denominator. 

Table 4. Conventional FCM 

Now the weight 19w is updated to 0.233 in the weight 
matrix i.e. FCM Matrix. A change in the weight of the 
connection between the concepts 1C and 9C can be ob-
served when two concepts are combined. The updated 
weight is shown in Figure 1 and rest of the weights are 
same as FCM. Authors have combined the results of condi-
tional and non-linear relations which is shown in Table 5. 

Using eq.(1),saturation point is calculated, where w  is 
the newly constructed matrix after updating 19w to 
0.233.The saturation point is found at instant 4 shown in 
Table 5, by taking initially the concept states using eq. (5). 

1C 19C

9C

T C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
0 0.7 0.7 0.7 0.8 0.5 0.7 0.7 0.8 0.8 0.6 0.9 0.6
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1

T C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24
0 0.7 0.7 0.5 0.8 0.9 0.8 0.8 0.6 0.6 0.9 0.6 0.5
1 1 1 1 1 1 1 1 1 1 1 1 0
2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1

T C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
0 0.7 0.7 0.7 0.8 0.5 0.7 0.7 0.8 0.8 0.6 0.9 0.6
1 1 1 1 0.5473 1 1 1 1 1 1 1 1
2 1 1 1 0.5565 1 1 1 1 1 1 1 1
3 1 1 1 0.5567 1 1 1 1 1 1 1 1
4 1 1 1 0.5567 1 1 1 1 1 1 1 1
5 1 1 1 0.5567 1 1 1 1 1 1 1 1

T C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24
0 0.7 0.7 0.5 0.8 0.9 0.8 0.8 0.6 0.6 0.9 0.6 0.5
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1
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Table 5. Results using non-linear relation ( )  and conditional weight 
(  )

Normally in real world problems both non-linear rela-
tionship and conditional weights are observed, so for such 
cases E-FCM is a better choice to find the hidden patterns 
as shown in Table 5. 
5.3 Time delay weights 

In E-FCMs, total input to node 
jC  at time t can be ex-

pressed as, 

1
( ( )) ( )

k

j ij i ij i ij

i

net w C t delay C t delay


  
(6)          (6) 

where, ( )jC t  is a causal concept at time t, (.)ijw is a 
weight function from concept ( )iC t to concept ( )jC t , and 

ij
delay  is a time delay from causal concept ( )iC t  to 
concept ( )jC t and k =number of concepts [11].

The relation between 24C  and 12C  has been dis-
cussed in MPS [10], but it is quite evident that this relation 
will incur some time delay, which was not considered in 
MPS [10]. 

The relation 24C  (The bank receives a commission 
from the network operator processing each payment trans-
action)  12C ( Direct debiting from account) has some 
time delay, i.e. by the time the bank receives a commission 
from the operator, debiting takes place but the debiting and 
its changes to the account takes place after a certain 
amount of delay . 

By using eq. (6) the state of concept 12C  (since the 
time delay effect is on 12C  and delay taken is 1 min) is 
calculated and the rest of the concept values are calculated 
using eq.(1) which is same as the values in Table 5. The 

Table 6 shows the saturation state using non-linear, condi-
tional and time delay weights. 

Table 6. Results using non-linear relation ( ) , conditional weight (  ) 
and time delay weight ( )

So, for handling relationships in which a time delay is 
observed between antecedent and consequent, again E-
FCM emerges as a better option for modelling. 

5.4 Computation of fixed point in E-FCM 

Let, E be the E-FCM Matrix which is formulated using 
three factors: non-linear, conditional and time delay 
weights. 

This E matrix is different from D, with respect to the 
change recorded in conditional weight, as shown in Table 
7.   

 
 
 
 

 
 
 

Table 7. E-FCM Matrix 
Now the hidden pattern using E-FCM can be calculat-

ed as, 
If 1A = (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0)

T C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
0 0.7 0.7 0.7 0.8 0.5 0.7 0.7 0.8 0.8 0.6 0.9 0.6
1 1 1 1 0.5473 1 1 1 1 0.5267 1 1 0.5
2 1 1 1 0.5565 1 1 1 1 0.5289 1 1 0.175
3 1 1 1 0.5567 1 1 1 1 0.5289 1 1 0.0214
4 1 1 1 0.5567 1 1 1 1 0.5289 1 1 0.0003
5 1 1 1 0.5567 1 1 1 1 0.5289 1 1 0
6 1 1 1 0.5567 1 1 1 1 0.5289 1 1 0

T C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24
0 0.7 0.7 0.5 0.8 0.9 0.8 0.8 0.6 0.6 0.9 0.6 0.5
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1

T C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
0 0.7 0.7 0.7 0.8 0.5 0.7 0.7 0.8 0.8 0.6 0.9 0.6
1 1 1 1 0.5473 1 1 1 1 0.5267 1 1 1
2 1 1 1 0.5565 1 1 1 1 0.5289 1 1 1
3 1 1 1 0.5567 1 1 1 1 0.5289 1 1 1
4 1 1 1 0.5567 1 1 1 1 0.5289 1 1 1
5 1 1 1 0.5567 1 1 1 1 0.5289 1 1 1

T C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24
0 0.7 0.7 0.5 0.8 0.9 0.8 0.8 0.6 0.6 0.9 0.6 0.5
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1

Success 
factors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0.66 0.65 0.23 0.73 0.63
2 0.66 0.72
3 0.72 0.7 0.79 0.74
4 0.79 0.87 0.83 0.74
5 0.65 0.7
6 0.79 0.79 0.79 0.7 0.75 0.76 0.76
7 0.66
8 0.79 0.85 0.78
9 0.7 0.7

10 0.73 0.75
11 0.76 0.85 0.89
12 0.66 0.62 0.74 0.7
13 0.78 0.82
14 0.63 0.74
15 0.62 0.65 0.61
16 0.87 0.65 0.88 0.78
17 0.89 0.74 0.82 0.61 0.88
18 0.72 0.83 0.65 -0.6
19 0.83 0.78 0.71
20 0.74 0.76 0.71
21 0.72
22 0.83
23 0.65
24 0.7 -0.6
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1A E   (0 0.68 0 0.83 0.65 0 0 0 0.233 0.73 0 0 0 
0.63 0 0.78 0 0 0 0.71 0 0 0 0 ) (1 1 0 1 1 0 0 0 1 1 0 0 0 
1 0 1 0 0 1 1 0 0 0 0) = 2A

2A E  (3.39 0.68 2.16 2.44 0.65 3 0 0 0.23 0.73 0 0 
0 0.63 0.65 1.65 0.88 0 2.32 1.45 0 0 0 0)  (1 1 1 1 1 1 0 
0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 0) = 3A

3A E  (3.39 1.4 2.95 3.23 1.35 3.79 0 0.79 0.93 1.48
1.65 1.36 0.82 1.37 1.26 3.18 1.49 0 2.32 2.21 0 0 0 0) 
(1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0) = 4A  

4A E   (3.39 1.4 2.95 3.23 1.35 5.34 0.66 2.42 0.93 
1.48 2.5 1.36 1.6 1.37 1.88 3.18 3.94 0 2.32 2.21 0 0 0 
0.70)   (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1) = 

5A

5A E  (3.39 1.4 2.95 3.23 1.35 5.34 0.66 2.42 0.93
1.48 2.5 2.72 1.6 1.37 1.88 3.18 3.94 0 2.32 2.21 0 0 0 
0.70)   (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1) = 

6A  = 5A  
Hence, 6A  5A  we got a fixed point. 
This implies that the concepts 1C  and 19C  does not 

have any effect on the concepts 18C , 21C , 22C  and 23C . 
Thus, this is a saturation point. By making further itera-
tions, there is no change in the results. The results obtained 
by E-FCM are same as observed when FCM was used. But 
the discussion in this section indicates the suitability of de-
ploying E-FCM when non-linearity, conditional and time 
delay is observed. 

5.5 Limitations of E-FCM 

The drawbacks of FCM are overcome by E-FCM con-
sidering non-linear weights, conditional and time delay 
weights. Though these three aspects are quite frequent and 
important in the relationships, but indeterminacy is also 
one of the prominent attribute of any relationship; Exam-
ple: Consider unemployment and crime rate to be the two 
main causes of corruption, there may or may not be a pos-
sibility that due to unemployment the crime rate will in-
crease, so this relation holds indeterminacy. 

Capturing of indeterminacy is not done by FCM and E-
FCM. This aspect of indeterminacy in the relationship is 
tackled using Neutrosophic Cognitive Maps (NCM), which 
is discussed next. 

6 NEUTROSOPHIC COGNITIVE MAPS (NCM) 

NCM is an extension of FCM where indeterminacy is 
included. The concept of fuzzy cognitive maps deal with 
the relationship between two nodes but it fails to deal with 
the indeterminate relation. Neutrosophic logic is the only 
tool, which deals with the notions of indeterminacy. NCM 
will certainly give a more appropriate result when we deal 
with unsupervised data, and no relation can be determined 
between two nodes. NCM applications can be found in 
medical field [33] [34], social issue [35] and other areas 
[36] [37]. 

6.1 Basics of NCM [35] 

 Let 1C , 2C  ,....,
nC  be n  nodes, and we assume

every node is a neutrosophic vector from neutro-
sophic vector spaceV . A node 

iC will be repre-
sented by 1( , , )nx x  where

kx  is zero or one or 
I (I is the indeterminate). The concept’s state kx = 
1 means the node kC  is in on state;

kx  = 0 means 
the node is in off state and

kx  = I  means the 
node state is indeterminate at that time or in that
situation.

 Assume iC  and Cj denote two nodes of the NCM. 
The directed edge from iC to 

jC  denote the cau-
sality of

iC  on 
jC  called connections. Each 

edge in the NCM is weighted with a number {-1,
0, 1, I }. Assume

ija  is the weight of the di-
rected edge

iC jC ,  
ija ∈ {-1, 0, 1, I }. 

ija  = 0 if iC  does not have any effect on 
jC

ija = 1 if increase (or decrease) in
iC

causes increase (or decrease) in 
jC

ija = -1 if increase (or decrease) in
iC

causes decrease (or increase) in 
jC

ija = I if the relation or effect of iC  on 
jC

is an indeterminate.
 Let 1 2C C , 3 4C C , i jC C  be the edges of NCM

and the edges form a directed cycle. An NCM is 
said to be cyclic if it has a directed cycle and acy-
clic if it does not have any directed cycle. 

 If the NCM settles down with a unique neutro-
sophic state vector, then it is known as fixed point.
Assume the NCM with 1C , 2C  ,...., nC   as nodes. 
For example let us start by switching on 1C . Let
us consider that the NCM settles down with 1C
and nC  on, i.e.  The state vector remain as (1, 0,

, 1) this neutrosophic state vector (1,0,  , 0, 
1) is known as the fixed point.

 If the NCM settles down with a neutrosophic state
vector repeating in the form of

1 2 1iA A A A    , then this equilibrium
is called as limit cycle of the NCM.

6.2 NCM Methodology 
The MPS is based only on FCM where no indetermi-

nacy relations are considered. 
In the paper [10] following indeterminate relations are 

highlighted: 

C1(Ability to store money in your mobile) 
C5(Getting rid of plastic cards) 

If the user has money in his/her mobile then there may 
be a possibility that he carries credit card with him/her for 
making large payments since MPS is designed for small 
and medium payments. 

C19(Your phone is always with you) 
      C13(Ability to pay from mobile in store) 

Success 
factors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0.66 0.23 0.73 0.63
2 0.66 0.72
3 0.72 0.7 0.79 0.74
4 0.79 0.87 0.83 0.74
5 0.65 0.7
6 0.79 0.79 0.79 0.7 0.75 0.76 0.76
7 0.66
8 0.79 0.85 0.78
9 0.7 0.7

10 0.73 0.75
11 0.76 0.85 0.89
12 0.62 0.74 0.7
13 0.78 0.82
14 0.63 0.74
15 0.62 0.65 0.61
16 0.87 0.65 0.88 0.78
17 0.89 0.74 0.82 0.61 0.88
18 0.72 0.83 0.65 -0.6
19 0.83 0.78 0.71
20 0.74 0.76 0.71
21 0.72
22
23 0.65
24 0.7 -0.6

15



Neutrosophic Sets and Systems, Vol. 12, 2016 

 Kanika Bhutani, Megha Kumar, Gaurav Garg
 
and Swati Aggarwal, Assessing IT Projects Success with Extended Fuzzy 

Cognitive Maps & Neutrosophic Cognitive Maps in comparison to Fuzzy Cognitive Maps 

If the user has phone with him/her, still he/she may or 
may not be able to pay from the mobile because there can 
be a network problem or may be they don’t have enough 
balance with them, preventing them in making payments. 

C12(Direct debiting from account) 
      C7(Security) 

The direct debiting from the account may or may not 
affect security since the information related to risks analy-
sis and management are missing which can lead to inde-
terminacy. 

C22(User does not pay credit/debit card maintenance 
costs to the bank )              C8(Economy) 

User does not need credit/debit card for small and me-
dium payments so no maintenance cost for the cards. If the 
range of payment exceeds medium payment then the user 
can pay through the card and there will be some mainte-
nance cost to be paid by the user to the bank for card 
maintenance, hence this relationship is also indeterminate. 

6.3 Working of NCM 

The ' 'I  factor was introduced in the FCM matrix which is 
now relabelled as NCM matrix as shown in Table 8.The 
hidden pattern using NCM was calculated as, 
N(E)   NCM Matrix shown in Table 8. 

Table 8. NCM Matrix 

I   Indeterminacy
The NCM for the MPS project is shown in Figure 1. 

and its related FCM is shown in paper [10]. 

Figure 1. NCM for the MPS project 

The hidden pattern for NCM is calculated as follows: 
Initially 1C  and 19C  are taken in ON state i.e. 
If 1A   (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0), 

1 ( )A N E   (0 0.68 0 0.83 I  0 0 0 0.233 0.73 0 0 I  
0.63 0 0.78 0 0 0 0.71 0 0 0 0)  (1 1 0 1 I  0 0 0 1 1 0 0 
I  1 0 1 0 0 1 1 0 0 0 0) 2A  

2 ( )A N E   (2.74+0.65 I  0.68 1.46+0.70 I  2.44 I  3 
0 0.78 I  0.233 0.73 0 0 I  0.63 0.65 1.65 0.88+0.82 I  0 
2.32 1.45 0 0 0 0)  (1 1 1 1 I  1 0 I  1 1 0 0 I  1 1 1 1 
0 1 1 0 0 0 0) 3A  

3 ( )A N E   (2.74+0.65 I  1.4 2.25+0.70 I  3.23 0.70+
I  3.79+0.79 I  0 0.79+0.78 I  0.933 1.48 1.65+0.85 I  
1.36 0.82+1.78 I  1.37 1.26 3.18 1.49+0.82 I  0 2.32 2.21 
0 0 0 0) (1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0) 

4A  
4 ( )A N E   (3.39 1.4 2.95 3.23 0.70+ I  5.34 I  2.42 

0.933 1.48 2.5 1.36 1.6+ I  1.37 1.88 3.18 3.94 0 2.32 2.21 
0 0 0 0.70) (1 1 1 1 1 1 I  1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 
1) 5A

5 ( )A N E   (3.39 1.4 2.95 3.23 0.70+ I  5.34 I  2.42 
0.933 1.48 2.5 2.06+0.66 I  1.6+ I  1.37 1.88 3.18 3.94 -
0.56 2.32 2.21 0 0 0 0.70) (1 1 1 1 1 1 I  1 1 1 1 1 1 1 1 
1 1 0 1 1 0 0 0 1) 6 5A A   

Here in state 6A  concept 7 is showing indeterminacy, 
i.e. by making the concepts 1C  and 19C on, concepts with 
state as 1 shows that they are affected by the factors 1C  
and 19C  , but 7C  is I  that indicates that even if user has 

Success 
factors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0.66 I 0.23 0.73 0.63
2 0.66 0.72
3 0.72 0.7 0.79 0.74
4 0.79 0.87 0.83 0.74
5 0.65 0.7
6 0.79 0.79 0.79 0.7 0.75 0.76 0.76
7 0.66
8 0.79 0.85 0.78
9 0.7 0.7

10 0.73 0.75
11 0.76 0.85 0.89
12 I 0.62 0.74 0.7
13 0.78 0.82
14 0.63 0.74
15 0.62 0.65 0.61
16 0.87 0.65 0.88 0.78
17 0.89 0.74 0.82 0.61 0.88
18 0.72 0.83 0.65 -0.6
19 0.83 I 0.78 0.71
20 0.74 0.76 0.71
21 0.72
22 I

23 0.65
24 0.7 -0.6
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his phone with him and has money in mobile, security fac-
tor may or may not be affected, also it can have positive or 
negative impact.  

With the availability of internet facility on mobile 
phones, there is a chance of some virus attack which may 
affect the performance of MPS software by making user’s 
device slow or hang. Considering such situation if the user 
executes a transaction and does not get the confirmation, it 
may lead to another transaction. Since the previous one 
was under processing, of which the user was not aware; 
can make user pay for the same transaction twice. Thus, 
giving negative influence between 1C  and 19C .  

Contrary to this the positive influence between 1C  and 
19C  can be recorded if the user joins MPS system, he is 

given a secret code, which he knows it personally and can 
use it for payments in a secure way. 

So the relationship between 1C  and 19C  can be either 
positive or negative; thus reflecting indeterminacy in it. 

7 DISCUSSION OF RESULTS 
To record the effect of factors 

1       ( )Ability to store money in your mobileC and 
19     ) (Your phone is always with youC initially the 

vector is taken as (10000000000000000100000). The re-
sults for different methodologies FCM, E-FCM and NCM 
and their comparison is shown in Table 9. 

 
 

 

 
 

 
 

Table 9. Comparison of Results 

CONCLUSION & FUTURE WORK 
Compared to the results of FCM and E-FCM in the 

MPS project, the hidden pattern showed that security will 
always be affected as FCM and E-FCM can represent posi-
tive, negative or no effect. But, in NCM, security concept 
is ‘I’ depicting that this factor may or may not be affected. 
NCM provided the option of handling the indeterminate re-
lationship. 

Neutrosophic Cognitive Map is an innovative research 
approach. The concept of NCM can be used in modelling 
of system success, since the concept of indeterminacy 
plays role while evaluating project success. This was au-
thors’ main aim to use NCMs in place of FCMs. When an 
indeterminate causality is present in an FCM we term it as 
an NCM.   

As an extension of the presented work, authors project 
to study the following: 

a) More number of parameters can be used to predict
the results. Increment in sample size will also lead to give 
more accurate results. 

b) Opinion of different experts can be combined & im-
plemented using Linked FCM & Linked NCM. 
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Abstract. This paper is devoted to propose triangular 
fuzzy number neutrosophic sets by combining triangular 
fuzzy numbers with single valued neutrosophic set and 
define some of its operational rules. Then, triangular 
fuzzy number neutrosophic weighted arithmetic averag-
ing operator and triangular fuzzy number neutrosophic 
weighted geometric averaging operator are defined to ag-
gregate triangular fuzzy number neutrosophic sets. We 
have also established some of their properties of the pro-

posed operators. The operators have been employed to 
multi attribute decision making problem to aggregate the 
triangular fuzzy neutrosophic numbers based rating val-
ues of each alternative over the attributes. The collective 
rating values of each alternative have been ordered with 
the help of score and accuracy values to find out the best 
alternative. Finally, an illustrative example has been pro-
vided to validate the proposed approach for multi attrib-
ute decision making problem. 

Keywords: Triangular fuzzy number neutrosophic set, Score and accuracy function, Triangular fuzzy number neutrosophic 
weighted arithmetic averaging operator, Triangular fuzzy number neutrosophic weighted geometric averaging operator, Multi-attribute 
decision making problem. 

1 Introduction 

Zadeh [1] has been credited with having pioneered the 
development of the concept of fuzzy set in 1965. It is gen-
erally agreed that a major breakthrough in the evolution of 
the modern concept of uncertainty was achieved in defin-
ing fuzzy set, even though some ideas presented in the pa-
per were envisioned in 1937 by Black [2]. In order to de-
fine fuzzy set, Zadeh [1] introduced the concept of mem-
bership function with a range covering the interval [0, 1] 
operating on the domain of all possible values. It should be 
noted that the concept of membership in a fuzzy set is not a 
matter of affirmation or denial, rather a matter of a degree. 
Zadeh’s original ideas blossomed into a comprehensive 
corpus of methods and tools for dealing with gradual 
membership and non-probabilistic uncertainty. In essence, 
the basic concept of fuzzy set is a generalization of classi-
cal set or crisp set [3, 4]. The field has experienced an 
enormous development, and Zadeh’s seminal concept of 
fuzzy set [1] has naturally evolved in different directions. 

Different sets have been derived in the literature such as L-
fuzzy sets [5], flou sets [6], interval-valued fuzzy sets [7-
10], intuitionistic fuzzy sets [11-13], two fold fuzzy sets 
[14], interval valued intuitionistic fuzzy set [15], intuition-
istic L-fuzzy sets [16], etc. Interval-valued fuzzy sets are a 
special case of L-fuzzy sets in the sense of Goguen [5] and 
a special case of type 2 fuzzy set. Mathematical equiva-
lence of intuitionistic fuzzy set (IFS) with interval-valued 
fuzzy sets was noticed by Atanassov [17], Atanassov and 
Gargov [15]. Wang and He [18] proved that the concepts 
of IFS [11-13] and intuitionistic L-fuzzy sets [5] and the 
concept of L-fuzzy sets [5] are equivalent. Kerre [19] pro-
vided a summary of the links that exist between fuzzy sets 
[1] and other mathematical models such as flou sets [6], 
two-fold fuzzy sets [14] and L-fuzzy sets [5]. Deschrijver 
and Kerre [20] established the relationships between IFS 
[11], L-fuzzy sets [5], interval-valued fuzzy sets [7], inter-
val-valued IFS [15]. Dubois et al. [21] criticized the term 
IFSs in the sense of [11-13], and termed it “to be unjusti-
fied, misleading, and possibly offensive to people in intui-
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tionistic mathematics and logic” as it clashes with the cor-
rect usage of intuitionistic fuzzy set proposed by Takeuti 
and Titani [22].  Dubois et al. [21] suggested changing the 
name of IFS as I-fuzzy set.  Smarandache incorporated the 
degree of indeterminacy as independent component in IFS 
and defined neutrosophic set [23-24] as the generalization 
of IFSs.  Georgiev [25] explored some properties of the 
neutrosophic logic and defined simplified neutrosophic set. 
A neutrosophic set is simplified [25] if its elements are 
comprised of singleton subsets of the real unit interval. 
Georgiev [25] concluded that the neutrosophic logic is not 
capable of maintaining modal operators, since there is no 
normalization rule for the components T, I and F. The au-
thor [25] claimed that the IFSs have the chance to become 
a consistent model of the modal logic, adopting all the nec-
essary properties [26].However certain type of uncertain 
information such as indeterminate, incomplete and incon-
sistent information cannot be dealt with fuzzy sets as well 
as IFSs. Smarandache [27-28] re-established neutrosophic 
set as the generalization of IFS, which plays a key role to 
handle uncertain, inconsistent and indeterminacy infor-
mation existing in real world. In this set [27-28] each ele-
ment of the universe is characterized by the truth degree, 
indeterminacy degree and falsity degree lying in the non-
standard unit interval. The neutrosophic set [27-28] 
emerged as one of the research focus in many branches 
such as image processing [29-31], artificial intelligence 
[32], applied physics [33-34], topology [35] and social sci-
ence [36]. Furthermore, single valued neutrosophic set[37], 
interval neutrosophic set[38],neutrosophic soft set[39], 
neutrosophic soft expert set [40], rough neutrosophic set 
[41], interval neutrosophic rough set, interval valued neu-
trosophic soft rough set [42], complex neutrosophic set[43], 
bipolar neutrosophic sets [44] and neutrosophic cube 
set[45] have been studied in the literature which are con-
nected with neutrosophic set. However, in this study, we 
have applied single valued neutrosophic set [37] (SVNS), a 
subclass of NS, in which each element of universe is char-
acterized by truth membership, indeterminacy membership 
and falsity membership degrees lying in the real unit inter-
val. Recently, SVNS has caught attention to the researcher 
on various topics such as similarity measure [46-50], med-
ical diagnosis [51] and multi criteria/ attribute decision 
making [52-58], etc 

Aggregation of SVNS information becomes an im-
portant research topic for multi attribute decision making 
in which the rating values of alternatives are expressed in 
terms of SVNSs. Aggregation operators of SVNSs, usually 
taking the forms of mathematical functions, are common 
techniques to fuse all the input individual data that are typ-
ically interpreted as the truth, indeterminacy and the falsity 
membership degree in SVNS into a single one. Ye [59] 

proposed weighted arithmetic average operator and 
weighted geometric average operator for simplified neutro-
sophic sets. Peng et al.[60] developed some aggregation 
operators to aggregate single valued neutrosophic infor-
mation, such as simplified neutrosophic number weighted 
averaging (SNNWA), simplified neutrosophic number 
weighted geometric (SNNWG), simplified neutrosophic 
number ordered weighted averaging (SNNOWA), simpli-
fied neutrosophic number ordered weighted geometric av-
eraging (SNNOWG), simplified neutrosophic number hy-
brid ordered weighted averaging operator(SNNHOWA), 
simplified neutrosophic number hybrid ordered weighted 
geometric operator (SNNHOWG), generalised simplified 
neutrosophic number weighted averaging opera-
tor(GSNNWA) and generalised simplified neutrosophic 
number weighted geometric operator(GSNNGA) operators. 
Peng et al. [60] applied these aggregation operators in mul-
ti criteria group decision making problem to get an overall 
evaluation value for selecting the best alternative. Liu et al. 
[61] defined some generalized neutrosophic Hamacher ag-
gregation operators and applied them to multi attribute 
group decision making problem. Liu and Wang [62] pro-
posed a single valued neutrosophic normalized weighted 
Bonferroni mean operator for multi attribute decision mak-
ing problem. 

Application of SVNS has been extensively studied in 
multi-attribute decision making problem. However, in un-
certain and complex situations, the truth membership, inde-
terminacy membership, and falsity membership degree of 
SVNS cannot be represented with exact real numbers or in-
terval numbers. Moreover, triangular fuzzy number can 
handle effectively fuzzy data rather than interval number. 
Therefore, combination of triangular fuzzy number with 
SVNS can be used as an effective tool for handling incom-
plete, indeterminacy, and uncertain information existing in 
decision making problems. Recently, Ye [63] defined trap-
ezoidal fuzzy neutrosophic set and developed trapezoidal 
fuzzy neutrosophic number weighted arithmetic averaging 
and trapezoidal fuzzy neutrosophic number weighted geo-
metric averaging operators to solve multi attribute decision 
making problem. 

Zhang and Liu [64] presented method for aggregating 
triangular fuzzy intuitionistic fuzzy information and its ap-
plication to decision making. However, their approach 
cannot deal the decision making problems which involve 
indeterminacy. So new approach is essentially needed 
which can deal indeterminacy. Literature review reflects 
that this is the first time that aggregation operator of trian-
gular fuzzy number neutrosophic values has been studied 
although this number can be used as an effective tool to 
deal with uncertain information. In this paper, we have first 
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presented triangular fuzzy number neutrosophic sets 
(TFNNS), score function and accuracy function of TFNNS. 
Then we have extended the aggregation method of triangu-
lar fuzzy intuitionistic fuzzy information [64] to triangular 
fuzzy number neutrosophic weighted arithmetic averaging 
(TFNNWA) operator and triangular fuzzy number neutro-
sophic weighted geometric averaging (TFNNWG) operator 
to aggregate TFNNSs. The proposed TFNNWA and 
TFNNWG operators are more flexible and powerful than 
their fuzzy and intuitionistic fuzzy counterpart as they are 
capable of dealing with uncertainty and indeterminacy. 

The objectives of the study include to: 
 propose triangular fuzzy number neutrosophic sets

(TFNNS), score function and accuracy function of
TFNNS.

 propose two aggregation operators, namely,
TFNNWA and TFNNWG.

 prove some properties of the proposed operators
namely, TFNNWA and TFNNWG.

 establish a multi attribute decision making (MADM)
approach based on TFNNWA and TFNNWG.

 provide an illustrative example of MADM problem.

The rest of the paper has been organized in the follow-
ing way. In Section 2, a brief overview of IFS, SVNS have 
been presented. In Section 3, we have defined TFNNS, 
score function and accuracy function of TFNNS, and some 
operational rules of TFNNS. Section 4 has been devoted to 
propose two aggregation operators, namely, TFNNWA and 
TFNNWG operators to aggregate TFNNSs. In Section 5, 
applications of two proposed operators have been present-
ed in multi attribute decision making problem. In Section 6, 
an illustrative example of MADM has been provided. Fi-
nally, conclusion and future direction of research have 
been presented in Section 7. 

2 Preliminaries 

In this section we recall some basic definitions of intuition-
istic fuzzy sets, triangular fuzzy number intuitionistic 
fuzzy set (TFNIFS), score function and accuracy function 
of TFNIFS. 

2.1 Intuitionistic fuzzy sets 

Definition1. (Intuitionistic fuzzy set [13]) An intuitionistic 
fuzzy set A in finite universe of discourse 

1 2{ , ,..., }
n

X x x x is given by 

 , (x), (x) |
A A

A x x X   ,  (1) 
where  : 0,1

A
X  and  : 0,1

A
X   with the 

condition 0 ( ) ( ) 1
A A

x x    . The numbers (x)
A

  and 
(x)

A
 denote, respectively, the degree of membership
degree and degree of non-membership of x  in .A In

addition (x) 1 (x) (x)
A A A

     is called a hesitancy 
degree of x X in .A  For convenience, 

 (x), (x)
A A

A   is considered as an intuitionistic fuzzy 
number (IFN). 

Definition 2. (Operations rules of IFNs [65-67]) 

Let  (x), (x)
A A

A     and  (x), (x)
B B

B    be two

IFNs, then the basic operations of IFNs are presented as 

follows: 

1.  (x) (x) (x) (x), (x) (x) ,
A B A B A B

A B         

 (2) 
2.  (x) (x), (x) (x) (x) (x) ,

A B A B A B
A B        

 (3) 
3.     1 1 (x) ,

A
A x

         for 0, 

 (4) 
4.     ,1 1 (x)

A
A x

         for 0. 
 (5) 

Definition 3. [68] Let X be a finite universe of discourse 
and [0,1]F  be the set of all triangular fuzzy numbers 
on  0,1 . A triangular fuzzy number intuitionistic fuzzy set
(TFNIFS) A  in X is represented by  

 , ( ), ( ) | ,
A A

A x x x x X  

where,  ( ) : 0,1
A

x X F   and  ( ) : 0,1
A

x X F  . 

The triangular fuzzy numbers 

 1 2 3( ) (x), (x), (x)
A A AA

x    and

 1 2 3( ) (x), (x), (x)
A A AA

x    , respectively, denote the 
membership degree and non-membership degree of 
x in A and for every x X : 

3 30 (x) (x) 1.
A A

     

For convenience, we consider (a, b,c), (e, f,g)A  as the 
trapezoidal fuzzy number intuitionistic fuzzy values 
(TFNIFV) where, 
 1 2 3(x), (x), (x)

A A A
   =  , ,a b c and  1 2 3(x), (x), (x)

A A A
   =

 , ,e f g .

Definition 4. [69-70] Let  1 1 1 1 1 1 1(a , b ,c ), (e , f ,g )A   and 

2 2 2 2 2 2 2(a , b ,c ), (e , f ,g )A  be two TFNIFVs, then the 
following operations are valid: 
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1. 
 

 
1 2 1 2 1 2 1 2 1 2 1 2

1 2
1 2 1 2 1 2

, , c ,
;

, ,

a a a a b b b b c c c
A A

e e f f g g

     
 

(6) 

2. 
 
 

1 2 1 2 1 2
1 2

1 2 1 2 1 2 1 2 1 2 1 2

, , ,
;

, ,

a a b b c c
A A

e e e e f f f f g g g g
 

     
(7) 

3.  1 1 1 1 1 1 11 (1 a ) ,1 (1 ) ,1 (1 ) ,(e , , )A b c f g
            

for 0,  , and (8) 

4.  
1 1 1

1
1 1 1

( , , ),

1 (1 ) ,1 (1 ) ,1 (1 )

a b b
A

e f g

  


  


     
for 

0.  (9) 

Definition 5. [69-70]Let 1 1 1 1 1 1 1(a , b ,c ), (e , f ,g )A  be a 
TFNIFV, the score function 1(A )S  of 1A is defined as 
follows: 

   1 1 1 1 1 1 1
1(A ) 2 2
4

S a b c e f g        ,  1(A ) 1,1S  

(10) 

The score function (A )S
 =1 for the TFNIFV 

(1,1,1), (0,0,0)A
  and (A ) 1S

    for the 

TFNIFV (0,0,0), (1,1,1)A
  . 

Definition 6. [69-70] Let 1 1 1 1 1 1 1(a , b ,c ), (e , f ,g )A  be a 

TFNIFV, the accuracy function 1(A )H  is of 1A is defined 

as follows: 

   1 1 1 1 1 1 1
1(A ) 2 2
4

H a b c e f g        ,  1(A ) 0,1H  .

 (11) 

2.2 Single valued neutrosophic sets 

In this section, some basic definitions of single valued neu-
trosophic sets are reviewed. 

Definition 7. [37] Let X  be a space of points (objects) 
with a generic element in X denoted by .x A single valued 
neutrosophic set A in X is characterized by a truth 
membership function (x),

A
T  an indeterminacy 

membership function (x),
A

I  and a falsity membership 
function (x)

A
F  and is denoted by 

 , (x), (x), (x) | .
A A A

A x T I F x X 

Here (x)
A

T , (x)
A

I and (x)
A

F  are real subsets of [0, 1] that 
is (x) : X [0,1]

A
T   , (x) : X [0,1]

A
I   

and (x) : X [0,1]
A

F  . The sum of (x)
A

T , (x)
A

I and 
(x)

A
F lies in [0, 3] that is 
0 sup (x) sup (x) sup (x) 3.

A A A
T I F     

For convenience, SVNS A  can be denoted by 
(x), (x), (x)

A A A
A T I F  for all x in X . 

Definition 8. [37] Assume that 
(x), (x), (x)

A A A
A T I F and (x), (x), (x)

B B B
B T I F be 

two SVNSs in a universe of discourse X . Then the 
following operations are defined as follows: 

1. 
(x) (x) (x) (x),

;
(x) (x), (x) (x)

B BA A

B BA A

T T T T
A B

I I F F

 
   (12) 

2. 
(x) (x), (x) (x) (x) (x),

;
(x) (x) (x) (x)

B B BA A A

B BA A

T T I I I I
A B

F F F F

 
 

 

(13) 
3.      1 1 (x) , (x) , (x)

A A A
A T I F

  
     for 0, 

and (14) 
4.      (A) (x) ,1 1 (x) ,1 1 (x)

A A A
T I F

        for 

0.  (15) 

3 Triangular fuzzy number neutrosophic set 

SVNS can represent imprecise, incomplete and incon-
sistent type information existing in the real world problem. 
However, decision maker often expresses uncertain infor-
mation with truth, indeterminacy and falsity membership 
functions that are represented with uncertain numeric val-
ues instead of exact real number values. These uncertain 
numeric values of truth, indeterminacy and falsity mem-
bership functions of SVNSs can be represented in terms of 
triangular fuzzy numbers. 

In this section, we combine triangular fuzzy num-
bers (TFNs) with SVNSs to develop triangular fuzzy num-
ber neutrosophic set (TFNNS) in which, the truth, indeter-
minacy and falsity membership functions are expressed 
with triangular fuzzy numbers. 

Definition 9. Assume that X be the finite universe of 
discourse and F [0, 1] be the set of all triangular fuzzy 
numbers on  0,1 . A triangular fuzzy number neutrosophic 

set (TFNNS) A  in X is represented by 
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 , ( ), ( ), ( ) | ,
A A A

A x T x I x F x x X 

where,  ( ) : 0,1
A

T x X F  ,  ( ) : 0,1
A

I x X F , and 

 ( ) : 0,1 .
A

F x X F
The triangular fuzzy numbers 

 1 2 3( ) (x), (x), (x)
A A A A

T x T T T ,  1 2 3( ) (x), (x), (x)
A A A A

I x I I I , 

and ( )
A

F x   1 2 3( ), ( ), (x)
A A A

F x F x F , respectively, denote
the truth membership degree, indeterminacy degree, and 
falsity membership degree of x in A  and for every 
x X : 

3 3 30 (x) (x) (x) 3
A A A

T I F    .          (16) 
For notational convenience, we consider 

( , , ), ( , , ), ( , , )A a b c e f g r s t as a trapezoidal fuzzy 
number neutrosophic values (TFNNV) where, 
 1 2 3(x), (x), (x) ( , , )

A A A
T T T a b c ,

 1 2 3(x), (x), (x) ( , , )
A A A

I I I e f g , 

and  1 2 3(x), (x), (x)
A A A

F F F = ( , , )r s t . 

Definition 10. Let 1 1 1 1 1 1 1 1 1 1( , , ), ( , , ), ( , , )A a b c e f g r s t  and 

2 2 2 2 2 2 2 2 2 2( , , ), ( , , ), ( , , )A a b c e f g r s t be two TFNNVs in 
the set of real numbers. Then the following operations are 
defined as follows: 

1. 
 
   

1 2 1 2 1 2 1 2 1 2 1 2
1 2

1 2 1 2 1 2 1 2 1 2 1 2

, , ,
;

, , , , ,

a a a a b b b b c c c c
A A

e e f f g g r r s s t t

     
 

(17) 

2. 

 
 
 

1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

, , ,
, , , ;

, ,

a a b b c c

A A e e e e f f f f g g g g

r r r r s s s s t t t t

       

     

  (18) 

3. 
 

   
1 1 1

1 1 1 1 1 1

1 (1 a ) ,1 (1 ) ,1 (1 ) ,

, , , , ,

b c
A

e f g r s t

  

     


     
  for 

0   and  (19) 

4. 

 
 
 

1 1 1

1 1 1

1 1 1

, , ,

1 (1 ) ,1 (1 ) ,1 (1 ) ,

1 (1 ) ,1 (1 ) ,1 (1 )

a b c

A e f g

r s t

  

   

  

      

     

for

0  . (20) 

The operations defined in Definition 10 satisfy the 
following properties: 

1. 1 2 2 1 1 2 2 1, ;A A A A A A A A       

2.    1 2 1 2 1 2 1 2,A A A A A A A A
          for

0  , and

3.   1 2 1 2( )
1 1 2 1 1 2 1 1 1 1,A A A A A A

            for

1 2, 0   . 

3.1 Score and accuracy function of TFNNV 

In the following section, we define score function and ac-
curacy function of TFNNV from Definition 5, Definition 6. 

Definition 11.  Assume that 

1 1 1 1 1 1 1 1 1 1(a ,b ,c ), (e , f ,g ), (r ,s , t )A  be a TFNNVs in the 

set of real numbers, the score function 1( )S A  of 1A is 
defined as follows: 

  1 1 1 1 1 1
1

1 1 1

8 ( 2 ) ( 2 )1
( 2 )12

a b c e f g
S A

r s t

      
     

. (21) 

The value of score function of 
TFNNV (1,1,1), (0,0,0), (0,0,0)A

   is (A )S
 = 1 and 

value of accuracy function of 
TFNNV (0,0,0), (1,1,1), (1,1,1)A

  is (A ) 1S
   . 

Definition 12. Assume 
that 1 1 1 1 1 1 1 1 1 1(a ,b ,c ), (e , f ,g ), (r ,s , t )A  be a TFNNV in 

the set of real numbers, the accuracy function  1H A of 

1A is defined as follows: 

   1 1 1 1 1 1 1
1 (a 2b c ) (r 2s t )
4

H A       . (22) 

The accuracy function  1(A ) 1,1H   determines the 
difference between truth and falsity. Larger the difference 
reflects the more affirmative of the TFNNV. The accuracy 
function (A )H

 = 1 for (1,1,1), (0,0,0), (0,0,0)A
  and 

(A ) 1H
    for the TFNNV (0,0,0), (1,1,1), (1,1,1)A

  . 
Based on Definition 11 and Definition 12, we present the 
order relations between two TFNNVs. 

Definition 13. Assume that 

1 1 1 1 1 1 1 1 1 1(a ,b ,c ), (e , f ,g ), (r ,s , t )A  and 

2 2 2 2 2 2 2 2 2 2(a ,b ,c ), (e , f ,g ), (r ,s , t )A  be two TFNNVs in 
the set of real numbers. Suppose that (A )

i
S  and (A )

i
H  are 

the score and accuracy functions of TFNNS ( 1, 2)
i

A i  , 
then the following order relations are defined as follows: 
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1. If 1 2S( ) S( )A A , then 1A is greater than 2A that is 

1 2A A ;
2. If 1 2S( ) S( )A A and 1 2( ) ( )H A H A  then 1A is great-

er than 2A ,that is, 1 2A A ; 
3. If 1 2S( ) S( )A A , 1 2( ) ( )H A H A   then 1A is indiffer-

ent to 2A , i.e. 1 2A A . 

Example 1. Consider two TFNNVs in the set of real 
numbers:

1 (0.70,0.75,0.80),(0.15,0.20,0.25),(0.10,0.15,0.20) ,A 

2 (0.40,0.45,0.50),(0.40,0.45,0.50),(0.35,0.40,0.45) .A 
 Then from Eqs.(21) and (22), we obtain the following 
results: 
1. Score value of 1( ) (8 3 0.8 0.6) /12 0.80S A      , 

and 2( ) (8 1.8 1.8 1.6) /12 0.53S A      ; 

2. Accuracy value of 1H( ) (3 0.6) / 4 0.60A    , 

and 2( ) (1.8 1.6) / 4 0.05H A    . 

Therefore from Definition 13, we obtain 1̀ `2 .A A  

Example 2. Consider  two TFNNVs in the set of real 
numbers: 

1 (0.50,0.55,0.60),(0.25,0.30,0.35),(0.20,0.25,0.30)A 

2 (0.40,0.45,0.50),(0.40,0.45,0.50),(0.35,0.40,0.45) .A 
 Using Eqs. (21) and (22), we obtain the following results: 

1. Score value of 1( ) (8 2.2 1.2 1.0) /12 0.67S A      , 

and 2( ) (8 1.8 1.8 1.6) /12 0.53S A      ; 

2. Accuracy value of 1H( ) (2.2 1.2) / 4 0.25A    , 

and 2( ) (1.8 1.6) / 4 0.05H A    . 

Therefore from Definition 13, we have 1 2 .A A  

4 Aggregation of triangular fuzzy number neutro-
sophic sets 

In this section, we first recall some basic definitions of ag-
gregation operators for real numbers. 

Definition 14. [72] Assume that : (Re) Re,n
W   and 

( 1,2,..., )
j

a j n be a collection of real numbers. The 
weighted averaging operator

w
WA is defined as 

 1 2
1

, ,...,
n

w n j j

j

WA a a a w a


  (23) 

 where Re is the set of real numbers, 1 2( , ,..., )T

n
w w w w  is 

the weight vector of ( 1,2,..., )
j

a j n such 

that [0,1]
j

w  (j 1,2,...,n) and 
1

1.n

jj
w


  

Definition 15. [73] Assume that : (Re) Re,n
W   and 

( 1,2,..., )
j

a j n  be a collection of real numbers. The 
weighted geometric operator WGw is defined as follows: 

 1 2
1

, ,..., j

n
w

w n j

j

WG a a a a


 ,    (24) 

where Re is the set of real numbers, 1 2( , ,..., )T

n
w w w w  is 

the weight vector of ( 1,2,..., )
j

a j n with 

[0,1]
j

w  (j 1,2,...,n) and 
1

1n

jj
w


  

Based on Definition 14 and Definition 15, we propose the 
following two aggregation operators of TFNNSs to be used 
in decision making. 

4.1 Triangular fuzzy number neutrosophic arith-
metic averaging operator 

Definition 16. Assume 

that ( , , ),( , , ),( , , )
j j j j j j j j j j

A a b c e f g r s t (j 1,2,...,n)

be a collection TFNNVs in the set of real numbers and 
let : n

TFNNWA   . The triangular fuzzy number 
neutrosophic weighted averaging (TFNNWA) operator 
denoted by 1 2(A ,A ,...,A )

n
TFNNWA  is defined as

1 2(A , A ,..., A )
n

TFNNWA

1 1 2 2w w w (w )
1

A
n n j j

n

j
A A A


    ,         (25) 

where [0,1]
j

w   is the weight vector of ( 1,2,..., )
j

A j n

such that
1

1.
n

j

j

w




In particular, if  1 ,1 ,...,1 T
w n n n then the 

1 2(A ,A ,...,A )
n

TFNNWA operator reduces to triangular 
fuzzy number neutrosophic averaging (TFNNA) operator: 

 1 2 1 2
1(A ,A ,...,A )

n n
TFNNA A A A

n
     (26) 

We can now establish the following theorem by using the 
basic operations of TFNNVs defined in Definition 10. 
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Theorem 1. 
Let (a ,b ,c ),(e ,f ,g ),(r ,s , t )

j j j j j j j j j j
A  (j 1,2,...,n)

be a collection TFNNVs in the set of real numbers. Then 
the aggregated value obtained by TFNNWA, is also a 
TFNNV, and  

1 2(A , A ,..., A )
w n

TFNNWA  

1 1 2 2 (w A
1

)
n n j j

w A w A w A

n

j
  


    

1 1 1

1 1 1 1 1 1

1 (1 a ) ,1 (1 ) ,1 (1 ) ,
,

, , , , ,

j j j

j j j j j j

n n n
w w w

j j j

j j j

n n n n n n
w w w w w w

j j j j j j

j j j j j j

b c

e f g r s t

  

     

 
      

 
   
   
   

  

     
   (27) 

where [0,1]
j

w   is the weight vector of TFNNV 

( 1,2,..., )
j

A j n such that
1

1.
n

j

j

w



Proof: We prove the theorem by mathematical induction. 

1. When 1n  , it is a trivial case

When 2n  ,  we have 
1 1 2 2(w )

2

1
A

j j
w A w A

j
 




---------------------------------------------------------------------------------------------------------------------------------------------

2. 
     

     

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

1 (1 a ) ,1 (1 ) ,1 (1 ) , , , , , ,

1 (1 a ) ,1 (1 ) ,1 (1 ) , , , , , ,

w w w w w w w w w

w w w w w w w w w

b c e f g r s t

b c e f g r s t

      
           

       
       
       

   

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

1 (1 a ) 1 (1 a ) 1 (1 a ) . 1 (1 a ) ,

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 ) , ,

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 )

, , , , ,

w w w w

w w w w

w w w w

w w w w w w w w w w w w

b b b b

c c c c

e e f f g g r r s s t t

          
 
          
 
           

2 2 2

1 1 1

2 2 2 2 2 2

1 1 1 1 1 1

1 (1 a ) ,1 (1 ) ,1 (1 ) ,

, , , , ,

j j j

j j j j j j

w w w

j j j

j j j

w w w w w w

j j j j j j

j j j j j j

b b

e f g r s t

  

     

 
      

 
   
   
   

  

     
. (28) 

Thus the theorem is true for n = 2 
3. When n = k, we assume that Eq.(27) is also true.

Then,
1 2 1 1 1 1(A ,A ,...,A ) (w A )

1
k n n j j

TFNNWA w A w A

k

w
j

A


     

= 1 1 1

1 1 1 1 1 1

1 (1 a ) ,1 (1 ) ,1 (1 ) ,

, , , , ,

j j j

j j j j j j

k k k
w w w

j j j

j j j

k k n k k k
w w w w w w

j j j j j j

j j j j j j

b b

e f g r s t

  

     

 
      

 
   
   
   

  

     
. (29) 

4. When n = k + 1, we have

1 2 1 1 1(A ,A ,...,A ) (w A ) (w A )
1

k j j k k
TNF

k

A
j

NW    


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1 1

1 1

1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 (1 a ) 1 (1 a ) 1 (1 a ) 1 (1 a ) ,

1 (1 ) 1 (1 ) 1 (1 ) 1 (1 ) ,

1 (1 ) 1 (1 ) 1 (1 ) 1 (1 )

j jk k

j jk k

j jk k

k k
w ww w

j k j k

j j

k k
w ww w

j k j k

j j

k k
w ww w

j k j k

j j

b b b b

c c c c

 

 

 

 
 

 
 

 
 

 
          

 
 
          

 
 

          
 

 

 

 

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1

,

.e , . , .e , . , . , .j j j j j jk k k k k k

k k n k k k
w w w w w ww w w w w w

j k j k j k j k j k j k

j j j j j j

e f f g r r s s t t     
     

     




   
   
   
     

1 1 1

1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 (1 a ) ,1 (1 ) ,1 (1 ) ,

, , , , ,

j j j

j j j j j j

k k k
w w w

j j j

j j j

k k k k k k
w w w w w w

j j j j j j

j j j j j j

b b

e f g r s t

  

  

     

     

 
      

 
   
   
   

  

     
. (30) 

--------------------------------------------------------------------------------------------------------------------------------------------------

We observe that the theorem is true for n = k + 1. 

Therefore, by mathematical induction, we can say that Eq. 

(27) holds for all values of n. As the components of all 

three membership functions of j
A belong to [0, 1], the

following relations are valid 

1
0 1 (1 ) 1,j

n
w

j

j

c


 
    
 


1

0 1j

n
w

j

j

g


 
  
 
 , 

1
0 1j

n
w

j

j

t


 
  
 
 . (31) 

It follows that the relation 

1 1 1
0 1 (1 ) 3j j j

n n n
w w w

j j j

j j j

c g t
  

 
      
 

   is also valid. 

This completes the proof of the Theorem 1. 
Now, we highlight some necessary properties of 
TFNNWA operator. 

Property 1.(Idempotency): If all (j 1,2,..., n)
j

A  are equal 

i.e. (a, b,c), (e, f,g), (r,s, t)
j

A A  , for all j  , 

then 1 2(A ,A ,...,A )
k

TFNNWA A . 

Proof: From Eq.(27), we have 

1 2(A , A ,..., A )
n

TFNNWA

(A,A,...,A) (
1

w A)
j

TFNNWA

n

j
    

=
1 1 1

1 1 1 1 1 1

1 (1 a) ,1 (1 ) ,1 (1 ) ,

, , , , ,

j j j

j j j j j j

n n n
w w w

j j j

n n n n n n
w w w w w w

j j j j j j

b c

e f g r s t

  

     

 
      

 
   
   
   

  

     

1 1 1

1 1 1

1 1 1

1 (1 a) ,1 (1 ) ,1 (1 ) ,

, , ,

, ,

n n n

j j jj j j

n n n

j j jj j j

n n n

j j jj j j

w w w

w w w

w w w

b c

e f g

e f g

  

  

  

         
 

     
 

   
 
 

(a,b,c), (e, f,g), (r,s, t) .A   

This completes the proof the Property 1. 

Property 2. (Boundedness)  

Let (a ,b ,c ),(e ,f ,g ),(r ,s , t )
j j j j j j j j j j

A  (j 1,2,...,n)

be a collection TFNNVs in the set of real numbers. 
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Assume

 
 

 

max( ),max( ),max( ) ,

min( ),min( ),min( ) ,

min( ),min( ),min( )

j j j
j j j

j j j
j j j

j j j
j j j

a b c

A e f g

r s t

   and 

 
 

 

min( ),min( ),min( ) ,

max( ),max( ),max( ) ,

max( ),max( ),max( )

j j j
j j j

j j j
j j j

j j j
j j j

a b c

A e f g

r s t

  for all 

1,2,..., .j n  
Then 1 2(A ,A ,...,A ) A

n
A TFNNWA
   . 

    (32) 
Proof: We have 
min( ) max( ), min( ) max( ),

j j j j j j
j jj j

c c c g g g   

min( ) max( )
j j j

j j
t t t  for 1,2,...,j n .   (33) 

Then 

1 1

1

1 (1 min(c )) 1 (1 )

1 (1 max(c ))

j j

j

n n
w w

j j
j

j j

n
w

j
j

j

c
 



    

  

 



 
 

1

1

1
1 (1 min(c )) 1 (1 )

1 (1 max(c ))

n

jj
j

n

jj

nw
w

j j
j

j

w

j
j

c







     


  



= 
1

min( ) 1 (1 ) max( )j

n
w

j j j
j j

j

c c c


    . 

Again from Eq.(33), we have for j = 1, 2, …, n 

   
1 1 1

min( ) max( )
jj

j

wn n nw
w

j j
j j

j j j

g g g
  

   

=     11

1
min( ) max( )

nn

jj jj
j

wnw
w

j j
j j

j

g g g





 

=
1

min( ) max( )j

n
w

j j
j j

j

g e g


  ; 

and    
1 1 1

min( ) max( )
jj

j

wn n nw
w

j j
j j

j j j

t t t
  

    =

    11

1
min( ) max( )

nn

jj jj
j

wnw
w

j j
j j

j

t t t





 

=
1

min( ) max( )j

n
w

j j
j j

j

t t t


  . 

 Similarly, we have 

1
min( ) 1 (1 ) max( )j

n
w

j j j
j j

j

a a a


    , 

1
min( ) 1 (1 ) max( )j

n
w

j j j
j j

j

b b b


    ; 

1
min( ) 1 (1 ) max( )j

n
w

j j j
j j

j

e e e


    , 

1
min( ) 1 (1 ) max( )j

n
w

j j j
j j

j

f f f


    ; 

1
min( ) 1 (1 ) max( )j

n
w

j j j
j j

j

r r r


    , 

1
min( ) 1 (1 ) max( )j

n
w

j j j
j j

j

s s s


   
for 1,2,..., .j n  

Assume that 
1 2(A ,A ,...,A ) A

w n
TFNNWA  = (a, b,c), (e, f,g), (r,s, t) , 

then the score function of A  

 1( ) 8 ( 2 ) ( 2 ) ( 2 )
12

S A a b c e f g r s t         

 
 
 

8 max( ) max(2 ) max( )

1 min( ) 2min( ) min( )
12

min( ) 2min( ) min( )

j j j
j j j

j j j
j j j

j j j
j j j

a b c

e f g

r s t

    
 
    
 
 

    

, (34) 

 S A
 . 

 Similarly, the score function of A  

 1( ) 8 ( 2 ) ( 2 ) ( 2 )
12

S A a b c e f g r s t          ;

 
 
 

8 min( ) min(2 ) min( )

1 max( ) max(2 ) max( )
12

max( ) max(2 ) max( )

j j j
j j j

j j j
j j j

j j j
j j j

a b c

e f g

r s t

    
 
    
 
 

   
 

 S A
 . 

Now, we consider the following cases: 
1. If (A) S(A )S

 and (A) S(A )S
 then we have 

1 2(A ,A ,...,A ) A
n

A TFNNWA
   .    (35) 
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2. If (A) S(A )S
 , then we can take 

 1 8 ( 2 ) ( 2 ) ( 2 )
12

a b c e f g r s t        

 
 
 

8 max( ) 2max( ) max( )

1 min( ) 2min( ) min( )
12

min( ) 2min( ) min( )

j j j
j j j

j j j
j j j

j j j
j j j

a b c

e f g

r s t

    
 
    
 
 
    

. 

3. It follows that

(a 2b c)  =  max( ) 2max( ) max( )
j j j

j j j
a b c  , 

( 2 )e f g  =  min( ) 2min( ) min( )
j j j

j j j
e f g   and 

(r 2s t)  =  min( ) 2min( ) min( )
j j j

j j j
r s t  . 

Therefore the accuracy function of A  

(A)H  =  1 ( 2 ) ( 2 )
4

a b c r s t    

 
 

max( ) max(2 ) max( )1
4 min( ) min(2 ) min( )

j j j
j j j

j j j
j j j

a b c

r s t

   
  

   
 

. 

(A )H
 ,  (36) 

From (36),we have 1 2(A ,A ,...,A ) A
n

TFNNWA
    (37) 

Similarly, for (A) S(A )S
 , the accuracy function of A  

(A)H  =  1 ( 2 ) ( 2 )
4

a b c r s t    

 
 

min( ) min(2 ) min( )1
4 max( ) max(2 ) max( )

j j j
j j j

j j j
j j j

a b c

r s t

   
  

   
 

(A )H
    (38) 

From (38), we have 1 2(A ,A ,...,A ) A
n

TNFNWA
 .       (39) 

Combining Eqs. (35), (37) and (39), we obtain the follow-
ing result  

1 2(A ,A ,...,A ) A
n

A TFNNWA
   (40) 

This proves the Property 2. 

Property 3. (Monotonicity) Suppose 

that 1 1 1 1 1 1 1 1 1 1( , , ),( , , ),( , , )
j j j j j j j j j j

A a b c e f g r s t  and 
2 2 2 2 2 2 2 2 2 2( , , ),( , , ),( , , )
j j j j j j j j j j

A a b c e f g r s t (j 1,2,...,n)  be 
a collection of two TFNNVs in the set of real numbers. 

If 1
j

A ≼ 2
j

A  for j 1,2,...,n then 
1 1 1
1 2(A ,A ,...,A )

n
TFNNWA ≼ 2 2 2

1 2(A ,A ,...,A )
n

TFNNWA .  (41) 
Proof: We first consider 1

j
c , 1

j
g , 1

j
t of 1

j
A and  

2
j

c , 2
j

g , 2
j

t of 2
j

A to prove the property 3. 

We can consider 1 2
j j

c c , 1 2
j j

g g and 1 2
j j

t t  for 
1
j

A ≼ 2
j

A ( 1,2,...,j n ) . 
Then we have 

   1 21 1j jw w

j j
c c   ,    1 2j jw w

j j
g g ,    1 2 ;j jw w

j j
t t

   1 2

1 1
1 1 1 1j j

n n
w w

j j

j j

c c
 

      ,    1 2j jw w

j j
g g and 

   1 2j jw w

j j
t t . 

Therefore, 

   1 2

1 1
1 1 1 1j j

n n
w w

j j

j j

c c
 

      ;    1 2

1 1

j j
n n

w w

j j

j j

g g
 

  , 

and    1 2

1 1

j j
n n

w w

j j

j j

t t
 

  . (42) 

Similarly, we can show 

   1 2

1 1
1 1 1 1j j
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w w

j j

j j

a a
 

      ;    1 2

1 1

j j
n n

w w

j j

j j

e e
 

  , 

and    1 2

1 1

j j
n n

w w

j j

j j

r r
 

  ; 

   1 2

1 1
1 1 1 1j j

n n
w w

j j

j j

b b
 

      ;    1 2

1 1

j j
n n

w w

j j

j j

f f
 

   , 

and    1 2

1 1

j j
n n

w w

j j

j j

s s
 

  . 

Assume that 
1 1 1 1

1 2(A ,A ,...,A )
n

A TFNNWA  

  = 1 1 1 1 1 1 1 1 1( , , ),( , , ),( , , )a b c e f g r s t  and 
2 2 2 2

1 2(A ,A ,...,A )
n

A TFNNWA  

= 2 2 2 2 2 2 2 2 2( , , ),( , , ),( , , )a b c e f g r s t , where 

 
1

1 1 j
n

w
s s

j

j

a a


   ,  
1

1 1 j
n

w
s s

j

j

b b


   , 

 
1

1 1 j
n

w
s s

j

j

c c


   ; 

 
1

j
n

w
s s

j

j

e e


 ,  
1

j
n

w
s s

j

j

f f


 ,  
1

j
n

w
s s

j

j

g g


 and 

 
1

j
n

w
s s

j

j

r r


 ,  
1

j
n

w
s s

j

j

s s


 ,  
1

j
n

w
s s

j

j

t t


 for s =1, 2. 

Now we consider the score function of 1A : 
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 
1 1 1 1 1 1

1
1 1 1

8 ( 2 ) ( 2 )1
12 ( 2 )

a b c e f g
S A

r s t

      
  

    

 2 2 2 2 2 2 2 2 2 21 8 ( 2 ) ( 2 ) ( 2 )
12

a b c e f g r s t S A            

Now we consider the following two cases: 
Case 1 . If    1 2

S A S A  , from Definition-13, we have 
1 1 1
1 2(A ,A ,...,A )

n
TNFNWA 2 2 2

1 2(A , A ,..., A )
n

TNFNWA .  (43) 

Case 2 . If    1 2
S A S A , then by Eq.(21) we can 

consider 
1 1 1 1 1 1

1 1 1

8 ( 2 ) ( 2 )1
12 ( 2 )

a b c e f g

r s t

      
 

    
 

=
2 2 2 2 2 2

2 2 2

8 ( 2 ) ( 2 )1 .
12 ( 2 )

a b c e f g

r s t

      
 

    

Thus for 1
j

A ≼ 2
j

A ( 1,2,..., )j n  i.e., for  1 2 ,
j j

a a 1 2
j j

b b
1 2 ;
j j

c c 1 2
j j

e e 1 2 ,
j j

f f 1 2
j j

g g  and 
1 2 ,
j j

r r 1 2
j j

s s  , 1 2
j j

t t  we have 
1 2 ,a a 1 2 ,b b 1 2 ,c c 1 2 ,e e 1 2 ,f f 1 2 ,g g
1 2 ,r r 1 2

s s and 1 2
t t . 

Then, the accuracy function  of 1A yields 

1 1 1 1 1 1 11(A ) ( 2 ) ( 2 )
4

H a b c r s t       

= 2 2 2 2 2 21 ( 2 ) ( 2 )
4

a b c r s t      

 = 2(A )H .     (44) 
Thus from Definition-13, we have 

1 1 1
1 2(A ,A ,...,A )

n
TNFNWA  = 2 2 2

1 2(A ,A ,...,A )
n

TNFNWA .    (45)

Finally, from Eqs. (43) and (45), we have the following 
result  

1 1 1
1 2(A ,A ,...,A )

n
TFNNWA ≼ 2 2 2

1 2(A ,A ,...,A )
n

TFNNWA . 
 This completes the proof of Property 3.

Example3.We consider the following four  TFNNVs: 
1A = (0.80,0.85,0.90), (0.10,0.15,0.20),

(0.05,0.10,0.15) ; 2A = (0.70,0.75,0.80),

(0.15,0.20,0.25), (0.10,0.15,0.20) ;

3A = (0.40,0.45,0.50), (0.40,0.45,0.50),

(0.35,0.40,0.45) and 

4A = (0.70,0.75,0.80), (0.15,0.20,0.25),

(0.10,0.15,0.20) .  
Using  TFNNWA operator defined in Eq.(27), we can 
aggregate 1 2 3A , A , A , and 4A with weight vector 

(0.30,0.25,0.25,0.20)w   as: 

1 2 3 4(A ,A ,A ,A )A TFNNWA

   1 1 2 2 3 3 4 4w A w A w A w A   

------------------------------------------------------------------------------------------------------------------------------------- 

= 

 
 
 

0.30 0.25 0.25 0.20 0.30 0.25 0.25

0.30 0.25 0.25 0.20

0.30 0.25 0.25 0.20

1 (1 0.80) (1 0.70) (1 0.40) (1 0.70) , (0.10) (0.15) (0.40) (0.15

1 (1 0.85) (1 0.75) (1 0.45) (1 0.75) , ,

1 (1 0.90) (1 0.80) (1 0.50) (1 0.80)

     
 
     
 
      

 
 
 

0.20

0.30 0.25 0.25 0.20

0.30 0.25 0.25 0.20

) ,

(0.15) (0.20) (0.45) (0.20) , ,

(0.20) (0.25) (0.50) (0.25)

 
 
 
 
 
 

 
 
 

0.30 0.25 0.25 0.20

0.30 0.25 0.25 0.20

0.30 0.25 0.25 0.20

(0.05) (0.10) (0.35) (0.10) ,

(0.10) (0.15) (0.40) (0.15) ,

(0.15) (0.20) (0.45) (0.20)

 
 
 
 
 
 

  (46) 

=

      
      
   

1 0.617 0.740 0.880 0.786 , 1 0.566 0.707 0.861 0.756 , 1 0.501 0.669 0.841 0.725 ,

0.501 0.622 0.795 0.684 , 0.566 0.667 0.819 0.725 , 0.617 0.707 0.841 0.887 ,

0.407 0.562 0.769 0.631 , 0.501 0.622 0.795 0.684 , 0.

           

        

        566 0.669 0.819 0.725  
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     0.6842,0.7395,0.7956 , 0.1804,0.2605,0.3254 , 0.1110,0.1694,0.2249 . 

-------------------------------------------------------------------------------------------------------------------------------------------------

4.2 Triangular fuzzy number neutrosophic geo-
metric averaging operator 

Definition 17.  Suppose that 

that (a ,b ,c ),(e ,f ,g ),(r ,s , t )
j j j j j j j j j j

A  (j 1,2,...,n)

be a collection TFNNVs in the set of real numbers 
and : n

TFNNWG   . The triangular fuzzy number 
neutrosophic weighted geometric (TFNNWG) operator 
denoted by 1 2(A ,A ,...,A )

w n
TFNNWG is defined as 

follows: 
1 2 ww w

1 2 1 2(A ,A ,...,A ) n

w n n
TFNNWG A A A   

    w(A )
1

j

j

n

j



    (47) 

where [0,1]
j

w   is the exponential weight vector of 

(j 1,2,..., n)
j

A  such that
1

1.
n

j

j

w


  In particular, if 

 1 ,1 ,...,1 T
w n n n then the 

1 2(A ,A ,...,A )
n

TFNNWG operator reduces to triangular 
fuzzy neutrosophic geometric(TNFG)  operator: 

 
1

1 2 1 2(A ,A ,...,A ) n
w n n

TFNNWG A A A    . (48) 

We now establish the following theorem with the basic 
operations of TFNNV defined in Definition 10. 

Theorem 2. Assume that 

(a ,b ,c ),(e ,f ,g ),(r ,s , t )
j j j j j j j j j j

A  (j 1,2,...,n)  be a 

collection TFNNVs in the set of real numbers. Then the 

aggregated value obtained from TFNNWG, is also a 

TFNNV, and then we have 

1 2(A ,A ,...,A )
w n

TFNNWG

1 2 ww w
1 2

n

n
A A A   

 w(A )
1

j

j

n

j





1 1 1

1 1 1

1 1 1

, , ,

1 (1 ) ,1 (1 ) ,1 (1 ) ,

1 (1 ) ,1 (1 ) ,1 (1 )

j j j

j j j

j j j

n n n
w w w

j j j

j j j

n n n
w w w

j j j

j j j

n n n
w w w

j j j

j j j

a b c

e f g

r s t

  

  

  

 
 
 
 

       
 
 
      

 

  

  

  
(49) 

where [0,1]
j

w   is the weight vector of TFNNV 

(j 1,2,...,n)
j

A  such that
1

1.
n

j

j

w




Similar to arithmetic averaging operator, we can also prove 
the theorem by mathematical induction. 
1. When n = 1, the theorem is true.

2. When n = 2,  we have

  1 2
w

1 2

2

1
A j w w

j
A A

j
 




     
     

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

, , , 1 (1 ) ,1 (1 ) ,1 (1 ) , 1 (1 ) ,1 (1 ) ,1 (1 )

, , , 1 (1 ) ,1 (1 ) ,1 (1 ) , 1 (1 ) ,1 (1 ) ,1 (1 )

w w w w w w w w w

w w w w w w w w w

a b c e f g r s t

a b c e f g r s t

            
 
               
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 
       
       
       

   

1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2

1 2

1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2

1 2 1

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 ) ,

, , , 1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 ) ,

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 )

1 (1 ) 1 (1 ) 1 (1

w w w w

w w w w w w w w w w

w w w w

w w

e e e e

a a b b c c f f f f

c c c c

r r r

          
 
          
 
           

          
       
       

1 2

1 2 1 2

1 2 1 2

2

1 2 1 2

1 2 1 2

) . 1 (1 ) ,

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 ) ,

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 )

w w

w w w w

w w w w

r

s s s s

t t t t

  
 
          
 
           

2 2 2 2 2 2

1 1 1 1 1 1

2 2 2

1 1 1

, , , 1 (1 ) ,1 (1 ) ,1 (1 ) ,

1 (1 ) ,1 (1 ) ,1 (1 )

j j j j j j

j j j

w w w w w w

j j j j j j

j j j j j j

w w w

j j j

j j j

a b c e f g

e f g

     

  

   
        

   
 
      

 

     

  
(50) 

3. When n = k, we assume that Eq.(49) is true then,
1 2 ww w

1 2 1 2(A ,A ,...,A ) k

w k k
TNFNWG A A A   

= 1 1 1 1 1 1

1 1 1

, , , 1 (1 ) ,1 (1 ) ,1 (1 ) ,

1 (1 ) ,1 (1 ) ,1 (1 )

j j j j j j

j j j

k k n k k k
w w w w w w

j j j j j j

j j j j j j

k k k
w w w

j j j

j j j

a b c e f g

r s t

     

  

   
        

   
 
      

 

     

  
(51) 

4. When n = k+1, we can consider the following expression:

    1w

1 2 1 1(A ,A ,...,A )
1

A Aj kw

w k j k

k

j
TNFNWG



  



= 1 1 1
1 1 1

1 1 1
. , . , . ,j j jk k k

k k n
w w ww w w

j k j k j k

j j j

a a b b c c  
  

  

 
 
 
  

   

   

 

1 1

1 1

1

1 1
1 1

1 1
1 1

1
1 1

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 ) ,

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 ) ,

1 (1 ) 1 (1 ) 1 (1 )

j jk k

j jk k

j jk

k k
w ww w

j k j k

j j

k k
w ww w

j k j k

j j

k k
w ww

j k j

j j

e e e e

f f f f

g g g

 

 



 
 

 
 


 

   
            

   
   
            

   
 
        

 

 

 

   1
1. 1 (1 ) kw

k
g 



 
 
 
 
 
 
 
  

      

, 
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   

   

 

1 1

1 1

1

1 1
1 1

1 1
1 1

1
1 1

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 ) ,

1 (1 ) 1 (1 ) 1 (1 ) . 1 (1 ) ,

1 (1 ) 1 (1 ) 1 (1 )

j jk k

j jk k

j jk

k k
w ww w

j k j k

j j

k k
w ww w

j k j k

j j

k k
w ww

j k j

j j

r r r r

s s s s

t t t

 

 



 
 

 
 


 

   
            

   
   
            

   
 
        

 

 

 

   1
1. 1 (1 ) kw

k
t 



 
 
 
 
 
 
 
  

      

(52) 

=

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1

1 1 1

, , , 1 (1 ) ,1 (1 ) ,1 (1 ) ,

1 (1 ) ,1 (1 ) ,1 (1 )

j j j j j j

j j j

k k k k k k
w w w w w w

j j j j j j

j j j j j j

k k k
w w w

j j j

j j j

a b c e f g

r s t

     

     

  

  

   
        

   
 
      

 

     

  
         (53) 

--------------------------------------------------------------------------------------------------------------------------------------------- 

We observe that the theorem is also true for n = k+1. 

Therefore, by mathematical induction, Eq. (49) holds for 
all values of n. 
Since the components of all three membership functions of 

( 1,2,..., )
j

A j n  belong to [0, 1] the following relations are
valid 

1
0 1j

n
w

j

j

c


 
  
 
 ,

1
0 1 (1 ) 1,j

n
w

j

j

g


 
    
 

 , 

and 
1

0 1 (1 ) 1j

n
w

j

j

t


 
    
 

 . (54) 

It follows that 

1 1 1
0 1 (1 ) 1 (1 ) 3.j j j

n n n
w w w

j j j

j j j

c g t
  

 
        
 
  

This completes the proof of Theorem 2. 
Now, we discuss some essential properties of TFNNWG 
operator for TFNNs. 

Property 4.(Idempotency): If all (j 1,2,..., n)
j

A  are equal 
that is (a, b,c), (e, f,g), (r,s, t)

j
A  , for all j  , 

then 1 2(A ,A ,...,A )
w k

TFNNWG A . 
Proof: From Eq.(49), we have 

1 2(A ,A ,...,A )
w n

TFNNWG

 w
(A,A,...,A

1
) A j

g j
T G

n

FNNW
j

 



=

1 1 1

1 1 1

1 1 1

, , ,

1 (1 ) ,1 (1 ) ,1 (1 ) ,

1 (1 ) ,1 (1 ) ,1 (1 )

j j j

j j j

j j j

n n n
w w w

j j j

n n n
w w w

j j j

n n n
w w w

j j j

a b c

e f g

r s t

  

  

  

 
 
 
 
      

 
 
      

 

  

  

  

1 1 1

1 1 1

1 1 1

, , ,

1 (1 ) ,1 (1 ) ,1 (1 ) ,

1 (1 ) ,1 (1 ) ,1 (1 )

n n n

j j jj j j

n n n

j j jj j j

n n n

j j jj j j

w w w

w w w

w w w

a b c

e f g

e f g

  

  

  

   
 
 
          
 
         
 

( , , ), ( , , ), ( , , ) .a b c e f g r s t A   
This completes the Property 4.         

Property 5. (Boundedness). 

Let (a ,b ,c ),(e ,f ,g ),(r ,s , t )
j j j j j j j j j j

A  (j 1,2,...,n)

be a collection TFNNs in the set of real numbers. Assume 

   
 

max ,max ,max , min ,min ,min ,

min ,min ,min

j j j j j j
j j jj j j

j j j
j j j

a b c e f g

A

r s t

 

 and 
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   
 

min ,min ,min , max ,max ,max ,

max ,max ,max

j j j j j j
j j j j j j

j j j
j j j

a b c e f g

A

r s t

 

for all 1,2,..., .j n  . Then 

1 2(A ,A ,...,A ) A
w n

A TNFNWG
   .    (55) 

Proof: The proof of the Property 5 is similar to Property 2. 

Property 6. (Monotonicity). 

Let 1 1 1 1 1 1 1 1 1 1(a ,b ,c ),(e ,f ,g ),(r ,s , t )
j j j j j j j j j j

A   and 
2 2 2 2 2 2 2 2 2 2(a ,b ,c ),(e ,f ,g ),(r ,s , t )
j j j j j j j j j j

A  (j 1,2,...,n)  be a 
collection of two TFNNVs in the set of real numbers. If 

1
j

A ≼ 2
j

A for j 1,2,...,n then 
1 1 1
1 2(A ,A ,...,A )

w n
TFNNWG ≼ 2 2 2

1 2(A ,A ,...,A )
w n

TFNNWG .
   (56) 

Proof: Property 6 can be proved by a similar argument of 
Property 3. Therefore, we do not discuss again to avoid 
repetition. 

Example 4. Assume that 
1A  = (0.80,0.85,0.90), (0.10,0.15,0.20),

(0.05,0.10,0.15) ; 2A  = (0.70,0.75,0.80),

(0.15,0.20,0.25), (0.10,0.15,0.20) ;

3A  = (0.40,0.45,0.50), (0.40,0.45,0.50),

(0.35,0.40,0.45) and 4A  = (0.70,0.75,0.80),

(0.15,0.20,0.25), (0.10,0.15,0.20) are four TFNNVs. 
Then using TFNNWG operator defined in Eq.(49), we can 
aggregate 1 2 3A , A , A , and 4A  with the considered weight 
vector (0.30,0.25,0.25,0.20)w   as: 

1 2 3 4

1 1 2 2 3 3 4 4

(A , A , A , A )
w

A TFNNWG

w A w A w A w A



   

=

 
 
 

 0.30 0.25 0.25 0.20 0.30 0.25 0.25 0.20

0.30 0.25 0.25 0.20 0.30

0.30 0.25 0.25 0.20

(0.80) (0.70) (0.40) (0.70) , 1 (1 0.10) (1 0.15) (1 0.40) (1 0.15) ,

(0.85) (0.75) (0.45) (0.75) , , 1 (1 0.15)

(0.90) (0.80) (0.50) (0.80)

      
 
   
 
 
 

 
 

0.25 0.25 0.20

0.30 0.25 0.25 0.20

(1 0.20) (1 0.45) (1 0.20) , ,

1 (1 0.20) (1 0.25) (1 0.50) (1 0.25)

 
 
   
 
      

 
 
 

0.30 0.25 0.25 0.20

0.30 0.25 0.25 0.20

0.30 0.25 0.25 0.20

1 (1 0.05) (1 0.10) (1 0.35) (1 0.10) ,

1 (1 0.10) (1 0.15) (1 0.40) (1 0.15) ,

1 (1 0.15) (1 0.20) (1 0.45) (1 0.20)

     
 
     
 
      

=

      
      
 

0.935 0.915 0.795 0.931 , 0.952 0.930 0.819 0.944 , 0.969 0.946 0.841 0.956 ,

1 0.969 0.960 0.880 0.968 , 1 0.952 0.946 0.861 0.956 , 1 0.935 0.930 0.841 0.944 ,

1 0.985 0.974 0.898 0.979 , 1 0.969 0.960 0.880 0.96

        

           

           8 , 1 0.952 0.946 0.861 0.956   

     0.6332,0.6845,0.7370 , 0.2076,0.2587,0.3097 , 0.1565,0.2075,0.2587 . 

----------------------------------------------------------------------------------------------------------------------------------------------

5 Application of TFNNWA and TFNNWG opera-

tors to multi attribute decision making 

Consider a multi attribute decision making problem in 
which 1 2{ , ,..., }

m
Y Y Y Y  be the set of n feasible 

alternatives and 1 2{ , ,..., }
n

C C C C be the set of attributes. 
Assume that 1 2(w ,w ,...,w )T

n
w   be the weight vector of 

the attributes, where 
j

w denotes the importance degree of 

the attribute
j

C such that 0
j

w   and 
1

1n

jj
w


  for 

1,2,...,j n . 
The ratings of all alternatives (i 1,2,...,m)

i
Y  with respect 

to the attributes (j 1,2,...,n)
j

C  have been presented in a 
TFNNV based decision matrix ( )

ij m n
U u  (see the Table 

1). Furthermore, in the decision matrix ( )
ij m n

U u  , the 

rating (a , , ),( , , ),( , , )
ij ij ij ij ij ij ij ij ij ij

u b c e f g r s t represents a 
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TFNNV, where the fuzzy number (a , , )
ij ij ij

b c represents the 
degree that the alternative (i 1,2,...,m)

i
Y  satisfies the 

attribute (j 1,2,...,n)
j

C  , the fuzzy number 
( , , )

ij ij ij
e f g represents the degree that the alternative 

i
Y is 

uncertain about the attribute
j

C and fuzzy number 
( , , )

ij ij ij
r s t indicates the degree that the alternative 

i
Y  does 

not satisfy the attribute
j

C such that 

0 3
ij ij ij

c g t    , for i = 1, 2,…, m and j = 1, 2, …, n. 

Based on the TFNNWA and TFNNWG operators, we 
develop a practical approach for solving MADM problems, 
in which the ratings of the alternatives over the attributes 
are expressed with TFNNVs. The schematic diagram of the 
proposed approach for MADM is depicted in the Figure-1. 

----------------------------------------------------------------------------------------------------------------------------------- 

Table 1. Triangular fuzzy number neutrosophic value based decision matrix 

1C 2C … n
C

1Y  
 
 

11 11 11

11 11 11

11 11 11

, , ,

, , ,

, ,

a b c

e f g

r s t

 
 
 

12 12 12

12 12 12

12 12 12

, , ,

, , ,

, ,

a b c

e f g

r s t

...  
 
 
 

1 1 1

1 1 1

1 1 1

, , ,

, , ,

, ,

n n n

n n n

n n n

a b c

e f g

r s t

2Y  
 
 

21 21 21

21 21 21

21 21 21

, , ,

, , ,

, ,

a b c

e f g

r s t

 
 
 

22 22 22

22 22 22

22 22 22

, , ,

, , ,

, ,

a b c

e f g

r s t

...  
 
 
 

2 2 2

2 2 2

2 2 2

, , ,

, , ,

, ,

n n n

n n n

n n n

a b c

e f g

r s t

…. …. …. …. … 

m
Y  

 
 

1 1 1

1 1 1

1 1 1

, , ,

, , ,

, ,

m m m

m m m

m m m

a b c

e f g

r s t

 
 
 

2 2 2

2 2 2

2 2 2

, , ,

, , ,

, ,

m m m

m m m

m m m

a b c

e f g

r s t

...  
 
 
 

, , ,

, , ,

, ,

mn mn mn

mn mn mn

mn mn mn

a b c

e f g

r s t

----------------------------------------------------------------------------------------------------------------------------------------------

Figure-1. Framework for the proposed MADM method 
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---------------------------------------------------------------------------------------------------------------------------------------------- 

Therefore, we design the proposed approach in the 
following steps: 
Step 1: First aggregate all rating values 

ij
p  1,2,...,j n  

of the i -th row of the decision matrix ( )
ij m n

p  de-
fined in Table 1. 

Step 2: Determine the aggregation value iu corresponding 
to the alternative 

i
Y  obtained from TFNNWA operator: 

1 2

(a , b ,c), (e , f ,g ), (r ,s , t )
( , ,..., )

i i i i i i i i i

w i i in

u

TFNNWA p p p




   (57) 

or by the TFNNWG operator as 
(a , b ,c), (e , f ,g ), (r ,s , t )

i i i i i i i i i
u 

1 2( , ,..., )
w i i in

TFNNWG p p p    (58) 
Step 3: For each alternative ( 1, 2,..., ),iA i m  calculate the 
score values ( )

i
S u  and accuracy values ( )

i
A u  of the ag-

gregated rating values obtained by TFNNWA or 
TFNNWG operators that are in Eqs. (21) and (22). 

Step 4: Using Definition 11 to Definition 13, determine 
the ranking order of aggregated values obtained in Step 3. 
Step 5: Select the best alternative in accordance with the 
ranking order obtained in Step 4. 

6 An illustrative example of multi attribute deci-
sion making 

In this section, we consider an illustrative example of 
medical representative selection problem to demonstrate 
and applicability of the proposed approach to multi 
attribute decision making problem. 
Assume that a pharmacy company wants to recruit a medi-
cal representative. After initial scrutiny four candidates 

(i 1,2,3,4)
i

Y   have been considered for further evaluation 
with respect to the five attributes (j 1,2,3,4,5)

j
C  namely, 

1. oral communication skill  1C ; 
2. past experience  2C ; 
3. general aptitude  3C ; 
4. willingness  4C and 
5. self confidence  5 .C

The ratings of the alternatives (i 1,2,3,4)
i

Y  with respect 
to the attributes (j 1,2,3,4,5)

j
C  are expressed with 

TFNNVs shown in the decision matrix 4 5(p )
ij

P  (see Ta-
ble 2.). Assume w = (0.10, 0.25, 0.25, 0.15, 0.25)T be the 
relative weight vector of all attributes (j 1,2,3,4,5)

j
C  . 

---------------------------------------------------------------------------------------------------------------------------------------------- 

Table 2. Triangular fuzzy number neutrosophic value based rating values 

1C 2C 3C 4C 5C

1Y (0.80,0.85,0.90)
(0.10,0.15,0.20)
(0.05,0.10,0.15)

(0.50,0.55,0.60)
(0.25,0.30,0.35)
(0.20,0.25,0.30)

(0.70,0.75,0.80)
(0.15,0.20,0.25)
(0.10,0.15,0.20)

(0.80,0.85,0.90)
(0.10,0.15,0.20)
(0.05,0.10,0.15)

(0.70,0.75,0.80)
(0.15,0.20,0.25)
(0.10,0.15,0.20)

2Y (0.50,0.55,0.60)
(0.25,0.30,0.35)
(0.20,0.25,0.30)

(0.70,0.75,0.80)
(0.15,0.20,0.25)
(0.10,0.15,0.20)

(0.80,0.85,0.90)
(0.10,0.15,0.20)
(0.05,0.10,0.15)

(0.70,0.75,0.80)
(0.15,0.20,0.25)
(0.10,0.15,0.20)

(0.70,0.75,0.80)
(0.15,0.20,0.25)
(0.10,0.15,0.20)

3Y (0.40,0.45,0.50)
(0.40,0.45,0.50)
(0.35,0.40,0.45)

(0.50,0.55,0.60)
(0.25,0.30,0.35)
(0.20,0.25,0.30)

(0.40,0.45,0.50)
(0.40,0.45,0.50)
(0.35,0.40,0.45)

(0.40,0.45,0.50)
(0.40,0.45,0.50)
(0.35,0.40,0.45)

(0.50,0.55,0.60)
(0.25,0.30,0.35)
(0.20,0.25,0.30)

4Y (0.40,0.45,0.50)
(0.40,0.45,0.50)
(0.35,0.40,0.45)

(0.50,0.55,0.60)
(0.25,0.30,0.35)
(0.20,0.25,0.30)

(0.40,0.45,0.50)
(0.40,0.45,0.50)
(0.35,0.40,0.45)

(0.70,0.75,0.80)
(0.15,0.20,0.25)
(0.10,0.15,0.20)

(0.70,0.75,0.80)
(0.15,0.20,0.25)
(0.10,0.15,0.20)

-------------------------------------------------------------------------------------------------------------------------------------------- 

Here, we apply two proposed aggregation operators 
TFNNWA and TFNNWG to solve the medical 
representative selection problem by using the following 
steps. 

6.1 Utilization of TFNNWA operator: 

Step 1: Aggregate the rating values of the alternative Yi 
(i= 1, 2, 3, 4) defined in the i -th row of decision 
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matrix 4 5(p )
ij

P  (see Table 2.) with TFNNWA 
operator. 

Step 2: The aggregated rating values  
i

u  corresponding to 
the alternative 

i
Y  are determined by Eq.(27) and the 

values are shown in Table 3. 
---------------------------------------------------------------------------------------------------------------------------------------------- 

Table 3. Aggregated TFNNV based ratings 
Aggregated ratings 

1u (0.6920,0.7451,0.8000),(0.1540,0.2026,0.2572), (0.1000,0.1540,0.2060)

2u (0.7147,0.7667,0.8197),(0.1426,0.1938,0.2445), (0.0901,0.1426,0.1938)

3u (0.4523,0.5025,0.5528),(0.3162,0.3674,0.4183), (0.2646,0.3162,0.3674)

4u (0.5655,0.6184,0.6722),(0.2402,0.2940,0.3466), (0.1844,0.2402,0.2940)

---------------------------------------------------------------------------------------------------------------------------------------------- 

Step 3:   The score and accuracy values of alternatives Yi 
(i= 1, 2, 3, 4) are determined by Eq.(21) and 
Eq.(22) in Table 4. 

Table 4. Score and accuracy values of aggregated rating values 
Alternative Score 

values ( )
i

S u

Accuracy 
values A(ui) 

1Y 0.7960 0.5921 

2Y 0.8103 0.6247 

3Y 0.6464 0.1864 

4Y 0.6951 0.3789 

Step 4: The order of the alternatives Yi (i= 1, 2, 3, 4) is 
determined according to the descending order of the score 
and accuracy values shown in Table 4. Thus the ranking 
order of the alternatives is presented as follows: 

2 1 4 3.Y Y Y Y  

Step 5: The ranking order in Step 4 reflects that, 2Y  is the 
best medical representative. 

6.2 Utilization of TFNNWG operator: 

Step 1: Using Eq.(49), we aggregate all the rating values 

of the alternative Yi (i= 1, 2, 3, 4)  for the i- throw of 

the decision matrix 4 5(p )
ij

P  (see Table 2.). 

Step 2: The aggregated rating values
i

u  corresponding to 

the alternative 
i

Y  are shown in the Table 5. 

---------------------------------------------------------------------------------------------------------------------------------------------- 

Table 5. Aggregated TFNN based rating values 
Aggregated rating values 

1u (0.6654,0.7161,0.7667),(0.1643,0.2144,0.2646), (0.1142,0.1643,0.2144)

2u (0.6998,0.7502,0.8002),(0.1485,0.1986,0.2486), (0.0984,0.1485,0.1986)

3u (0.4472,0.4975,0.5477),(0.3292,0.3795,0.4299), (0.2789,0.3292,0.3795)

4u (0.5291,0.5804,0.6316),(0.2707,0.3214,0.3721), (0.2202,0.2707,0.3214)

----------------------------------------------------------------------------------------------------------------------------------------------
Step 3: The score and accuracy values of alternatives Yi 

(i= 1, 2, 3, 4) are determined by Eqs.(21) and (22) 
and the results are shown in the Table 6. 

Table 6. Score and accuracy values of rating values 
Alternative Score 

values ( )
i

S u

Accuracy 
values A(ui) 

1Y 0.7791 0.5518 

2Y 0.8010 0.6016 

3Y 0.5962 0.1683 

4Y 0.6627 0.3096 

Step 4:  The order of alternatives Yi (i = 1, 2, 3, 4) has 
been determined according to the descending order 
of score and accuracy values shown in Table 4. 
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Thus the ranking order of the alternative is present-
ed as follows: 

2 1 4 3.Y Y Y Y  

Step 5:  The ranking order in Step 4 reflects that 2Y  is the 
best medical representative. 

7 Conclusions 

MADM problems generally takes place in a complex 
environment and usually connected with imprecise data 
and uncertainty. The triangular neutrosophic fuzzy 
numbers are an effective tool for dealing with 
impreciseness and incompleteness of the decision maker’s 
assessments over alternative with respect to attributes.  We 
have first introduced TFNNs and defined some of its 
operational rules. Then we have proposed two aggregation 
operators called TFNNWAA and TFNNWGA operators 
and score function and applied them to solve multi 
attribute decision making problem under neutrosophic 
environment. Finally, the effectiveness and applicability of 
the proposed approach have been illustrated with medical 
representative selection problem. We hope that the 
proposed approach can be also applied in other decision 
making problems such as pattern recognition, personnel 
selection, medical diagnosis, etc. 
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Abstract. This paper introduces a refined single-valued 
neutrosophic set (RSVNS) and presents a similarity 
measure of RSVNSs. Then a multicriteria decision-
making method with RSVNS information is developed 
based on the similarity measure of RSVNSs. By the simi-
larity measure between each alternative and the ideal so-

lution (ideal alternative), all the alternatives can be 
ranked and the best one can be selected as well. Finally, 
an actual example on the selecting problems of construc-
tion projects demonstrates the application and effective-
ness of the proposed method. 

Keywords: Refined single-valued neutrosophic set, similarity measure, decision making. 

1 Introduction

To deal with indeterminate and inconsistent 
information, Smarandache [1] proposed a neutrosophic set, 
which is composed of the neutrosophic components of 
truth, indeterminacy, and falsity denoted by T, I, F. Then, 
Wang et al. [2] constrained the neutrosophic set to a single-
valued neutrosophic set (SVNS) as a subclass of the 
neutrosophic set for convenient actual applications. Further, 
Smarandache [3] extended the classical neutrosophic logic 
to n-valued refined neutrosophic logic, in which 
neutrosophic components T, I, F are refined (splitted ) into 
T1, T2, ..., Tp and I1, I2, ..., Ir, and F1, F2, ..., Ft, respectively, 
and constructed as a n-valued refined neutrosophic set. In 
existing literature [4-7], neutrosophic refined sets were 
studied and applied to medical diagnosis and decision 
making. However, the existing neutrosophic refined set is 
also a single-valued neutrosophic multiset [6] in the 
concept. In this paper, we present a refined single-valued 
neutrosophic set (RSVNS), then its concept is different 
from the concept of single-valued neutrosophic multisets 
(neutrosophic refined sets) [4-7]. In fact, RSVNSs are 
scarcely studied and applied in science and engineering 
fields. Therefore, it is necessary to propose a similarity 
measure between RSVNSs and its decision making method 
in this paper. 

The rest of the paper is constructed as follows. Section 
2 reviews basic concepts of a SVNS and a neutrosophic 
refined set (single-valued neutrosophic multiset). Section 3 
introduces a RSVNS and a similarity measure of RSVNSs. 
Section 4 presents a multicriteria decision-making method 
based on the similarity method under a RSVNS 
environment. In section 5, an actual example is provided 
for the decision-making problem of selecting construction 

projects to illustrate the application of the proposed 
method. Section 6 contains conclusions and future research. 

2 Preliminaries 

Definition 1 [2]. Let U be a universe of discourse, then a 
SVNS A in U is characterized by a truth-membership 
function TA(x), an indeterminacy-membership function 
IA(x), and a falsity-membership function FA(x), such that 
TA(x), IA(x), FA(x)  [0, 1] and 0  TA(x) + TA(x) + TA(x)  3. 
Thus, a SVNS A can be expressed as 

}|)(),(),(,{ UxxFxIxTxA AAA  . 
Let U = {x1, x2, …, xn} be the universe of discourse, 

and A and B be two (non-refined) single-valued 
neutrosophic sets, }|)(),(),(,{ UxxFxIxTxA iiAiAiAi   
and }|)(),(),(,{ UxxFxIxTxB iiBiBiBi  . Majumdar and 
Samanta’s similarity method of two (non-refined) single-
valued neutrosophic sets A and B is: 

















































n

i

iiBiiA

iiBiiA

iiBiiA

n

i

iiBiiA

iiBiiA

iiBiiA

MS

xFxF

xIxI

xTxT

xFxF

xIxI

xTxT

BAM

1

1

))(),(max(
))(),(max(

))(),(max(
))(),(min(

))(),(min(
))(),(min(

),( .     (1) 

Based on n-valued refined neutrosophic sets [3], Ye 
and Ye [6] introduced a single-valued neutrosophic 
multisets (also called a single-valued neutrosophic refined 
set (SVNRS) [4, 5, 7]) and defined it below. 

University of New Mexico 
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Definition 2. Let U be a universe of discourse, then a 
SVNRS R in U can be defined as follows: 
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where p is a positive integer, )(),...,(),( 21 xTxTxT pRRR
 

]1,0[: U , )(),...,(),( 21 xIxIxI pRRR
]1,0[: U , and 

)(),...,(),( 21 xFxFxF pRRR
]1,0[: U , and there are 

3)()()(0  xFxIxT jRjRjR
 for j = 1, 2, …, p. 

Definition 3. Let two SVNRS R and S  in U be: 
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Then there are the following relations of R and S: 

(1) Containment: 

R  S, if and only if TjR(x)  TjS(x), IjR(x)  IjS(x), FjR(x) 
 FjS(x) for j = 1, 2, …, p; 

(2) Equality: 

R = S, if and only if TjR(x) = TjS(x), IjR(x) = IjS(x), FjR(x) 
= FjS(x) for j = 1, 2, …, p; 

(3) Union: 
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(4) Intersection: 
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3 Similarity Methods of RSVNSs 

In this section, we introduce a RSVNS and propose a 
similarity method between RSVNSs based on the 
extension of Majumdar and Samanta’s similarity method 
of two (non-refined) single-valued neutrosophic sets [8]. 

Definition 4. Let R and S in the universe of discourse U = 
{x1, x2, …, xn} be two refined single-valued neutrosophic 
sets, which are defined as 
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where pi is a positive integer, and all TjR(xi), IjR(xi), FjR(xi) 
and TjS(xi), IjS(xi), FjS(xi) (i = 1, 2, …, n; j = 1, 2, …, pi) be-
long to [0, 1].  

As an extension of Majumdar and Samanta’s similarity 
method of SVNSs [8], we present a similarity method be-
tween two RSVNSs R and S as follows: 
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Obviously, the above similarity measure M(R, S) satis-
fies the following properties: 

(1) 0  M(R, S)  1; 

(2) M(R, S) = M(S, R) 

(3) M(R, S) = 1 if and only if R = S. 

In general, we usually consider the weights of criteria. 
Assume that the weight of each criterion xi is wi (i = 1, 
2, …, n), with wi  [0, 1] and  


n

i iw
1

1 . Then, we can

introduce the weighted similarity formula: 
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4 Decision-making method using the similarity 
measure 

In a decision making problem, there is a set of alterna-
tives R = {R1, R2, …, Rm}, which needs to satisfies a set of 
criteria C = {C1, C2, …, Cn}, where Ci (i = 1, 2, …, n) may 
be splitted into some sub-criteria Cij (i = 1, 2, …, n; j = 1, 
2, …, pi). If the decision maker provides the suitability 
evaluation values of the criteria for Ci (i =1,2,..., n) on the 
alternative Rk (k = 1, 2,…, m) by using a RSVNS: 
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Then for convenience, each basic element in the 
RSVNS Rk is represented by the refined single-valued neu-
trosophic number (RSVNN): 

),...,,(),,...,,(),,...,,( 212121 kikkkikkkikk RpRRRpRRRpRR FFFIIITTT

for i = 1, 2, …, n; k = 1, 2, …, m. Hence, we can construct 
the refined single-valued neutrosophic decision matrix D, 
as shown in Table 1. 

When the weights of criteria are considered as the 
different importance of each criterion Ci (i = 1, 2, …, n), 
the weight vector of the three criteria is given by W = (w1, 
w2, …, wn) with wi ≥ 0 and  


n

i iw
1

1. Thus, the decision-

making steps are described as follows: 

Step 1: Based on the refined single-valued 
neutrosophic decision matrix D, we can determine the ideal 
solution (ideal RSVNN) by 
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which is constructed as the ideal alternative 
},...,,{ **

2
*
1

*
nsssS  . 

Step 2: The similarity measure between each 
alternative Rk (k = 1, 2, …, m) and the ideal alternative S* 

can be calculated according to Eq. (3) and the values of 
Mw(Rk, S

*) for k = 1, 2, …, m can be obtained.

Step 3: The alternatives are ranked in a descending 
order according to the values of Mw(Rk, S

*) for k = 1, 2, …,
m. The greater value of Mw(Rk, S

*) means the better
alternative Rk. 

Step 4: End. 

5 Actual example on the selection of construction 
projects 

In this section, we give the application of the decision 
making method for the selection of construction projects.  

A construction company needs to determine the 
selecting problem of construction projects. Decision 
makers provide four construction projects as a set of four 
alternatives R = {R1, R2, R3, R4}. Then, the selection of 
these construction projects is dependent on three main 
criteria and seven sub-criteria: (1) Financial state (C1): 
budget control (C11) and risk/return ratio (C12); (2) 
Environmental protection (C2): public relation (C21), 
geographical location (C22), and health and safety (C23); (3) 
Technology (C3): technical knowhow (C31), technological 
capability (C32). 

Experts or decision makers are required to evaluate the 
four possible alternatives under the above three criteria 
(seven sub-criteria) by suitability judgments, which are 
represented by RSVNSs. Thus we can construct the fol-
lowing refined single-valued neutrosophic decision matrix 
D, as shown in Table 2. 

Table 1. The refined single-valued neutrosophic decision matrix D 

C1 ),...,,(
111211 pCCC  … Cn ),...,,( 21 nnpnn CCC  

R1 ),...,,(),,...,,(),,...,,(
111111111111 212121 RpRRRpRRRpRR FFFIIITTT … ),...,,(),,...,,(),,...,,(

111111111 212121 RpRRRpRRRpRR nnn
FFFIIITTT

R2 ),...,,(),,...,,(),,...,,(
212221222122 212121 RpRRRpRRRpRR FFFIIITTT ... ),...,,(),,...,,(),,...,,(

222222222 212121 RpRRRpRRRpRR nnn
FFFIIITTT

… … ... … 
Rm ),...,,(),,...,,(),,...,,(

111 212121 mmmmmmmmm RpRRRpRRRpRR FFFIIITTT ... ),...,,(),,...,,(),,...,,( 212121 mnmmmnmmmnmm RpRRRpRRRpRR FFFIIITTT
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Table 2. Defined single-valued neutrosophic decision matrix D 
for the four alternatives on three criteria (seven sub-criteria) 

C1 (C11, C12) C2 (C21, C22, C23) C3 (C31, C32) 

R1 
<(0.6, 0.7), (0.2, 0.1), 

(0.2, 0.3)> 
<(0.9, 0.7, 0.8), (0.1, 0.3, 0.2), 

(0.2, 0.2, 0.1)> 
<(0.6, 0.8), (0.3, 0.2), 

(0.3, 0.4)> 

R2 
<(0.8, 0.7), (0.1, 0.2), 

(0.3, 0.2)> 
<(0.7, 0.8, 0.7), (0.2, 0.4, 0.3), 

(0.1, 0.2, 0.1)> 
<(0.8, 0.8), (0.1, 0.2), 

(0.1, 0.2)> 

R3 
<(0.6, 0.8), (0.1, 0.3), 

(0.3, 0.4)> 
<(0.8, 0.6, 0.7), (0.3, 0.1, 0.1), 

(0.2, 0.1, 0.2)> 
<(0.8, 0.7), (0.4, 0.3), 

(0.2, 0.1)> 

R4 
<(0.7, 0.6), (0.1, 0.2), 

(0.2, 0.3)> 
<(0.7, 0.8, 0.7), (0.2, 0.2, 0.1), 

(0.1, 0.2, 0.2)> 
<(0.7, 0.7), (0.2, 0.3), 

(0.2, 0.3)> 

Then, the weight vector of the three criteria is given by 
W = (0.4, 0.3, 0.3). Thus, the proposed decision making 
method is applied to the selecting problem of the 
construction projects. Consequently, the decision-making 
steps are described as follows: 

Step 1: By Eq. (4), the ideal solution (ideal RSVNS) 
can be determined as the following ideal alternative: 

S
* ={<(0.8, 0.8), (0.1, 0.1), (0.2, 0.2)>, <(0.9, 0.8, 0.8), 

(0.1, 0.1, 0.1), (0.1, 0.1, 0.1)>, <(0.8, 0.8), (0.1, 0.2), (0.1, 
0.1)>}. 

Step 2: According to Eq. (3), the weighted similarity 
measure values between each alternative Rk (k = 1, 2, 3, 4) 
and the ideal alternative S* can be obtained as follows: 

Mw(R1, S*) = 0.7743, Mw(R2, S*) = 0.8370, Mw(R3, S*) =
0.7595, and Mw(R4, S*) = 0.7778.

Step 3: Since the measure values are Mw(R2, S
*) >

Mw(R4, S*) > Mw(R1, S*) > Mw(R3, S*), the ranking order of
the four alternatives is R2 > R4 > R1 > R3. Hence, the alter-
native R2 is the best choice among all the construction pro-
jects. 

6 Conclusion 

This paper introduced RSVNSs and presented the simi-
larity measure of RSVNSs. Then, we proposed a similarity 
measure-based multicriteria decision-making method un-
der a RSVNS environment. In the decision-making process, 
through the similarity measure between each alternative 
and the ideal alternative, the ranking order of all alterna-
tives can be determined and the best alternative can be se-
lected as well. Finally, an actual example on the selecting 
problem of construction projects demonstrated the applica-
tion of the proposed method. The main advantage of the 
proposed approach is easy evaluation and more suitable for 
actual applications in decision-making problems with 
RSVNS information. In the future, we shall extend the 
proposed decision-making method to medical diagnosis 
and fault diagnosis. 
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of restricted interval valued neutrosophic sets 
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of restricted interval valued neutrosophic 
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restricted interval valued neutrosophic finer and 

restricted interval valued neutrosophic coarser 
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1 Introduction 

In 1999, Molodtsov [10] introduced the 
concept of soft set theory which is completely new 
approach for modeling uncertainty. In this paper 
[10] Molodtsov established the fundamental results 
of this new theory and successfully applied the soft 
set theory into several directions. Maji et al. [8] 
defined and studied several basic notions of soft set 
theory in 2003. Pie and Miao [14], Aktas and 
Cagman [1] and Ali et al. [2] improved the work of 
Maji et al. [9]. The intuitionistic fuzzy set is 
introduced by Atanaasov [4] as a generalization of 
fuzzy set [19] where he added degree of non-
membership with degree of membership. 
Neutrosophic set introduced by F. Smarandache in 
1995 [16]. Smarandache [17] introduced the 
concept of neutrosophic set which is a 
mathematical tool for handling problems involving 
imprecise, indeterminacy and inconsistant data. 
Maji [9] combined neutrosophic set and soft set 
and established some operations on these sets. 
Wang et al. [18] introduced interval neutrosophic 
sets. Deli [7] introduced the concept of interval-
valued neutrosophic soft sets. 

In this paper we introduce the concept of 
restricted interval valued neutrosophic sets (RIVNS 
in short). Some basic operations and properties of 
RIVNS are discussed. The concept of restricted 
interval valued neutrosophic topology is also 
introduced together with restricted interval valued 
neutrosophic finer and restricted interval valued 
neutrosophic coarser topology. We also define 
restricted interval valued neutrosophic interior and 
closer of a restricted interval valued neutrosophic 
set. Some theorems and examples are cited. 
Restricted interval valued neutrosophic subspace 
topology is also studied. We establish some 
properties of restricted interval valued neutrosophic 
soft topological space with supporting proofs and 
examples. 

2 Preliminaries 

Definition 2.1[17] A neutrosophic set A  on the 
universe of discourse U  is defined as 

      , , ,A A AA x x x x x U     , where 

, , 0,1A A A U        are functions such that 
the condition: 

University of New Mexico 
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     , 0 3A A Ax U x x x         is 

satisfied. 

From philosophical point of view, the 
neutrosophic set takes the value from real standard 
or non-standard subsets of 0,1   . But in real life 
application in scientific and engineering problems 
it is difficult to use neutrosophic set with value 
from real standard or non-standard subset of

0,1   . Hence we consider the neutrosophic set 

which takes the value from the subset of  0,1 .

Definition 2.2 [6] An interval valued 
neutrosophicset A  on the universe of discourse U
is defined as 

      , , ,A A AA x x x x x U     , where 

, , 0,1A A A U Int         are functions such 
that the condition: ,x U 

     0 3A A Asup x sup x sup x        is 

satisfied. 
In real life applications it is difficult to use 

interval valued neutrosophic set with interval-value 
from real standard or non-standard subset of 

 0,1Int
   . Hence we consider the interval-

valued neutrosophic set which takes the interval-
value from the subset of   0,1Int  (where

  0,1Int  denotes the set of all closed sub

intervals of  0,1 ).

Definition 2.3 [15] Let X be a non-empty fixed set. 
A generalized neutrosophic set (GNS in short) A is 
an object having the form

      , , , :A A AA x x x x x X     Where 

   ,A Ax x  and  A x  which represent the

degree of member ship function (namely  A x ), 

the degree of indeterminacy (namely  A x ), and 

the degree of non-member ship (namely  A x )

respectively of each element x X to the set 
Awhere the functions satisfy the condition 

      0.5A A Ax x x     . 

We call this generalizedneutrosophic 
set[15] as restricted neutrosophic set. 

Definition 2.4 [15] Let A and B be two RNSs on X 
defined by 

      , , , :A A AA x x x x x X    and

      , , , :B B BB x x x x x X    . Then 

union, intersection, subset and complement may be 
defined as 

(i) The union of A and B is denoted by 
A B and is defined as 

     
      
, ,

, :

A B A

B A B

A B x x x x

x x x x X

  

  

   

 

or

     
      
, ,

, :

A B A

B A B

A B x x x x

x x x x X

  

  

   

 
. 

(ii) The intersection of A and B is denoted 
by A B and is defined as 

     
      
, ,

, :

A B A

B A B

A B x x x x

x x x x X

  

  

   

 

or

     
      
, ,

, :

A B A

B A B

A B x x x x

x x x x X

  

  

   

 
. 

or

       
    

, . , . ,

. :

A B A B

A B

A B x x x x x

x x x X

   

 

 



(iii) A is called subset of B, denoted by 
A B  if and only if 

   A Bx x  ,    A Bx x  ,

   A Bx x   

or 
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   A Bx x  ,    A Bx x  , 

   A Bx x  .  

(iv) The complement of A is denoted by c
A

and is defined as 

      , ,1 , :A A AA x x x x x X    

or 

      , , , :A A AA x x x x x X   

or

      ,1 , ,1 :A A AA x x x x x X     

Definition 2.5: [15] A restricted neutrosophic 
topology (RN-topology in short) on a non empty set 
X is a family of restricted neutrosophic subsets in X 
satisfying the following axioms 

(i) 0 ,1N N   

(ii)  , :i i
i

G G i J      

(iii) 1 2G G   for any 1 2,G G  . 

The pair  ,X   is called restricted

neutrosophic topological space (RN-topological 
space in short). The members of   are called 
restricted neutrosophic open sets. A RNS F is 
closed if and only if c

F  is RN open set. 

3 Restricted Interval Valued Neutrosophic 

Set 

In this section we introduce the concept of 
restricted interval valued neutrosophic set along 
with some examples, operators and results. 

Definition 3.1 Let X be a non empty set. A 
restricted interval valued neutrosophic set (RIVNS 
in short) Ais an object having the form

      , , , :A A AA x x x x x X    , where 

     , , : 0,1A A Ax x x X Int        are 

functions such that the condition: x X  ,

      0.5A A Asup x sup x sup x     is 

satisfied. 

Here    ,A Ax x   and  A x represent

truth-membership interval, indeterminacy-
membership interval and falsity- membership 
interval respectively of the element x X . For the 
sake of simplicity, we shall use the symbol 

, , ,A A AA x    for the RIVNS

      , , , :A A AA x x x x x X    . 

Example 3.2Let  1 2 3, ,X x x x , then the RIVNS

      , , , :A A AA x x x x x X    can be 

represent by the following table 
X  A

x  A
x  A

x    
 

A A

A

sup x sup x

sup x

 







x1  .2,.3  0,.1  .4,.5 .1 

x2  .3,.5  .1,.4  .5,.6 .4 

x3  .4,.7  .2,.4  .6,.8 .4 

The RIVNSs 0  and 1  are defined as 

      0 , 0,0 , 1,1 , 1,1 :x x X  and

      1 , 1,1 , 0,0 , 0,0 :x x X  .

Definition 3.3Let  1 1 1,J inf J sup J  and 

 2 2 2,J inf J sup J  be two intervals then 

(i) 1 2J J iff 1 2inf J inf J  and 

1 2sup J sup J . 

(ii)  1 2 1 2, ,J J max inf J inf J  

 1 2,max sup J sup J  .

(iii)  1 2 1 2, ,J J min inf J inf J  

 1 2,min sup J sup J  .

Definition 3.4 Let A and B be two RIVNSs on X 

defined by

      , , , :A A AA x x x x x X    and
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      , , , :B B BB x x x x x X    . Then 

we can define union, intersection, subset and 
complement in several ways.  

(i) The RIVNunion of A and B is denoted by 
A B and is defined as 

     
      

, ,

, :

A B A

B A B

A B x x x x

x x x x X

  

  

   

 
or 

     
      

, ,

, :

A B A

B A B

A B x x x x

x x x x X

  

  

   

 
We take first definition throughout the paper. 

(ii) TheRIVNintersection of A and B is 
denoted by A B and is defined as 

     
      
, ,

, :

A B A

B A B

A B x x x x

x x x x X

  

  

   

 
or 

     
      
, ,

, :

A B A

B A B

A B x x x x

x x x x X

  

  

   

 
We take first definition throughout the paper. 

(iii) A is called RIVN subset of B, denoted by 
A B  if and only if 

   A Bx x  ,    A Bx x  , 

   A Bx x   

or 

   A Bx x  ,    A Bx x  , 

   A Bx x  . 

 We take first definition throughout the paper. 
(iv) The RIVN complement of A is denoted by 

c
A  and is defined as 

     
  
, , 1 ,1 ,

:

A A A

A

A x x sup x inf x

x x X

  



     



or 

      , , , :A A AA x x x x x X   

We take first definition throughout the paper. 

Definition 3.5 Let :iA i J be an arbitrary 

family of RIVNSs in X, then 
iA  and 

iA  can be 
respectively defined as 

      , , , :
i i i

i A A A
i J i J i J

A x x x x x X  
  

    

or

      , , , :
i i i

i A A A
i J i J i J

A x x x x x X  
  

    

      , , , :
i i i

i A A A
i J i J i J

A x x x x x X  
  

    

or

      , , , :
i i i

i A A A
i J i J i J

A x x x x x X  
  

    

. 

Theorem 3.6 LetA, B and Cbe three RIVNSs then 
(1) A A A   
(2) A A A   
(3) A B B A    
(4) A B B A    
(5)  c c c

A B A B  

(6)  c c c
A B A B  

(7)    A B C A B C    

(8)    A B C A B C    

(9)      A B C A B A C     

(10)      A B C A B A C     

Proof: Let      1 2 3 4 5 6, , , , , ,A x a a a a a a ,

     1 2 3 4 5 6, , , , , ,B x b b b b b b and

     1 2 3 4 5 6, , , , , ,C x c c c c c c

(1) - (4)Straight forward. 

(5)    1 1 2 2, , , , ,A B x max a b max a b    

   
    

3 3 4 4

5 5 6 6

, , , ,

, , ,

min a b min a b

min a b min a b

  

  

     
   

   

5 5 6 6

4 4 3 3

1 1 2 2

, , , , ,

1 , ,1 , ,

, , ,

c
A B x min a b min a b

min a b min a b

max a b max a b

    

    

  
Now 
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     5 6 4 3 1 2, , , 1 ,1 , ,c
A x a a a a a a  

     5 6 4 3 1 2, , , 1 ,1 , ,c
B x b b b b b b  

   
   
   

5 5 6 6

4 4 3 3

1 1 2 2

, , , , ,

1 ,1 , 1 ,1 ,

, , ,

c c
A B x min a b min a b

max a b max a b

max a b max a b

    

      

  

   
   

   

5 5 6 6

4 4 3 3

1 1 2 2

, , , , ,

1 , ,1 , ,

, , ,

x min a b min a b

min a b min a b

max a b max a b

   

    

  
(6) Same as(5). 

(7)    1 1 2 2, , , , ,A B x max a b max a b    

   
   

3 3 4 4

5 5 6 6

, , , ,

, , ,

min a b min a b

min a b min a b

  

  

    
     
     

  

1 1 1

2 2 2 3 3 3

4 4 4 5 5 5

6 6 6

, , , ,

, , , , , ,

, , , , , ,

, ,

A B C x max max a b c

max max a b c min min a b c

min min a b c min min a b c

min min a b c

   

  
  



   
   
   

1 1 1 2 2 2

3 3 3 4 4 4

5 5 5 6 6 6

, , , , , , ,

, , , , , ,

, , , , ,

x max a b c max a b c

min a b c min a b c

min a b c min a b c

   

  

  

   
   
   

1 1 2 2

3 3 4 4

5 5 6 6

, , , , ,

, , , ,

, , ,

B C x max b c max b c

min b c min b c

min b c min b c

    

  

  

    
     
     
  

1 1 1

2 2 2 3 3 3

4 4 4 5 5 5

6 6 6

, , , ,

, , , , , ,

, , , , , ,

, ,

A B C x max a max b c

max a max b c min a min b c

min a min b c min a min b c

min a min b c

   

  
  



   
   
   

1 1 1 2 2 2

3 3 3 4 4 4

5 5 5 6 6 6

, , , , , , ,

, , , , , ,

, , , , ,

x max a b c max a b c

min a b c min a b c

min a b c min a b c

   

  

  

(8) Same as (7). 

(9)    1 1 2 2, , , , ,B C x min b c min b c    

   
   

3 3 4 4

5 5 6 6

, , , ,

, , ,

max b c max b c

max b c max b c

  

  

    
     
     
  

1 1 1

2 2 2 3 3 3

4 4 4 5 5 5

6 6 6

, , , ,

, , , , , ,

, , , , , ,

, ,

A B C x max a min b c

max a min b c min a max b c

min a max b c min a max b c

min a max b c

   

  
  



   
   
   

1 1 2 2

3 3 4 4

5 5 6 6

, , , , ,

, , , ,

, , ,

A B x max a b max a b

min a b min a b

min a b min a b

    

  

  

   
   
   

1 1 2 2

3 3 4 4

5 5 6 6

, , , , ,

, , , ,

, , ,

A C x max a c max a c

min a b min a c

min a c min a c

    

  

  

        
    
    
    
    
    

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

, , , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , ,

A B A C x min max a b max a c

min max a b max a c

max min a b min a c

max min a b min a c

max min a b min a c

max min a b min a c

    









Now let us consider 1 1,a b  and 1c , six 
cases may arise as 

1 1 1a b c  , for this

  
    

1 1 1

1 1 1 1 1

, ,

, , ,

max a min b c

min max a b max a c a





1 1 1a c b  , for this 

  
    

1 1 1

1 1 1 1 1

, ,

, , ,

max a min b c

min max a b max a c a




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1 1 1b a c  , for this

  
    

1 1 1

1 1 1 1 1

, ,

, , ,

max a min b c

min max a b max a c a





1 1 1b c a  , for this 

  
    

1 1 1

1 1 1 1 1

, ,

, , ,

max a min b c

min max a b max a c c





1 1 1c a b  , for this 

  
    

1 1 1

1 1 1 1 1

, ,

, , ,

max a min b c

min max a b max a c a





1 1 1c b a  , for this 

  
    

1 1 1

1 1 1 1 1

, ,

, , ,

max a min b c

min max a b max a c b




. 

Similarly it can be shown that other results 
are true for 2 2 2, ,a b c ; 3 3 3, ,a b c ; 4 4 4, ,a b c ; 5 5 5, ,a b c

; 6 6 6, ,a b c . Hence 

     A B C A B A C       .

(10) Same as (9). 

4. Restricted Interval Valued neutrosophic

Topological Spaces 

In this section we give the definition of 
restricted interval valued Neutrosophic topological 
spaces with some examples and results. 

Definition 4.1A restricted interval valued 
neutrosophic topology (RIVN-topology in short) on 
a non empty set X is a family of restricted interval 
valued neutrosophic subsets in X satisfying the 
following axioms 

(iv) 0,1   

(v)  , :i i
i

G G i J      

(vi) 1 2G G   for any 1 2,G G  . 

The pair  ,X   is called restricted

interval valued neutrosophic topological space 
(RIVN-topological space in short). The members of 
  are called restricted interval valued neutrosophic 

open sets. A RIVNSF is closed if and only if c
F  is 

RIVN open set. 

Example 4.2 LetX be a non-empty set. Let us 
consider the following RIVNSs 

      1 , .5,.8 , .2,.3 , .2,.5 :G x x X  , 

      2 , .6,.7 , .5,.6 , .3,.4 :G x x X  , 

      3 1 2 , .6,.8 , .2,.3 , .2,.4 :G G G x x X   

, 

      4 1 2 , .5,.7 , .5,.6 , .3,.5 :G G G x x X   

. 

The family  1 1 2 3 40,1, , , ,G G G G   is a 

RIVN-topology in X and  1,X   is called a RIVN-

topological space. But  2 1 20,1, ,G G   is not a 

RIVN-topology as 1 2 3 2G G G    . 

Definition 4.3 The two RIVN subsets 0,1
constitute a RIVN-topology on X, called indiscrete 
RIVN-topology. The family of all RIVN subsets of 
X constitutes a RIVN-topology onX, such topology 
is called discrete RIVN-topology. 

Theorem 4.4 Let :
j

j J   be a collection of 

RIVN-topologies onX. Then their intersection 

j
j J




 is also aRIVS-topology on X. 

Proof: (i) Since 0,1 j  for each j J . Hence 

0,1 j
j J




 . 

(ii) Let  :kG k K  be an arbitrary 

family RIVNSs where 
k j

j J

G 


  for each 

k K . Then for each j J , k jG   for 

k K  and since for each j J , j ia a RIVN-

topology, therefore 
k j

k K

G 


  for each j J . 

Hence 
k K

k j
j J

G 
 

 . 

(iii) Let 1 2,
j

j J

G G 


 , then 1 2, jG G 

for each j J . Since for each j J , j  is an 

RIVN-topology, therefore 1 2, jG G   for each 

j J . Hence 1 2 j
j J

G G 


 . 
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Thus 
j

j J




 forms a RIVN-topology as it 

satisfies all the axioms of RIVN-topology. But 
union of RIVN-topologies need not be a RIVN-
topology.  

Let us show this with the following example. 

Example 4.5 In example 4.2, let us consider two 
RIVN- topologies 3  and 4  on X as  3 1, ,0 1 G 

and  4 2, ,0 1 G  . Here their union 3 4  

 1 2 2, ,0 1 ,G G   is not a RIVN-topology onX. 

Definition 4.6 Let  ,X   be an RIVN-topological
space over X . A RIVN subset G  of X  is called 
restricted intervalvalued neutrosophicclosed set (in 
short RIVN-closed set) if its complement c

G  is a 
member of  . 

Definition 4.7 Let  1,X   and  2,X   be two 
RIVN-topological spaces over X . If each 2G 
implies 1G  , then 1  is called restrictedinterval 
valued neutrosophic finer topology than 2  and 2
is called restricted interval valued neutrosophic 
coarser topology than 1 . 

Example 4.8 In example 4.2 and 4.5, 1  is 
restricted interval valued neutrosophic finer 
topology than 3  and 3  is called restricted 
interval valued neutrosophic coarser topology than 

1 . 

Definition 4.9 Let   be a RIVN-topological space 
on X  and ß be a subfamily of  . If every element 
of   can be express as the arbitrary 
restrictedinterval valued neutrosophic union of 
some elements of ß, then ß is called restricted 
interval valued neutrosophic basis for the RIVN-
topology  . 

5 Some Properties of Restricted Interval 
Valued Neutrosophic Soft Topological 
Spaces 

In this section some properties of RIVN- 
topological spaces are introduced. Some results on 
RIVNInt and RIVNCl are also introduced.Restricted 
interval valued neutrosophic subspace topology is 
also studied. 

Definition 5.1 Let  ,X   be a RIVN-topological

space and A be a RIVNS in X. The restrictedinterval 
valued neutrosophic interior and restrictedinterval 
valued neutrosophiccloser ofA is denoted by 
RIVNInt(A) and RIVNCl(A) are defined as 

   : is an open set andRIVNInt A G G RIVN G A 
 and

   : is an closed set andRIVNCl A F F RIVN F A 
respectively. 

Theorem 5.2 Let  ,X   be a RIVN-topological
space and G and H be two RIVNSs then the 
following properties hold 

(1)  RIVNInt G G

(2)    RIVNInt RIVNIntG H G H  

(3)  RIVNInt G 
(4)  RIVNInt GG G  

(5)     RIVNInt RIVNInt G RIVNInt G

(6)    ,0 0 1 1RIVNInt RIVNInt 

Proof: 

(1) Straight forward. 

(2)Let G H , then all the RIVN-open sets 
Contained  in G  also contained in H .       

i.e.   * * * *: :G G G H H H       

i.e.    * * * *:: H H HG G G     

i.e.    RIVNInt G RIVNInt H

(3)    * *:RIVNInt G G G G  

Now clearly  * *:G G G     

  RIVNInt G  .

(4) Let G  , then by (1)  RIVNInt G G .
Now since G  and G G , therefore 

   * *:G G G RIVNInt GG    

i.e,  G RIVNInt G

Thus  RIVNInt G G

Conversely, let  RIVNInt G G

Since by (3)  RIVNInt G 
Therefore G   

(5)   By (3)  RIVNInt G 
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 By (4) 
    , ,

A A
RIVNInt RIVNInt f E RIVNInt f E

(6)  We know that 0,1   
 By (4) 

   0 , 10 1RIVNInt RIVNInt 

Theorem 5.3 Let  ,X   be a RIVN-topological
space and G and H are two RIVNSs then the 
following properties hold 

(1)  RIVNClG G

(2)    Cl ClRIVN RIVNG H G H  

(3)   c

ClRIVN G   

(4)  c
RIVNCl GG G  

(5)     RIVNCl RIVNCl G RIVNCl G

(6)    0 0, 1 1RIVNCl IVNClR 

Proof: straight forward. 

Theorem 5.4 Let  ,X   be an RIVN-topological
space on X  and A  be a RIVNS ofXand let

 :A A U U    . Then A  forms a RIVN-
topology on A . 

Proof: 

 (i) Clearly 0 0
A

A   and 1 1
A

A    . 

(ii) Let ,
Aj j JG    , then j jG A U   where 

jU   for each j J . 

Now     A
j J j J j J

j j j
A U UG A 

  
      (since 

j
j J

U 


  as each jU  ). 

(iii) Let ,
A

G H   then G A U   and 
H A V  where ,U V  . 
Now 

     
A

U VA U A VG H A        

(since U V   as ,U V  ). 

Definition 5.5 Let  ,X   be an RIVN-topological
space on X and A  be a RIVNS ofX. Then 

 :A A U U     is called restricted interval 
valued neutrosophic subspace topology and 
 ,

A
A   is called restricted interval valued

neutrosophic subspace of RIVN-topological space
 ,X  .

Conclusion: In this paper we introduce the concept 
of restricted interval valued neutrosophic set which 
is the generalization of restrictedneutrosophic set. 
We define some operators on RIVNS. We also 
introduce a topological structure based on this. 
RIVN interior and RIVN closer of a restricted 

 interval valued neutrosophic set are also defined. 
Restricted interval valued neutrosophic subspace 
topology is also studied. In future combining the 
ideas presented in this paper with concept of soft 
set one can define a new concept named restricted 
interval valued Neutrosophic soft set and can 
define a topological structure too. 
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Abstract. The main purpose of this paper is to discuss the notion 
of neutrosophic graphs, weak isomorphisms, co-weak isomor-
phisms and isomorphisms between two neutrosophic graphs. It is 

proved that the isomorphism between the two neutrosophic 
graphs is an equivalence relation.  Some other properties of mor-
phisms are also discussed in this paper.

Keywords: Neutrosophic graphs, Weak isomorphisms, Co-weak isomorphisms, Equivalence relation and Isomorphisms.

1 Introduction 

Graph theory has its origins in a 1736 paper by the cele-
brated mathematician Leonhard Euler (10), known as the 
father of graph theory,  when he settled a famous unsolved 
problem known as Ko¨ nigsburg Bridge problem. Graph 
theory is considered as a part of combinatorial mathemat-
ics. The theory has greatly contributed to our understand-
ing of communication theory, programming, civil engi-
neering, switching circuits, architecture, operational re-
search, economics linguistic, psychology and anthropolo-
gy. A graph is also used to create a relationship between a 
given set of objects. Each object can be represented by a 
vertex and the relationship between them can be represent-
ed by an edge.  
In 1965, L.A. Zadeh (22) published the first paper on his 
new theory of fuzzy sets and systems. A fuzzy set is an ex-
tension of classical set theory. His work proved to be a 
mathematical tool for explaining the concept of uncertainty 
in real life problems. A fuzzy set is characterized by a 
membership function which assigns to each object a grade 
of membership ranging between zero and one. Azriel 
Rosenfeld (18) introduced the of notion of fuzzy graphs in 
1975 and proposed another definitions including paths, cy-
cles. connectedness etc. Mordeson and Peng (15) studied 
operations on fuzzy graphs. Many researchers contributed 
a lot and gave some more generalized forms of fuzzy 
graphs which have been studied in (6) and (8). These con-
tributions show a new dimension of graph theory. 
F. Smarandache (20) introduced the notion of neutrosophic 
set which is useful for dealing real life problems having 
imprecise, indeterminacy and inconsistant data. The theory 
is generalization of classical sets and fuzzy sets and is ap-
plied in decision making problems, control theory, medi-
cines, topology and in many more real life problems. The 
notion of neutrosphic soft graph is introduced by N. Shah 
and A. Hussain (19). In the present paper neutrosophic 
graphs, their types, different operations like union intersec-

tion complement are definend. Furthermore different mor-
phisms such as weak isomorphisms, co-weak isomorphism 
and isomorphisms are defined. Some theorems on mor-
phisms are also  proven here. This paper has been arranged 
as the following; In section 2, some basic concepts about 
graphs and neutrosophic sets are presented which will be 
employed  in later sections. In section 3, concept of neutro-
sophic graphs is given and some of their fundamental 
properties have been studied. In section 4, concept of 
strong neutrosophic graphs and its complement is studied. 
Section 5 is devoted for the study of morphisms of neutro-
sophic graphs.  Conclusions are also given at the end of 
Section 5. 

2 PRELIMINARIES 

In this section, some definitions about graphs and  neutro-
sophic sets are given. These will be helpful in later sec-
tions. 
2.1 Definition  (21) A graph *

G consists of set of finite ob-
jects 1 2 3{ , , ...., }

n
V v v v v  called vertices (also called points 

or nodes) and other set 1 2 3{ , , ...., }
n

E e e e e whose element 
are called edges (also called lines or arcs). 
Usually a graph is denoted as * ( , )G V E . Let *

G  be a 
graph and e ={ , }u v be an edge of *

G . Since { , }u v  is 2-
element set, we may write { , }u v  instead of { , }v u . It is of-
ten more convenient to represent this edge by uv or vu.  
2.2 Definition (21) An edge of a graph that joins a vertex 
to itself is called loop. 
2.3 Definition (21) In a multigraph no loops are allowed 

but more than one edge can join two vertices, these edges 
are called multiple edges or parallel edges and a graph is 
called multigraph. 
2.4 Definition  (21) A Graph which has neither loops nor 
multiple edges is called a simple graph. 
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2.5 Definition (21) A sub graph *
H  of *

G  is a graph hav-
ing all of its vertices and edges in *

G . 
2.6 Definition (21) Let *

1G = 1 1( , )V E  and *
2 2 2( , )G V E  be two 

graphs. A function 1 2:f V V  is called Isomorphism if 
i) f is one to one and onto.
ii) for all 1 1, ,{ , }a b V a b E  if and only if 

2{ ( ), ( )}f a f b E when such a function exists, *
1G and *

2G  are 
called isomorphic graphs and is written as * *

1 2G G . 
2.7 Definition (21) The union of two simple graphs 

*
1 1 1( , )G V E  and *

2 2 2( , )G V E is the simple graph with 
the vertex set 1 2V V V  and edge set 1 2E E E  . The 
union of *

1G and *
2G is denoted by 

* * *
1 2 1 2 1 2( , ) ( , )G G G V V E E V E      . 

2.8 Definition (21) The join of two simple graphs 
*
1 1 1( , )G V E  and *

2 2 2( , )G V E  is the simple graph with 
the vertex set 1 2V V V  and edge set 

1 2 'E E E E    , where  'E  is the set of all edges join-
ing the nodes of 1V  and 2V  and assume that 1 2V V   . 
The join of *

1G and *
2G is denoted by 

* * *
1 2 1 2 1 2( , ')G G G V V E E E      . 

2.9 Definition (21) The intersection of two simple graphs 
*
1 1 1( , )G V E  and *

2 2 2( , )G V E is the simple graph with 
the vertex set 1 2V V V and edge set 1 2E E E . The 
intersection of *

1G and *
2G is denoted by 

* * *
1 2 1 2 1 2( , ) ( , )G G G V V E E V E   . 

2.10 Definition  (20) A neutrosophic set A on the uni-
verse of discourse X is defined as 

{ , ( ), ( ), ( ) , },
A A A

A x T x I x F x x X    where , , : 0,1T I F X
   

and 0 ( ) ( ) ( ) 3 .
A A A

T x I x F x
    . From philosophical point 

of view, the neutrosophic set takes the value from real 
standard or non standard subsets of 0,1   . But in real
life application in scientific and engineering problems it is 
difficult to use neutrosophic set with value from real stand-
ard or non-standard subset of 0,1   . 

3 NEUTROSOPHIC GRAPHS 

3.1 Definition  Let * ( , )G V E be a simple graph 
and .E V V  Let : ! [01] denote the

truth-membership, indeterminacy- membership and falsity- 
membership of an element 2 and : ! 

[01] denote the truth-membership, indeterminacy-
membership and falsity- membership of an 
element() 2 By a neutrosophic graphs, we mean a

3-tuple *( , , )G G f g such that 

( , ) min{ ( ), ( )}
( , ) min{ ( ), ( )}
( , ) max{ ( ), ( )}

g f f

g f f

g f f

T x y T x T y

I x y I x I y

F x y F x F y







For all 2 

3.2 Example  Let * ( , )G V E be a simple graph with = 

f123g and = f(12) (23) (13)gA

neutrosophic graph G is given in table 1 below and 
() = 0() = 0 and () = 1 for all 
() 2 n f(12)(23)(13)g.

1 

1 2 3

0.3 0.1 0.1
0.4 0.3 0.3
0.5 0.4 0.6

f

f

f

f x x x

T

I

F

1 2 2 3 1 3( , ) ( , ) ( , )
0.1 0.1 0.1
0.1 0.2 0.2
0.9 0.8 0.7

g

g

g

g x x x x x x

T

I

F

(0.3,0.4,0.5) (0.1,0.3,0.4)

(0.1,0.3,0.6)

x1 x2

x3

(0.1,0.1,0.9)

(0.1,0.2,0.7)
(0.1,0.2,0.8)

Figure 1 

3.3 Definition  A neutrosophic graph 1 1( *, , )G G f g is 

called a neutrosophic subgraph of ( *, , )G G f g if 

1 1 1

1 1 1

( )  ( ) ( ), ( ) ( ), ( ) ( ),

( )   ( , ) ( , ), ( , ) ( , ), ( , ) ( , ).
f f ff f f

g g gg g g

i T x T x I x I x F x F x

ii T x y T x y I x y I x y F x y F x y

  

  

for all 2 

A neutrosophic  subgraph of example 3.2 is given in table 
2 below and () = 0() =0 and () 
=1 for all () 2 nf(12)(23)(13)g.
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2 

1

1

1

1
1 2 3

0.1 0.1 0.1

0.1 0.2 0.2

0.5 0.4 0.6

f

f

f

f x x x

T

I

F

1

1

1

1
1 2 2 3 1 3( , ) ( , ) ( , )
0.1 0.1 0.1

0.1 0.1 0.1

0.9 0.8 0.7

g

g

g

g x x x x x x

T

I

F

(0.1,0.1,0.5) (0.1,0.2,0.4)

(0.1,0.2,0.6)

x1 x2

x3

(0.1,0.1,0.6)

(0.1,0.1,0.7)
(0.1,0.2,0.8)

     Figure 2 

3.4 Definition A neutrosophic 
graph 1 1( *, , )G G f g is said to be spanning neutrosophic 
subgraph of ( *, , )G G f g  if  

1 1 1( ) ( ),  ( ) ( ),  ( ) ( )
f f f f f f

T x T x I x I x F x F x    for all 2 

3.5 Definition  Let *
1 1 1( , )G V E and *

2 2 2( , )G V E be two 
simple graphs. The union of two neutrosophic graphs 

* 1 1
1 1( , , )G G f g and * 2 2

2 2( , , )G G f g is denoted by 

( *, , )G G f g  * * *
1 2G G G   1 2 f f f 

1 2gg g where the truth-membership, indeterminacy-
membership and falsity- membership of union 
are as follows 

1
1 2

2
2 1

1 2
1 2

1
1 2

2
2 1

1 2
1 2

1
1 2

2

( )  if  

( ) ( )    if   

max{ ( ), ( )}  if 

( )  if  

( ) ( )    if   

max{ ( ), ( )}  if 

( )  if  

( ) ( )

f

f f

f f

f

f f

f f

f

f

T x x V V

T x T x x V V

T x T x x V V

I x x V V

I x I x x V V

I x I x x V V

F x x V V

F x F x

  
  


 
  
  


 

 

 2 1

1 2
1 2

if   

min{ ( ), ( )}  if 
f f

x V V

F x F x x V V


  


 
Also 

1

2

1 2

1

2

1 2

1 2

2 1

1 2

1 2

2 1

( , )  if  ( , )

( , ) ( , )    if   ( , )

max{ ( , ), ( , )}  if ( , )

( , )  if  ( , )

( , ) ( , )    if   ( , )

max{ ( , ), ( , )}  if ( , )

g

g g

g g

g

g g

g g

T x y x y E E

T x y T x y x y E E

T x y T x y x y E E

I x y x y E E

I x y I x y x y E E

I x y I x y x y

  
  


 

 

  



1

2

1 2

1 2

1 2

2 1

1 2

( , )  if  ( , )

( , ) ( , )    if   ( , )

min{ ( , ), ( , )}  if ( , )

g

g g

g g

E E

F x y x y E E

F x y F x y x y E E

F x y F x y x y E E







  
  


 

3.6 Example Let *
1 1 1( , )G V E be a simple graph with 1

= f134g & 1 =f(14),(34),(13)gA

neutrosophic graph 1 is given in table 3 below and 
() = 0() = 0 and () = 1 for 
all () 2 1 n f(14)(34)(13)g.

 Table 3 

1

1

1

1
1 3 4

0.1 0.2 0.2

0.2 0.4 0.5

0.3 0.5 0.7

f

f

f

f x x x

T

I

F

1

1

1

1
1 4 3 4 1 3( , ) ( , ) ( , )
0.1 0.1 0.1

0.2 0.3 0.2

0.7 0.8 0.5

g

g

g

g x x x x x x

T

I

F
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(0.1,0.2,0.3) (0.2,0.5,0.7)

(0.2,0.4,0.5)}

x1 x4

x3

(0.1,0.2,0.7)

(0.1,0.2,0.5)
(0.1,0.3,0.8)

Figure 3 

A neutrosophic graph * 2 2
2 2( , , )G G f g  is given in table 4 

below where *
2 2 2( , )G V E , 2 = f2345g and

2 = f(23) (34) (45) (25)g and

() = 0 () = 0 and () = 1 for 
all () 2 2nf(23) ,(x2,x4),(34) (45)

(25)g

 Table 4 

2

2

2

2
2 3 4 5x

0.1 0.2 0.4  0.2

0.2 0.3 0.6  0.1

0.4 0.4 0.7  0.6

f

f

f

f x x x

T

I

F

2

2

2

2
2 3 3 4 2 5 4 5 2 4( , ) ( , ) ( , )   ( , )   ( , )
0.1 0.2 0.1    0.2   0.1

0.2 0.3 0.1  0.1    0.2

0.8 0.9 0.9    0.8 0.7

g

g

g

g x x x x x x x x x x

T

I

F

(0.1,0.2,0.4

x2 x3

x4 x5

(0.4,0.6,0.7) (0.2,0.1,0.6)

(0.1,0.2,0.4)

(0.2,0.3,0.4)

(0.1,0.1,0.9)
(0.2,0.3,0.9)

(0.2,0.1,0.8)

(0.1,0.2,0.8)

      Figure 4  

The union ( *, , )G G f g is given in table 5 below and 
() = 0() = 0 and () = 1 for 
all () 2 × n  f(14)(34)(13)

,(x2,x4 ),(23)(45)(25)g

   Table 5 

1 2 3 4 5    x
0.1 0.1 0.2 0.4     0.2
0.2 0.2 0.4 0.6     0.1
0.3 0.4 0.4 0.7     0.6

f

f

f

f x x x x

T

I

F

1 4 3 4 1 3 2 3 4 5 2 4 2 5( , ) ( , )   ( , )  ( , ) ( , )   ( , )  ( , )
0.1 0.2  0.1  0.1 0.2  0.1 0.1
0.2 0.3  0.2  0.2 0.1   0.2 0.1
0.7 0.8  0.5  0.8

g

g

g

g x x x x x x x x x x x x x x

T

I

F 0.8  0.7  0.9

(0.1,0.2,0.3)

x1 x3 x2

x4 x5

(0.2,0.4,0.4) (0.1,0.2,0.4)

(0.4,0.6,0.7) (0.2,0.1,0.6)

(0.1,0.2,0.8)

(0.1,0.2,0.7)

(0.2,0.3,0.8)

(0.1,0.2,0.5)

(0.1,0.1,0.9)

(0.2,0.1,0.8)

(0.1,0.2,0.7)

Figure 5 
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3.7  Proposition The union ( *, , )G G f g of two neutro-
sophic graphs * 1 1

1 1( , , )G G f g and * 2 2
2 2( , , )G G f g is a 

neutrosophic graph. 
Proof 

1 2

1 1 2

1 1 2

  )     ( , )   
( , ) ( , ) min{ ( ), ( )} min{ ( ), ( )}

so ( , ) min{ ( ), ( )}
         ( , ) ( , ) min{ ( ), ( )} m

g f f
g f f

g f f

g
g f f

Case i If x y E E then

T x y T x y T x T y T x T y

T x y T x T y

Also I x y I x y I x I y

 
  



  

1 1 2

2 1

in{ ( ), ( )}

so ( , ) min{ ( ), ( )}
        ( , ) ( , ) max{ ( ), ( )} max{ ( ), ( )}

    ( , )          . 
  ) 

f f

g f f

g f f
g f f

I x I y

I x y I x I y

Now F x y F x y F x F y F x F y

Similarly If x y E E then we can show the same as done above

Case ii



  

 
,1 2

1 2

1 1 2 2

1 2 1 2

    ( , )  
( , ) max{ ( , ), ( , )}

max{min{ ( ), ( )},min{ ( ), ( )}

min{max{ ( ), ( )},max{ ( ), ( )) min{ ( )

g
g g

f f f f

f
f f f f

If x y E E then

T x y T x y T x y

T x T y T x T y

T x T x T y T y T x

 




 

1 2

1 1 2 2

1 2 1 2

, ( )}

      ( , ) max{ ( , ), ( , )}

max{min{ ( ), ( )},min{ ( ), ( )}

min{max{ ( ), ( )},max{ ( ), ( )) min{ ( ), ( )}

        ( , )

f

g
g g

f f f f

f f
f f f f

g

T y

Also I x y I x y I x y

I x I y I x I y

I x I x I y I y I x I y

Now F x y





 

 1 2

1 1 2 2

1 2 1 2

1 2

min{ ( , ), ( , )}

min{max{ ( ), ( )},max{ ( ), ( )}

max{min{ ( ), ( )},min{ ( ), ( ))

max{ ( ), ( )}
   Hence the union is a 

g g

f f f f

f f f f

f f

F x y F x y

F x F y F x F y

F x F x F y F y

F x F y

G G G







   neutrosophic  graph.

3.8 Definition The intersection of two neutrosophic graphs 
* 1 1

1 1( , , )G G f g and * 2 2
2 2( , , )G G f g is denoted by 

* * * 1 1 1 2
1 2 1 1( , , ),   ,  ,  gG G f g where G G G f f f g g        , 

= 1 \ 2 and the truth-membership, indeterminacy-

membership and falsity- membership of intersection are as 
follows 

1 2 1 2

1 2

( ) min{ ( ), ( )},    ( ) min{ ( ), ( )},

( ) max{ ( ), ( )}
f ff f f f

f f f

T x T x T x I x I x I x

F x F x F x

 



1 2 1 2

1 2

( , ) min{ ( , ), ( , )},    ( , ) min{ ( , ), ( , )}

( , ) max{ ( , ), ( , )}
g gg g g g

g g g

T x y T x y T x y I x y I x y I x y

F x y F x y F x y

 



for all 2 

3.9  Example Let *
1 1 1( , )G V E be a simple graph with 1

= f125g & 1 =f(15)(12)(25)g

A  neutrosophic graph * 1 1
1 1( , , )G G f g  is given in table 

6  below and  () = 0() = 0 and 
() = 1 for all () 2 1 n 

f(15)(12)(25)g

 Table 6 

1

1

1

1
1 2 5

0.2 0.4 0.3

0.3 0.6 0.4

0.7 0.7 0.6

f

f

f

f x x x

T

I

F

1

1

1

1
1 2 2 5 1 5( , ) ( , ) ( , )
0.2 0.3 0.2

0.3 0.4 0.3

0.7 0.8 0.7

g

g

g

g x x x x x x

T

I

F

 
 

(0.2,0.3,0.7) (0.4,0.6,0.7)

(0.3,0.4,0.6)

x1 x2

x5

(0.2,0.3,0.7)

(0.2,0.3,0.7)
(0.3,0.4,0.8)

Figure 6 

Let *
2 2 2( , )G V E be a simple graph with 2 = 

f235g and 2 =f(23)(35)(25)g.

A neutrosophic graph * 2 2
2 2( , , )G G f g is given in table 7 

below and () = 0() = 0 and () 
= 1 for all () 2 2nf(23)(35)(25)g








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2

2

2

2
2 3 5

0.3 0.2 0.4

0.5 0.4 0.5

0.6 0.6 0.9

f

f

f

f x x x

T

I

F

2

2

2

2
2 3 3 5 2 5( , ) ( , ) ( , )
0.1 0.2 0.2

0.3 0.4 0.4

0.7 0.9 0.9

g

g

g

g x x x x x x

T

I

F

(0.3,0.5,0.6) (0.2,0.4,0.6)

(0.4,0.5,0.9)

x2 x3

x5

(0.1,0.3,0.7)

(0.2,0.4,0.9)
(0.2,0.4,0.9)

Figure 7 

Let = 1 \ 2 = f25g, = 1 \ 2 =

f(25)g. The intersection of the above two graphs 1

and 2 is given in the table 8 below and figure 8. 

  Table 8 

2 5 2 5     ( , )
0.3 0.3 0.2
0.5 0.4    0.4
0.7 0.9     0.9

f g

f g

f g

f x x g x x

T T

I I

F F

(0.3,0.5,0.7)

x2 x5

(0.3,0.4,0.9)
(0.2,0.4,0.9)

  Figure 8 

3.10  Proposition The intersection *( , , )G G f g of two 
neutrosophic graphs * 1 1

1 1( , , )G G f g and * 2 2
2 2( , , )G G f g

is a neutrosophic graph where = 1 \ 2.

Proof 

1 2

1 2 1 2

1 1 2 2

1 2 1 2

 ,  and ( , ) , 
then ( , ) min{ ( , ), ( , )

min{min{ ( ), ( )},min{ ( ), ( )}

min{min{ ( ), ( )},min{ ( ), ( ))

g g g

f f f f

f f f f

Let x y V V V x y E E E

T x y T x y T x y

T x T y T x T y

T x T x T y T y

   






1 2

1 1 2 2

1 2 1 2

           min{ ( ), ( )}
   ( , ) min{ ( , ), ( , )}

min{min{ ( ), ( )},min{ ( ), ( )}

min{min{ ( ), ( )},min{ ( ), ( )) min{ ( ), ( )}

 

f f

g
g g

f f f f

f f
f f f f

T x T y

Also I x y I x y I x y

I x I y I x I y

I x I x I y I y I x I y

Now







 

1 2

1 1 2 2

1 2 1 2

      ( , ) max{ ( , ), ( , )}

max{max{ ( ), ( )},max{ ( ), ( )}}

max{max{ ( ), ( )},max{ ( ), ( )}} max{ ( ), ( )}

   Hence the intersection

g
g g

f f f f

f f
f f f f

F x y F x y F x y

F x F y F x F y

F x F x F y F y F x F y

G





 

 1 2   is a neutrosophic graph.G G

4 Strong Neutrosophic Graphs 

In this section we will study the notion of strong neutro-
sophic graphs and complement of such graphs. 

4.1 Definition A neutrosophic graph ( *, , )G G f g is 
called strong if 
() = minf()()g 

() = minf()()g 

() = maxf()()g 

for all ()2 


4.2 Example Let = f123g and

={ 1 2( , )x x  2 3( , )x x  2 3( , )x x } A strong 
neutrosophic graph ( *, , )G G f g where * ( , )G V E is 
simple graph, is given in table 9 below and  ( , )

i j
x x = 

0 ( , )
i j

x x  = 0 and  ( , )
i j

x x  = 1 for all ( , )
i j

x x  2 

× n f 1 2( , )x x  2 3( , )x x  2 3( , )x x } 





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1 2 3

0.1 0.2 0.3
0.2 0.3 0.4
0.4 0.5 0.7

f

f

f

f x x x

T

I

F

1 2 2 3 1 3( , ) ( , ) ( , )
0.1 0.2 0
0.2 0.3 0
0.5 0.7 1

g

g

g

g x x x x x x

T

I

F

(0.1,0.2,0.4) (0.3,0.4,0.7)

(0.2,0.3,0.5)

x1 x3

x2

(0.1,0.2,0.5)

(0.2,0.3,.07)

 Figure 9 

4.3 Definition Let *( , , )G G f g be a strong neutrosophic 
graph. The complement ( *, , )G G f g of strong neutro-
sophic graph *( , , )G G f g is neutrosophic graph where 
( )  ( ) ( ), ( ) ( ), ( ) ( ),  all .f f ff f f
i T x T x I x I x F x F x for x V   

and 

min{ ( ), ( )}    if ( , ) 0
( )   ( , )

0
min{ ( ), ( )}    if ( , ) 0

( , )
0

max{ ( ),
( , )

f f g
g

f f g
g

f f
g

T x T y T x y
ii T x y

otherwise

I x I y I x y
I x y

otherwise

F x F
F x y

 


 



( )}    if ( , ) 1

1     
g

y F x y

otherwise





4.4  Example For the strong neutrosophic graph in previ-
ous example, i.e. The complement of 

(0.1,0.2,0.4) (0.3,0.4,0.7)

(0.2,0.3,0.5)

x1 x3

x2

(0.1,0.2,0.5)

(0.2,0.3,.07)

Figure 10 

(0.1,0.2,0.4) (0.3,0.4,0.7)

(0.2,0.3,0.5)

x1 x3

x2

(0.1,0.2,0.7)

 Figure 11 

Similarly the complement of neutrosophic graph 

(0.3,0.4,0.5) (0.3,0.6,0.8)

(0.4,0.5,0.9)

x3 x1

x2

(0.3,0.4,0.8)

(0.3,0.5,0.9)(0.3,0.4,0.9)

        Figure 12 

         is given by 

(0.3,0.4,0.5)
(0.3,0.6,0.8)

(0.4,0.5,0.9)

x3 x1

x2

  Figure 13 

 5 Homomorphism Of Neutrosophic Graphs 

60
9 
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In this section we introduced and discussed the notion of 
homomorphisms of neutrosophic graphs. We have also 
discussed weak isomorphism, co- weak isomorphism and 
isomorphism here. 
5.1 Definition  A Homomorphism 1 2:h G G between 
two neutrosophic graphs * 1 1

1 1( , , )G G f g and 
* 2 2

2 2( , , )G G f g  is a mapping 1 2:h V V

which satisfies 
1 2 1 2

1 2 1

1 2 1 2

1 2 1

( )  ( ) ( ( )),   ( ) ( ( )),   

( ) ( ( )),   for all .

( )  ( , ) ( ( ), ( )),   ( , ) ( ( ), ( )),   

( , ) ( ( ), ( )),   for all , .

f f f f

f f

g g g g

g g

i T x T h x I x I h x

F x F h x x V

ii T x y T h x h y I x y I h x h y

F x y F h x h y x y V

 

 

 

 

5.2 Definition  A weak isomorphism 1 2:h G G between 
two neutrosophic  graphs * 1 1

1 1( , , )G G f g and 
* 2 2

2 2( , , )G G f g   is a mapping 1 2:h V V which is a bi-
jective homomorphism such that 1 () = 2 (())1
() = 2 (())1 () = 2 (())for all 2 .

5.3 Example  Let *
1 1 1( , )G V E and *

2 2 2( , )G V E  be two 
simple graphs with 1 = f123g, 1 = f 

f 1 2( , )x x  2 3( , )x x  3 1( , )x x g

' ' ' ' ' ' ' ' '
2 1 2 3 2 1 2 2 3 1 3{ , , }.  {( , ), ( , ), ( , )}.V x x x E x x x x x x  Two 

neutrosophic graphs * 1 1
1 1( , , )G G f g and 

* 2 2
2 2( , , )G G f g  are given in table 10 and Table 11 be-

low and  ( , )
i j

x x  = 0 ( , )
i j

x x  = 0 and  ( , )
i j

x x  = 1 

for all ( , )
i j

x x  2 ×n f f 1 2( , )x x  2 3( , )x x  1 3( , )x x g

Also 
' ' ' ' ' '

g

' ' ' ' ' ' ' '
1 2 2 3 1 3

( , ) 0, ( , ) 0  and  F ( , ) 1   

for all ( , ) \{( , ), ( , ), ( , )}.
g i j g i j i j

i j

T x x I x x x x

x x V V x x x x x x

  

 

10 

1

1

1

1
1 2 3

0.2 0.1 0.1

0.3 0.2 0.5

0.5 0.4 0.7

f

f

f

f x x x

T

I

F

1

1

1

1
1 2 2 3 1 3( , ) ( , ) ( , )
0.1 0.1 0.1

0.1 0.2 0.3

0.9 0.7 0.9

g

g

g

g x x x x x x

T

I

F


11 

2

2

2

2 ' ' '
1 2 3

0.2 0.1 0.1

0.3 0.2 0.5

0.5 0.4 0.7

f

f

f

f x x x

T

I

F

2

2

2

2 ' ' ' ' ' '
1 2 2 3 1 3( , ) ( , ) ( , )
0.1 0.1 0.1

0.2 0.2 0.3

0.8 0.7 0.8

g

g

g

g x x x x x x

T

I

F

(0.2,0.3,0.5)

x1

(0.1,0.2,0.4)

x2

x3

(0.1,0.5,0.7)

(0.1,0.3,0.9)

(0.1,0.1,0.9)

(0.1,0.2,0.7)


 Figure 14


(0.2,0.3,0.5) (0.1,0.2,0.4)

(0.1,0.5,0.7)

x/1 x/2

x/3

(0.1,0.2,0.8)

(0.1,0.3,0.8)
(0.1,0.2,0.7)




 Figure 15 

Now we define 1 2:h V V ( 1x ) = '
1x ( 2x ) = 

'
2x ( 3x ) = '

3x 1 () = 2 (())1 () = 

2 (()), 1 () = 2 (())for all 2 1V 
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By easy calculation, it can be seen that is a weak iso-
morphism. 
5.4 Proposition  
Weak isomorphism between neutrosophic graphs satisfies 
the partial order relation. 
Proof 
 Let * 1 1

1 1( , , )G G f g , * 2 2
2 2( , , )G G f g and 

* 3 3
3 3( , , )G G f g be three neutrosophic graphs with sets of 

vertices 12 and 3 respectively. Then 
1) The relation is reflexive. Let 1 2:h V V be an identity 
mapping such that ( 1x ) = 1x  , for all x  2 1V That is

1 ( x ) = 2 (( x ))1 ( x ) = 2 

(( x ))1 ( x ) = 2 (( x ))for all x  2 1V and

1 ( x  y ) ≤ 2 (( x )( y ))1 ( x  y ) ≤
2 (( x )( y ))1 () ≥ 2 (()()) ,for 
all x  y 2 1 So : 1 ! 1 is a weak isomorphism of

the neutrosophic graph 1 onto itself. 

2) The relation is anti-symmetric. Let be a weak isomor-
phism between the neutrosophic graphs 1 and 2, that is 
: 1 ! 2 is a bijective mapping. Therefore ( 1x ) = 2

, for all 1x  2 1V  satisfying 1 ( 2x ) =2 (( 1x ))1

( 2x ) = 2 (( 1x ))1 ( 2x )= 2 (( 1x )) , for all 1x

2 1V  and 1 ( 1x  1y ) ≤ 2 (( 1x )( 1y ))1

( 1x  1y ) ≤ 2 (( 1x )( 1y ))) , 1 ( 1x  1y ) ≥ 2

(( 1x )( 1y ))(1) , for all 1x  1y  2 1V   

Let be a weak isomorphism between the neutrosophic 
graph 2 and 1 so the relation is anti-symmetric that is 
: 2 ! 1 is a bijective map with 2 ( 2x ) = 1

(( 2x ))2 ( 2x ) = 1 (( 2x )),.2 ( 2x ) = 1

(( 2x )) for all  2x  2 2 and 2 ( 2x 2) ≤ 1

(( 2x )( 2y ))2 ( 2x  2y ) ≤ 1 (( 2x )( 2y ))

2 ( 2x  2y ) ≤ 1 (( 2x )( 2y )) for all ( 2x  2y ) 2 

(2 ×2)…(2), for all 2x  2y  2  2The subset relation

(1) and (2) hold good on the finite sets 1 , 2

when the neutrosophic graphs 1 and 2 have the same 
no. of edges and the corresponding edges are identical. 
Hence 1 and 2 are identical. 
3) The relation is transitive. Let : 1 ! 2 and : 2 !

3 be weak isomorphisms of the neutrosophic graphs 
* 1 1

1 1( , , )G G f g onto * 2 2
2 2( , , )G G f g and 

* 2 2
2 2( , , )G G f g  onto * 3 3

3 3( , , )G G f g respectively. 
Then is a bijective mapping from 1 to 3 and defined 

as ()( 1x ) = [( 1x )], for all 1x  2 1V As is a weak 

isomorphism, so ( 1x ) = 2x for all 1x  2 1V  and 

1 2 1 2 1 2( ) ( ( ), ( ) ( ( ), ( ) ( ( ) 
f f f f f f

T x T h x I x I h x F x F h x   for all 

1x  2 1V . Also 1 ( 1x  1y ) ≤ 2 (( 1x )( 1y ))1

( 1x  1y ) ≤ 2 (( 1x )( 1y ))) , 

1 ( 1x  1y ) ≥ 2 (( 1x )( 1y ))for all 1x  1y  2 1V 

As is a weak isomorphism, so ( 2x ) = 3x for all 2x  2 

2 and 2 ( 2x ) =3 (( 2x ))
2 ( 2x ) = 3 (( 2x ))
2 ( 2x ) = 3 (( 2x )) and 

2 ( 2x  2y ) ≤ 3 (( 2x )( 2y ))

2 ( 2x  2y ) ≤ 3 (( 2x )( 2y )), 

2 ( 2x  2y ) ≤ 3 (( 2x )( 2y ))
for all 2x  2y  2 2.

1 () = 2 (())1 ( 1x ) = 2 (( 1x ))

1 ( 1x ) = 2 (( 1x )),for all 1x  2 1 and

2 ( 2x ) = 3 (( 2x ))2 ( 2x ) = 3 (( 2x ))

2 ( 2x ) =3 (( 2x )) for all   2 2 2so

1 3 3 1 32 1 2 1 2 1( ) ( (( ( ))),  ( ) ( (( ( ))),  ( ) ( (( ( ))) 
e e e

ff f f f f
T x T k h x I x I k h x F x F k h x  

for all 1x  2 1As 1 ( 1x  1y ) ≤ 2 (( 1x )( 1y ) = 

2 ( 2x  2y ) 1 ( 1x  1y ) ≤ 2 (( 1x )( 1y ) 

= 2 ( 2x  2y )1 ( 1x  1y ) ≥ 2 (( 1x )(1))= 

2 ( 2x  2y ) for all 1x  1y  2 1, so

1 ( 1x  1y ) ≤ 2 ( 2x  2y ), 

1 ( 1x 1) ≤ 2 ( 2x  2y )1 ( 1x  1y ) ≥ 2 ( 2x  2y ) 

for all 1x  1y  2 1

But 2 ( 2x  2y ) ≤ 3 (( 2x )( 2y ))

2 ( 2x  2y ) ≤ 3 (( 2x )( 2y ))

2 ( 2x  2y ) ≥ 3 (( 2x )( 2y ))

Therefore 

1 (1 1y ) ≤ 3 (( 2x )( 2y ))

1 ( 1x  1y ) ≤ 3 (( 2x )( 2y ))

1 ( 1x  1y ) ≥ 3 (( 2x )( 2y ))  for all 1x  1y  2 1

So is a weak isomorphism between 1 and 3. 
that is, the relation is transitive. Hence the theorem. 

5.5 Definition A co-weak isomorphism 1 2:h G G is a 
map : 1 ! 2 between two neutrosophic graphs
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* 1 1
1 1( , , )G G f g  and * 2 2

2 2( , , )G G f g which is a bijec-
tive homomorphism that satisfies the condition 

1( 1x  1y ) =2(( 1x )( 1y ))

1( 1x  1y ) = 2 (( 1x )( 1y )), 

1( 1x  1y ) = 2(( 1x )( 1y ))

for all 2 1.

5.6 Definition An isomorphism : 1 ! 2 is a map-

ping : 1 ! 2 which is bijective that satisfies the fol-

lowing conditions 
2 3 1 2

1 2

1 2

1 2

1 2

1

1

( )  ( ) ( ( )),   ( ) ( ( )),   

( ) ( ( )),   for all 

( ) ( , ) ( ( ), ( )),  

 ( , ) ( ( ), ( )),   

( , ) ( ( ), ( )),    for all , .

f f f f

f f

g g

g g

g g

i T x T h x I x I h x

F x F h x x V

ii T x y T h x h y

I x y I h x h y

F x y F h x h y x y V

 

 





 

If such exists then we say 1 is isomorphic to 2

and we write 1 2 .G G  

5.7 Proposition 
 The isomorphism between neutrosophic graphs is an 
equivalence relation. 
Proof 
Let * 1 1

1 1( , , )G G f g , * 2 2
2 2( , , )G G f g and 

* 3 3
3 3( , , )G G f g be three neutrosophic graphs with 

sets of vertices 12 and 3 respectively then 
i) The relation is reflexive. Consider the identity map-

ping : 1 ! 1 such that ( 1x ) = 1x for all 1x  2 

1. Then is a bijective mapping satisfying
, 

(i) 1 () = 2 (())1 () = 2 (())
1 () = 2 (())for all 2 1

ii) 1 () = 2 (()())
1 () = 2 (()())
1 () = 2 (()()), for all 2 1

showing that is an isomorphism of the neutrosophic 
graph 1 on to itself, that is 1 1.G G  

i) The relation is symmetric. Let : 1 ! 2 be an

isomorphism of 1 onto 2 then is bijective func-
tion. Therefore (1) = 2, for all 1 2 

Also 1 () = 2 (())1 () = 2 (())
1 () = 2(()) for all 2 1  and

1 () = 2(()())
() = 2 (()())
1 () = 2 (()()), for all  2 1 

Since is bijective, 

so it is invertible, that is, 1
2 1:h G G

  will exist and 
1

h
  ( 2x ) = 1x , for all 2x  2 2

Since 1 ( 2x ) = 2 (( 1x ))

1 ( 2x ) = 2 (( 1x ))1 ( 2x ) = (( 1x )) so 

 1 ( 1
h
  ( 2x )) = 2 ( 2x ) or 

2 ( 2x ) = 1 ( 1
h
  ( 2x )), 

2 ( 2x ) = 1 ( 1
h
  ( 2x ))

1 ( 1
h
  ( 2x )) = 1 ( 1

h
  ( 2x )) for all 2x  2 2. Also

1 ( 1x  2y ) =2 (( 1x )(1)) so 

 1 ( 1
h
  ( 2x )( 1

h
  (2))) = 2 (22) or 

2 ( 2x 2) = 1 ( 1
h
  (2)( 1

h
  (2))). 

Similarly 1 ( 1x 1) = 2 (( 1x )(1)) so 

 1 ( 1
h
  ( 2x )( 1

h
  (2))) = 2 ( 2x 2) or 

 2 ( 2x 2) = 1 ( 1
h
 ( 2x )( 1

h
 (2)))and 

1 ( 1x 1) = 2 (( 1x )(1)) implies 

 1 ( 1
h
 ( 2x )( 1

h
 (2))) = 2 ( 2x 2) or 

2 ( 2x 2) = 1 ( 1
h
 ( 2x )( 1

h
 (2)))

Hence 1
h


 : 2 ! 1 or 1
h


 : 2 ! 1 (Both one to

one & onto) is an isomorphism from 2 to 1, that is 

2 1G G . So 1 2G G ) 2 1.G G  

iii) The relation is transitive.
Let 1 2:h V V and 2 3:k V V be the isomorphism 
of the neutrosophic graphs 1 onto 2 and 2

onto 3 respectively. Then : 1 ! 3 is

also a bijective mapping from 1 to 3 defined as      

()(1) = [(1)] , for all 1 2 1Since : 1 ! 

2 is an isomorphism therefore   (1) = 2for all 

1 2 1  Also 1 ( 1x ) = 2 (( 1x ))

1 ( 1x ) = 2 (( 1x ))1 ( 1x ) = 2 (( 1x ))for all 

1x  2 1 and  1 ( 1x  1y ) = 2 (( 1x )( 1y ))

1 ( 1x  1y ) = 2 (( 1x )( 1y )) 

1 ( 1x  1y ) = 2 (( 1x )( 1y )), for all 1x  1y 2 1.

Since : 2 ! 3 is an isomorphism so

 (2) =32 (2) = 3 ((2)), 
2 (2) = 3 ((2))2 (2) = 3 ((2)) and 
2 (22) = 3 ((2)(2)), 2 (22) = 
 3 ((2)(2)),2 (22) = 3 ((2)(2))for 
all 22 2 2As  1 ( 1x ) = 2 (( 1x )) and 

2 (2) = 3 ((2)) so 1 ( 1x ) = 2 (( 1x )) = 

63



Neutrosophic Sets and Systems, Vol. 12, 2016 

Nasir Shah , Some Studies in  Neutrosophic Graphs 

 2 (2) = 3 ((2)) = 3 ((( 1x )), for all 1 2 1

which shows 1 ( 1x ) = 3 ((( 1x )), for all 1x  2 1.

Similarly we can show 1 ( 1x ) = 3 ((( 1x )) 

1 ( 1x ) = 3 ((( 1x ))Furthermore 1 ( 1x 1) = 

2 (( 1x )(1)) and 2 (22) = 3 ((2)(2)) 

so 1 ( 1x 1) = 2 (( 1x )(1)) = 2 (22) = 

3 ((2)(2)) = 3 [((( 1x ))(((1))], so 

1 ( 1x 1) = 3 [((( 1x ))(((1))] 

 for all 1x 1 2 1.

 Similarly we can show   
1 (11) = 3 [(((1))(((1))], 
 1 (11) = 3 [(((1))(((1))]. 

So is isomorphism between 1 and 3. 
Hence isomorphism between the neutrosophic graphs is an 
equivalence relation. 

5.8 Remarks 

1. If = 1 = 2 then the homomorphism is called an
endomorphism and the isomorphism is called an automor-
phism. 
2. If 1 = 2 = then the co-weak and weak isomor-
phism become isomorphism. 
3. A weak isomorphism preserves the equality of the of
vertices but not necessarily the equality of edges. 
4. A co-weak isomorphism preserves the equality of the
edges but not necessarily the equality of vertices. 
5. An isomorphism preserves the equality of edges and the
equality of vertices. 

Conclusion 

 In this paper we have described the neutrosophic graphs 
with the help of neutrosophic sets. Some operations on 
neutrosophic graphs are also presented in our work. We 
have proved that the isomorphism between neutrosophic 
graphs is an equivalence relation and weak isomorphism 
between neutrosophic  graphs satisfies the partial order re-
lation. 
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Abstract. As a new branch of philosophy, the neu-
trosophy was presented by Smarandache in 1980. It was 
presented as the study of origin, nature, and scope of neu-
tralities; as well as their interactions with different 
ideational spectra. The aim in this paper is to introduce 

the concepts of smooth neutrosophic topological space, 
smooth neutrosophic cotopological space, smooth neu-
trosophic closure, and smooth neutrosophic interior. 
Furthermore, some properties of these concepts will be 
investigated.  
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sophic Closure, Smooth Neutrosophic Interior.

1 Introduction 

In 1986, Badard [1] introduced the concept of a smooth 
topological space as a generalization of the 
classical topological spaces as well as the Chang fuzzy 
topology [2]. The smooth topological space was 
rediscovered by Ramadan [3], and El-Gayyar et al. [4]. In 
[5], the authors introduced the notions of smooth 
interior and smooth closure. In 1983 the intuitionistic 
fuzzy set was introduced by Atanassov [[6], [7], [8]], as 
a generalization of fuzzy sets in Zadeh’s sense [9], where 
besides the degree of membership of each element 
there was considered a degree of non-membership. 
Smarandache [[10], [11], [12]], defined the notion of 
neutrosophic set, which is a generalization of Zadeh’s 
fuzzy sets and Atanassov’s intuitionistic fuzzy set. The 
words “neutrosophy” and “neutrosophic” were invented by 
F. Smarandache in his 1998 book. Etymologically, 
“neutro-sophy” (noun) [French neutre < Latin neuter, 
neutral, and Greek sophia, skill/wisdom] means knowledge 
of neutral thought. 
While “neutrosophic” (adjective), means having the nature 
of, or having the characteristic of Neutrosophy. 

Neutrosophic sets have been investigated by Salama et 
al. [[13], [14], [15]]. The purpose of this paper is to intro-
duce the concepts of smooth neutrosophic topological 
space, smooth neutrosophic cotopological space, smooth 
neutrosophic closure, and smooth neutrosophic interior. 
We also investigate some of their properties.  

2 PRELIMINARIES 

In this section we use X  to denote a nonempty set, I  to 
denote the closed unit interval ]1,0[ , oI  to denote the

interval ]1,0( , 1I  to denote the interval )1,0[ , and
XI to be the set of all fuzzy subsets defined on X .

By 0  and 1  we denote the characteristic functions of
  and X , respectively. The family of all 
neutrosophic sets in X  will be denoted by 

)X( . 

2.1 Definition [11], [12], [15] 

A neutrosophic set A  (NS for short) on a nonempty 
set X is defined as: 

Xx,)x(F),x(I),x(T,xA AAA 
where ]1,0[X:F,I,T  ,  and 

3)x(F)x(I)x(T0 AAA   representing the
degree of membership (namely )x(TA ), the degree of
indeterminacy (namely )x(IA ), and the degree of
non-membership (namely )x(FA ); for each element

Xx to the set A . 

2.2Definition [13], [14], [15] 

The Null (empty) neutrosophic set N0  and the absolute

(universe) neutrosophic set N1  are defined as follows:

Xx,1,0,0,x0:TypeI N 

Xx,1,1,0,x0:TypeII N 

Xx,0,1,1,x1:TypeI N 

Xx,0,0,1,x1:TypeII N 
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2.3Definition [13], [14], [15] 

A neutrosophic set A  is a subset of a neutrosophic set 
B , ( BA ), may be defined as: 

Xx,)x(F)x(F),x(I)x(I
),x(T)x(TBA:TypeI

BABA

BA




Xx,)x(F)x(F),x(I)x(I
),x(T)x(TBA:TypeII

BABA

BA




2.4Definition [13], [14], [15] 

The Complement of a neutrosophic set A , denoted by 
coA , is defined as: 

)x(T),x(I1),x(F,xcoA:TypeI AAA 

)x(F1),x(I1),x(T1,xcoA:TypeII AAA 

2.5Definition [13], [14], [15] 

Let )X(B,A  then: 

))x(F),x(Fmin()),x(I),x(Imax(

)),x(T),x(Tmax(,xBA:TypeI

BABA

BA

))x(F),x(Fmin()),x(I),x(Imin(

)),x(T),x(Tmax(,xBA:TypeII

BABA

BA

))x(F),x(Fmax()),x(I),x(Imin(

)),x(T),x(Tmin(,xBA:TypeI

BABA

BA

))x(F),x(Fmax()),x(I),x(Imax(

)),x(T),x(Tmin(,xBA:TypeII

BABA

BA

)x(T1),x(I),x(T,xA][ AAA 

)x(F),x(I),x(F1,xA AAA

2.6Definition [13], [14], [15] 

Let Ji},A{ i   be an arbitrary family of neutrosophic
sets, then: 

)x(Finf),x(Isup),x(Tsup,xA:TypeI
iii A

ji
A

ji
A

ji
i

Ji 


)x(Finf),x(Iinf),x(Tsup,xA:TypeII
iii A

ji
A

ji
A

ji
i

Ji 


)x(Fsup),x(Iinf),x(Tinf,xA:TypeI
iii A

ji
A

ji
A

ji
i

Ji 


)x(Fsup),x(Isup),x(Tinf,xA:TypeII
iii A

ji
A

ji
A

ji
i

Ji 


2.7Definition [13], [14], [15] 

The difference between two neutrosophic sets A  and 
B defined as  coBAB\A  . 

2.8Definition [13], [14] 

Every intuitionistic set A  on X  is NS having the 
form  )x(F)),x(F)x(T(1),x(T,xA AAAA  ,
and every fuzzy set  A  on X  is NS having the form 

Xx,)x(T1,0),x(T,xA AA  .

2.9Definition [5] 

Let  Y  be a subset of X  and XIA ; the restriction of

A  on Y  is denoted by Y/A . For each YIB , the

extension of B  on X , denoted by XB  , is defined by:









YXif5.0
Axif)x(B

BX

2.10Definition [1],[3] 

A smooth topological space (STS, for short) is an ordered 

pair ),X(  where X  is a nonempty set and II: X   is a 
mapping satisfying the following properties: 

)A()A(,Ji,A)3O(
)A()A()AA(,IA,A)2O(

1)1()0()1O(

i
Ji

i
Ji

i

2121
X

21








2.11Definition [1],[3] 

A smooth cotopology is defined as a mapping II: X 
which satisfies: 
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)B()B(,Ji,A)3C(
)B()B()BB(,IB,B)2C(

1)1()0()1C(

i
Ji

i
Ji

i

2121
X

21








3.Smooth Neutrosophic Topological spaces

we will define two types of smooth neutrosophic 
topological spaces, a smooth neutrosophic topological 

space (SNTS, for short) take the form ),,,X( FIT   and 

the mappings II:,, XFIT  represent the degree of
openness, the degree of indeterminacy, and the degree of 
non-openness respectively. 

3.1 Smooth Neutrosophic Topological spaces of 

type I 

In this part we will consider the definitions of typeI. 

3.1.1Definition 

A smooth neutrosophic topology ),,( FIT  of typeI 
satisfying the following axioms: 

)A()A(

and,)A()A(

,)A()A(,Ji,IA)SNOI(

)A()A()AA(

and,)A()A()AA(

,)A()A()AA(

,IA,A)SNOI(

0)1()0(and

,1)1()1()0()0()SNOI(

i
F

Ji
i

Ji
F

i
I

Ji
i

Ji
I

i
T

Ji
i

Ji
TX

i3

2
F

1
F

21
F

2
I

1
I

21
I

2
T

1
T

21
T

X
212

FF

ITIT
1

























3.1.2Definition 

Let II:,, XFIT  be mappings satisfying the 
following axioms: 

)B()B(

and,)B()B(

,)B()B(,Ji,IB)SNCI(

)B()B()BB(

and,)B()B()BB(

,)B()B()BB(

,IB,B)SNCI(

0)1()0(and

,1)1()1()0()0()SNCI(

i
F

Ji
i

Ji
F

i
I

Ji
i

Ji
I

i
T

Ji
i

Ji
TX

i3

2
F

1
F

21
F

2
I

1
I

21
I

2
T

1
T

21
T

X
212

FF

ITIT
1

























The triple ),,( FIT  is a smooth neutrosophic 

cotopology of typeI, FIT ,,   represent the degree of
closedness, the degree of indeterminacy, and the degree of 
non-closedness respectively. 

3.1.3Example 

Let }b,a{X  .Define the mappings 

II:,, XFIT  as: 





































1nor0neitherisAif))b(A),a(Amax(
1Aif0
0Aif0

)A(

1nor0neitherisAif5.0
1Aif1
0Aif1

)A(

1nor0neitherisAif))b(A),a(Amin(
1Aif1
0Aif1

)A(

F

I

T

Then ),,,X( FIT  is a smooth neutrosophic topological 
space on X . 

3.1.4Proposition 

Let ),,( FIT  and ),,( FIT  be a smooth
neutrosophic topology and a smooth neutrosophic 

cotopology, respectively, and let XIA ,
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),coA()A(),coA()A(

),coA()A(,)coA()A(

TTFF

IITT

TF

IT









,)coA()A( II
I 


and ,)coA()A( FF
F 


then 

(1) ),,( FIT
FIT 

 and ),,( FIT
FIT 

  are a smooth 

 neutrosophic topology and a smooth neutrosophic 
cotopology, respectively. 

(2) ,,, FFIITT
F

F
I

I
T

T





,,, FFIITT
F

F
I

I
T

T





Proof

(1) (a) 1)1()0()1()0( IITT
TITT 


, and 

      0)1()0( FF
FF 



  (b) 


)AA(,IA,A 21
TX

21 T

)A()A()coA()coA(

)coAcoA()AA(co(

2
T

1
T

2
T

1
T

21
T

21
T

TT 




,similarly, ,IA,A X
21 

)A()A()AA( 2
I

1
I

21
I

III 
 ,and 

)A()A()AA( 2
F

1
F

21
F

FFF 


  (c) )Aco()A(,Ji,IA i
Ji

T
i

Ji
TX

i T



)A()coA()coA( i
T

Ji
i

T
Ji

i
Ji

T
T



,similarly, ,Ji,IA X
i 

)A()A( i
I

Ji
i

Ji
I

II 
 ,and 

)A()A( i
F

Ji
i

Ji
F

FF 
 .Hence, ),,( FIT

FIT 


is a smooth neutrosophic topology.Similarly, we can prove 

that ),,( FIT
FIT 

 is a smooth neutrosophic 

cotopology. 
(2) the proof is straightforward. 

3.1.5Proposition 

Let Ji
F
i

I
i

T
i )},,{(   be a family of smooth neutrosophic

topologies on X .Then their intersection ),,( F
i

I
i

T
i

Ji




is a  a smooth neutrosophic topology. 

Proof

The proof is a straightforward result of both definition(2.6) 
and difintion (3.1.1). 

3.1.6Definition 

Let ),,( FIT  be a smooth neutrosophic topology of type

I, and XIA . Then the smooth neutrosophic closure of
A   , denoted by A is defined by: 


































)0,1,1())A(),A(),A((

,)}A()H(),A()H(

),A()H(,HA,IH:H{

)0,1,1())A(),A(),A((,A

A

FIT

FFII

TTX

FIT

FIT

FFII

TT

FIT

3.1.7Proposition 

Let ),,( FIT  be a smooth neutrosophic topology on X , 

and XIB,A  . Then

(1) 11,00   

(2) AA 

(3) )A()A(),A()A( IITT
IITT 

 , and 

XFF IA,)}A()A( FF 


(4) )B()A(),B()A(,AB IITT
IITT 



and XFF IB,A,AB)B()A( FF 

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(5) AA   

(6) BABA   

Proof

(1) Obvious 

(2) Directly from definition (3.1.6) 

(3) (a) if AA  , the proof  is straightforward . 

 (b) if AA  , we have from the definition (3.1.2) and
the

definition (3.1.6): 

)A()}A()H(

),A()H(),A()H(

,HA,IH:)H({)})A()H(

),A()H(),A()H(

,HA,IH:H{()A(

TFF

IITT

XTFF

IITT

XTT

TFF

IITT

TFF

IITT

TT





















we 

can prove that )A()A( II
II 

  in a similar way. 

)A()}A()H(

),A()H(),A()H(

,HA,IH:)H({)})A()H(

),A()H(),A()H(

,HA,IH:H{()A(

FFF

IITT

XFFF

IITT

XFF

FFF

IITT

FFF

IITT

FF





















 

(4) (a) if BB  , then AA  and AB  . 

 (b) if BB  , and AA 

,)}B()H(),B()H(

),B()H(,HB,IH:H{B

FFII

TTX

FFII

TT









   this family contains A , hence, AAB 

  (c) if BB  , and AA 

From definition (3.1.6) every element in the family A  will 

be an element in the family B , hence AB  . 

(5) From (2) , (3) and the definition (3.1.6) we have 

    AA  . 

(6) (a) if AA  , and BB  , then 

        BABABABA 

 (b) if AA  ,  BB  , and BABA  , 

       from (4) BAB  , hence BABA 

 (c) if AA  , BB  , and BABA  , 

 then BAA  , hence BABA 

 (d) if AA  , BB  , and BABA  , 

      similar to(6b) 

 (e) if AA  , BB  , and BABA  , 

      similar to(6c) 

   (f) if AA  , BB  ,and BABA  , it follows 

   from(4)that BAA  , hence BABA  . 

 (g) if AA  , BB  ,and BABA   
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BA

])}B()H(,)B()H(

),B()H(,HB,IH:H{[

])}A()H(,)A()H(

),A()H(,HA,IH:H{[

])}B()H(,)B()H(

),B()H(,HB,IH:H{

)}A()H(,)A()H(

),A()H(,HA,IH:H{[

)}B()H(

or)A()H(,)B()H(

or)A()H(),B()H(or

)A()H(,HB,HA,IH:H{

)}B()A()H(

,)B()A()H(),B()A(

)H(,HBA,IH:H{

)}BA()H(

),BA()H(),BA()H(

,HBA,IH:H{BA

FFII

TTX

FFII

TTX

FFII

TTX

FFII

TTX

FF

FFII

IITT

TTX

FFF

IIITT

TX

FF

IITT

X

FFII

TT

FFII

TT

FFII

TT

FFII

TT

FF

FFII

IITT

TT

FFF

IIITT

T

FF

IITT









































































3.1.8Definition 

Let ),,( FIT  be a smooth neutrosophic topology of 

type I, and XIA . Then the smooth neutrosophic interior

of A  , denoted by oA is defined by:
























)0,1,1())A(),A(),A((

,)}A()H(),A()H(

),A()H(,AH,IH:H{

)0,1,1())A(),A(),A((,A

A

FIT

FFII

TTX

FIT

o

3.1.9Proposition 

Let ),,( FIT  be a smooth neutrosophic topology on X , 

and XIB,A  . Then

(1) oo 11,00 

(2) AAo 

(3) )A()A(),A()A( IoIToT  , and 

XFoF IA,)}A()A( 

(4) )A()B(),A()B(,AB IITT 

and XooFF IB,A,AB)A()B( 

(5) ooo A)A( 

(6) ooo BA)BA( 

Proof

 Similar to the procedure used to prove Proposition (3.1.7) 
3.2. Smooth Neutrosophic Topological spaces of 

type II

In this part we will consider the definitions of typeII. In a 
similar way as in typeI, we can state the following 
definitions and propositions. The proofs of the propositions 

of typeII, will be similar to the proofs of the propositions 

in typeI. 
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3.2.1Definition 

A smooth neutrosophic topology ),,( FIT  of typeII 
 satisfying the following axioms: 

)A()A(

and,)A()A(

,)A()A(,Ji,IA)SNOII(

)A()A()AA(

and,)A()A()AA(

,)A()A()AA(
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0)1()0()1()0(
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Ji
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T
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2
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1
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T

X
212

FFII
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1










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











3.2.2Definition 

Let II:,, XFIT  be mappings satisfying the 
following axioms: 

)B()B(

and,)B()B(

),B()B(,Ji,IB)SNCII(
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
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













The triple ),,( FIT  is a smooth neutrosophic 

cotopology of typeII, FIT ,,   represent the degree of
closedness, the degree of indeterminacy, and the degree of 
 non-closedness respectively. 

3.2.3Example 

Let }b,a{X  . Define the mappings 

II:,, XFIT  as:





































1nor0neitherisAif))b(A),a(Amax(
1Aif0
0Aif0

)A(

1nor0neitherisAif5.0
1Aif0
0Aif0

)A(

1nor0neitherisAif))b(A),a(Amin(
1Aif1
0Aif1

)A(

F

I

T

Then ),,,X( FIT  is a smooth neutrosophic topological 
space on X . 
Note that: the Propositions (3.1.4) and (3.1.5) are satisfied 
for typeII. 

3.2.4Definition 

Let ),,( FIT  be a smooth neutrosophic topology of type

II, and XIA . Then the smooth neutrosophic closure of
A  , denoted by A is defined by: 
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Also, the smooth neutrosophic interior of A  , denoted by 
oA is defined by:
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






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
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

)0,1,1())A(),A(),A((
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A
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FFII

TTX
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o

Note That: the Propositions (3.1.7) and (3.1.9) are 
satisfied for typeII. 

4. Conclusion and Future Work
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In this paper, the concepts of smooth neutrosophic 
topological structures were introduced. In two different 
types we’ve presented the concepts of smooth 
neutrosophic topological space, smooth neutrosophic 
cotopological space, smooth neutrosophic closure, and 
smooth neutrosophic interior. Due to unawareness of 
the behaviour of the degree of indeterminacy, we’ve 

chosen for I  to act like T  in the first type, while in 

the second type we preferred that T  behaves like F .
Therefore, the definitions given above can also be 
modified in several ways depending on the behaviour of 

I . Moreover, as a consequence of our choices of the 

performance of I , one can see that: In typeI, booth 
T and I  defined in (3.1.1) with their conditions are

smooth topologies; while in typeII, only T  defined in 
(3.2.1) with its conditions is a smooth topology. 
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Abstract: In this  paper , the authors  explore 
neutrosophic statistics, that was initiated by Florentin 
Smarandache in 1998 and developed in 2014, by 
presenting various examples of several statistical 

distributions, from the work [1]. The paper is 
presented with more case studies, by means of which 
this neutrosophic version of statistical distribution 
becomes more pronounced. 

Key words: Neutrosophy, Binomial & Normal distributions, Neutrosophic logic etc. 

I.Introduction: Neutrosophy was first proposed by 
Prof. Florentin Smarandache in 1995 . It is a new 
branch of philosophy , where one can study origin , 
nature and scope  of neutralities . According to Prof. 
Dr.Huang, this gives advantages to break the 
mechanical understanding of human culture. For 
example, according to mechanical theory ,existence 
and non-existence couldn’t be simultaneously , due to 
some indeterminacy [ 2 ]. 

This theory considers every notion or idea <A> 
together with its opposite or negation <Anti-A>. The 
<neut-A> and <Anti-A> ideas together called as a 
<non-A>. Neutrosophic logic is a general framework 
for unification of many existing logics, intutionstic 
logic, paraconsistent logic etc. The focal objective of 
neutrosophic logic is to characterize each logical 
statements in a 3D-neutrosophic space, where each 
dimension of space represents respectively the 
truth(T) , falsehood(F) and indeterminacies of the 
statements under consideration . Where T,I,F are 
standard or non-standard real subset of (-0,1+) 
without necessary connection between them. [ 3] 

The classical distribution is extended 
neutrosophically. That means that there is some 
indeterminacy related to the probabilistic experiment. 
Each experimental observation of each trial can result 
in an outcome of each trial can result in an outcome 
labelled failure (F) or some 
indeterminacy(I).Neutrosophic statistics is an 
extended form of classical statistics, dealing with 
crisp values. In this paper, we will discuss about one 
discrete random distribution such as Binomial 
distribution and a continuousone by approaching 
neutrosophically. Before focusing the light on this 
context, we should familiar with the following 
notions.  

Neutrosophic statistical number ‘N’ has the form 

     N = d + I; 

Where, d: Determinate part 

   I: Indeterminate part of N. 
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For example, a = 5 + I  ; where I ∈ [ 0 , 0.4] is 
equivalent to  a∈ [ 5 , 5.4 ]. So for sure a ≥ 5, where I ∈[ O , O.4 ] . 

I.A. Preliminaries: In this context, we are going to 
discuss about the classical distributions[4] . 

  A). Binomial distribution, 

B). Normal distribution. 

I. A. a). Binomial distribution: 

I. A.a.i. Definition: A random variable X is said to 
follow Binomial distribution, if it assumes only non-
negative values and its probability mass function is 
given by, 

 
!( ) ( )  ;  x = 0,1,2...and q = 1-p 

! !
otherwise equal to zero .

x n xn
p X x p x p q

x n x

  


I.A.a.ii. Physical conditions: We get Binomial 
distribution under the following conditions–  

1. Each trials results in two exhaustive and mutually
disjoint outcomes termed as success and failure. 

2. The number of trials ‘n’ is finite.

3. The trials are independent on each other.

4. The probability of success ‘p’ is constant for each
trial. 

I.A.b. Normal Distribution: 

I.A.b.i. Definition: A random variable is said to have 
a normal distribution with parameters μ and 2  , 
ifitsp.d.f is given by the probability law , 
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A.I.b.ii. Chief characteristics of Normal 
Distribution and normal probability curve: 

The normal probability curve is given by the equation 
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2

X
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f x e


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I.A.b.iii.Properties: 

1.The point of inflexion of the curve are:

1/21, f(x) =
2X X

X

x e 
 

 

2. The curve is symmetrical and bell shaped about the
line x = μ. 

3. Mean, Median, Mode of distribution coincide.

4. X-axis is an asymptote to the curve.

5. Quartiles, Q₁ = μ – 0.6745σ

   Q₃ = μ + 0.6745σ. 

6. Q.D : M.D : S.D :: ⅔σ : ⅘σ : σ :: ⅔ : ⅘ : 1  that
implies  Q.D : M.D: S.D :: 10 :12 : 15 

II. Neutrosophic Statistical Distribution:

II.i. Neutrosophic Binomial Distribution: The 
neutrosophic binomial random variable ‘x’ is then 
defined as the number of success when we perform 
the experiment n ≥ 1 times. The neutrosophic 
probability distribution of ‘x’ is also called 
neutrosophic binomial probability distribution. 

II.i.a.Definitions: 

1. Neutrosophic Binomial Random
Variable: It is defined as the number of
success when we perform the experiment n
≥ 1 times, and is denoted as ‘x’.

2. Neutrosophic Binomial Probability
Distribution: The neutrosophic probability
distribution of ‘x’ is called n.p.d.

3. Indeterminacy: It is not confined to
experimental results (either success or
failures).

4. Indeterminacy Threshold: It is the number
of trials whose outcome is indeterminate.
Where

th∈{0,1,2…n} 

Let P(S) = The chance of a particular trial results in a     
success.    

P(F) = The chance of a particular trial results in a 
failure , for both S and f different from indeterminacy 
. 
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P(I) = The chance of a particular trial results in an 
indeterminacy .  

For example: for x∈ {0,1,2,…,n} , NP =(TX,IX,FX) 
with  

TX : Chances of ‘x’ success and (n-x) failures and 
indeterminacy but such that the no. of indeterminacy 
is less than or equal to indeterminacy threshold. 

FX : Chances of ‘y’ success , with y≠x and (n-y) 
failures and indeterminacy is less than the 
indeterminacy threshold. 

IX : Chances of ‘z’ indeterminacy , where ‘z’ is 
strictly greater than thee indeterminacy threshold. 

TX + FX + IX = (P(S) + P(I) + P(F))ⁿ 

For complete probability, P(S) + P(I) + P(F) = 1 ; 

For incomplete probability , 

0 ≤ P(S) + P(I) + P(F) < 1 ; 

For paraconsistent probability , 

1< P(S) + P(I) + P(F) ≤ 3 . 

Now , 
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Where , 

Tx , Ix , Fx ,P(S) ,P(I) , P(F)  have their usual 
meaning. Now  we are going to discuss several cases. 

II.i.b.1. Case studies : 

1. Two friends Asish and Rajesh are going to
throw 5 coins simultaneously. There are
60% of chance to get head and 30% of
chance to get tail. Independent on the view
of Asish ,Rajes said that the probability of
the result that are neither Head nor Tail is
20% . Then find the probability of getting 3
Heads  when indeterminacy threshold is 2.

Solution: 
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={0.324+0.072+0.1008}=0.496
F  =(P(S)+P(I)+P(F))
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5
3 (0.6 0.3 0.2) 0.0864 0.496

=1.02811
    

2. Five coins  are thrown simultaneously , the
probability of success is 1/3 and the
indeterminacy (the surface is very rough , so
the coins may stand up ) is 1/3 . Then find
the probability of getting 3 Heads  when the
indeterminacy threshold is 2.

Solution: 
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3. Two friends Liza and Laxmi play a game in
which their chance of winning is 2:3 . The
chances of dismissing game is 30% . Then
find the probability of Liza’s chances of
winning at least 3 games out of 5 games
played when the indeterminacy threshold is
2.

solution: 
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and F 2.88785,  a paraconsistent probability which is 3 .
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4. In a precision bombing attack there is a 50%
chance that any one bomb will strike the
target . Two direct hits are required to
destroy the target . If the chance of failure of
mission is 30% , then find how many bombs

are required to give a 99% chance with th=2 
. 

Solution: 
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,0.1806).
  an example of paraconsistent probability.It is

5. It is decided that a  cricket player ,
Jagadiswar has to appear 4 times for a
physical test . If  the possibility of  passing
the test is 2/3 ; and one referee  guess that
the chance of dismiss of game is 30% , then
what is the probability of that the player
passes the test at least 3 times, provided
th=2?

Solution: 
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3) (0.7589,0.1541,1.8561).

II.i.b.2.Exercises: 

1. In a B.Sccourse , suppose that a student has to
pass a minimum of 4 tests out of 8 
conducted tests during the year to get 
promoted to next academic year . One 
student, Sarmistha says that his chance of 
winning is 80% , another student, Baisakhi 
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says that his chance of winning is 0.3 . Then 
find the probability of the promotion of 
Sarmistha , when the indeterminacy ( either  
illegal paper correction or system error ) is 
20% , provided th=2. 

2. If a car agency sells 40% of its inventory of a
certain foreign cars equipped with air bags , the 
asst. manager says that the cars which are neither 
equipped with air bags nor a general one is 30% , 
then find  theprobability distribution of the 2 cars 
with airbags among the next 4 cars sold  with 
th=2? 

3. A question paper contain 5 questions and a
candidate will be declared to have passed the
exam. If he/she answered at least one question
correctly, considering the uncertainty as 33% (
may be improper paper correction or system
error etc.). What is the probability that the
candidate passes the examination?

II.ii.Neutrosophic Normal Distribution: 

Neutrosophic normal distribution of a continuous 
variable X is a classical normal distribution of X, but 
such that its mean μ or its standard deviation σ or 
variance 2 or both are imprecise. For example , μ or 
σ or both can be set with two or more elements . The 
most common such distribution are when μ, σ or both 
are intervals . 
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II.ii.a. Case studies: 

1. In a college examination of a particular year,
60% of the Student failed when the mean of
marks was 50% and the standard deviation
is 5% with uncertainty I∈ [0,0.4] .The
college decided to relax the condition of
passing by lowering the passing marks to
show its result as 80%  passed , find the
minimum marks to be kept for passing when
marks are distributed normally .

Solution : Let μ = 50 , σ = 5 with indeterminacy 
I∈[0,0.4] ,so σ = 5 + [0,0.4] = [5,5.4] . therefore,μ±σ 
=50 ± [5,5.4] = [50-5.4,50+5] = [44.6 ,55] . Thus, 
66.04 % of values lies in [44.6,55] . 
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2. If the monthly machine repair and
maintenance cost X in a certain factory is
known to be neutrosophically normal with
mean 1000 and standard deviation 10000 ,
find the followings-

         μ±σ,μ±2σ,when I∈[0,0.3]. 

Solution: Let μ=10000 ,σ=1000+[0,0.3],then 
μ±σ=10000±[1000,1000.03] . Thus 66.06% of values 
lies in [9000.03,11000]. And 
μ±2σ=10000±2[1000,1000.03]=[7999.97,12000]. 
Thus 75.04% of values lies in [7999.97,12000]. 

II.ii.b. Exercises: 

1. A machine fills  boxes weighting B kg with
A kg of salt , where A and B are
neutrosophically normal with mean 200kg
and  10kg respectively and standard
deviation of 2kg and 1kg respectively , what
percentage of filled boxes weighting
between 110kg an 120kg are to be expected
when I∈[0,0.5].

2. The average life of a bulb is 2000 hours and
the standard deviation is 400 hours .If 

N
X is

the life period of a bulb which is distributed 

FIG-1: CREDIT TO FLORENTIN  SMARANDACHE IN NEUTROSOPHIC STATISTICS 
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normally in a neutrosophic plane. Find the 
probability that a randomly picked bulb will 
lasts ≤600 hrs. , considering the distribution 
is neutrosophically normal with 
indeterminacy I∈[0,0.2]. 

Till now, we have discussed various types of 
practical cases in statistical approach. Now we 
review the general formula for fusioning classical 
subjective probability provided by 2 sources. 

The principle of redistributing the conflicting chances 
for ex. t and I are same as in PCR5 rule for the DSmT 
used in information fusion if 2 sources of information 

1 2  S and S give the subjective probability P₁ and P₂
about ‘t’ to combining by PCR5 rule ,[5] 

2 2
1 2 2 1

1 2 1 2
1 2 2 2

( ) ( ) ( ) ( )( ) ( ) ( ) [ ]
( ) ( ) ( ) ( )x E x E

P E P X P E P X
P P E P E P E

P E P X P E P X   

   
 

It helps to the generalization of classical probability 
theory, fuzzy set, fuzzy logic to their respective 
domains. They are useful in artificial intelligence, 
neutrosophic dynamic system, quantum mechanics 
[6].

This theory can be used for topical communication 
study [7]. It may also be applied to neutrosophic 
cognitive map study [8]. 

Thus we have presented our discussion with certain 
essential area of neutrosophy in a synchronized 
manner. Now we are going to explore some open 
challenges as follows.   

Which are designed for inquiring minds. 

Open Problems: 

1. Can this Neutrosophic Statistics be applied
to Industrial Management study?

2. Can we apply it with the study of Digital
Signal Processing?

3. Can we merge the Representation theory [ 9
]with  Neutrosophy for a new theory ?

4. Is the uncertain theory, K-theory [ 10 ]solve
the recent intriguing statistical problems by
the power of this Neutrosophic logic ?

5. Can we construct  a special master-space by
the fusion of manifold concepts [11], soft
topology [ 12 ], Ergodic  theory
[ 13],with Neutrosophic distribution ?

6. Is it possible for the construction of
Neutrosophic manifold?

7. Is it possible for the construction of
neutrosophic algebraic geometry[ 14 ] ?

III. Conclusion:

The actual motto of this short paper is to present the 
theory of Neutrosophic probability distribution in a 
more lucid and clear-cut way .The author presents 
various solved and unsolved problems, which are 
existed in reference to Neutrosophic 3D- space 
.Various practical situations are described and were 
tried to solve by Neutrosophic logic. The spectra of 
this theory may be applied to Quantum physics 
[15]and M-theory [ 16]. It may be said that it can also 
be applied to Human psychology as well as 
Behavioral study. I hope that the more extended 
version (with large no. of case studies) with the area 
of application of this theory will see the light of the 
day in recent future. Here we limited our discussion 
of problem analysis to some extent due to limited 
scope of presentation. And lastly but important that if 
some unmatched/contradicted idea will occur in this 
paper, then it is surely unintentional. Finally I hope 
that the idea on the advanced version of this 
theory,which is already raised in my brain, will 
change their abstractskeleton into a paper, in coming 
future. 
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Abstract. The traditional soft set is a mapping from a 
parameter set to family of all crisp subsets of a universe. 
Molodtsov introduced the soft set as a generalized tool 
for modelling complex systems involving uncertain or 
not clearly defined objects. In this paper, the notion of 
neutrosophic soft set is reanalysed. The novel theory is a 
combination of neutrosophic set theory and soft set 

theory. The complement, “and”, “or”, intersection and 
union operations are defined on the neutrosophic soft sets. 
The neutrosophic soft relations accompanied with their 
compositions are also defined. The basic properties of the 
neutrosophic soft sets, neutrosophic soft relations and 
neutrosophic soft compositions are also discussed.

Keywords: Soft sets, Fuzzy soft sets, Intuitionistic fuzzy soft sets, Neutrosophic soft sets, Neutrosophic soft relations

1 Introduction 

Uncertain data modelling is a complex problem 
appearing in many areas such as economics, engineering, 
environmental science, sociology and medical science. 
Some mathematical theories such as probability, fuzzy set 
[1], [2], intuitionistic fuzzy set [3], [4], rough set [5], [6], 
and the interval mathematics [7], [8] are useful approaches 
to describing uncertainty. However each of these theories 
has its inherent difficulties as mentioned by Molodtsov [9]. 
Soft set theory developed by Molodtsov [9] has become a 
new useful approach for handling vagueness and 
uncertainty. 

Later, Maji et al. [10] introduced several basic 
operations of soft set theory and proved some related 
propositions on soft set operations. Ali et al. [11] analysed 
the incorrectness of some theorems in [10]. Then they 
proposed some new soft set operations and proved that De 
Morgan’s laws hold with these new definitions. Maji et al. 
also [12] gave an application of soft set theory in a 
decision making problem. 

Above works are based on classical soft set. However, 
in practice, the objects may not precisely satisfy the 
problems’ parameters, thus Maji et al. [13] put forward the 
concept of fuzzy soft set by combining the fuzzy set and 
the soft set, then they [14] presented a theoretical approach 
of the fuzzy soft set in decision making problem. In [15], 
they considered the concept of intuitionistic fuzzy soft set. 
By combining the interval-valued fuzzy set and soft set, 
Yang et al. [16] proposed the interval-valued fuzzy soft set 
and then analyzed a decision making problem in the 
interval-valued fuzzy soft set. Yang et al [17] presented the 
concept of interval-valued intuitionistic fuzzy soft sets 
which is an interval-valued fuzzy extension of the 
intuitionistic fuzzy soft set theory. 

From philosophical point of view, Smarandache’s 
neutrosophic set [26] generalizes fuzzy set and 
intuitionistic fuzzy set. However, it is difficult to apply it 
to the real applications and needs to be specified. Wang et 
al. [27] proposed interval neutrosophic sets and some 
operators of then. Wang et al. [28] proposed a single 
valued neutrosophic set as an instance of the neutrosophic 
set accompanied with various set theoretic operators and 
properties. Ye [29] defined the concept of simplified 
neutrosophic sets, which can be described by three real 
numbers in the real unit interval  0,1 , and some
operational laws for simplified neutrosophic sets and to 
propose two aggregation operators, including a simplified 
neutrosophic weighted arithmetic average operator and a 
simplified neutrosophic weighted geometric average 
operator. In 2013 [18], we presented the definition of 
picture fuzzy sets, which is a generalization of the Zadeh’s 
fuzzy sets and Atanassov’s intuitionistic fuzzy sets, and 
some basic operations on picture fuzzy sets. In [18] we 
also discussed some properties of these operations, then the 
definition of the Cartesian product of picture fuzzy sets and 
the definition of picture fuzzy relations were given. Our 
picture fuzzy set turns out a special case of neutrosophic 
set. Thus, from now on, we also regard picture fuzzy set as 
standard neutrosophic set. 

The purpose of this paper is to combine the standard 
neutrosophic sets and soft models, from which we can 
obtain neutrosophic soft sets. Intuitively, the neutrosophic 
soft set presented in this paper is an extension of the 
intuitionistic fuzzy soft sets [13][15]. 

The rest of this paper is organized as follows. Section 2 
briefly reviews some background on soft sets, fuzzy soft 
sets, intuitionistic soft sets as well as neutrosophic set. In 
Section 3, we recall the concept of the standard 
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neutrosophic sets (SNSs) with some operations on SNSs, 
then we present the concept of neutrosophic soft sets 
(NSSs) with some operations. Some properties of these 
operations are discussed in the Sub-section 3.3. Sub-
section 3.4 is devoted to the Cartesian product of NSSs. 
The neutrosophic soft relations are presented in Section 4. 
Finally, in Section 5, we draw the conclusion and present 
some topics for future research. 

2 Preliminaries 

In this section, we briefly recall the notions of soft sets, 
fuzzy soft sets, intuitionistic fuzzy soft sets as well as 
neutrosophic sets. See especially [9][10][13][15] for 
further details and background.  

2.1 Soft sets and some extensions 

Molodtsov [8] defined the soft set in the following way. 
Let U  be an initial universe of objects and E  be the set of 
related parameters of objects in U . Parameters are often 
attributes, characteristics, or properties of objects. Let 
 P U  denotes the power set of U  and A E .

Definition 2.1. [8] A pair  ,F A  is called a soft set over
U , where F  is a mapping given by  : .F A P U

In other words, the soft set is not a kind of set, but a 
parameterized family of subsets of U  [9][10][16]. For any 
parameter e E ,  F e U  is considered as the set of e -
approximate elements of the soft set  ,F A .

Maji et al. [13] initiated the study on hybrid structures 
involving both fuzzy sets and soft sets. They introduced 
the notion of fuzzy soft sets, which can be seen as a fuzzy 
generalization of (crisp) soft set. 
Definition 2.2 [13] Let  U  be the set of all fuzzy
subsets of U , E  be the set of parameters and A E . A 
pair   ,F A  is called a fuzzy soft set over U , where F is a
mapping given by  :F A U .

It is easy to see that every (crisp) soft set can be 
considered as a fuzzy soft set. Generally speaking, for any 
parameter e E ,  F e  is a fuzzy subset of U  and it is
called fuzzy value set of parameter e . If for any parameter 
e A ,  F e  is a subset of  U , then   ,F A  is
degenerated to the standard soft set. For all x U  and 
e E , let us denote by    F e

x  the membership degree
that the object x  holds parameter e . So then  F e  can be
written as        

      ,
F e

F e x x x U  . 

Before introduce the notion of the intuitionistic fuzzy 
soft set, let us recall the concept of intuitionistic fuzzy set 
[3], [4]. 

Let X  be a fixed set. An intuitionistic fuzzy set (IFS) 
in X  is an object having the form 

    , ,
A A

A x x x x X   , 

where    0,1
A

x  and    0,1
A

x   respectively define 
the degree of membership and the degree of non-
membership of the element x  to the set A  such 
that     1

A A
x x    for all x X . The set of all IFSs on

X  is denoted by  IFS X .

In [15] Maji et al. proposed the concept of 
intuitionistic fuzzy soft set as follows. 
Definition 2.3 [15] Let E  the set of parameters and 
A E . A pair    ,F A  is called a intuitionistic fuzzy soft

set over U , where F is a mapping  : .F A IFS U
Clearly, for any parameter e E  ,  F e  is an  IFS

          , ,
F e F e

F e x x x x U   , 

where  F e
  and  F e

 are the membership and  non-
membership functions, respectively. If for any parameter 
e A ,        1

F e F e
x x   , then  F e  is a fuzzy set

and  ,F A  is reduced to a fuzzy soft set.

2.2 Neutrosophic sets 

Definition 2.4 [26] A neutrosophic set A  in a on a 
universe X  is characterized by a truth-membership 
function A

T , an indeterminacy-membership function A
I

and a falsity-membership function A
F . For each x X , 

 A
T x ,  A

I x  and  A
F x  are real standard or 

nonstandard subsets of 0 ,1   , that is A
T , A

I  and A
F : 

0 ,1X
    .

There is no restriction on the sum of  A
T x ,  A

I x  and 
 A

F x , so      0 sup sup sup 3
A A A

T x I x F x
     , 

for all x X . 

Definition 2.5 [26] The complement of a neutrosophic set 
A  is denoted by c

A  and is defined 
as      1c AA

T x T x
 ,      1c AA

I x I x
 , and 

     1c AA
F x F x

  for every x  in X . 

Definition 2.6 [26] A neutrosophic set A  is contained in 
the other neutrosophic set B , A B  if and only if  

   inf inf
A B

T x T x ,    sup sup
A B

T x T x , 

   inf inf
A B

I x I x ,    sup sup
A B

I x I x , 

   inf inf
A B

F x F x , and    sup sup
A B

F x F x  for 
every x  in X . 

Definition 2.7 [26] The union of two neutrosophic sets A  
and B  is a neutrosophic set C , written as C A B  , 
whose truth-membership, indeterminacy membership and 
false-membership functions are related to those of A  and 
B  by  
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         C A B A B
T x T x T x T x T x  ,

         C A B A B
I x I x I x I x I x  ,and 

         C A B A B
F x F x F x F x F x   for any x  

in X . 

Definition 2.8 [1] The intersection of two neutrosophic 
sets A  and B  is a neutrosophic set C , written as 
C A B  , whose truth-membership, indeterminacy-
membership and false-membership functions are related to 
those of A  and B by      C A B

T x T x T x , 
     C A B

I x I x I x ,and      C A B
F x F x F x  for 

any x  in X . 

Definition 2.9 [29] Consider a neutrosophic set A  in X

characterized by a truth-membership function A
T , a 

indeterminacy-membership function A
I  and a falsity -

membership function A
F . If  A

T x ,  A
I x  and  A

F x

are singleton values in the real standard  0,1  for every x
in X , that is A

T , A
I  and A

F :  0,1X  . Then, a
simplification of the neutrosophic set A  is denoted by 

      , , ,
A A A

A x T x I x F x x X  , 

which is called a simplified neutrosophic set. 

3 Neutrosophic soft sets 

In this section, first we recall the definition of the 
standard neutrosophic sets (SNSs), some basic operations 
with their properties, then we will present the neutrosophic 
soft set theory which is a combination of neutrosophic set 
theory and a soft set theory. 

3.1 Standard neutrosophic sets 

Intuitionistic fuzzy sets introduced by Atanassov in 
1983 constitute a generalization of fuzzy sets (FS) [3]. 
While fuzzy sets give the degree of membership of an 
element in a given set, intuitionistic fuzzy sets give a 
degree of membership and a degree of non-membership of 
an element in a given set. 

A generalization of fuzzy sets and intuitionistic fuzzy 
sets are the following notion of standard neutrosophic set 
(SNS) . 
Definition 3.1 [18] A SNS A  on a universe X  is an 
object of the form 

       , , ,
A A A

A x x x x x X    ,  

where    0,1
A

x   is called the “degree of positive 
membership of x  in A ”,     0,1

A
x   is called the 

“degree of neutral membership of x  in A ” and 
   0,1

A
x  is called the “degree of negative 

membership of x  in A ”, and  A
  , A

  and A
 satisfy the

following condition: 

      1
A A A

x x x     , x X  .

The expression        1
A A A

x x x      is termed as 
“degree of refusal membership” of  x  in A . 

Basically, SNSs based models may be adequate in 
situations when we face human opinions involving more 
answers of type: yes, abstain, no and refusal. Voting can 
be a good example of such a situation as the voters are 
divided into four groups: vote for, abstain, vote against and 
refusal of the voting. 

Let  SNS X  denote the set of all the standard
neutrosophic set SNSs on a universe X . 
Definition 3.2 [18] For A ,  B SNS X , the union,
intersection and complement are defined as follows: 

 

   
   
   

A B

A B

A B

x x

A B x x

x x

 

 

 

 
  
 

, x X  ; 

 
A B

A B
B A


   

; 

  A B SNS X   with

      max ,
A B A B

x x x    , 

      min ,
A B A B

x x x    , and 

      min ,
A B A B

x x x    , x X  ; 

  A B SNS X   with

      min ,
A B A B

x x x    , 

      min ,
A B A B

x x x    , and 

      max ,
A B A B

x x x    , x X  ; 

        , , ,c

A A A
CoA A x x x x x X     . 

In this paper, we denote  min ,a b a b   and

 max ,a b a b  , for every  a , b .

Definition 3.3 [18] Let X , Y be two universes 
and  A SNS X ,  B SNS Y . We define the Cartesian

product of these two SNSs by  A B SNS X Y    such
that 

     ,
A B A B

x y x y     , 

     ,
A B A B

x y x y     , and 
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     ,
A B A B

x y x y     ,  ,x y X Y   .

The validation of Definition 3.3 was shown in [18]. 
Now we consider some properties of the defined 
operations on SNSs. 

Proposition 3.4 [18] For every A , B ,  C SNS X :

(a) If A B  and B C , then A C ; 

(b)  c
c

A A ; 

(c) Operations   and   are commutative, associative 
and distributive; 

(d) Operations   , Co  and   satisfy the law of De 
Morgan. 

Proof. See [19][20] for detail proof. 

Convex combination is an important operation in 
mathematics, which is a useful tool on convex analysis, 
linear spaces and convex optimization.  In this sub-section 
convex combination firstly is defined with some simple 
propositions. 

Definition  3.5 [18] Let  A ,  B SNS X . For  each

 0,1  , the convex combination of  A  and B  is defined
as follows: 

         , , , ,
C C C

C A B x x x x x X
      ,  

where 

       1
C A B

x x x


      , 

       1
C A B

x x x


      , and 

       1
C A B

x x x


      , x X  . 

Proposition  3.6 [18] Let A ,  B SNS X  and  , 1 ,

 2 0,1  , then

 If 1  , then  ,C A B A  ; and if 0  , then

 ,C A B B  ;

 If A B , then  ,A C A B B  ;

 If B A  and 1 2  , then    
1 2

, ,C A B C A B  .

3.2 Neutrosophic soft sets 

Definition 3.7 Let  SNS U  be the set of all standard neu-
trosophic sets of U , E  be the set of parameters and  
A E . A pair    ,F A  is called a standard neutrosophic

soft set (or neutrosophic soft set for short) over U , where 
F is a mapping given by  :F A SNS U .

Clearly, for any parameter e E ,  F e  is a SNS:

               , , ,
F e F e F e

F e x x x x x U    , 

where  F e
 ,  F e

  and  F e
 are positive membership,

neutral membership and negative membership functions 
respectively. If for all parameter e A  and for all x U , 

    0
F e

x  , then  F e  will degenerated  to be an intui-

tionistic fuzzy set  and then   ,F A  is degenerated to an
intuitionistic fuzzy soft set. 

We denote the set of all standard neutrosophic soft sets 
over   U  by  SNS U .

Example 1. We consider the situation which involves four 
economic projects evaluated by a decision committee ac-
cording to five parameters: good finance indicator ( 1e ), 
average finance indicator ( 2e ), good social contribution

( 3e ), average social contribution ( 4e ) and good environ-

ment indicator ( 5e ). The set of economic projects and the 
set of parameters are denoted  1 2 3 4, , ,U p p p p  and

 1 2 3 4 5, , , ,A e e e e e , respectively. So, the attractiveness of 
the projects to the decision committee can be represented 
by a SNS  ,F A :

 
   
   

1 2
1

3 4

,0.8,0.12,0.05 , ,0.6,0.18,0.16 ,

,0.55,0.20,0.21 , ,0.50,0.20,0.24

p p
F e

p p

    
  

 , 

 
   
   

1 2
2

3 4

,0.82,0.05,0.10 , ,0.7,0.12,0.10 ,

,0.60,0.14,0.10 , ,0.51,0.10,0.24

p p
F e

p p

    
  

, 

 
   
   

1 2
3

3 4

,0.60,0.14,0.16 , ,0.55,0.20,0.16 ,

,0.70,0.15,0.11 , ,0.63,0.12,0.18

p p
F e

p p

    
  

, 

 
   
   

1 2
4

3 4

,0.7,0.12,0.07 , ,0.75,0.05,0.16 ,

,0.60,0.17,0.18 , ,0.55,0.10,0.22

p p
F e

p p

    
  

, 

 
   
   

1 2
5

3 4

,0.60,0.12,0.07 , ,0.62,0.14,0.16 ,

,0.55,0.10,0.21 , ,0.70,0.20,0.05

p p
F e

p p

    
  

. 

The standard neutrosophic soft set  ,F A  is a parame-

terized family   1, ,5
i

F e i   of standard neutrosophic 

sets over U . 
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Definition 3.8 1) For  ,F A ,    ,G B SNS U  over a

common universe U , we say that  ,F A  is a subset of

 ,G B ,    , ,F A G B , if the following conditions are
satisfied: 

(a) A B ; 

(b) For all e A ,  F e  and  G e are identical ap-
proximations. 

2)  ,F A  is termed as a superset of  ,G B ,

   , ,F A G B , if   ,G B   is a subset of  ,F A .

3)  ,F A  and  ,G B  are called to be equal,

   , ,F A G B ,  if    , ,F A G B  and    , ,G B F A .

It is easy to show that    , ,F A G B  iff A B  and

   F e G e  for all e A .

3.3 Some operations and properties 

Now we define some operations on standard neutro-
sophic soft sets and present some properties. 

Definition 3.9 The complement of a NSS  ,F A ,  , c
F A ,

is defined by    , ,c c
F A F A , where  :c

F A P U  is 

a mapping given by     c
c

F e F e , for all e A  . 

Definition 3.10 If  ,F A ,    ,G B NSS U ,   then

“    , ,F A and G B ” is a NSS denoted by    , ,F A G B

and defined by      , , ,F A G B H A B   , where

     ,H F G      for all   , A B    , that is

            , min ,
H F G

x x x      , 

            , min ,
H F G

x x x      , and 

            , max ,
H F G

x x x      , x U  . 

Definition 3.11 If  ,F A ,    ,G B NSS U ,   then

“    , ,F A or G B ” is a NSS denoted by    , ,F A G B

and defined by      , , ,F A G B H A B   , where

     ,H F G      for all   , A B    , that is

            , max ,
H F G

x x x      , 

            , min ,
H F G

x x x      , and 

            , min ,
H F G

x x x      , x U  . 

Theorem 3.1 Let  ,F A ,    ,G B NSS U , then we have
the following properties: 

(1)         , , , ,
c c c

F A G B F A G B   ; 

(2)         , , , ,
c c c

F A G B F A G B   .

Proof. (1) Assume that      , , ,F A G B H A B   . Then

        , , , ,
c c c

F A G B H A B H A B     .

For any  , A B    , x U , we have

           
        
        

, min , ,

min ,

max , ,

 

 

 

   

 

 


F G

F G

F G

H x x x

x x

x x

which implies 

            
        
        

, max , ,

min ,

min , .

 

 

 

   

 

 

c

F G

F G

F G

H x x x

x x

x x

(1) 

On the other hand, 

       , , , ,  
c c c c

F A G B F A G B . 

Let us assume that      , , ,  c c
F A G B K A B . We 

obtain

            
        
        

, max , ,

min ,

min , .

 

 

 

   

 

 

 c c

c c

c c

F G

F G

F G

K x x x

x x

x x

Since    
 c FF

,    
 c FF

,    
 c FF

, 

   
 c GG

,    
 c GG

,    
 c GG

, 

            
        
        

, max , ,

min ,

min , .

 

 

 

   

 

 


F G

F G

F G

K x x x

x x

x x

(2) 
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Combining (1) and (2), the proof is completed. 

(2) The proof is similar to (1). 

Theorem 3.2 Let  ,F A ,  ,G B ,    , H C NSS U , then
we have the following properties: 

a)              , , , , , ,    F A G B H C F A G B H C  ;

b)              , , , , , ,    F A G B H C F A G B H C  .

Proof. (1) Assume that 

     , , ,  G B H C I B C ,

We have 

            
        
        

, min , ,

min ,

max , ,

 

 

 

   

 

 


G H

G H

G H

I x x x

x x

x x

 ,   B C , x U .

We assume that 

        , , , ,    F A G B H C K A B C .

In other words, 

     , , ,    K A B C F A I B C .

By definition of   operator for two NSSs, 

                 
             
             

, , min ,min , ,

min ,min ,

max ,max , ,

  

  

  

     

  

  


F G H

F G H

F G H

K x x x x

x x x

x x x

or 

               
            
            

, , min , , ,

min , ,

max , , .

F G H

F G H

F G H

K x x x x

x x x

x x x

  

  

  

     

  

  



By a similar argument, we get 

        , , , ,F A G B H C K A B C     .

This concludes the proof of a). 

The proof of b) is analogous. 

Definition 3.12 The intersection of  two NSSs  ,F A ,

   ,G B NSS U , denoted by    , ,F A G B , is a NSSs

 ,H C , where C A B   and  for all e C ,

 
 
 
   

if \
if \
if

F e e A B

H e G e e B A

F e G e e A B

 
 
   

. (3)  

Definition 3.13 The union of two NSSs  ,F A ,

   ,G B NSS U , denoted by    , ,F A G B , is a NSSs

 ,H C , where C A B   and  for all e C ,

 
 
 
   

if \
if \
if

F e e A B

H e G e e B A

F e G e e A B

 
 
   

. (3)  

Theorem 3.3. Let  ,F A ,    ,G B NSS U , then we have
the following properties: 

a)         , , , ,
c c c

F A G B F A G B   ; 

b)         , , , ,
c c c

F A G B F A G B   . 

Proof. a)   Assume that      , , ,F A G B H C  , with
C A B  , then 

        , , , ,
c c c

F A G B H C H C   . 

By Definition 3.13, 

 
 
 
   

if \
if \
if

F e e A B

H e G e e B A

F e G e e A B

 
 
   

. 

It implies 

 
 
 
   

if \
if \
if

c

c c

c c

F e e A B

H e G e e B A

F e G e e A B

 
 
   

. (5) 

Similarly, we denote      , , ,c c
F A G B K C   with 

C A B  . Since      , , ,c c
K C F A G B  , 

 
 
 
   

if \
if \
if

c

c

c c

F e e A B

K e G e e B A

F e G e e A B

 
 
   

. (6) 

From (5) and (6), we get c
H K . Hence, 

85



Neutrosophic Sets and Systems, Vol. 12, 2016 

B.C. Cuong, P.H. Phong, and F. Smarandache, Standard Neutrosophic Soft Theory: Some First Results 

        , , , ,
c c c

F A G B F A G B   . 

b) Similarly, we have b).

3.4 Cartesian product of neutrosophic soft sets 

Definition 3.14 Let  1 1O SNS X  and  2 2O SNS X .
The Cartesian product of these two NSSs is 

 1 2 1 2O O SNS X X    defined as 

     
1 2 1 2

,
O O O O

x y x y     , 

     
1 2 1 2

,
O O O O

x y x y     , and 

     
1 2 1 2

,
O O O O

x y x y     ,   1 2,x y X X   . 

It is easy to check the validation of Definition 3.15. 

Theorem 3.4 For 1O ,  2 1O SNS X ,  3 2O SNS X , and 
 4 3O SNS X : 

a) 1 3 3 1O O O O   ;

b)    1 3 4 1 3 4O O O O O O     ;

c)      1 2 3 1 3 2 3O O O O O O O      ;

d)      1 2 3 1 3 2 3O O O O O O O      .

Proof. a) and b) are straightforward. We consider c) and d). 

c) We have

     
1 2 1 2O O O O

x x x     , 

     
1 2 1 2O O O O

x x x     , and 

     
1 2 1 2O O O O

x x x     , 1x X  . 

Thus, 

          
1 2 31 2 3

,
O O OO O O

x y x x y        , 

          
1 2 31 2 3

,
O O OO O O

x y x x y        , and 

          
1 2 31 2 3

,
O O OO O O

x y x x y        , 

  1 2,x y X X   . 

Using the properties of the operations   and   we obtain 

             
   

     

1 3 2 31 2 3

1 3 2 3

1 3 2 3

,

, ,

, ,

O O O OO O O

O O O O

O O O O

x y x y x y

x y x y

x y

    

 



 

 

  

   

 



             
   

     

1 3 2 31 2 3

1 3 2 3

1 3 2 3

,

, ,

, ,

O O O OO O O

O O O O

O O O O

x y x y x y

x y x y

x y

    

 



 

 

  

   

 



             
   

       

1 3 2 31 2 3

1 3 2 3

1 3 2 3 1 2

,

, ,

, , , .

O O O OO O O

O O O O

O O O O

x y x y x y

x y x y

x y x y X X

    

 



 

 

  

   

 

   

The proof is given. 

d) The proof of d) is analogous.

Now we give the definition of the Cartesian product of   
neutrosophic soft sets. 

Definition 3.15 Let 1X , 2X  be two universes, E  be the 
set of parameters, A , B E . Then the Cartesian product 
of  1,F A NSS X and  2,G B NSS X  is denoted by 

, ,F A G B  and defined by ,H A B , where

            
        
        

, , min , ,

min , ,

max , ,

F G

F G

F G

H x y x y

x y

x y

 

 

 

   

 

 



 , A B    ,   1 2,x y X X   . 

Theorem 3.5 Let 1X , 2X , 3X  be three universes, E  be 
the set of parameters, 1A , 2A , B , D E . For 1 1,F A , 

 2 2 1,F A NSS X ,  2,G B NSS X and 

 3,H D NSS X , we have: 

a) 1 1 1 1, , , ,F A G B G B F A   ; 

b)  1 1, , ,F A G B H D 

 1 1, , ,F A G B H D   ; 

c)  1 1 2 2, , ,F A F A G B 

   1 1 2 2, , , ,F A G B F A G B    ; 

d)  1 1 2 2, , ,F A F A G B 
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   1 1 2 2, , , ,F A G B F A G B    .

Proof. The proof of a) and b) is omitted. 

c) Use Definition 3.14, if 1 2 1 1 2 2, , ,F A A F A F A    , 
then for all 1 2A A  : 

 
 
 
   

1 1 2

2 2 1

1 2 1 2

if \
if \
if

F A A

H F A A

F F A A

 
  

  

 
  
   

. 

Let assume that  1 2 1 2, , ,K A A B F A A G B     . 

For all   1 2,x y X X  , there are following three cases : 

* Case 1:    1 2, \A A B    . 

            1, , min ,
K F G

x y x y      , 

            1, , min ,
K F G

x y x y      , and 

            1, , max ,
K F G

x y x y      . 

* Case 2:    2 1, \A A B    . 

            2, , min ,
K F G

x y x y      , 

            2, , min ,
K F G

x y x y      , and 

            2, , max ,
K F G

x y x y      . 

* Case 3:    2 1, A A B     . 

              1 2, , min ,
K F F G

x y x y      

             1 2
min max , ,

F F G
x x y    

                  1 2
max min , ,min ,

F G F G
x y x y       , 

              1 2, , min ,
K F F G

x y x y      

             1 2
min min , ,

F F G
x x y    

            1 2
min , ,

F F G
x x y     , and 

              1 2, , max ,
K F F G

x y x y      

             1 2
max min , ,

F F G
x x y    

                  1 2
min max , ,max ,

F G F G
x y x y       . 

Let us denote 1 1 1 1, , ,H A B F A G B    and 

2 2 2 2, , ,H A B F A G B   . We have: 

            1 1, , min ,
H F G

x y x y      , 

            1 1, , min ,
H F G

x y x y      , 

            1 1, , max ,
H F G

x y x y      , 

  1, A B     and   1 2,x y X X  ; 

            2 2, , min ,
H F G

x y x y      , 

            2 2, , min ,
H F G

x y x y      , 

            2 2, , max ,
H F G

x y x y      ,

  2, A B     and   1 2,x y X X  . 

We consider, 

   1 2 1 1 1 1, , ,K A B A B H A B H A B        . 

Again, we have following three cases: 

* Case 1:        1 2 1 2, \ \A B A B A A B       . We
have: 

       
1, ,, ,

K H
x y x y       

        1
min ,

F G
x y   ;

       
1, ,, ,

K H
x y x y       

        1
min ,

F G
x y   ;

       
1, ,, ,

K H
x y x y       

        1
max ,

F G
x y   .

* Case 2:        2 1 2 1, \ \A B A B A A B       .

       
2, ,, ,

K H
x y x y       

        2
min ,

F G
x y   ;

       
2, ,, ,

K H
x y x y       
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        2
min ,

F G
x y   ; 

       
2, ,, ,

K H
x y x y       

        2
max ,

F G
x y   . 

* Case 3:        1 2 2 1, A B A B A A B         .

           
1 2, , ,, ,

K H H
x y x y       



        1 2, ,max , , ,
H H

x y x y    

                  1 2
max min , ,min ,

F G F G
x y x y       ; 

           
1 2, , ,, ,

K H H
x y x y       



        1 2, ,min , , ,
H H

x y x y    

                  1 2
min min , ,min ,

F G F G
x y x y      

            1 2
min , ,

F F G
x x y     ; and 

           
1 2, , ,, ,

K H H
x y x y       



        1 2, ,min , , ,
H H

x y x y    

                  1 2
min max , ,max ,

F G F G
x y x y       . 

We then obtain K K  which completes the proof of 
c). The proof of d) is analogous. 

4 Standard neutrosophic soft relations 

4.1 Standard neutrosophic relations 

Fuzzy relations are one of the most important notions 
of fuzzy set theory and fuzzy system theory. The Zadeh’s 
composition rule of inference [2] is a well-known method 
in approximation theory and inference methods in fuzzy 
control theory. Intuitionistic fuzzy relations were received 
many results [21][22]. Xu [24] defined some new intuition-
istic preference relations, such as the consistent intuition-
istic preference relation, incomplete intuitionistic prefer-
ence relation and studied their properties. Thus, it is neces-
sary to develop new approaches to issues, such as multi-
period investment decision making, medical diagnosis, 
personnel dynamic examination, and military system effi-
ciency dynamic evaluation. In this section we shall present 
some preliminary results on standard neutrosophic rela-
tions.  

4.1.1 Standard neutrosophic relations 

Let X , Y  and Z be ordinary non-empty sets. A 
standard neutrosophic relation is defined as follows. 

Definition 4.1 [18] A standard neutrosophic relation 
(SNR) R  between X  and Y  is a SNS on X Y , i.e. 

           , , , , , , , ,
R R R

R x y x y x y x y x y X Y      , 

where R
 , 

R , : [0,1]
R

X Y    satisfy the condition 

     , , , 1
R R R

x y x y x y     ,  ,x y X Y  .

We will denote by  SNR X Y  the set of all SNRs
between X  and Y . 

Definition 4.2 [18] Let  R SNR X Y  , the inverse rela-

tion 1
R

  of R  is a SNR between Y  and X  defined as 

   1 , ,
RR

y x x y   ,    1 , ,
RR

y x x y   , and 

   1 , ,
RR

y x x y   ,  ,y x Y X   .

Now we will consider some simple properties of SNRs. 

Definition 4.3 [18] Let R ,  P SNR X Y  , for every, we 
define: 

a) 
   
   
   

, ,

, ,

, ,

R P

R P

R P

x y x y

R P x y x y

x y x y

 

 

 

 
  
 

; 

b) 

     
   

      

, , , , ,

, , ,

, , , ;

R P

R P

R P

R P x y x y x y

x y x y

x y x y x y X Y

 

 

 

  



  

c) 

     
   

      

, , , , ,

, , ,

, , , ;

R P

R P

R P

R P x y x y x y

x y x y

x y x y x y X Y

 

 

 

  



  

d) 
        

  

, , , , , , ,

,

c

R R RR x y x y x y x y

x y X Y

  

 

Proposition  4.1 [18]  Let R , P ,  Q SNS X Y  . Then

a)   11
R R

  ; 

b)  1 1
R P R P

    ; 
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c1)   1 1 1
R P R P

     ;  c2)   1 1 1
R P R P

     ; 

d1)      R P Q R P R Q      ;

d2)      R P Q R P R Q      ;

e) R P R  , R P P  ;

f1)  If R P  and  R Q  then R P Q  ; 

f2) If R P  and R Q  then R P Q  . 

Proof. For the detail proof of this proposition, see [20]. 
4.1.2 Composition of standard neutrosophic 
relations 

In this sub-section we present some compositions of 
SNRs. 

Definition 4.4 [20] Let  R SNR X Y   and
 P SNR Y Z  . We will call max - min  composed

relation  1P R SNR X Z    to the one defined by  

      
1

, , ,
P R R P

y
x z x y y z     , 

      
1

, , ,
P R R P

y
x z x y y z     , and 

      
1

, , ,
P R R P

y
x z x y y z     ,  ,x z X Z   .

Definition 4.5 [20] Let  R SNR X Y   and

 P SNR Y Z  . We will call max - prod  composed rela-

tion  2P R SNR X Z    to the one defined by  

      
2

, , ,
P R R P

y
x z x y y z     ,  

     
2

, , ,
P R R P

y
x z x y y z        , and

          
2

, , , , ,
P R R P R P

y
x z x y y z x y y z         ,

 ,x z X Z   .

Definition 4.6 [20] Let   be a t -norm,   be a t -conorm,     
 R SNR X Y   and  P SNR Y Z  . We will call

max - t   composed relation  3R P PFR X Z   to the
one defined by   

     3
( , ) , , ,

R P R P
y

x z x y y z     ,  

     3
( , ) , , ,

R P R P
y

x z x y y z     , and 

       3
, , , ,

R P R P
y

x z x y y z     ,

 ,x z X Z   .

The validation of Definitions 4.5-4.7 were given in 
[30]. 

4.2 Neutrosophic soft relations 

4.2.1 Some operations on neutrosophic soft 
relations 

In this sub-section, we give the definition of standard 
neutrosophic soft relation (SNSR) as a generalization of 
fuzzy soft relation and intuitionistic fuzzy soft relation. 
The novel concept is actually a parameterized family of 
standard neutrosophic relations (SNRs). 

In following definitions, X , Y  are ordinary non-
empty sets and E  is a set of parameters. 

Definition 4.7 Let A E . A pair  ,R A  is called a
standard neutrosophic soft relation (SNSR) over X Y  if 
R assigns to each parameter e  in E a SNR  R e  in

 SNR X Y , that is

 :R A SNR X Y  .

The set of all SNSRs between X  and Y  is denoted by 
 SNSR X Y .

Definition 4.8 Let A , B E . The intersection of two 
SNSRs  1,R A  and  2 ,R B  over X Y  is a SNSR

 3 ,R C  over X Y  such that C A B   and for all 
e C ,

 
 
 
   

1

3 2

1 2

if \ ,
if \ ,
if .

R e e A B

R e R e e B A

R e R e e A B

 
 
   

This relation is denoted by    1 1, ,R A R B .

Definition 4.9 Let ,A B E .The union of  two SNSRs 
 1,R A  and  2 ,R B  over X Y  is a SNSR  3 ,R C  over 
X Y , where  C A B   and  for all e C , 

 
 
 
   

1

3 2

1 2

if \ ,
if \ ,
if .

R e e A B

R e R e e B A

R e R e e A B

 
 
   

This relation is denoted by    1 2, ,R A R B .

4.2.2 Composition of neutrosophic soft relations 
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We denote by  
1


E

SNSR X Y  the set of all SNSRs on 

X Y  with the corresponding parameter set 1E . Similarly, 
 

2


E
SNSR Y Z  denotes the set of all SNSRs on Y Z

with the corresponding parameter set 2E . 

Definition 4.10 Let  
1

 
E

R SNSR X Y  and

 
2

 
E

P SNSR Y Z . We will call max - min  composed 

relation  
1 21   

E E
P R SNSR X Z   to the one defined by   

       
   

      

1

1

1

1 1 2 1 2

1 2

1 2

, , , , , ,

, ,

, , , ,

P R

P R

P R

P R e e x z x y e e

x z e e

x z e e x z X Z













 

 

 1 2 1 2,e e A A   . Where

           1 1 21 2, , , ,
P R R e P e

y
x z e e x y y z      ,  

           1 1 21 2, , , ,
P R R e P e

y
x z e e x y y z      , 

           1 1 21 2, , , ,
P R R e P e

y
x z e e x y y z      , 

for all  ,x z X Z  ,  1 2 1 2,e e A A  . 

Definition 4.11 Let  
1

 
E

R SNSR X Y  and 

 
2

 
E

P SNSR Y Z . We will call max - prod  composed

relation  
1 22   

E E
P R SNSR X Z   to the one defined by                

       
   

      

2

2

2

2 1 2 1 2

1 2

1 2

, , , , , ,

, ,

, , , ,

P R

P R

P R

P R e e x z x y e e

x z e e

x z e e x z X Z













 

 

 1 2 1 2,e e A A   . Where

           2 1 21 2, , , ,
P R R e P e

y
x z e e x y y z      ,  

           2 1 21 2, , , ,
P R R e P e

y
x z e e x y y z      , 

           
       

2 1 2

1 2

1 2, , , ,

, , ,

P R R e P e
y

R e P e

x z e e x y y z

x y y z

  

 

   

 

for all  ,x z X Z  ,  1 2 1 2,e e A A  . 

Definition 4.12 Let  
1

 
E

R SNSR X Y , 

 
2

 
E

P SNSR Y Z ,   is a t -norm and   is a t -conorm.
We will call max - t  composed relation 

 
1 23 E E

P R SNSR X Z    to the one defined by  

       
   

      

3

3

3

3 1 2 1 2

1 2

1 2

, , , , , ,

, ,

, , , ,

P R

P R

P R

P R e e x z x y e e

x z e e

x z e e x z X Z













 

 

 1 2 1 2,e e A A   . Where

            3 1 21 2, , , , ,
P R R e P e

y
x z e e x y y z      ,  

            3 1 21 2, , , , ,
P R R e P e

y
x z e e x y y z      , 

            2 1 21 2, , , , ,
P R R e P e

y
x z e e x y y z      ,

for all  ,x z X Z  ,  1 2 1 2,e e A A  . 

The validation of Definitions 4.11-4.13 is trivial by fol-
lowing arguments. For each pair  1 2 1 2,e e A A  , 

 1 1 2,P R e e  is max - min  composition of two SNRs 

 1R e  and  2P e , i.e. 

     1 1 2 2 1 2,P R e e P e P e  .

By the validation of 1 ,    1 1 2,P R e e SNR X Z  

which yields  
1 21 E E

P R SNSR X Z   . The validation of 

2 and 3 are also obtained by analogous calculations.

Conclusion

In 2013, the new notion of picture fuzzy sets was in-
troduced. The novel concept, which is also termed as 
standard neutrosophic set (SNS), constitutes an importance 
case of neutrosophic set. Our neutrosophic soft set (NSS) 
theory is a combination of the standard neutrosophic theo-
ry and the soft set theory. In other words,   neutrosophic 
soft set theory is a neutrosophic extension of the intuition-
istic fuzzy soft set theory. The complement, “and”, “or”, 
union and intersection operations are defined on the NSSs. 
The standard neutrosophic soft relations (SNSR) are also 
considered. The basic properties of the NSSs and the 
SNSRs are also discussed. Some future work may be con-
cerned interval- valued neutrosophic soft sets and interval-
valued neutrosophic relations should be considered. 
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Abstract.
In this paper, a generalization of the neutrosophic 

topological space is presented. The basic definitions of 
the neutrosophic crisp α-topological space and the 
neutrosophic crisp α-compact space with some of their 

characterizations are deduced. Furthermore,  we aim to 
construct a netrosophic crisp α-continuous function, with 
a study of  a number its properties. 

Keywords: Neutrosophic Crisp Set, Neutrosophic  Crisp Topological space, Neutrosophic  Crisp Open Set.

1 Introduction

In 1965, Zadeh introduced the degree of membership5 
and defined the concept of fuzzy set [15]. A degree of non-
membership was added by Atanassov [2], to give another 
dimension for Zadah's fuzzy set. Afterwards in late 1990's, 
Smarandache introduced a new degree of indeterminacy or 
neutrality as an independent third component to define the 
neutrosophic set as a triple structure [14].  Since then, laid 
the foundation for a whole family of new mathematical 
theories to generalize both the crisp and the fuzzy 
counterparts [4-10]. In this paper, we generalize the 
neutrosophic topological space to the concept of 
neutrosophic crisp α-topological space. Moreover, we 
present the netrosophic crisp α-continuous function as well 
as a study of several properties and some characterization 
of the neutrosophic crisp α-compact space. 

2 Terminologies 

We recollect some relevant basic preliminaries, and in 
particular, the work of   Smarandache   in [12,13,14], and 
Salama et al. [4, 5,6,7,8,9,10,11]. Smarandache introduced 
the neutrosophic components T, I, F which respectively 
represent the membership, indeterminacy, and non-
membership characteristic mappings of the space X into 
the non-standard unit interval  1,0 -

.
Hanafy and Salama et al. [3,10] considered some 

possible definitions for basic concepts of the neutrosophic 
crisp set and its operations. We now improve some results  
by the following. 

2.1 Neutrosophic Crisp Sets 

2.1.1 Definition 
For any non-empty fixed set X, a neutrosophic crisp set 

A (NCS for short), is an object having the form
  321 ,, AAAA   where 321   and , AAA are subsets of  X  sat-

isfying  21 AA ,  31 AA and  32 AA .
2.1.2 Remark 

Every crisp set A formed by three disjoint subsets of a 
non-empty set X  is obviously a NCS having the 
form 321 ,, AAAA  . 

Several relations and operations between NCSs were de-
fined in [11]. 

For the purpose of constructing the tools for developing 
neutrosophic crisp sets, different types of NCSs c

NN AX ,,
in X were introduced in [9] to be as follows: 
2.1.3 Definition 

 N   may be defined in many ways as a NCS, as follows: 
i) ,,, XN   or 
ii) ,,, XXN   or 
iii) ,,,  XN  or 
iv) .,,  N

 
2.1.4 Definition 

NX  may also be defined in many ways as a NCS: 
i) ,,, XX N  or 
ii) ,,, XXX N  or 
iii) ,,, XXX N  or 
iv) .,, XXXX N   

University of New Mexico 
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2.1.5 Definition 
Let 321 ,, AAAA   a NCS on ,X then the complement 

of the set A ,  ( c
A for short   may be defined in three dif-

ferent ways: 
 1C cccc

AAAA 321 ,, , 

 2C 123 ,, AAAA
c 

 3C
123 ,, AAAA

cc 

Several relations and operations between NCSs were in-
troduced in [9] as follows: 
2.1.6 Definition 

Let X be a non-empty set, and the NCSs A  and   B in 
the form 321 ,, AAAA  , 321 ,, BBBB  , then we may consid-
er two possible definitions for subsets  A B  

 A B  may be defined in two ways: 
1) 332211   and  , BABABABA  or
2) 332211   and  , BABABABA 

2.1.7 Proposition 
    For any neutrosophic crisp set A , and the suitable 

choice of 
NN X, , the following are hold: 

i) .   , NNN A  
ii) .   , NNN XXXA 

2.1.8 Definition 
Let X is a non-empty set, and  the NCSs A  and B in the 

form 321 ,, AAAA  , 321 ,, BBBB  . Then:
1) A B  may be defined in two ways:

i) 332211 ,, BABABABA  or 
ii) 332211 ,, BABABABA 

2) A B  may also be defined in two ways:
    i)

332211 ,, BABABABA   or 
    ii) 

332211 ,, BABABABA 

2.1.9 Proposition 
For any two neutrosophic crisp sets A and B 
on X, then the followings are true: 
1)   .ccc

BABA   
2)   .ccc

BABA   
The generalization of the operations of intersection and 

union given in definition 2.1.8, to arbitrary family of neu-
trosophic crisp subsets are as follows: 
2.1.10 Proposition 

Let  JjA j :  be arbitrary family of neutrosophic crisp
subsets in X, then 

1)
j

j
A may be defined as the following types : 

i)
32

,,1 jjjj
j

AAAA  ,or 

ii)
32

,,1 jjjj
j

AAAA  . 

2)
j

j
A may be defined as the following types : 

i)  
32

,,1 jjjj
j

AAAA  or 

ii)
32

,,1 jjjj
j

AAAA  . 

2.1.11 Definition 
The Cartesian product of two neutrosophic crisp sets A 

and B is a neutrosophic crisp set BA given by 
332211 ,, BABABABA  . 

2.1.12 Definition 
Let (𝑋,𝛤) be 𝑁𝐶𝑇𝑆 and 𝐴=〈𝐴1,𝐴2,𝐴3〉 be a 𝑁𝐶𝑆 in 𝑋 . Then the 

neutrosophic crisp closure of 𝐴 (𝑁𝐶𝑐𝑙(𝐴) for short) and neutro-
sophic crisp interior (𝑁𝐶𝑖𝑛𝑡(𝐴) for short) of 𝐴 are defined by 

 𝑁𝐶𝑐𝑙(𝐴)=∩{𝐾:𝐾 is a 𝑁𝐶𝐶𝑆 in 𝑋 and 𝐴 ⊆ 𝐾} 
 𝑁𝐶𝑖𝑛𝑡 (𝐴)=∪{G:G is a 𝑁𝐶𝑂𝑆 in 𝑋 and G ⊆ 𝐴) , 
Where 𝑁𝐶𝑆 is a neutrosophic crisp set and 𝑁𝐶𝑂𝑆 is a neutro-

sophic crisp open set. It can be also shown that 𝑁𝐶𝑐𝑙(𝐴) is a 𝑁𝐶𝐶𝑆 (neutrosophic crisp closed set) and 𝑁𝐶𝑖𝑛𝑡(𝐴) is a 𝑁𝐶𝑂𝑆 
(neutrosophic crisp open set)  in 𝑋 .  

3 Neutrosophic Crisp 𝛼-Topological Spaces 
We introduce and study the concepts of neutrosophic 

crisp 𝛼-topological space 
3.1 Definition 

Let (𝑋,𝛤) be a neutrosophic crisp topological space 
(NCTS) and 𝐴 =〈𝐴1,𝐴2,𝐴3〉 be a 𝑁𝐶𝑆 in 𝑋, then 𝐴 is said to 
be neutrosophic crisp 𝛼-open set of X if and only if the fol-
lowing is true:    𝐴⊆ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴)). 
3.2 Definition 

A neutrosophic crisp 𝛼-topology (NC𝛼T for short) on a 
non-empty set X  is a family   of neutrosophic crisp 
subsets of X  satisfying the following axioms

i)  NN X, . 

ii)  21 AA for any 1A and 2A . 

iii)  j
j

A     JjAj : . 

In this case the pair  ,X  is called a neutrosophic crisp𝛼-topological space
 

TSNC( for short) in X . The ele-

ments in  are called neutrosophic crisp 𝛼-open sets 
(NC𝛼OSs for short) in X . A neutrosophic crisp set F is 𝛼-
closed if and only if its complement C

F is an 𝛼-open neu-
trosophic crisp set. 
3.3 Remark 

Neutrosophic crisp 𝛼-topological spaces are very natural 
generalizations of neutrosophic crisp topological spaces, as 
one can prof that every open set in a NCTS is an 𝛼-open 
set in a NC𝛼TS  
3.4 Example 

Let  dcbaX ,,, , NN X, be any types of the universal
and empty sets on X, and A, B are two neutrosophic crisp 
sets on X defined by      cdbaA ,,, ,
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     cbaB ,, ,  AX NN ,, then the family 

 BAX NN ,,,   is a neutrosophic crisp 𝛼-topology 
on X. 
3.5 Definition 

Let    
21 ,,,  XX be two neutrosophic crisp 𝛼-

topological spaces on X . Then 
1  is said be contained 

in 
2  (in symbols 

21  ) if 
2G for each 

1G . 
In this case, we also say that 

1 is coarser than 
2 .

3.6 Proposition
Let Jjj  :   be a family of NC𝛼TS on X . Then 


j   is a neutrosophic crisp 𝛼-topology on X . Further-

more, 
j  is the coarsest NC𝛼T on X  containing  all 𝛼-topologies. 

Proof 
Obvious.

  Now, we can define the neutrosophic crisp 𝛼-closure and 
neutrosophic crisp 𝛼-interior operations on neutrosophic 
crisp 𝛼-topological spaces: 

3.7 Definition 

Let  ,X  be NC𝛼TS and 321 ,, AAAA   be a NCS in
X, then the neutrosophic crisp 𝛼- closure  of  A (NC𝛼Cl(A) 
for short) and neutrosophic crisp 𝛼-interior crisp (NC𝛼Int 
(A) for short) of A  are defined by 

 KA and Xin   NCSan   is  :)(  KKAClNC
 AG and Xin    NCOSan   is  :)(  GGAIntNC

where NCS is a neutrosophic crisp set, and NCOS is a neu-
trosophic crisp open set. 

It can be also shown that )(   AClNC  is a NC𝛼CS (neu-
trosophic crisp 𝛼-closed set) and )( AIntNC  is a NC𝛼OS 
(neutrosophic crisp 𝛼-open set)  in X . 

a) A is a NC𝛼-closed in X  if and only if   
)(AClNCA  . 

b) A is a NC𝛼-open in X if and only if 
)(AIntNCA  .

3.8 Proposition 

For any neutrosophic crisp 𝛼-open set A in  ,X  we
have 

(a) ,))(()( cc
AIntNCAClNC    

(b) .))(()( cc
AClNCAIntNC    

Proof 
a) Let 321 ,, AAAA   and suppose that the family of all

neutrosophic crisp subsets  contained  in A  are in-
dexed by the family

 JjAAAA jjjJjj  :,,}{
321

. Then we see 
that we have two types defined as follows: 

Type1: 
321

,,)( jjj AAAAIntNC
         c

j

c

j

c

j

c
AAAAIntNC 3,,))((

21


    Hence  cc
AIntNCAClNC ))(()(  

Type 2: 
321

,,)( jjj AAAAIntNC
        c

j

c

j

c

j

c
AAAAIntNC 3,,))((

21
 . 

 Hence cc
AIntNCAClNC ))(()(  

b) Similar to the proof of  part (a).
3.9 Proposition 

Let  ,X  be a NC𝛼TS and ,A B  are two neutrosoph-
ic crisp 𝛼-open sets in X . Then the following properties 
hold: 

(a) ,)( AAIntNC   
(b) ),(AClNCA   
(c) ),()( BIntNCAIntNCBA    
(d) ),()( BClNCAClNCBA    
(e) ),()()( BIntNCAIntNCBAIntNC    
(f) ),()()( BClNCAClNCBAClNC    
(g) ,)( NN XXIntNC   
(h) 

NNClNC  )( . 
Proof.  Obvious

4 Neutrosophic Crisp 𝛼-Continuity 

In this section, we consider 𝑓:𝑋⟶𝑌 to be a map between 
any two fixed sets X and Y. 
4.1 Definition 

(a) If 321 ,, AAAA   is a NCS in X, then the 

neutrosophic crisp image of A under ,f denoted by ),(Af

is the a NCS in Y defined by 
.)(),(),()( 321 AfAfAfAf   

(b) If 𝑓 is a bijective map then 𝑓-1: 𝑌 ⟶ 𝑋  is a map 
defined such that:  
for any NCS 321 ,, BBBB   in Y, the neutrosophic 
crisp preimage of B, denoted by ),(1

Bf
 is a NCS in X 

defined by .)(),(),()( 3
1

2
1

1
11

BfBfBfBf
   

Here we introduce the properties of neutrosophic images 
and neutrosophic crisp preimages, some of which we shall 
frequently use in the following sections. 
4.2 Corollary 

Let A =  JiAi :  , be NC𝛼OSs in X, and
B =  KjB j :  be  NC𝛼OSs in Y, and YXf : a

 function. Then 
(a) ),()( 2121 AfAfAA  ),()( 2

1
1

1
21 BfBfBB

 
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(b) ))((1
AffA

  and if f is injective, then ))((1
AffA

 . 

(c) BBff  ))((1  and if f is surjective, then BBff  ))((1 . 
(d) ),())( 11

ii BfBf
  ),())( 11

ii BfBf
 

(e) )()( ii AfAf  ,  )()( ii AfAf  
(f) ,)(1

NN XYf 
NNf   )(1 . 

(g) ,)( NNf   ,)( NN YXf   if f is subjective.
Proof 
    Obvious.  
4.3 Definition 

Let  
1,X and  

2,Y be two NC𝛼TSs, and  let
YXf : be a function. Then f  is said to be 𝛼-continuous iff the neutrosophic crisp preimage of each

NCS in 
2  is a NCS in 

1 . 
4.4 Definition 

Let  
1,X and  

2,Y be two NC𝛼TSs and  let
YXf :  be a function. Then f  is said to be open iff 

the neutrosophic crisp image of each NCS in 
1  is a NCS 

in 
2 . 

4.5 Proposition 

Let  
oX , and   oY ,  be two NC𝛼TSs. 

If YXf :  is 𝛼-continuous in the usual sense, then in 
this case, f  is 𝛼-continuous in the sense of Definition 4.3 
too. 

Proof 
Here we consider the NC𝛼Ts on X and Y, respectively, 

as follows :     o

c
GGG  :,,1

 and 

   o

c
HHH  :,,2 , 

In  this case we have, for each  2,, c
HH , 


oH  , 

)(),(),(,, 1111 cc
HffHfHHf

  

 1
11 ))((,,   c

HfHf . 

4.6 Proposition 
Let ),(),(: 21

  YXf . 
f is continuous iff the neutrosophic crisp preimage of each 
CN𝛼CS (crisp neutrosophic 𝛼-closed set) in 

1  is a 
CN𝛼CS in 

2 .
Proof 

Similar to the proof of Proposition 4.5. 
4.7 Proposition 

The following are equivalent to each other: 
(a) ),(),(: 21

  YXf  is continuous . 
(b) ))(()(( 11

BfIntCNBIntCNf
  

for each CNS B in Y. 
(c) ))(())(( 11

BClCNfBfClCN   

for each CNC B in Y. 
4.8 Corollary 

Consider ),( 1
X and  

2,Y to be two  NC𝛼TSs, and 
let YXf :  be a function. 
 if  

2
1

1 :)(  
HHf . Then 

1  will be the 
coarsest NC𝛼T on X which makes the function YXf :𝛼-continuous. One may call it the initial neutrosophic crisp 𝛼-topology  with respect to .f  

5  Neutrosophic Crisp 𝛼-Compact Space 
First we present the basic concepts: 
5.1 Definition 

Let  ,X  be an NC𝛼TS.
(a) If a family  JiGGG iii :,, 321

 of  NC𝛼OSs in

X satisfies the condition 
  ,:,,

321 Niii XJiGGG  then it is called 

an  neutrosophic 𝛼-open cover of X. 
(b) A finite subfamily of an 𝛼-open cover 
 JiGGG iii :,, 321  on X, which is also a  neutrosophic 𝛼-

open cover of X , is called a neutrosophic crisp finite 𝛼-
open subcover. 
5.2 Definition 

A neutrosophic crisp set 321 ,, AAAA  in a  NC𝛼TS
 ,X  is called neutrosophic crisp 𝛼-compact iff every 
neutrosophic crisp open cover of A has a finite 
neutrosophic crisp open subcover. 
5.3 Definition 
A family  JiKKK iii :,, 321

 of neutrosophic crisp 𝛼-

compact sets in X satisfies the finite intersection property 
(FIP for short) iff every finite subfamily 
 niKKK iii ,...,2,1:,,

321
  of the family satisfies the 

condition  
Niii niKKK  ,...,2,1:,,

321
.  

5.4 Definition 
A NC𝛼TS  ,X is called neutrosophic crisp 𝛼-

compact iff each neutrosophic crisp 𝛼-open cover of X has 
a finite 𝛼-open subcover. 
5.5 Corollary 

A NC𝛼TS  ,X  is a neutrosophic crisp 𝛼-compact 
iff every family  JiGGG iii :,,

321
 of neutrosophic 

crisp 𝛼-compact sets in X having the the finite intersection 
properties has nonempty intersection. 
5.6 Corollary 

Let  
1,X ,  

2,Y  be NC𝛼TSs and YXf :  be a 
continuous surjection. If  

1,X  is a neutrosophic crisp 𝛼-compact, then so is  
2,Y . 
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5.7 Definition 

(a) If a family  JiGGG iii :,, 321
 of neutrosophic

crisp 𝛼-compact sets in X satisfies the 
condition  JiGGGA iii  :,, 321 ,  then it is called a

neutrosophic crisp open cover of A.
(b) Let’s consider a finite subfamily of a neutrosophic 
crisp open subcover of  JiGGG iii :,, 321 .

5.8 Corollary 
Let  

1,X ,  
2,Y   be NC𝛼TSs and YXf :  be a

continuous surjection. If A is a neutrosophic crisp 𝛼-
compact in  

1,X , then so is )(Af  in  
2,Y . 

6. Conclusion
In this paper, we presented a generalization of the 
neutrosophic topological space. The basic definitions of 
the neutrosophic crisp α-topological space and the 
neutrosophic crisp α-compact space with some of their 
characterizations were deduced. Furthermore,  we 
constructed a netrosophic crisp α-continuous function, 
with a study of  a number its properties. 
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Abstract: This paper represents a new multi-
objective Neutrosophic goal programming and 
Lexicographic goal programming to solve a multi-
objective linear programming problem. Here we 

describe some basic properties of Neutrosophic sets. 
We have considered a multi-objective Bank Three 
Investment model to get optimal solution for different 
weights.

Keywords- Neutrosophic goal programming, Lexicographic goal programming, Bank Three model.  

1. Introduction The concept of fuzzy sets was introduced by Zadeh 
in 1965 [1]. Since the fuzzy sets and fuzzy logic have

been applied in many real applications to handle 
uncertainty. The traditional fuzzy sets uses one real 
value 𝜇𝐴(𝑥) ∈ [0, 1] to represents the truth
membership function of fuzzy set A defined on 
universe X. Sometimes  µ𝐴(𝑥)  itself is uncertain and
hard to be defined by a crisp value. So the concept of 
interval valued fuzzy sets was proposed [2] to capture 
the uncertainty of truth membership. In some 
applications we should consider not only the truth 
membership supported by the evident but also the 
falsity membership against by the evident. That is 
beyond the scope of fuzzy sets and interval valued 
fuzzy sets. In 1986, Atanassov [3], [5] devolved the 
idea of intuitionistic fuzzy set A characterized by the 
membership degree 𝜇𝐴(𝑥) ∈ [0, 1] as well as non-
membership degree 𝜈𝐴(𝑥) ∈ [0, 1] with some
restriction 0 ≤  𝜇𝐴(𝑥)+ 𝜈𝐴(𝑥) ≤ 1. Therefore certain
amount of indeterminacy 1 - (𝜇𝐴(𝑥)+ 𝜈𝐴(𝑥)) remains
by default. However one may also consider the 

possibility 𝜇𝐴(𝑥)+ 𝜈𝐴(𝑥) > 1, so that inconsistent
beliefs are also allowed. In neutrosophic sets 
indeterminacy is quantified explicitly and truth 
membership, indeterminacy membership and falsity 
membership are independent. Neutrosophic set (NS) 
was introduced by Smarandache in 1995 [4] which is 
actually generalization of different types of FSs and 
IFSs. In 1978 a paper Fuzzy linear programming with 
several objective functions has been published by H.J 
Zimmermann [11].  In 2007 B.Jana and T.K.Roy [9] 
has studied multi-objective intuitionistic fuzzy linear 
programming problem and its application in 
Transportation model. In 1961 goal programming 
was introduced by Charnes and Cooper [13], Aenaida 
and kwak [14] applied goal programming to find a 
solution for multi-objective transportation problem. 
Recently the authors used the fuzzy goal 
programming approach to solve multi-objective 
transportation problem [15]. Other authors used fuzzy 
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goal programming technique to solve different types 
of multi-objective linear programming problems [16,
17, 18, 19]. Recently a paper named “neutrosophic 
goal programming” has published by Mohamed 
Abdel-Baset, Ibrahim M. Hezam and Florentin 
Smarandache in the journal Neutrosophic sets and 
sysatems [20]. The motivation of the present study is 
to give computational algorithm for solving multi-
objective linear goal programming problem and 
Lexicographic goal programming problem by single 
valued neutrosophic optimization approach. We also 
aim to study the impact of truth membership, 
indeterminacy membership and falsity membership 
functions in such optimization process.     

2. Some preliminaries

2.1   Definition -1 (Fuzzy set) [1] 
Let X be a fixed set. A fuzzy set A of X is an object 
having the form 𝐴̃ = {(x,𝜇𝐴 (x)), x Є X} where the
function 𝜇𝐴(𝑥) : X → [0, 1] define the truth
membership of the element x Є X to the set A.  

2.2   Definition-2 (Intuitionistic fuzzy set) [3] 
Let a set X be fixed. An intuitionistic fuzzy set or IFS 𝐴̃𝑖 in X is an object of the form  𝐴̃𝑖 = {<𝑋, 𝜇𝐴 (𝑥), 𝜈𝐴(𝑥) > /𝑥 ∈ 𝑋} where 𝜇𝐴 (𝑥) : X→ [0, 1]
and           𝜈𝐴 (𝑥) : X→ [0, 1]  define  the Truth-
membership and Falsity-membership respectively, 
for every element of x∈  X , 0≤ 𝜇𝐴 (𝑥) + 𝜈𝐴(𝑥)  ≤1 .

2.3   Definition-3 (Neutrosophic set) [4] 

Let X be a space of points (objects) and 𝑥 ∈ 𝑋. A 
neutrosophic set 𝐴̃n in X is defined by a Truth-
membership function𝜇𝐴 (𝑥), an indeterminacy-
membership function 𝜎𝐴(𝑥) and a falsity-membership
function 𝜈𝐴(𝑥)  and having the form       𝐴̃𝑛 ={<𝑋, 𝜇𝐴 (𝑥), 𝜎𝐴(𝑥), 𝜈𝐴(𝑥) > /𝑥 ∈ 𝑋}.𝜇𝐴 (𝑥), 𝜎𝐴(𝑥) 𝑎𝑛𝑑 𝜈𝐴(𝑥) are real standard or non-
standard subsets of  

] 0-, 1+ [. that is 𝜇𝐴 (𝑥) : X→ ] 0-, 1+ [𝜎𝐴(𝑥) : X→ ] 0-, 1+ [𝜈𝐴 (𝑥) : X→ ] 0-, 1+ [
There is no restriction on the sum of  𝜇𝐴 (𝑥), 𝜎𝐴(𝑥) 𝑎𝑛𝑑 𝜈𝐴(𝑥), so

0- ≤sup𝜇𝐴(𝑥)+sup𝜎𝐴(𝑥)+sup𝜈𝐴(𝑥)≤3+ 

2.4  Definition-4 (Single valued Neutrosophic 
sets) [6] 

 Let X be a universe of discourse. A single valued 
neutrosophic set  𝐴̃𝑛     over X is an object having the 
form 𝐴̃𝑛 ={< 𝑋, 𝜇𝐴 (𝑥), 𝜎𝐴(𝑥), 𝜈𝐴(𝑥) > /𝑥 ∈𝑋}where𝜇𝐴 (𝑥) : X→ [0, 1],𝜎𝐴(𝑥) : X→[0, 1]
and𝜈𝐴 (𝑥) : X→ [0, 1] with 0≤ 𝜇𝐴 (𝑥) + 𝜎𝐴(𝑥) +𝜈𝐴(𝑥)  ≤3 for all x ∈ X.

Example 1   Assume that X = [x1, x2, x3]. X1 is 
capability, x2 is trustworthiness and x3 is price. The 
values of x1, x2and x3 are in [0, 1]. They are obtained 
from the questionnaire of some domain experts, their 
option could be a degree of “good service”, a degree 
of indeterminacy and a degree of “poor service”.  𝐴̃𝑛 
is a single valued neutrosophic set of X defined by 𝐴̃𝑛 =〈0.3,0.4,0.5〉/x1 + 〈0.5,0.2,0.3〉/x2 + 〈0.7,0.2,0.2〉/x3. 𝐵̃𝑛  is a single valued neutrosophic 
set of X defined by 𝐵̃𝑛=〈0.6,0.1,0.2〉/x1 +〈0.3,0.2,0.6〉/x2 + 〈0.4,0.1,0.5〉/x3

2.5   Definition 5(Complement): [6].

The complement of a single valued neutrosophic set 𝐴̃𝑛  is denoted by c(𝐴̃𝑛) and is  defined by  𝜇 c(𝐴̃𝑛)(x) = 𝜈𝐴̃𝑛(𝑥)𝜎 c(𝐴̃𝑛)(x) = 1-  𝜎𝐴̃𝑛(𝑥)𝜈 c(𝐴̃𝑛)(x) = 𝜇𝐴̃𝑛(𝑥)         for all x in X 

  Example 2   Let 𝐴̃𝑛 be a single valued neutrosophic 
set defined in example 1. Then  

c(𝐴̃𝑛)  =  〈0.5,0.6,0.3〉/x1 + 〈0.3,0.8,0.5〉/x2 +〈0.2,0.8,0.7〉/X3     

   2.6 Definition 6 (Union): [6] The union of two 
single valued neutrosophic sets A and B is a single 
valued neutrosophic set C, Written as C = A ∪ B, 
whose truth-membership, indeterminacy-membership 
and falsity-membership functions are given by 
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 𝜇𝐶(𝑥) = max {𝜇𝐴(𝑥), 𝜇𝐵(𝑥) } 𝜎𝐶(𝑥) = max {𝜎𝐴(𝑥), 𝜎𝐵(𝑥) } 𝜈𝐶(𝑥) = min {𝜈𝐴(𝑥), 𝜈𝐵(𝑥) }  for all x in 
X     

Example 3 Let A and B be two single valued 
neutrosophic sets defined in example 1. Then  A ∪ 
B =    〈0.6,0.4,0.2〉/x1 + 〈0.5,0.2,0.3〉/x2 + 〈0.7,0.2,0.2〉 /X3     

2.7 Definition 7(Intersection): [7] The intersection 
of two single valued neutrosophic sets A and B is a 
single valued neutrosophic set C, Written as C = A ∩ 
B, whose truth-membership, indeterminacy-
membership and falsity-membership functions are 
given by   𝜇𝐶(𝑥) = min {𝜇𝐴(𝑥), 𝜇𝐵(𝑥) } 𝜎𝐶(𝑥) = min {𝜎𝐴(𝑥), 𝜎𝐵(𝑥) } 𝜈𝐶(𝑥) = max {𝜈𝐴(𝑥), 𝜈𝐵(𝑥) }  for all x in 
X     

Example 4 Let A and B be two single valued 
neutrosophic sets defined in example 1. Then  A ∩ 
B =    〈0.3,0.1,0.5〉/x1 + 〈0.3,0.2,0.6〉/x2 + 〈0.4,0.1,0.5〉 /X3     

                                    

3. Multi-objective linear programming 
problem (MOLPP) [19]

A general multi-objective linear programming 
problem with n objectives, m constraints and q 
decision variables may be taken in the following 
form 

Minimize  𝑓1(𝑥)   =  𝑐1 X

Minimize 𝑓2(𝑥)   = 𝑐2  X
………………………………. 

…………………………….... 

Minimize 𝑓𝑛(𝑥)  =  𝑐𝑛 X

Subject to   A X ≤  𝑏   and   X ≥ 0 

Where   C= (𝑐𝑖1, 𝑐𝑖2, … … … . , 𝑐𝑖𝑞) for    
i=1,2,……….n. 

A= [aj i]m.n, X = (𝑥1, 𝑥2, … … … . , 𝑥𝑞)𝑇,
b=(𝑏1, 𝑏2, … … … . , 𝑏𝑚)𝑇.

  for   j=1,2,………m; i=1,2,……….n. 

4. A.  Neutrosophic linear goal 
programming problem (NLGPP) [21]

Find X = (𝑥1, 𝑥2, … … … . , 𝑥𝑞)𝑇
(4.1) 

 So as to 

Minimize   𝑓𝑖(𝑥)
with target value 𝑐𝑖 , Truth tolerance 𝑎𝑖 , Falsity

tolerance 𝑡𝑖, Indeterminacy tolerance 𝑝𝑖
i= 1, 2, ………..n. 

subject to    𝑔𝑗(𝑥) ≤ 𝑏𝑗        j= 1, 2, ………..m. 𝑥𝑘  ≥ 0       k= 1,2, ………..q. 

With Truth-membership, Falsity-membership, 
Indeterminacy-membership functions are 

𝜇𝑖(𝑓𝑖(𝑥)) =  {𝑎𝑖+𝑐𝑖−𝑓𝑖(𝑥)𝑎𝑖
 1             𝑖𝑓  𝑓𝑖(𝑥) ≤  𝑐𝑖 𝑖𝑓  𝑐𝑖 ≤ 𝑓𝑖(𝑥) ≤  𝑎𝑖 + 𝑐𝑖0  𝑖𝑓 𝑓𝑖(𝑥) ≥  𝑎𝑖 + 𝑐𝑖     (4.2) 

𝜈𝑖(𝑓𝑖(𝑥))  =  {𝑓𝑖(𝑥)−𝑐𝑖𝑡𝑖
 0             𝑖𝑓  𝑓𝑖(𝑥) ≤  𝑐𝑖 𝑖𝑓  𝑐𝑖 ≤ 𝑓𝑘(𝑥) ≤  𝑐𝑖 + 𝑡𝑖1  𝑖𝑓 𝑓𝑖(𝑥) ≥ 𝑐𝑖 + 𝑡𝑖

(4.3) 

𝜎𝑖(𝑓𝑖(𝑥)) =  {𝑝𝑖+𝑐𝑖′− 𝑓𝑖(𝑥)𝑝𝑖
1             𝑖𝑓  𝑓𝑖(𝑥) ≤  𝑐𝑖′𝑖𝑓  𝑐𝑖′ ≤ 𝑓𝑖(𝑥) ≤  𝑝𝑖 + 𝑐𝑖′ 0 𝑖𝑓 𝑓𝑖(𝑥) ≥  𝑝𝑖 + 𝑐𝑖′  (4.4) 
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Fig1. Truth membership, Falsity membership 
and Indeterminacy membership functions of a 
minimization-type objective function.

Neutrosophic goal programming can be transformed 
into crisp linear programming problem using Truth-
membership, Falsity-membership, Indeterminacy-
membership functions as 

Maximize   ∑ 𝑤𝑖 𝜇𝑖(𝑓𝑖(𝑥))𝑛𝑖=1
   (4.5) 

Minimize   ∑ 𝑤𝑖 𝜈𝑖(𝑓𝑖(𝑥))𝑛𝑖=1
Maximize∑ 𝑤𝑖 𝜎𝑖(𝑓𝑖(𝑥))𝑛𝑖=1
 i= 1, 2, ………..,n.         

Subject to    𝑔𝑗(𝑥) ≤ 𝑏𝑗
   j= 1, 2,………..,m. 𝑥𝑘  ≥ 0

  k= 1,2, ………..q. ∑ 𝑤𝑖𝑛𝑖=1   = 1

 Which is equivalent to 

Max  ∑ 𝑤𝑖 ( 𝜇𝑖(𝑓𝑖(𝑥))𝑛𝑖=1 −  𝜈𝑖(𝑓𝑖(𝑥))
+ 𝜎𝑖(𝑓𝑖(𝑥)))  (4.6) 

 Subject to    𝑔𝑗(𝑥) ≤ 𝑏𝑗

 j= 1, 2,………..,m. ∑ 𝑤𝑖𝑛𝑖=1   = 1

B. Neutrosophic Lexicographic goal 
programming 

     The Lexicographic optimization takes objective in 
order: optimizing one, then a second subject to the 
first achieving its optimal value, and so on.  

  Step-1. Max  𝜇1 - 𝜈1 + 𝜎1
       Subject to 𝑔𝑗(𝑥) ≤ 𝑏𝑗 j= 1, 

2,………..,m. 𝑥𝑘  ≥ 0    k= 1,2, ………..q.    

Solving we get optimal solution   f1
* = F1

Step-2               Max  𝜇2 - 𝜈2 + 𝜎2
       Subject to 𝑔𝑗(𝑥) ≤ 𝑏𝑗 j= 1, 

2,………..,m.  𝑓1 ≤ F1𝑥𝑘  ≥ 0  k= 1,2, 
………..q.   

Solving we get optimal solution   f2
* = F2

Step-3             Max  𝜇3 - 𝜈3 + 𝜎3
       Subject to 𝑔𝑗(𝑥) ≤ 𝑏𝑗 j= 1, 

2,………..,m.  𝑓1 ≤ F1𝑓2 ≤ F2 𝑥𝑘  ≥ 0  k= 1,2, 
………..q.    

Solving we get optimal solution   f3
* = F3

And so on. 
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 Proceeding in this way finally we get optimal 
decision variables and all the optimal objective 
values. 

5. Application of Neutrosophic goal
programming to Bank Three Investment
Problem

Every investor must trade off return versus risk in 
deciding how to allocate his or her available funds. 
The opportunities that promise the greatest profits are 
almost the ones that present the most serious risks. 

     Commercial banks must be especially careful in 
balancing return and risk because legal and ethical 

obligations demand that they avoid undue hazards, 
yet their goal as a business enterprise is to maximize 
profit. This dilemma leads naturally to multi-
objective optimization of investment that includes 
both profit and risk criteria. 

Our investment example [12] adopts this multi-
objective approach to a fictitious Bank Three. Bank 
Three has a modest $ 20 million capital, with $ 150 
million in demand deposits and $80 million in time 
deposits (savings accounts and certificates of 
deposit). Table 1 displays the categories among 
which the bank must divide its capital and deposited 
funds. Rates of return are also provided for each 
category together with other information related to 
risk.

 Table 1    Bank Three Investment Opportunities 

Investment 
Category, j 

Return Rate 
 (%) 

Liquid Part 
 (%) 

Required Capital Risk 
Asset 

      (%)   ? 

1:  Cash 0.0 100.0 0.0          No 

2:  Short term 4.0 99.5 0.5          No 

3:  Government: 1 to 5 years 4.5 96.0 4.0          No 

4:  Government: 5 to 10 years 5.5 90.0 5.0          No 

5:  Government: over 10 years 7.0 85.0 7.5          No 

6:  Installment loans          10.5     0.0     10.0       Yes 

7:  Mortgage loans 8.5 0.0     10.0       Yes 

8:  Commercial loans 9.2 0.0     10.0       Yes 

The first goal of any private business is to maximize 
profit. Using rates of return from table 1, this 
produces objective function 

 Max 0.04x2 + 0.045x3 +0.055x4 + 0.070x5 + 
0.105x6 + 0.085x7 + 0.092x8   (Profit) 

101



Neutrosophic Sets and Systems, Vol. 12, 2016 

Pintu Das, Rittick Roy,  Neutrosophic Goal Programming applied to bank three investment problem 

It is less clear how to quantify investment risk. We 
employ two common ratio measures. 

 One is the capital-adequacy ratio, expressed as the 
ratio of required capital for bank solvency to actual 
capital. A low value indicates minimum risk. The 
“required capital” rates of table 1 approximate U.S. 
government formulas used to compute this ratio, and 
Bank Three’s present capital is $ 20 million. Thus we 
will express a second objective as 

  Min 120(0.005x2 + 0.040x3 +0.050x4 + 0.075x5 + 
0.100x6 + 0.100x7 + 0.100x8) 

(Capital - adequacy) 

Another measure of risk focuses on illiquid risk 
assets. A low risk asset/capital ratio indicates a 
financially secure institution. For our example, this 
third measure of success is expressed as  

 Min 120   (x6 + x7 + x8)  (Risk - 
asset) 

To complete a model of Bank Three’s investment 
plans, we must describe the relevant constraints. 

1. Investments must sum to the available
capital and deposit funds. 

2. Cash reserves must be at least  14% of
demand deposits plus 4 % of time   
   Deposits. 

3. The portion of investments considered
liquid should be at least 47 % of 
   Demand deposits plus 36 % of time 
deposits. 

4. At least 5 % of funds should be invested in
each of the eight categories. 

5. At least 30 % of funds should be invested
in commercial loans, to 

 Maintain the bank’s community status. 

         Combining the 3 objective functions above 
with these 5 constraints completes a multi-objective 

linear programming model of Bank Three’s 
investment problem:   

Max   0.04x2 + 0.045x3 +0.055x4 + 0.070x5 + 0.105x6 
+ 0.085x7 + 0.092x8    (Profit) 

Min 120(0.005x2 + 0.040x3 +0.050x4 + 0.075x5 + 
0.100x6 + 0.100x7 + 0.100x8) 

(Capital - adequacy)  

Min 120   (x6 + x7 + x8)                (Risk - asset) 

Such that   x1+x2+x3+x4+x5+x6+x7+x8= (20+150+80) 
(Invest all) 

     x1 ≥ 0.14 (150) +0.04 (80)    
(Cash reserve ) 

1.00x1+0.995x2+0.960x3+0.900x4+0.850x5≥ 

0.47(150) +0.36(80) 

(Liquidity) 

     xj ≥ 0.05 (20+150+80) for all 
j=1,…….,8              (Diversification) 

     x8 ≥ 0.30 (20+150+80)    
(Commercial) 

      x1, x2, …………..,x8 ≥ 0 

6. Numerical Example𝑐1  = 12, 𝑎1 =6.67, 𝑡1 = 3, 𝑐1′ = 13, 𝑝1
= 5.67 𝑐2  = 0.58, 𝑎2 = 0.22, 𝑡2 = 0.20, 𝑐2′ =
0.60, 𝑝2 = 0.20𝑐3  = 5, 𝑎3 =1.5, 𝑡3 = 1.0, 𝑐3′ = 5.5,𝑝3 = 1.0
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Table 1.  Goal Programming Solution of the Bank Three Problem 

Weights Optimal Primal Variables Optimal Objectives 
W1=0.8, w2=0.1, w3=0.1 x1=24.2, x2=12.5, x3=12.5, x4=12.5, 

x5=46.367665, x6=54.4323, x7=12.5, 
x8=75 

𝑓1=18.67363, 𝑓2=0.942915,𝑓3=7.096

W1=0.05, w2=0.9, w3=0.05 x1=100, x2=12.5, x3=12.5, x4=12.5, 
x5=12.5, x6=12.5, x7=12.5, x8=75 

𝑓1=11.9, 𝑓2=0.60625,     𝑓3=5.00

W1=0.1, w2=0.1, w3=0.8 x1=24.2, x2=88.30, x3=12.5, x4=12.5, 
x5=12.5, x6=12.5, x7=12.5, x8=75 

𝑓1=14.932, 𝑓2=0.6252,     𝑓3=5.00

W1=1/3, w2=1/3, w3=1/3 x1=24.2, x2=88.30, x3=12.5, x4=12.5, 
x5=12.5, x6=12.5, x7=12.5, x8=75 

𝑓1=14.932, 𝑓2=0.6252,     𝑓3=5.00

Table 2.  Lexicographic Goal Programming Solution of the Bank Three Problem 

Optimal Primal variables   Optimal Objective functions 
x1=24.2, x2=22.51454, x3=12.5, x4=12.5, x5=34.64474, 
x6=56.14072, x7=12.5, x8=75 

𝑓1=18.43299, 𝑓2=0.9100,     𝑓3=7.182036

7. Conclusion

In this paper, we presents simple Neutrosophic 
optimization approach to solve Multi-objective linear 
goal programming problem and Lexicographic goal 
programming problem. It can be considered as an 
extension of fuzzy and intuitionistic fuzzy 
optimization. This proposed method Neutrosophic 
Goal Programming can also be applied for multi-
objective non-linear programming problem.  
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1 Introduction 

Hyperrings extend the classical notion of rings, substi-
tuting both or only one of the binary operations of addition 
and multiplication by hyperoperations. Hyperrings were in-
troduced by several authors in different ways. If only the 
addition is a hyperoperation and the multiplication is a bi-
nary operation, then we say that R  is a Krasner hyperring 
[4]. Davvaz [5] has defined some relations in hyperrings 
and proved isomorphism theorems. For a more compre-
hensive introduction about hyperrings, we refer to [9]. As a 
generalization of a ring, semiring was introduced by Van-
diver [17] in 1934. A semiring is a structure )0;;;( R  
with two binary operations   and   such that )0;;( R  is 
a commutative semigroup, );( R a semigroup, multiplica-
tion is distributive from both sides over addition and 

000  xx  for all Rx . In [18], Vougiouklis 
generalizes the notion of hyperring and named it as semi-
hyperring, where both the addition and multiplication are 
hyperoperation. Semihyperrings are a generalization of 
Krasner hyperrings. Note that a semiring with zero is a 
semihyperring. Davvaz in [12] studied the notion of semi-
hyperrings in a general form. 

Hyperstructures, in particular hypergroups, were intro-
duced in 1934 by Marty [11] at the eighth congress of 
Scandinavian Mathematicians. The notion of algebraic hy-
perstructure has been developed in the following decades 
and nowadays by many authors, especially Corsini [2, 3], 
Davvaz [5, 6, 7, 8, 9], Mittas [12], Spartalis [15], Strati-
gopoulos [16] and Vougiouklis [19]. Basic definitions and 
notions concerning hyperstructure theory can be found in 
[2]. 

The concept of a fuzzy set, introduced by Zadeh in his 
classical paper [20], provides a natural framework for gen-
eralizing some of the notions of classical algebraic struc-

tures.As a generalization of fuzzy sets, the intuitionistic 
fuzzy set was introduced by Atanassov [1] in 1986, where 
besides the degree of membership of each element there 
was considered a degree of non-membership with (mem-
bership value + non-membership value)≤ 1. There are also 
several well-known theories, for instances, rough sets, 
vague sets, interval-valued sets etc. which can be consid-
ered as mathematical tools for dealing with uncertainties. 

In 2005, inspired from the sport games (winning/tie/ 
defeating), votes, from (yes /NA /no),from decision mak-
ing(making a decision/ hesitating/not making), from (ac-
cepted /pending /rejected) etc. and guided by the fact that 
the law of excluded middle did not work any longer in the 
modern logics, F. Smarandache [14] combined the non-
standard analysis [8,18] with a tri-component log-
ic/set/probability theory and with philosophy and intro-
duced Neutrosophic set which represents the main distinc-
tion between fuzzy and intuitionistic fuzzy logic/set. Here 
he included the middle component, i.e., the neutral/ inde-
terminate/ unknown part (besides the truth/membership 
and falsehood/non-membership components that both ap-
pear in fuzzy logic/set) to distinguish between ’absolute 
membership and relative membership’ or ’absolute non-
membership and relative non-membership’. 

Using this concept, in this paper, we have defined neutro-
sophic ideals of semihyperrings and study some of its basic 
properties. 

2 Preliminaries 

Let H be a non-empty set and let )(HP  be the set of all 
non-empty subsets of H . A hyperoperation on H  is a 
map )(: HPHH   and the couple ),( H  is
called a hypergroupoid. 
If A  and B  are non-empty subsets of H  and Hx , 
then we denote baBA

BbAa





,
,
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AxAx  }{  and }{xAxA   . A hypergroupoid
),( H  is called a semihypergroup if for all Hzyx ,,

we have )()( zyxzyx    which means that
vxzu

zyvyxu


 
 . 

A semihyperring is an algebraic structure );;( R  which 
satisfies the following properties: 
(i) );( R is a commutative semihypergroup 
(ii) );( R  is a semihypergroup 
(iii) Multiplication is distributive with respect to hyperop-
eration + that is zxyxzyx  )( , 

zyzxzyx  )(
 (iv) 000  xx  for all .Rx  

A semihyperring );;( R is called commutative if and on-
ly if abba    for all Rba , . 
Vougiouklis in [18] and Davvaz in [6] studied the notion 
of semihyperrings in a general form, i.e., both the sum and 
product are hyperoperations. 

A semihyperring );;( R with identity RR 1  means 

that xxx RR  11  for all Rx . 
An element Rx is called unit if there exists 

Ry such that xyyxR 1 . 
 A nonempty subset S  of a semihyperring );;( R  is 
called a sub-semihyperring if Sba  and Sba 
for all Sba , . A left hyperideal of a semihyperring R

is a non-empty subset I  of R  satisfying 
(i) If  Iba , then Iba   
(ii) If Ia  and Rs then Ias 
(iii) .RI   

A right hyperideal of R  is defined in an analogous manner 
and an hyperideal of R is a nonempty subset which is both 
a left hyperideal and a right hyperideal of R . 
For more results on semihyperrings and neutrosophic sets 
we refer to [6, 10] and [14] respectively. 

3. Main Results

Definition 3.1. [14] A neutrosophic set A  on the uni-
verse of discourse X  is defined as 

},)(),(),(:{ XxxAxAxAxA
FIT  where 

 [1,0]:,, XAAA
FIT and

  3)()()(0 xAxAxA
FIT

 . From philosoph-
ical point of view, the neutrosophic set takes the value 
from real standard or non-standard subsets of  [1,0] . But 
in real life application in scientific and engineering prob-
lems it is difficult to use neutrosophic set with value from 
real standard or non-standard subset of  [1,0] . Hence we 
consider the neutrosophic set which takes the value from 
the subset of [0, 1].
Throughout this section unless otherwise mentioned R
denotes a semihyperring. 

Definition 3.2. Let ),,( FIT   be a non empty 
neutrosophic subset of a semihyperring R  (i.e. anyone of 

)(x
T , )(x

I or )(x
F not equal to zero for some 

Rx ).Then   is called a neutrosophic left hyperideal 
of R  if 

(i) )},(),(min{)(inf yxz
TTT

yxz
 


 

(ii) ,
2

)()()(inf yx
z

II
I

yxz

 




(iii) )},(),(max{)(sup yxz
FFF

yxz

 


(iv) ),()(inf yz
TT

xyz
 



(v) ),()(inf yz
II

xyz
 


 

(vi) ).()(sup yz
FF

xyz

 


 

for all ., Ryx   
Similarly we can define neutrosophic right hyperideal of 
R . 

Example 3.3. Let },,,0{ cbaR   be a set with the hy-
peroperation   and the multiplication  defined as fol-
lows: 
  0 a b c 
0 0 a b c 
a a {a,b} b c 
b b b {0,b} c 
c c c c {0,c}
and 
 0 a b c 
0 0 0 0 0 
a 0 a a a 
b 0 a b c 
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c 0 a c c 

Then ),,( R is a semihyperring. 
Define neutrosophic subset   of R  by 

)1.0,6.0,1()0(  , )3.0,4.0,7.0()( a , 
)2.0,5.0,8.0()( b  )4.0,2.0,6.0()( c . Then   

is a neutrosophic left hyperideal of R . 

Theorem 3.4. A neutrosophic set  of R  is a neutro-
sophic left hyperideal of R  if and only if any level subsets 

]}1.0[,)(:{:  ttxRx
TT

t  , 

]}1.0[,)(:{:  ttxRx
II

t   and 

]}1.0[,)(:{:  ttxRx
TF

t   are left hyperide-

als of R . 

Proof. Assume that the neutrosophic set   of R is a neu-
trosophic left hyperideal of R . 
Then anyone of IT  ,  or F  is not equal to zero for 

some Rx i.e., in other words anyone of  I

t

T

t  ,  or 
F

t is not empty for some ]1,0[t . So, it is sufficient to 
consider that all of them are not empty. 
Suppose  tyx , ),,( F

t

I

t

T

t  and Rs .Then 

tttyxz
TTT

yxz



},min{)}(),(min{)(inf 

t
ttyx

z
II

I

yxz








 22
)()()(inf 

tttyxz
FFF

yxz




},max{)}(),(max{)(sup 

which implies F

t

I

t

T

tyx  ,, i.e., .tyx 
Also 

,)()(inf txz
TT

sxz





,)()(inf txz
II

sxz



  

,)()(sup txz
FF

sxz




  

Hence .tsx 
Therefore t is a left hyperideal of R . 

Conversely, suppose )(  t is a left hyperideal of R . If 
possible   is not a neutrosophic left hyperideal. Then for 

Ryx ,  anyone of the following inequality is true. 

)}(),(min{)(inf yxz
TTT

yxz
 


 

2
)()()(inf yx

z
II

I

yxz

 




)}(),(max{)(sup yxz
FFF

yxz

 


 

For the first inequality, choose 

)}](),(min{)(inf[
2
1

1 yxzt
TTT

yxz
 


. Then 

)}(),(min{)(inf 1 yxtz
TTT

yxz
 


 which implies 

T

tyx
1

,   but  T

tyx
1

 - a contradiction. 
For the second inequality, choose 

)}](),(min{)(inf[
2
1

2 yxzt
III

yxz
 


. Then 

2
)()()(inf 2

yx
tz

II
I

yxz

 



 which implies 

I

tyx
2

,   but  I

tyx
2

 - a contradiction. 
For the third inequality, choose 

)}](),(max{)(sup[
2
1

3 yxzt
FFF

yxz

 


. Then 

)}(),(max{)(sup 3 yxtz
FFF

yxz

 


 which im-

plies F

tyx
3

,   but  F

tyx
3

 - a contradiction. 
So, in any case we have a contradiction to the fact that 

t is a left hyperideal of R . 
Hence the result follows. 

Definition 3.5. Let   and  be two neutrosophic subsets 
of R. The intersection of   and is   defined by 

)}(),(min{))(( xxx
TTTT    

)}(),(min{))(( xxx
IIII    

)}(),(max{))(( xxx
FFFF    

for all .Rx  

Proposition 3.6. Intersection of a nonempty collection of 
neutrosophic left hyperideals is a neutrosophic left hyper-
ideal of R . 

Proof. Let }:{ Iii  be a non-empty family of neutro-

sophic left hyperideals of R  and Ryx , . Then 

))((inf z
T

i
Iiyxz





)(infinf z
T

i
Iiyxz




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)}}(),({min{inf yx
T

i

T

i
Ii




  

)}(inf),(infmin{ yx
T

i
Ii

T

i
Ii




  

)}(),(min{ yx
T

i
Ii

T

i
Ii



  

))((inf z
I

i
Iiyxz





)(infinf z
I

i
Iiyxz





2
)()(inf yx

I

i

I

i

Ii

 




2

)(inf)(inf yx
I

i
Ii

I

i
Ii







2

)()( yx
I

i
Ii

I

i
Ii





 . 

))((sup z
F

i
Iiyxz





)(supsup z
F

i
Iiyxz




  

)}}(),({max{sup yx
F

i

F

i
Ii




  

)}(sup),(supmax{ yx
F

i
Ii

F

i
Ii




  

)}(),(max{ yx
F

i
Ii

F

i
Ii



  

)(

)(inf

)(infinf

))((inf

x

x

z

z

T

i
Ii

T

i
Ii

T

i
Iisxz

T

i
Iisxz

























)(

)(inf

)(infinf

))((inf

x

x

z

z

I

i
Ii

I

i
Ii

I

i
Iisxz

I

i
Iisxz

























)()(sup

)(supsup

))((sup

xx

z

z

F

i
Ii

F

i
Ii

F

i
Iisxz

F

i
Iisxz



















Hence i
Ii



  is a neutrosophic left hyperideal of R . 

Definition 3.7. Let R , S be semihyperrings and 
SRf : be a function. Then f  is said to be a homo-

morphism if for all Rba ,  
)()()()( bfafbafi   

)()()()( bfafabfii   

SRfiii 0)0()( 
where R0  and S0  are the zeros of R and S  respectively. 

Proposition 3.8. Let SRf : be a morphism of 
semihyperrings. Then 
(i) If   is a neutrosophic left hyperideal of S , then 

)(1 
f [13] is a neutrosophic left hyperideal of R . 

(ii) If f  is surjective morphism and   is a neutronsophic 
left hyperideal of R , then )(f [13] is a neutrosophic 
left hyperideal of S . 

Proof. Let SRf : be a morphism of semihyperrings. 
Let   be a neutrosophic left hyperideal of S and 

Rsr , . 

))((inf 1
zf

T

srz




))((inf zf
T

srz



  

))((inf
)()()(

zf
T

sfrfzf



  

))}(()),((min{ sfrf
TT   

)})((),)((min{ 11
sfrf

TT   . 

))((inf 1
zf

I

srz




))((inf zf
I

srz





))((inf
)()()(

zf
I

sfrfzf



  
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2
))(())(( sfrf

II  


2
))(())(( 11

sfrf
II   

 . 

))((sup 1
zf

F

srz




 

))((sup zf
F

srz






))((sup
)()()(

zf
F

sfrfzf




  

))}(()),((max{ sfrf
FF   

)})((),)((max{ 11
sfrf

FF   . 
Again 

))((inf 1
zf

T

rsz




))((inf zf
T

rsz





))((inf
)()()(

zf
T

sfrfzf





))(( sf
T ))((1

sf
T . 

))((inf 1
zf

I

rsz




))((inf zf
I

rsz



  

))((inf
)()()(

zf
I

sfrfzf



  

))(())(( 1
sfsf

II   . 

))((sup 1
zf

F

rsz





))((sup zf
F

rsz






))((sup
)()()(

zf
F

sfrfzf




  

))(( sf
F ).)((1

sf
F  

Thus )(1 
f  is a neutrosophic left hyperideal of R . 

(ii) Suppose  be a neutrosophic left hyperideal of R  and 
'

x , Sy ' . Then 

)))(((inf '
'''

zf
T

yxz



 

)(supinf
)( '1'''

z
T

zfzyxz





)(supinf
)(),( '1'1'''

z
T

yfyxfxyxz


 
  

)}}(),({min{sup
)(),( '1'1

yx
TT

yfyxfx


 

  

)}(sup),(supmin{
)()( '1'1

yx
T

yfy

T

xfx


 

  

)}))(((),))((min{( ''
yfxf

TT  . 

)))(((inf '
'''

zf
I

yxz



 

)(supinf
)( '1'''

z
I

zfzyxz





)(supinf
)(),( '1'1'''

z
I

yfyxfxyxz


 
  

2
)()(sup

)(),( '1'1

yx
II

yfyxfx

 


 

)](sup)(sup[
2
1

)()( '1'1
yx

I

yfy

I

xfx


 

  

)]))((()))(([(
2
1 ''

yfxf
II   . 

)))(((sup '

'''
zf

F

yxz




)(infsup
)( '1'''

z
F

zfzyxz






)(infsup
)(),( '1'1'''

z
F

yfyxfxyxz


 



)}}(),({max{inf
)(),( '1'1

yx
FF

yfyxfx


 
  

)}(inf),(infmax{
)()( '1'1

yx
F

yfy

F

xfx


 
  

)}))(((),))((max{( ''
yfxf

FF  . 
Again 

)))(((inf '
'''

zf
T

yxz



 

)(supinf
)( '1'''

z
T

zfzyxz





)(sup
)(),( '1'1

z
T

yfyxfx


 



).))((()(sup '

)( '1
yfy

TT

yfy

 


 

)))(((inf '
'''

zf
I

yxz



 

)(supinf
)( '1'''

z
I
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Thus )(f is a neutrosophic left hyperideal of S . 

Definition 3.9.  Let   and   be two neutrosophic sub-
sets of .R  Then the Cartesian product of   and   is de-
fined by 
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Hence    is a neutrosophic left hyperideal of .RR  

Definition 3.11. Let  and   be two neutrosophic sets 
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Hence  is a neutrosophic left hyperideal of R . 

Conclusion 
This is the introductory paper on neutrosophic hyperideals 
of semihyperrings in the sense of Smarandache[14]. Our 
next aim to use these results to study some other properties 
such prime neutrosophic hyperideal, semiprime neutro-
sophic hyperideal,neutrosophic bi-hyperideal, neutrosophic 
quasi-hyperideal, radicals etc. 
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Abstract. Neutrosophic set and Neutrosophic Topological 
spaces has been introduced by Salama[5]. Neutrosophic Closed 
set and Neutrosophic Continuous Functions were introduced by 
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open set and Nω-closure. 

1. Introduction

 Many theories like, Theory of Fuzzy sets[10], 
Theory of Intuitionistic fuzzy sets[1], Theory of 
Neutrosophic sets[8] and The Theory of Interval 
Neutrosophic sets[4] can be considered as tools for dealing 
with uncertainities. However, all of these theories have 
their own difficulties which are pointed out in[8]. 

In 1965, Zadeh[10] introduced fuzzy set theory as 
a mathematical tool for dealing with uncertainities where 
each element had a degree of membership. The 
Intuitionistic fuzzy set was introduced by Atanassov[1] in 
1983 as a generalization of fuzzy set, where besides the 
degree of membership and the degree of nonmembership 
of each element. The neutrosophic set was introduced by 
Smarandache[7] and explained, neutrosophic set is a 
generalization of intuitionistic fuzzy set. 

In 2012, Salama, Alblowi[5] introduced the 
concept of  Neutrosophic topological spaces. They 
introduced neutrosophic topological space as a 
generalization of intuitionistic fuzzy topological space and 
a neutrosophic set besides the degree of membership, the 
degree of indeterminacy and the degree of nonmembership 
of each element. In 2014 Salama, Smarandache and Valeri 
[6]  were introduced the concept of neutrosophic closed 
sets and neutrosophic continuous functions. In this paper, 
we introduce the concept of Nω- closed sets and their 
properties in  neutrosophic topological spaces.  

2. Preliminaries

In this paper, X denote a topological space (X, τN) 
on which no separation axioms are assumed unless 
otherwise explicitly  mentioned. We recall the following 
definitions, which will be used throughout  this paper. For 
a subset A of X, Ncl(A), Nint(A) and Ac denote the 
neutrosophic closure, neutrosophic interior, and the 
complement of neutrosophic set A respectively. 

Definition 2.1.[3] Let X be a non-empty fixed set. A 
neutrosophic set(NS for short) A is an object having the 
form A = {<x, µA(x), σA(x), υA(x)>: for all x ∈ X}. Where 
µA(x), σA(x), υA(x) which represent the degree of 
membership, the degree of indeterminacy and the degree of 
nonmembership of each element x ∈ X to the set A. 

Definition 2.2.[5] Let A and B be NSs of the form  A = 
{<x, µA(x), σA(x), υA(x)>: for all x ∈ X} and B = {<x, 
µB(x), σB(x), υB(x)>: for all x ∈ X} . Then  

i. A ⊆ B if and only if µA(x) ≤ µB(x), σA(x) ≥ σB(x)
and υA(x) ≥ υB(x) for all x ∈ X,

ii. A = B if and only if A ⊆ B and B ⊆ A,
iii. Ac = {<x, υA(x), 1− σA(x), µA(x)>: for all x ∈ X },
iv. A ∪ B = {<x, µA(x) ∨ µB(x), σA(x) ∧ σB(x),

υA(x) ∧ υB(x): for all x ∈ X >},
v. A ∩ B = {<x, µA(x) ∧µB(x), σA(x) ∨ σB(x),

υA(x) ∨ υB(x): for all x ∈ X >}.

Definition 2.3.[5] A neutrosophic topology(NT for short) 
on a non empty set X is a family τ of neutrosophic subsets 
in X satisfying the following axioms: 

i) 0N, 1N ∈ τ,
ii) G1 ∩ G2 ∈ τ, for any G1, G2 ∈ τ,
iii) ∪Gi ∈ τ, for all  Gi: i ∈ J ⊆ τ

In this pair (X, τ) is called a neutrosophic topological space 
(NTS for short) for neutrosophic set (NOS for short) τ in 
X.  The elements of τ are called open neutrosophic sets. A 
neutrosophic set F is called closed if and only if the 
complement of F(Fc for short) is neutrosophic open. 

Definition 2.4.[5] Let (X, τ) be a neutrosophic 
topological space. A neutrosophic set A in (X, τ) is said to 
be neutrosophic closed(N-closed for short) if Ncl(A) ⊆ G 
whenever A ⊆ G and G is neutrosophic open. 

Salama et. al.. In this paper, we introduce the concept of Nω- closed sets and 
their properties in Neutrosophic topological spaces.  
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Definition 2.5.[5] The complement of N-closed set is N-
open set. 

Proposition 2.6.[6] In a neutrosophic topological space 
(X, T), T = ℑ (the family of all neutrosophic closed sets) 
iff every neutrosophic subset of (X, T) is a neutrosophic 
closed set. 

3. Nω -closed sets

In this section, we introduce the concept of Nω-
closed set and some of their properties. Throughout this 
paper (X, τN) represent a neutrosophic topological spaces. 

Definition 3.1. Let (X, τN) be a neutrosophic topological 
space. Then A is called neutrosophic semi open set(Ns-
open set for short) if A ⊂ Ncl(Nint(A)). 

Definition 3.2. Let (X, τN) be a neutrosophic topological 
space. Then A is called neutrosophic semi closed set(Ns-
closed set for short) if Nint(Ncl(A)) ⊂ A. 

Definition 3.3. Let A be a neutrosophic set of  a 
neutrosophic topological space   (X, τN).  Then,  

i. The neutrosophic semi closure of A is defined as
Nscl(A) = ∩ {K: K is a Ns-closed in X and A ⊆
K}

ii. The neutrosophic semi interior of A is defined as
Nsint(A) = ∪ {G: G is a Ns-open in X and G ⊆ A}

Definition 3.4. Let (X, τN) be a neutrosophic topological 
space. Then A is called Neutrosophic ω closed set(Nω-
closed set for short) if Ncl(A) ⊆ G whenever A ⊆ G and G 
is Ns-open set. 

Theorem 3.5. Every neutrosophic closed set is Nω-closed 
set, but the converse may not be true. 
Proof: If A is any neutrosophic set in X and G is any Ns-
open set containing A, then Ncl (A)  ⊆ G. Hence A is Nω-
closed set. 

The converse of the above theorem need not be 
true as seen from the following example. 

Example 3.6. Let X = {a,b,c} and τN = {0N,G1, 1N} is a 
neutrosophic topology and (X, τN) is a neutrosophic 
topological spaces. Take G1 = <x, (0.5, 0.6, 0.4), (0.4, 0.5, 
0.2), (0.7, 0.6, 0.9)>, A = <x, (0.2, 0.2, 0.1), (0, 1, 0.2), 
(0.8, 0.6,0.9)>.  Then the set A is Nω-closed set but A is 
not a neutrosophic closed. 

Theorem 3.7. Every Nω-closed set is N-closed set but not 
conversely. 
Proof:  Let A be any Nω-closed set in X and G be any 
neutrosophic open set such that A ⊆ G. Then G is Ns-open, 
A ⊆ G and Ncl (A) ⊆ G. Thus A is N-closed. 

The converse of the above theorem proved by the 
following example. 

Example 3.8. Let X = {a,b,c} and τN = {0N,G1,1N} is a 
neutrosophic topology and (X, τN) is a neutrosophic 
topological spaces. Let G1 = <x, (0.5, 0.6, 0.4), (0.4, 0.5, 
0.2), (0.7, 0.6, 0.9)> and A = <x, (0.55, 0.45, 0.6), (0.11, 
0.3, 0.1), (0.11, 0.25, 0.2)>. Then the set A is N-closed but 
A is not a Nω-closed set. 

Remark 3.9. The concepts of Nω-closed sets and Ns-
closed sets are independent. 

Example 3.10. Let X = {a,b,c} and τN = {0N,G1, 1N} is a 
neutrosophic topology and (X, τN) is a neutrosophic 
topological spaces. Take G1 = <x, (0.5, 0.6, 0.4), (0.4, 0.5, 
0.2), (0.7, 0.6, 0.9)>, A = <x, (0.2, 0.2, 0.1), (0, 1, 0.2), 
(0.8, 0.6,0.9)>.  Then the set A is Nω-closed set but A is 
not a Ns-closed set.  

Example 3.11. Let X = {a,b} and τN = {0N,G1, G2, 1N} is 
a neutrosophic topology and (X, τN) is a neutrosophic 
topological spaces. Take G1 = <x, (0.6, 0.7), (0.3, 0.2), 
(0.2, 0.1)> and A = <x, (0.3, 0.4), (0.6, 0.7), (0.9,0.9)>.  
Then the set A is Ns-closed set but A is not a Nω-closed.   

Theorem 3.12. If A and B are Nω-closed sets, then A ∪ B 
is Nω-closed set. 
Proof: If   A ∪ B ⊆ G and G is Ns-open set, then A ⊆ G 
and B ⊆ G. Since A and B are Nω-closed sets, Ncl(A) ⊆ G 
and Ncl(B) ⊆ G and hence Ncl(A) ∪ Ncl(B) ⊆  G. This 
implies Ncl(A ∪ B) ⊆  G.  Thus A ∪ B is Nω-closed set in 
X. 

Theorem 3.13. A neutrosophic set A is Nω-closed set 
then Ncl(A) – A does not contain any nonempty 
neutrosophic closed sets. 
Proof: Suppose that A is  Nω-closed set. Let F be a 
neutrosophic closed subset of  Ncl(A) – A. Then A ⊆ Fc. 
But A is Nω-closed set. Therefore Ncl(A) ⊆ Fc.
Consequently F ⊆ (Ncl(A))c. We have F ⊆ Ncl(A). Thus F ⊆ Ncl(A)∩(Ncl(A))c = ϕ. Hence F is empty. 

The converse of the above theorem need not be 
true as seen from the following example. 

Example 3.14. Let X = {a,b,c} and τN = {0N,G1, 1N} is a 
neutrosophic topology and (X, τN) is a neutrosophic 
topological spaces. Take G1 = <x, (0.5, 0.6, 0.4), (0.4, 0.5, 
0.2), (0.7, 0.6, 0.9)> and A = <x, (0.2, 0.2, 0.1), (0.6, 0.6, 
0.6), (0.8, 0.9,0.9)>.  Then the set A is not a Nω-closed set 
and Ncl(A) – A = <x, (0.2, 0.2, 0.1), (0.6, 0.6, 0.6), (0.8, 
0.9,0.9)> does not contain non-empty neutrosophic closed 
sets.  

Theorem 3.15. A neutrosophic set A is Nω-closed set if 
and only if Ncl(A) – A contains no non-empty Ns-closed 
set. 
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Proof:  Suppose that A is Nω-closed set. Let S be a Ns-
closed subset of Ncl(A) – A. Then A ⊆ Sc. Since A is Nω-
closed set, we have Ncl(A)  ⊆ Sc. Consequently S ⊆ 
(Ncl(A))c. Hence S ⊆ Ncl(A)∩(Ncl(A))c = ϕ. Therefore S 
is empty. 
Conversely, suppose that Ncl(A) – A contains no non-
empty Ns-closed set. Let A ⊆ G and that G be Ns-open. If 
Ncl(A) ⊈ G, then Ncl(A) ∩ Gc is a non-empty Ns-closed
subset of Ncl(A) – A. Hence A is Nω-closed set. 

Corollary 3.16. A Nω-closed set A is Ns-closed if and 
only if Nscl(A) – A is Ns-closed. 
Proof: Let A be any Nω-closed set. If A is Ns-closed set, 
then Nscl(A) – A = ϕ. Therefore Nscl(A) – A is  Ns-closed 
set. 
Conversely, suppose that Ncl(A) – A is Ns-closed set. But 
A is Nω-closed set and Ncl(A) – A contains Ns-closed. By 
theorem 3.15, Nscl(A) – A = ϕ. Therefore  Nscl(A) = A. 
Hence A is Ns-closed set. 

Theorem 3.17. Suppose that B ⊆ A ⊆ X, B is a Nω-
closed set relative to A and  that A is Nω-closed set in X. 
Then B is Nω-closed set in X. 
Proof:  Let B ⊆ G, where G is Ns-open in X. We have B ⊆ A∩G and A∩G is Ns-open in A. But B is a Nω-closed set 
relative to A. Hence NclA(B) ⊆ A∩G. Since NclA(B) = A ∩ Ncl(B). We have A∩Ncl(B) ⊆ A∩G. It implies A ⊆ 
G∪(Ncl(B))c and G∪(Ncl(B))c is a Ns-open set in X. Since
A is Nω-closed in X, we have Ncl(A) ⊆ G∪(Ncl(B))c.
Hence Ncl(B) ⊆ G∪(Ncl(B))c and Ncl(B) ⊆ G. Therefore 
B is Nω-closed set relative to X. 

Theorem 3.18. If A is Nω-closed and A ⊆ B ⊆ Ncl(A), 
then B is Nω-closed. 
Proof:  Since B ⊆ Ncl(A), we have Ncl(B) ⊆ Ncl(A) and 
Ncl(B) – B ⊆ Ncl(A) – A. But A is Nω-closed. Hence 
Ncl(A) – A has no non-empty Ns-closed subsets, neither 
does Ncl(B) – B. By theorem 3.15, B is Nω-closed. 

Theorem 3.19. Let A ⊆ Y ⊆ X and suppose that A is Nω-
closed in X. Then A is Nω-closed relative to Y. 
Proof:  Let A ⊆ Y∩G where G is Ns-open in X. Then A ⊆ 
G and hence Ncl(A) ⊆ G. This implies, Y ∩ Ncl(A) ⊆ 
Y∩G. Thus A is Nω-closed relative to Y. 

Theorem 3.20. If A is Ns-open and Nω-closed, then A is 
neutrosophic closed set. 
Proof:  Since A is Ns-open and Nω-closed, then Ncl(A) ⊆ 
A. Therefore Ncl(A) =A. Hence A is neutrosophic closed. 

4. Nω-open sets

In this section, we introduce and study about Nω-
open sets and some of their properties. 

Definition 4.1. A Neutrosophic set A in X is called Nω-
open in X if Ac is Nω-closed in X.

Theorem 4.2. Let (X, τN) be a neutrosophic topological 
space. Then 

(i) Every neutrosophic open set is 
Nω-open but not conversely. 

(ii) Every Nω-open set is N-open 
but not conversely. 

The converse part of the above statements are 
proved by the following example. 

Example 4.3. Let X = {a,b,c} and τN = {0N,G1, 1N} is a 
neutrosophic topology and (X, τN) is a neutrosophic 
topological space. Take G1 = <x, (0.7, 0.6, 0.9), (0.6, 0.5, 
0.8), (0.5, 0.6, 0.4)> and A = <x, (0.8, 0.6, 0.9), (1, 0, 0.8), 
(0.2, 0.2, 0.1)>.  Then the set A is Nω-open set but not  a 
neutrosophic open and B = <x, (0.11, 0.25, 0.2), (0.89, 0.7, 
0.9), (0.55, 0.45, 0.6)>  is N-open but not a Nω-open set. 

Theorem 4.4. A neutrosophic set A is Nω-open if and 
only if F ⊆  Nint(A) where F is Ns-closed and F ⊆ A. 
Proof: Suppose that F ⊆ Nint(A) where F is Ns-closed and 
F ⊆ A. Let Ac ⊆ G where G is Ns-open. Then Gc ⊆ A and
Gc is Ns-closed. Therefore Gc ⊆ Nint(A). Since Gc ⊆
Nint(A), we have (Nint(A))c ⊆ G. This implies Ncl((A)c) ⊆ G. Thus Ac is Nω-closed. Hence A is Nω-open.
Conversely, suppose that A is Nω-open, F ⊆ A and F is Ns-
closed. Then Fc is Ns-open and Ac ⊆ Fc. Therefore
Ncl((A)c) ⊆ Fc. But Ncl((A)c) = (Nint(A))c. Hence F ⊆ 
Nint(A). 

Theorem 4.5. A neutrosophic set A is Nω-open in X if 
and only if G = X whenever G is Ns-open and 
(Nint(A)∪Ac) ⊆ G. 
Proof: Let A be a Nω-open, G be Ns-open and 
(Nint(A)∪Ac) ⊆ G. This implies Gc ⊆ (Nint(A))c ∩((A)c)c 
= (Nint(A))c – Ac = Ncl((A)c) – Ac. Since Ac is Nω-closed
and Gc is Ns-closed, by Theorem 3.15, it follows that Gc =
ϕ. Therefore X = G. 
Conversely, suppose that F is Ns-closed and F ⊆ A. Then 
Nint(A) ∪ Ac ⊆ Nint(A) ∪ Fc. This implies Nint(A) ∪ Fc = 
X and hence F ⊆ Nint(A). Therefore A is Nω-open. 

Theorem 4.6. If Nint(A)  ⊆ B ⊆ A and if A is Nω-open, 
then B is Nω-open. 
Proof:  Suppose that Nint(A) ⊆ B ⊆ A and A is Nω-open. 
Then Ac ⊆Bc ⊆ Ncl(Ac) and since Ac is Nω-closed. We
have by Theorem 3.15, Bc is Nω-closed. Hence B is Nω-
open. 

Theorem 4.7. A neutrosophic set A is Nω-closed, if and 
only if Ncl(A) – A is Nω-open. 
Proof: Suppose that A is Nω-closed. Let F  ⊆ Ncl(A) – A 
Where F is  Ns-closed. By Theorem 3.15, F = ϕ. Therefore 
F ⊆ Nint((Ncl(A) – A) and by Theorem 4.4, we have  
Ncl(A) – A is Nω-open.  
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Conversely, let A ⊆ G where G is a Ns-open set. Then 
Ncl(A) ∩ Gc ⊆ Ncl(A) ∩ Ac = Ncl(A) – A. Since Ncl(A) ⊆ Gc is Ns-closed and Ncl(A) – A is Nω-open. By Theorem
4.4, we have Ncl(A) ∩ Gc ⊆ Nint(Ncl(A) – A) = ϕ. Hence 
A is Nω-closed. 

Theorem 4.8. For a subset A⊆X the following are 
equivalent: 

(i) A is Nω-closed. 
(ii) Ncl(A) – A contains no non-empty Ns-

closed set. 
(iii) Ncl(A) – A is Nω-open set. 

Proof: Follows from Theorem 3.15 and Theorem 4.7. 

5. Nω-closure and Properties of Nω-closure

In this section, we introduce the concept of Nω-
closure and some of their properties. 

Definition 5.1. The  Nω-closure (briefly Nωcl(A)) of a 
subset A of a neutrosophic topological space (X, τN) is 
defined as follows:  
Nωcl(A) = ∩ { F ⊆ X / A ⊆ F and F is Nω-closed in (X, 
τN)}. 

Theorem 5.2. Let A be any subset of (X, τN). If A is Nω-
closed in (X, τN) then A = Nωcl(A). 
Proof: By definition, Nωcl(A) = ∩ { F ⊆ X / A ⊆ F and F 
is a Nω-closed in (X, τN)} and we know that A ⊆ A. Hence 
A = Nωcl(A). 

Remark 5.3. For a subset A of (X, τN), A ⊆ Nωcl(A) ⊆ 
Ncl(A). 

Theorem 5.4. Let A and B be subsets of  (X, τN). Then 
the following statements are true: 

i. Nωcl(A) = ϕ and Nωcl(A) = X.
ii. If A ⊆ B, then Nωcl(A) ⊆ Nωcl(B)

iii. Nωcl(A) ∪ Nωcl (B) ⊂ Nωcl (A ∪ B)
iv. Nωcl (A ∩ B) ⊂ Nωcl(A)  ∩ Nωcl (B)
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Abstract. By using Neutrosophy and Quad-stage Method, 
the expansions of comparative literature include: com-
parative social sciences clusters, comparative natural sci-
ences clusters, comparative interdisciplinary sciences 
clusters, and so on. Among them, comparative social sci-
ences clusters include: comparative literature, compara-
tive history, comparative philosophy, and so on; compar-
ative natural sciences clusters include: comparative 
mathematics, comparative physics, comparative chemis-
try, comparative medicine, comparative biology, and so 
on. In addition, comparative literature itself can also be 
expanded. Under the two main categories of research and 

practice, comparative literature can be expanded into: 
comparative literature research, comparative literature 
practice (including comparative essay, comparative fic-
tion, comparative poetry, comparative drama, and so on), 
comparative literature research and practice, and so on. 
This paper discusses the applications of comparative 
method in comparative sciences clusters and their various 
branches. Point out that in the existing fields of social 
sciences and natural sciences, many sprouts of compara-
tive sciences clusters can be found, but a wide range of 
the achievements of comparative sciences clusters, still 
are the virgin lands to be developed. 

Keywords: Comparative, comparative sciences clusters, comparative social sciences clusters, comparative natural sciences 
clusters, comparative interdisciplinary sciences clusters, comparative literature, comparative history, comparative philosophy, 
comparative mathematics, comparative physics, comparative chemistry, comparative medicine, comparative biology, compar-
ative essay, comparative fiction, comparative poetry, comparative drama.

1 Introduction

Comparative literature is the literary branch running 
comparative study (research) about the relationship be-
tween two or more kinds of literatures. It consists of influ-
ence study, parallel study, interdisciplinary study, and so 
on. 

At present, the research method of comparative litera-
ture has expanded into other areas, and establish many dis-
ciplines such as comparative sociology, comparative juris-
prudence, and so on. But the expansion is not enough. In 
this paper, we try to expand comparative literature into 
comparative sciences clusters (including comparative so-
cial sciences clusters, comparative natural sciences clusters, 
comparative interdisciplinary sciences clusters, and so on).  

2 Basic Contents of Neutrosophy and Basic Con-
tents of Quad-stage  

Neutrosophy is proposed by Prof. Florentin 
Smarandache in 1995. 

Neutrosophy is a new branch of philosophy that studies 
the origin, nature, and scope of neutralities, as well as their 
interactions with different ideational spectra. 

This theory considers every notion or idea <A> togeth-
er with its opposite or negation <Anti-A> and the spectrum 

of "neutralities" <Neut-A> (i.e. notions or ideas located be-
tween the two extremes, supporting neither <A> nor <An-
ti-A>). The <Neut-A> and <Anti-A> ideas together are re-
ferred to as <Non-A>. 

Neutrosophy is the base of neutrosophic logic, neutro-
sophic set, neutrosophic probability and statistics used in 
engineering applications (especially for software and in-
formation fusion), medicine, military, cybernetics, and 
physics. 

Neutrosophic Logic is a general framework for unifica-
tion of many existing logics, such as fuzzy logic (especial-
ly intuitionistic fuzzy logic), paraconsistent logic, intui-
tionistic logic, etc. The main idea of NL is to characterize 
each logical statement in a 3D Neutrosophic Space, where 
each dimension of the space represents respectively the 
truth (T), the falsehood (F), and the indeterminacy (I) of 
the statement under consideration, where T, I, F are stand-
ard or non-standard real subsets of ]-0, 1+[ without neces-
sarily connection between them. 

More information about Neutrosophy can be found in 
references [1，2]. 

Quad-stage (Four stages) is presented in reference [3], 
it is the expansion of Hegel’s triad-stage (triad thesis, an-
tithesis, synthesis of development). The four stages are 
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"general theses", "general antitheses", "the most important 
and the most complicated universal relations", and "general 
syntheses". They can be stated as follows. 

The first stage, for the beginning of development (the-
sis), the thesis should be widely, deeply, carefully and re-
peatedly contacted, explored, analyzed, perfected and so 
on; this is the stage of general theses. It should be noted 
that, here the thesis will be evolved into two or three, even 
more theses step by step. In addition, if in other stage we 
find that the first stage’s work is not yet completed, then 
we may come back to do some additional work for the first 
stage. 

The second stage, for the appearance of opposite (an-
tithesis), the antithesis should be also widely, deeply, care-
fully and repeatedly contacted, explored, analyzed, per-
fected and so on; this is the stage of general antitheses. It 
should be also noted that, here the antithesis will be 
evolved into two or three, even more antitheses step by 
step. 

The third stage is the one that the most important and 
the most complicated universal relations, namely the seed-
time inherited from the past and carried on for the future. 
Its purpose is to establish the universal relations in the 
widest scope. This widest scope contains all the regions re-
lated and non-related to the "general theses", "general an-
titheses", and the like. This stage's foundational works are 
to contact, grasp, discover, dig, and even create the oppor-
tunities, pieces of information, and so on as many as possi-
ble. The degree of the universal relations may be different, 
theoretically its upper limit is to connect all the existences, 
pieces of information and so on related to matters, spirits 
and so on in the universe; for the cases such as to create 
science fiction, even may connect all the existences, pieces 
of information and so on in the virtual world. Obviously, 
this stage provides all possibilities to fully use the com-
plete achievements of nature and society, as well as all the 
humanity's wisdoms in the past, present and future. There-
fore this stage is shortened as "universal relations" (for 
other stages, the universal relations are also existed, but 
their importance and complexity cannot be compared with 
the ones in this stage). 

The fourth stage, to carry on the unification and syn-
thesis regarding various opposites and the suitable pieces 
of information, factors, and so on; and reach one or more 
results which are the best or agreed with some conditions; 
this is the stage of "general syntheses". The results of this 
stage are called "synthesized second generation theses", all 
or partial of them may become the beginning of the next 
quad-stage. 

For realizing the innovations in the areas such as sci-
ence and technology, literature and art, and the like, it is a 
very useful tool to combine neutrosophy with quad-stage 
method. For example, in reference [4], expanding Newton 
mechanics with neutrosophy and quad-stage method, and 
establishing New Newton Mechanics taking law of conser-

vation of energy as unique source law; in reference [5], ne-
gating four color theorem with neutrosophy and quad-stage 
method, and "the two color theorem" and "the five color 
theorem" are derived to replace "the four color theorem"; 
in reference [6], expanding Hegelian triad thesis, antithesis, 
synthesis with Neutrosophy and Quad-stage Method; in 
reference [7], interpretating and expanding Laozi’s govern-
ing a large country is like cooking a small fish with Neu-
trosophy and Quad-stage Method; in reference [8], inter-
pretating and expanding the meaning of “Yi” with Neu-
trosophy and Quad-stage Method; in reference [9], Creat-
ing Generalized and Hybrid Set and Library with Neu-
trosophy and Quad-stage Method.  

Applying Neutrosophy and Quad-stage Method, will 
significantly help us to consider all possible situations. 
Therefore, Neutrosophy and Quad-stage Method can play a 
very important role to expand comparative literature. 

3 Expanding Comparative Literature with Neu-
trosophy and Quad-stage Method 

The process of expanding comparative literature can be 
divided into four stages. 

The first stage (stage of "general theses"), for the be-
ginning of development, the thesis (namely "comparative 
literature") should be widely, deeply, carefully and repeat-
edly contacted, explored, analyzed, perfected and so on. 

Currently, "comparative literature" has become a com-
plex subject. Its research achievements absorb the research 
results of traditional world literature, as well as a variety of 
other areas even including natural science research; in fact, 
the inherent discipline bounds have been broken, and be-
yond the limitations of region and time, put the Asian-
African literature, European-American literature, and so on, 
as well as classical literature, modern literature, and so on, 
into one or more overall structures or frames. 

For example, in the research (study) of comparative lit-
erature, the literature can be compared with social sciences 
(philosophy, psychology, linguistics, history, sociology, 
anthropology, and so on), and the natural sciences (math-
ematical statistics, computer technology, system theory, in-
formation theory, and so on), as well as other artistic disci-
plines (painting, sculpture, architecture, music, film, and so 
on). 

Of course, we should also see that different scholars 
may have different viewpoints and interpretations for 
"comparative literature" and the related problems, and the 
different opinions and arguments will be endless from gen-
eration to generation. 

In the second stage (the stage of "general antitheses"), 
the opposites (antitheses) should be discussed carefully. 
Obviously, there are more than one opposites (antitheses) 
of comparative literature here. 

For example, according to the viewpoint of Neu-
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trosophy, if "comparative literature" is considered as the 
concept <A>, the opposite <Anti-A> may be: "non-
comparative literature" (such as comparative sociology, 
comparative jurisprudence, and so on); while the neutral 
(middle state) fields <Neut-A> including: "undetermined 
comparative literature" (neither "comparative literature", 
nor "non-comparative literature"; or, sometimes it is "com-
parative literature", and sometimes it is "non-comparative 
literature; and so on". 

In the third stage, considering the most important and 
the most complicated universal relations to link with 
"comparative literature". The purpose of this provision 
stage is to establish the universal relations in the widest 
scope.  

For "comparative literature", different people will have 
different research methods and findings; even if for the 
same person, at different times and in different situations, 
he or she may also apply different research methods and 
reach different research results. Therefore, pursuing the 
unique right research method and research result do not 
seem to make sense. So the advisable method of work is to 
collect all people’s research methods and research results 
from ancient times to modern times, and plus own research 
methods and research results, to form the so-called "full re-
search methods and research results", and to store up them 
as Think Tank; while once we need to apply them, then 
immediately the one or several best research methods and 
research results can be elected, or according to the infor-
mation in Think Tank and the reality to obtain one or sev-
eral best programmes temporarily, thus we can be invinci-
ble.  

Now we list some specific research methods and re-
sults. 

The first school of comparative literature in the world 
is France school. Characterized by respecting the facts, and 
emphasizing the textual studies; and the research achieve-
ments occupy a glorious page in the history of world litera-
ture. 

Later, United States school is appeared and takig "par-
allel study" as the symbol, the scholars of this school con-
sider that literature as a discipline should compare with 
other disciplines. 

At present, in United Kingdom, Russia, China and oth-
er countries, comparative literature studies have achieved 
fruitful results. 

In the fourth stage, the comprehensive results of the 
front three stages can be used to expand "comparative lit-
erature" with a variety of ways and means. Here we mainly 
according to Neutrosophy and Quad-stage method to seek 
expanded results. 

According to Neutrosophy and Quad-stage method, if 
the social sciences can be considered as <A>, then the nat-
ural sciences can be considered as the opposite <Anti-A>, 
and the interdisciplinary sciences can be considered as 
<Neut-A> (neutral A). 

Firstly, link to social sciences, "comparative literature" 
should be expanded into "comparative social sciences", or 

"comparative social sciences clusters" including compara-
tive literature, comparative history, comparative philoso-
phy, and so on. 

Secondly, link to natural sciences, "comparative litera-
ture" should be expanded into "comparative natural scienc-
es", or "comparative natural sciences clusters" including 
comparative mathematics, comparative physics, chemistry, 
comparative medicine, comparative biology, and so on. 

Thirdly, link to interdisciplinary sciences, "compara-
tive literature" should be expanded into "comparative in-
terdisciplinary sciences", or "comparative interdisciplinary 
sciences clusters" including comparative mathematical 
medicine, comparative mathematical biology, and so on. 

In addition, the "comparative literature" itself can also 
be expanded. In addition, comparative literature itself can 
also be expanded. In references [10], under the two main 
categories of research and practice, comparative literature 
can be expanded into: comparative literature research, 
comparative literature practice (Including comparative es-
say, comparative fiction, comparative poetry, comparative 
drama, and so on), comparative literature research and 
practice, and so on. For the sake of convenience of classi-
fication, and to distinguish with other forms of work, nam-
ing the essay created by comparative method as compara-
tive essay, the fiction created by comparative method as 
comparative fiction, the poetry created by comparative 
method as comparative poetry, the drama created by com-
parative method as comparative drama, and so on. 

4 Applications of comparative method in compar-
ative sciences clusters and their branches 

"Comparison" means: according to the certain stand-
ards and methodologies, to identify advantages and disad-
vantages, same and different, beauty and ugliness, and so 
on between two or more things.  

The principle of comparison: there shall be the object 
to be compared with, as well as the common comparative 
foundation, and the certain standards and methods, and so 
on; as comparing, we should try to consider all possible 
situations. 

Based on the above concepts and principles, compara-
tive method can be widely used in comparative sciences 
clusters and their various branches, and provide a variety 
of ways and broad space for development. 

Firstly we discuss the comparative objects. In com-
parative sciences clusters and their various branches, the 
comparative objects can be selected within the large range, 
the medium range, and the small range. 

Secondly we discuss the comparative standards. The 
comparative standards can be selected as: advantages and 
disadvantages, same and different, beauty and ugliness, 
and so on. As taking advantages and disadvantages as the 
comparative standard, the comparative result can be decid-
ed by experts, by ordinary scholars and readers, and by all 
the people (including experts, ordinary scholars and read-
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ers). 
As for the methods and ways for comparison, they are 

also numerous. For example, to compare according to the 
time sequence, according to the different spatial locations; 
or according to the longitudinal direction and transverse di-
rection; as well as qualitative comparison, quantitative 
comparison, macro-comparison, micro-comparison; and 
the combination of different methods and ways. 

It needs to be emphasized that, when comparing, we 
should try to consider all possible situations. This is also 
the great feature of comparative sciences clusters and their 
various branches. 

As for how to consider all possible situations, we will 
discuss this problem in another paper. 

It should be noted that, in the existing fields of social 
sciences and natural sciences, many sprouts of comparative 
sciences clusters can be found, but a wide range of the 
achievements of comparative sciences clusters, still are the 
virgin lands to be developed. 

Conclusions

Applying comparative methods and ways in compara-
tive sciences clusters and their various branches, will play 
an extremely important role to promote the development of 
social sciences, natural sciences, interdisciplinary sciences, 
and so on; and continue to make new achievements. 
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1 Introduction 

The concept of neutrosophic quadruple numbers was 
introduced by Florentin Smarandache [3]. It was shown in 
[3] how arithmetic operations of addition, subtraction, mul-
tiplication and scalar multiplication could be performed on 
the set of neutrosophic quadruple numbers. In this paper, 
we studied neutrosophic sets of quadruple numbers togeth-
er with binary operations of addition and multiplication 
and the resulting algebraic structures with their elementary 
properties are presented. Specially, we studied neutrosoph-
ic quadruple rings and we presented their basic properties. 

Definition 1.1 [3] 

A neutrosophic quadruple number is a number of the 
form (𝑎, 𝑏𝑇, 𝑐𝐼, 𝑑𝐹), where 𝑇, 𝐼, 𝐹 have their usual neutro-
sophic logic meanings and 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ or ℂ. The set 𝑁𝑄 
defined by 𝑁𝑄 = {(𝑎, 𝑏𝑇, 𝑐𝐼, 𝑑𝐹 ) ∶  𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ or ℂ} (1) 
is called a neutrosophic set of quadruple numbers. For a 
neutrosophic quadruple number (𝑎, 𝑏𝑇, 𝑐𝐼, 𝑑𝐹), represent-
ing any entity which may be a number, an idea, an object, 
etc., 𝑎 is called the known part and (𝑏𝑇, 𝑐𝐼, 𝑑𝐹) is called 
the unknown part. 

Definition 1.2 

Let 𝑎 =  (𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹), 𝑏 =  (𝑏1, 𝑏2𝑇, 𝑏3𝐼, 𝑏4𝐹 ) ∈ 𝑁𝑄. 
We define the following: 𝑎 + 𝑏 = (2) (𝑎1 + 𝑏1, (𝑎2 + 𝑏2)𝑇, (𝑎3 + 𝑏3)𝐼, (𝑎4 + 𝑏4)𝐹) 𝑎 − 𝑏 = (3) (𝑎1 − 𝑏1, (𝑎2 − 𝑏2)𝑇, (𝑎3 − 𝑏3)𝐼, (𝑎4 − 𝑏4)𝐹).

Definition 1.3 

Let 𝑎 = (𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹 ) ∈ 𝑁𝑄 
and let 𝛼 be any scalar which may be real or complex, the 
scalar product 𝛼. 𝑎 is defined by 𝛼. 𝑎 =  𝛼. (𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹 )  = (𝛼𝑎1, 𝛼𝑎2𝑇, 𝛼𝑎3𝐼, 𝛼𝑎4𝐹) (4) 

If 𝛼 = 0 , then we have 0. 𝑎 = (0, 0, 0, 0)  and for 
any non-zero scalars m  and n  and b =(𝑏1, 𝑏2T, 𝑏3I, 𝑏4F), we have:(𝑚 + 𝑛)𝑎 = 𝑚𝑎 + 𝑛𝑎, 𝑚(𝑎 + 𝑏) = 𝑚𝑎 + 𝑚𝑏, 𝑚𝑛(𝑎) = 𝑚(𝑛𝑎), −𝑎 = (−𝑎1, −𝑎2𝑇, −𝑎3𝐼, −𝑎4𝐹).

Definition 1.4 [3] [Absorbance Law] 

Let 𝑋  be a set endowed with a total order 𝑥 <  𝑦 , 
named “x prevailed by y” or “x less strong than y” or “x 
less preferred than y”. 𝑥 ≤ 𝑦 is considered as “𝑥 prevailed 
by or equal to 𝑦” or “𝑥 less strong than or equal to 𝑦” or “𝑥 
less preferred than or equal to 𝑦”. 

For any elements 𝑥, 𝑦 ∈ 𝑋, with 𝑥 ≤ 𝑦, absorbance law 
is defined as 𝑥 ∙ 𝑦 =  𝑦 ∙ 𝑥 =  absorb(𝑥, 𝑦) =  max{𝑥, 𝑦}  =  𝑦 (5) 
which means that the bigger element absorbs the smaller 
element (the big fish eats the small fish). It is clear from (5) 
that 𝑥 ∙ 𝑥 = 𝑥2 = 𝑎𝑏𝑠𝑜𝑟𝑏(𝑥, 𝑥) = 𝑚𝑎𝑥{𝑥, 𝑥} = 𝑥 (6) 
and 𝑥1 ∙ 𝑥2 ··· 𝑥𝑛  =  𝑚𝑎𝑥{𝑥1, 𝑥2,··· , 𝑥𝑛}. (7) 
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Analogously, if 𝑥 >  𝑦, we say that “𝑥 prevails to 𝑦” or “𝑥 
is stronger than 𝑦” or “𝑥 is preferred to 𝑦”. Also, if 𝑥≥𝑦, 
we say that “𝑥 prevails or is equal to 𝑦” or “𝑥 is stronger 
than or equal to 𝑦” or “𝑥 is preferred or equal to 𝑦”. 

Definition 1.5 

Consider the set {𝑇, 𝐼, 𝐹}. Suppose in an optimistic way 
we consider the prevalence order 𝑇 > 𝐼 > 𝐹 . Then we 
have: 𝑇𝐼 = 𝐼𝑇 = max{𝑇, 𝐼} = 𝑇, (8) 𝑇𝐹 = 𝐹𝑇 = max{𝑇, 𝐹} = 𝑇, (9) 𝐼𝐹 = 𝐹𝐼 = max{𝐼, 𝐹} = 𝐼, (10) 𝑇𝑇 = 𝑇2 =  𝑇, (11) 𝐼𝐼 = 𝐼2 = 𝐼,  (12) 𝐹𝐹 = 𝐹2 = 𝐹. (13) 

Analogously, suppose in a pessimistic way we consider 
the prevalence order 𝑇 <  𝐼 < 𝐹. Then we have: 𝑇𝐼 =  𝐼𝑇 =  𝑚𝑎𝑥{𝑇, 𝐼}  =  𝐼,   (14) 𝑇𝐹 =  𝐹𝑇 =  𝑚𝑎𝑥{𝑇, 𝐹}  =  𝐹, (15) 𝐼𝐹 =  𝐹𝐼 =  𝑚𝑎𝑥{𝐼, 𝐹}  =  𝐹,   (16) 𝑇𝑇 =  𝑇2  =  𝑇,  (17) 𝐼𝐼 =  𝐼2  =  𝐼,  (18) 𝐹𝐹 =  𝐹2  =  𝐹.  (19) 

Definition 1.6 

Let 𝑎 = (𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹),𝑏 = (𝑏1, 𝑏2𝑇, 𝑏3𝐼, 𝑏4𝐹) ∈ 𝑁𝑄.
 Then (20) 𝑎. 𝑏 = (𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹). (𝑏1, 𝑏2𝑇, 𝑏3𝐼, 𝑏4𝐹)=  (𝑎1𝑏1, (𝑎1𝑏2  +  𝑎2𝑏1  +  𝑎2𝑏2)𝑇, (𝑎1𝑏3 + 𝑎2𝑏3 + 𝑎3𝑏1  +  𝑎3𝑏2  +  𝑎3𝑏3)𝐼, (𝑎1𝑏4 + 𝑎2𝑏4, 𝑎3𝑏4+ 𝑎4𝑏1 + 𝑎4𝑏2  +  𝑎4𝑏3 + 𝑎4𝑏4)𝐹).

2 Main Results 

All neutrosophic quadruple numbers to be considered 
in this section will be real neutrosophic quadruple numbers 
i.e 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ  for any neutrosophic quadruple number(𝑎, 𝑏𝑇, 𝑐𝐼, 𝑑𝐹) ∈ 𝑁𝑄. 

Theorem 2.1 

 (𝑁𝑄, +) is an abelian group. 

Proof. 
Suppose that 𝑎 = (𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹),𝑏 = (𝑏1, 𝑏2𝑇, 𝑏3𝐼, 𝑐 = (𝑐1, 𝑐2𝑇, 𝑐3𝐼, 𝑐4𝐹 ∈ 𝑁𝑄

are arbitrary. 
It can easily be shown that 𝑎 + 𝑏 = 𝑏 + 𝑎 ∙ 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 ∙ 𝑎 + (0,0,0,0) = (0,0,0,0) = 𝑎 

and 𝑎 + (−𝑎) = −𝑎 + 𝑎 = (0,0,0,0). 
Thus, 0 = (0,0,0,0) is the additive identity element in (𝑁𝑄, +) and for any 𝑎 ∈ 𝑁𝑄, −𝑎  is the additive inverse. 

Hence, (𝑁𝑄, +) is an abelian group. 

Theorem 2.2 

 (𝑁𝑄, . ) is a commutative monoid. 

Proof. 
Let 𝑎 = (𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹),𝑏 = (𝑏1, 𝑏2𝑇, 𝑏3𝐼, 𝑐 = (𝑐1, 𝑐2𝑇, 𝑐3𝐼, 𝑐4𝐹 

be arbitrary elements in 𝑁𝑄. It can easily be shown that 𝑎𝑏 = 𝑏𝑎 ∙ 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐 ∙ 𝑎 ∙ (1, 0, 0, 0) = 𝑎. 
Thus, 𝑒 = (1, 0, 0, 0) is the multiplicative identity ele-

ment in (𝑁𝑄, . ). Hence, (𝑁𝑄, . ) is a commutative monoid. 

Theorem 2.3 

 (𝑁𝑄, . ) is not a group. 

Proof. 
Let 𝑥 = (𝑎, 𝑏𝑇, 𝑐𝐼, 𝑑𝐹) 

be any arbitrary element in 𝑁𝑄. 
Since we cannot find any element 𝑦 = (𝑝, 𝑞𝑇, 𝑟𝐼, 𝑠𝐹) ∈𝑁𝑄  such that 𝑥𝑦 = 𝑦𝑥 = 𝑒 = (1, 0, 0, 0),  it follows 

that 𝑥 − 1 does not exist in 𝑁𝑄 for any given 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ 
and consequently, (𝑁𝑄, . ) cannot be a group. 

Example 1. 
Let 𝑋 = {(𝑎, 𝑏𝑇, 𝑐𝐼, 𝑑𝐹) ∶  𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ𝑛}. Then (𝑋, +)

is an abelian group. 

Example 2. 
Let 

(𝑀2×2, . ) = { [(𝑎, 𝑏𝑇, 𝑐𝐼, 𝑑𝐹) (𝑒, 𝑓𝑇, 𝑔𝐼, ℎ𝐹)(𝑖, 𝑗𝑇, 𝑘𝐼, 𝑙𝐹) (𝑚, 𝑛𝑇, 𝑝𝐼, 𝑞𝐹)] :a, b, c, d, e, f, g, h, i, j, k, l, m, n, p, q ∈ ℝ} 

Then (𝑀2×2, . ) is a non-commutative monoid.

Theorem 2.4 

 (𝑁𝑄, +, . ) is a commutative ring. 
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Proof. 
It is clear that (𝑁𝑄, +) is an abelian group and (𝑁𝑄, . ) 

is a semigroup. To complete the proof, suppose that  𝑎 = (𝑎1, 𝑎2𝑇, 𝑎3𝐼, 𝑎4𝐹),𝑏 = (𝑏1, 𝑏2𝑇, 𝑏3𝐼, 𝑐 = (𝑐1, 𝑐2𝑇, 𝑐3𝐼, 𝑐4𝐹 ∈ 𝑁𝑄
are arbitrary. It can easily be shown that 𝑎(𝑏 + 𝑐) = 𝑎𝑏 +𝑎𝑐, (𝑏 +  𝑐)𝑎 = 𝑏𝑎 + 𝑐𝑎  and 𝑎𝑏 = 𝑏𝑎 . Hence, (𝑁𝑄, +, . ) 
is a commutative ring. 

From now on, the ring (𝑁𝑄, +, . ) will be called neutro-
sophic quadruple ring and it will be denoted by 𝑁𝑄𝑅. The 
zero element of 𝑁𝑄𝑅 will be denoted by (0, 0, 0, 0) and the 
unity of 𝑁𝑄𝑅 will be denoted by (1, 0, 0, 0). 

Example 3. 
(i) Let 𝑋 be as defined in EXAMPLE 1. Then (𝑋, +, . ) 

is a commutative neutrosophic quadruple ring called a neu-
trosophic quadruple ring of integers modulo 𝑛.  

It should be noted that 𝑁𝑄𝑅(ℤ𝑛) has 4𝑛 elements and
for 𝑁𝑄𝑅(ℤ2)we have𝑁𝑄𝑅(ℤ2) == {(0,0,0,0), (1,0,0,0), (0, 𝑇, 0,0), (0,0, 𝐼, 0), (0,0,0, 𝐹),(0, 𝑇, 𝐼, 𝐹), (0,0, 𝐼, 𝐹), (0, 𝑇, 𝐼, 0), (0, 𝑇, 0, 𝐹), (1, 𝑇, 0,0),(1,0, 𝐼, 0), (1,0,0, 𝐹), (1, 𝑇, 0, 𝐹), (1,0, 𝐼, 𝐹), (1, 𝑇, 𝐼, 0),(1, 𝑇, 𝐼, 𝐹)}. 

(ii) Let 𝑀2×2  be as defined in EXAMPLE 2. Then(𝑀2×2, . )  is a non-commutative neutrosophic quadruple
ring. 

Definition 2.5 

Let 𝑁𝑄𝑅 be a neutrosophic quadruple ring.  
(i) An element 𝑎 ∈ 𝑁𝑄𝑅 is called idempotent if 𝑎2 = 𝑎. 
(ii) An element 𝑎 ∈ 𝑁𝑄𝑅  is called nilpotent if there 𝑒𝑥𝑖𝑠𝑡𝑠 𝑛 ∈ 𝑍+ such that 𝑎𝑛 = 0. 

Example 4. 
(i) In 𝑁𝑄𝑅(ℤ2), (1, 𝑇, 𝐼, 𝐹) and (1, 𝑇, 𝐼, 0) are idempo-

tent elements.  
(ii) In 𝑁𝑄𝑅(ℤ4), (2,2𝑇, 2𝐼, 2𝐹) is a nilpotent element.

Definition 2.6 

Let 𝑁𝑄𝑅 be a neutrosophic quadruple ring. 𝑁𝑄𝑅  is called a neutrosophic quadruple integral do-
main if for 𝑥, 𝑦 ∈ 𝑁𝑄𝑅 , 𝑥𝑦 = 0  implies that 𝑥 = 0 
or 𝑦 = 0.  

Example 5. 𝑁𝑄𝑅(ℤ) the neutrosophic quadruple ring of integers is 
a neutrosophic quadruple integral domain. 

Definition 2.7 

Let 𝑁𝑄𝑅 be a neutrosophic quadruple ring. 
An element 𝑥 ∈ 𝑁𝑄𝑅 is called a zero divisor if there 

exists a nonzero element 𝑦 ∈ 𝑁𝑄𝑅 such that 𝑥𝑦 = 0. For 
example in 𝑁𝑄𝑅(ℤ2) , (0, 0, 𝐼, 𝐹)  and (0, 𝑇, 𝐼, 0)  are zero
divisors even though ℤ2 has no zero divisors.

This is one of the distinct features that characterize 
neutrosophic quadruple rings. 

Definition 2.8 

Let 𝑁𝑄𝑅 be a neutrosophic quadruple ring and let 𝑁𝑄𝑆 
be a nonempty subset of 𝑁𝑄𝑅. Then 𝑁𝑄𝑆 is called a neu-
trosophic quadruple subring of 𝑁𝑄𝑅 if (𝑁𝑄𝑆, +, . ) is itself 
a neutrosophic quadruple ring. For example, 𝑁𝑄𝑅(𝑛ℤ) is a 
neutrosophic quadruple subring of 𝑁𝑄𝑅(ℤ)  for 𝑛 =1, 2, 3,···.
Theorem 2.9 

Let 𝑁𝑄𝑆 be a nonempty subset of a neutrosophic quad-
ruple ring 𝑁𝑄𝑅 . Then 𝑁𝑄𝑆  is a neutrosophic quadruple 
subring if and only if for all 𝑥, 𝑦 ∈ 𝑁𝑄𝑆 , the following 
conditions hold:  

(i) 𝑥 − 𝑦 ∈ 𝑁𝑄𝑆 
and 

(ii) 𝑥𝑦 ∈ 𝑁𝑄𝑆. 
Proof. 

Same as the classical case and so omitted. 

Definition 2.10 

Let 𝑁𝑄𝑅 be a neutrosophic quadruple ring. 
Then the set  𝑍(𝑁𝑄𝑅)  =  {𝑥 ∈ 𝑁𝑄𝑅: 𝑥𝑦 = 𝑦𝑥 ∀ 𝑦 ∈ 𝑁𝑄𝑅}

is called the centre of 𝑁𝑄𝑅. 

Theorem 2.11 

Let 𝑁𝑄𝑅 be a neutrosophic quadruple ring. 
Then 𝑍(𝑁𝑄𝑅) is a neutrosophic quadruple subring of 𝑁𝑄𝑅. 

Proof. 
Same as the classical case and so omitted. 

Theorem 2.12 

Let 𝑁𝑄𝑅  be a neutrosophic quadruple ring and let 𝑁𝑄𝑆𝑗  be families of neutrosophic quadruple subrings of𝑁𝑄𝑅. Then ⋂ 𝑛𝑗=1 𝑁𝑄𝑆𝑗
is a neutrosophic quadruple subring of 𝑁𝑄𝑅. 

Definition 2.13 

Let 𝑁𝑄𝑅 be a neutrosophic quadruple ring. 
If there exists a positive integer 𝑛 such that 𝑛𝑥 = 0 for 
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each 𝑥 ∈ 𝑁𝑄𝑅, then the smallest such positive integer is 
called the characteristic of 𝑁𝑄𝑅. If no such positive integer 
exists, then 𝑁𝑄𝑅  is said to have characteristic zero. For 
example, 𝑁𝑄𝑅(ℤ)  has characteristic zero and 𝑁𝑄𝑅(ℤ𝑛)
has characteristic 𝑛. 

Definition 2.14 

Let 𝑁𝑄𝐽 be a nonempty subset of a neutrosophic quad-
ruple ring 𝑁𝑄𝑅 . 𝑁𝑄𝐽  is called a neutrosophic quadruple 
ideal of 𝑁𝑄𝑅 if for all x, y ∈ 𝑁𝑄𝐽, 𝑟 ∈ 𝑁𝑄𝑅, the following 
conditions hold:  

(i) 𝑥 − 𝑦 ∈ 𝑁𝑄𝐽. 
(ii) 𝑥𝑟 ∈ 𝑁𝑄𝐽 and 𝑟𝑥 ∈ 𝑁𝑄𝐽. 

Example 6. 
(i) 𝑁𝑄𝑅(3ℤ)  is a neutrosophic quadruple ideal of 𝑁𝑄𝑅(ℤ). 
(ii) Let 𝑁𝑄𝐽 = {(0,0,0,0), (2,0,0,0), (0,2𝑇, 2𝐼, 2𝐹), (2,2𝑇, 2𝐼, 2𝐹)}

be a subset of 𝑁𝑄𝑅(ℤ4) . Then 𝑁𝑄𝐽  is a neutrosophic
quadruple ideal. 

Theorem 2.15 

Let 𝑁𝑄𝐽 and 𝑁𝑄𝑆 be neutrosophic quadruple ideals of 𝑁𝑄𝑅 and let {𝑁𝑄𝐽𝑗}𝑗=1𝑛
be a family of neutrosophic quadruple ideals of 𝑁𝑄𝑅 . 
Then:  

(i) 𝑁𝑄𝐽 + 𝑁𝑄𝐽 = 𝑁𝑄𝐽.  
(ii) 𝑥 + 𝑁𝑄𝐽 = 𝑁𝑄𝐽 for all 𝑥 ∈ 𝑁𝑄𝐽. 
(iii) ⋂ 𝑛𝑗=1 𝑁𝑄𝑆𝑗

is a neutrosophic quadruple ideal of 𝑁𝑄𝑅. 
(iv) 𝑁𝑄𝐽 + 𝑁𝑄𝑆 is a neutrosophic quadruple ideal of 𝑁𝑄𝑅. 

Definition 2.16 

Let 𝑁𝑄𝐽  be a neutrosophic quadruple ideal of 𝑁𝑄𝑅 . 
The set  𝑁𝑄𝑅/𝑁𝑄𝐽 = {𝑥 +  𝑁𝑄𝐽 ∶  𝑥 ∈  𝑁𝑄𝑅} 
is called a neutrosophic quadruple quotient ring. 

If 𝑥 + 𝑁𝑄𝐽 and 𝑦 + 𝑁𝑄𝐽 are two arbitrary elements of 𝑁𝑄𝑅/𝑁𝑄𝐽 and if ⊕ and ⊙ are two binary operations on 𝑁𝑄𝑅/𝑁𝑄𝐽 defined by:  (𝑥 +  𝑁𝑄𝐽) ⊕ (𝑦 + 4 𝑁𝑄𝐽)  =  (𝑥 +  𝑦)  +  𝑁𝑄𝐽, (𝑥 +  𝑁𝑄𝐽) ⊙ (𝑦 +  𝑁𝑄𝐽)  =  (𝑥𝑦)  +  𝑁𝑄𝐽,

it can be shown that ⊕ and ⊙ are well defined and that 
(NQR/NQJ, ⊕, ⊙) is a neutrosophic quadruple ring.  

Example 7. 
Consider the neutrosophic quadruple ring 𝑁𝑄𝑅(ℤ) and 

its neutrosophic quadruple ideal 𝑁𝑄𝑅(2ℤ). Then 𝑁𝑄𝑅(ℤ)𝑁𝑄𝑅(2ℤ) = {𝑁𝑄𝑅(2ℤ), (1,0,0,0)  +  𝑁𝑄𝑅(2ℤ), (0, 𝑇, 0,0) + 𝑁𝑄𝑅(2ℤ), (0,0, 𝐼, 0) +  𝑁𝑄𝑅(2ℤ), (0,0,0, 𝐹)+ 𝑁𝑄𝑅(2ℤ), (0, 𝑇, 𝐼, 𝐹) +  𝑁𝑄𝑅(2ℤ), (0,0, 𝐼, 𝐹) + 𝑁𝑄𝑅(2ℤ), (0, 𝑇, 𝐼, 0) +  𝑁𝑄𝑅(2ℤ), (0, 𝑇, 0, 𝐹)+ 𝑁𝑄𝑅(2ℤ), (1, 𝑇, 0,0) +  𝑁𝑄𝑅(2ℤ), (1,0, 𝐼, 0) + 𝑁𝑄𝑅(2ℤ), (1,0,0, 𝐹) +  𝑁𝑄𝑅(2ℤ), (1, 𝑇, 0, 𝐹)+ 𝑁𝑄𝑅(2ℤ), (1,0, 𝐼, 𝐹) +  𝑁𝑄𝑅(2ℤ), (1, 𝑇, 𝐼, 0)  + 𝑁𝑄𝑅(2ℤ), (1, 𝑇, 𝐼, 𝐹)  +  𝑁𝑄𝑅(2ℤ)}.
which is clearly a neutrosophic quadruple ring. 

Definition 2.17 
Let 𝑁𝑄𝑅  and 𝑁𝑄𝑆  be two neutrosophic quadruple 

rings and let 𝜑 ∶  𝑁𝑄𝑅 →  𝑁𝑄𝑆 be a mapping defined for 
all 𝑥, 𝑦 ∈  𝑁𝑄𝑅 as follows:  

(i) 𝜑(𝑥 +  𝑦)  =  𝜑(𝑥)  +  𝜑(𝑦). 
(ii) 𝜑(𝑥𝑦)  =  𝜑(𝑥)𝜑(𝑦). 
(iii) 𝜑(𝑇)  =  𝑇, 𝜑(𝐼)  =  𝐼 and 𝜑(𝐹)  =  𝐹. 
(iv) 𝜑(1,0,0,0)  =  (1,0,0,0). 
Then 𝜑 is called a neutrosophic quadruple homomor-

phism. Neutrosophic quadruple monomorphism, endomor-
phism, isomorphism, and other morphisms can be defined 
in the usual way.  

Definition 2.18 

Let 𝜑 ∶  𝑁𝑄𝑅 →  𝑁𝑄𝑆  be a neutrosophic quadruple 
ring homomorphism.  

(i) The image of 𝜑 denoted by 𝐼𝑚𝜑 is defined by the 
set 𝐼𝑚𝜑 =  {𝑦 ∈  𝑁𝑄𝑆 ∶  𝑦 =  𝜑(𝑥) , for some 𝑥 ∈ 𝑁𝑄𝑅}.

(ii) The kernel of 𝜑 denoted by 𝐾𝑒𝑟𝜑 is defined by the 
set 𝐾𝑒𝑟𝜑 =  {𝑥 ∈  𝑁𝑄𝑅 ∶  𝜑(𝑥)  =  (0,0,0,0)}.  
Theorem 2.19 

Let 𝜑 ∶  𝑁𝑄𝑅 →  𝑁𝑄𝑆  be a neutrosophic quadruple 
ring homomorphism. Then:  

(i) 𝐼𝑚𝜑 is a neutrosophic quadruple subring of 𝑁𝑄𝑆. 
(ii) 𝐾𝑒𝑟𝜑 is not a neutrosophic quadruple ideal of 𝑁𝑄𝑅. 

Proof. 
(i) Clear. 
(ii) Since 𝑇, 𝐼, 𝐹 cannot have image (0,0,0,0) under 𝜑, 

it follows that the elements (0, 𝑇, 0,0), (0,0, 𝐼, 0), (0,0,0, 𝐹) 
cannot be in the 𝐾𝑒𝑟𝜑. Hence, 𝐾𝑒𝑟𝜑 cannot be a neutro-
sophic quadruple ideal of 𝑁𝑄𝑅.  
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Example 8. 
Consider the projection map 𝜑 ∶  𝑁𝑄𝑅(ℤ2) × 𝑁𝑄𝑅(ℤ2)  →  𝑁𝑄𝑅(ℤ2) 

defined by 𝜑(𝑥, 𝑦)  =  𝑥 for all 𝑥, 𝑦 ∈  𝑁𝑄𝑅(ℤ2).
It is clear that 𝜑  is a neutrosophic quadruple homo-

morphism and its kernel is given as 𝐾𝑒𝑟𝜑 = {{((0,0,0,0), (0,0,0,0)), ((0,0,0,0), (1,0,0,0)), ((0,0,0,0), (0, 𝑇, 0,0)), ((0,0,0,0), (0,0, 𝐼, 0)),  ((0,0,0,0), (0,0,0, 𝐹)), ((0,0,0,0), (0, 𝑇, 𝐼, 𝐹)), ((0,0,0,0), (0,0, 𝐼, 𝐹)), ((0,0,0,0), (0, 𝑇, 𝐼, 0)),  ((0,0,0,0), (0, 𝑇, 0, 𝐹)), ((0,0,0,0), (1, 𝑇, 0,0)), ((0,0,0,0), (1,0, 𝐼, 0)), ((0,0,0,0), (1,0,0, 𝐹)),  ((0,0,0,0), (1, 𝑇, 0, 𝐹)), ((0,0,0,0), (1,0, 𝐼, 𝐹)), ((0,0,0,0), (1, 𝑇, 𝐼, 0)), ((0,0,0,0), (1, 𝑇, 𝐼, 𝐹))}. 
Theorem 2.20 
  Let φ: NQR(Z) → NQR(Z)/NQR(nZ) be a mapping de-
fined by φ(x) = x + NQR(nZ) for all x ∈ NQR(Z) and n = 1, 2, 3, … . Then φ is not a neutrosophic quadruple ring 
homomorphism. 
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Abstract: The objective of the paper ARE to introduce single-valued

trapezoidal neutrosophic numbers(SVTrNNs), which is a special

case of single-valued neutrosophic numbers and to develop a ranking

method for ranking SVTrNNs. Some operational rules as well as cut

sets of SVTrNNs have been introduced. The value and ambiguity

indices of truth, indeterminacy, and falsity membership functions of

SVTrNNs have been defined. A new ranking method has been pro-

posed by using these two indices and applied the ranking method to

multi attribute decision making problem in which the ratings of the

alternatives over the attributes are expressed in terms of TrNFNs. Fi-

nally, an illustrative example has been provided to demonstrate the

validity and applicability of the proposed approach.

Keywords: Single-valued neutrosophic number(SVNN), Single-valued trapezoidal neutrosophic number, Value index, Ambiguity index, Ranking of SVTrNNs,

Multi attribute decision making.

1 Introduction

Fuzzy set [1] is capable of dealing with imprecise or vague

information in decision making process, whose basic compo-

nent is a membership function lying in the unit interval [0, 1].

Fuzzy number [2, 3] is a fuzzy subset of real numbers rep-

resenting the expansion of assurance. Fuzzy numbers can be

used to represent vagueness in multi-attribute decision making

(MADM) [4, 5, 6, 7], data mining, pattern recognition, medical

diagnosis, etc. However, in fuzzy numbers independence of non-

membership function is not considered although it is equally im-

portant to represent imprecise numerical values in a flexible way.

Intuitionistic fuzzy number [8], a generalization of fuzzy num-

bers, can present ill-known information with membership and

non-membership function in the case where the available infor-

mation is not sufficient to be expressed with fuzzy numbers. Shu

et al.[9] defined a triangular intuitionistic fuzzy number(TIFN)

and applied to fault tree analysis on printed board circuit as-

sembly. Wang [10] extended TIFN to the trapezoidal intuition-

istic fuzzy number(TrIFN) in a similar way as that of the fuzzy

number. The concept of ranking of intuitionistic fuzzy numbers

[11, 12, 13, 14, 15] has been employed in MADM under intu-

itionistic fuzzy environment. Li [16] proposed a ranking method

for TIFNs by defining a ratio of value index to ambiguity index

of TIFNSs and applied it to MADM problem. Zeng et al.[17] ex-

tended this ranking method by incorporating TrIFN and utilized

it in MADM problems. For intuitionistic fuzzy number, indeter-

minate information is partially lost although hesitant information

is taken into account by default. Therefore, indeterminate infor-

mation should be considered in decision making process.

Smarandache [18, 19] defined neutrosophic set that can handle

indeterminate and inconsistent information. Wang et al.[20] de-

fined single valued neutrosophic set (SVNS), an instance of neu-

trosophic set, which simply represents uncertainty, imprecise, in-

complete, indeterminate and inconsistent information. However,

the domain of SVNSs is a discrete set where the truth member-

ship degrees, indeterminacy membership degrees, and the falsity

membership membership degrees are only expressed with fuzzy

concept like “very good”,“good”, “bad”, etc. Taking the uni-

verse as a real line, we can develop the concept of single val-

ued neutrosophic number (SVNN) whose domain is to be con-

sidered as a consecutive set. Hence, we can consider SVNNs as

a special case of single-valued neutrosophic sets. These numbers

can express ill-known quantity with uncertain numerical values

in decision making problems. The nature of truth membership,

indeterminacy membership, and falsity membership functions of

SVNN may have different shape such as triangular shaped, trape-

zoidal shaped, bell shaped, etc. In the present study, we present

only the case of trapezoidal shaped and leave others for future

work. We define single-valued trapezoidal neutrosophic numbers

(SVTrNN) in which its truth membership, indeterminacy mem-

bership, and falsity membership functions can be expressed as

trapezoidal fuzzy numbers. Recently, the research on SVNNs has

received a little attention and several definitions of SVNNs and

its operational rules have been proposed. Ye [21] studied multi-

ple attribute decision making problem by introducing trapezoidal

fuzzy neutrosophic set. In his study Ye [21] also defined score

function, accuracy function, and some operational rules of trape-

P. Biswas, S. Pramanik and B.C. Giri, Value and ambiguity index based ranking method of single-valued trapezoidal neutrosophic numbers and its
application to multi-attribute decision making.
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zoidal fuzzy neutrosophic sets. Biswas et al. [22] defined trape-

zoidal fuzzy neutrosophic number and their membership func-

tions. Biswas et al. [22] also proposed relative expected value

and cosine similarity measure for solving multiple attribute deci-

sion making problem.

Ranking method of SVTrNNs can play an important role

in decision making problems involving indeterminate informa-

tion which is beyond the scope of fuzzy numbers, intuitionis-

tic fuzzy numbers. Literature review reflects that little attention

has been received to the researchers regarding ranking method

of SVTrNNs. Recently, Deli and Şubaş [23] proposed a rank-

ing method for generalized SVTrNNs and presented a numeri-

cal example to solve multi-attribute decision making problem in

neutrosophic environment. In the present study, We define nor-

malized SVTrNNs and develop a ranking method of SVTrNNs

to solve multi attribute decision making problem in neutrosophic

environment.

Rest of the paper has been organized as follows: Section 2 pro-

vides some basic definitions of fuzzy sets, fuzzy numbers, single-

valued neutrosophic sets. In Section 3, we propose SVNNs,

SVTrNNs and study some of their properties. In Section 4, we

present some arithmetic operations of SVTrNNs. Section 5 is de-

voted to present the concept of value index and ambiguity index

of SVTrNNs and a ranking method of SVTrNNs. In Section 6,

we formulate MADM model with the proposed ranking method

of TrNNs. Section 7 presents an illustrative example. In Section

8, we present concluding remarks and future scope of research.

2 Preliminaries

In this Section, we recall some basic concepts of fuzzy sets, fuzzy

number, single valued neutrosophic set.

Definition 1. [1, 3] A fuzzy set Ã in a universe of discourse X is

defined by Ã={〈x, µÃ(x)〉 |x ∈ X}, where, µÃ(x): X → [0, 1]

is called the membership function of Ã and the value of µÃ(x) is

called the degree of membership for x ∈ X .

The α−cut of the fuzzy set A is the crisp set Aα given by Aα =
{x ∈ X : µA(x) ≥ α}, α ∈ [0, 1].

Definition 2. [3] A fuzzy set Ã of the real line R with membership

function µÃ(x) : R → [0, 1] is called a fuzzy number if

1. Ã is normal, i.e. there exists an element x0 such that

µÃ(x0) = 1,

2. Ã is convex, i.e. µÃ(λx1 + (1 − λ)x2) ≥
min

(

µÃ(x1), µÃ(x2)
)

for all x1, x2 ∈ R and λ ∈ [0, 1],

3. µÃ is upper semi continuous, and

4. the support of Ã, i.e. S(Ã)={x ∈ X : µÃ(x) > 0} is

bounded.

Definition 3. [2] A fuzzy number Ã is called a trapezoidal fuzzy

number(TrFN), if its membership function is defined by

µÃ(x) =



























x− a1

a2 − a1
, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4 − x

a4 − a3
, a3 ≤ x ≤ a4

0, otherwise.

Figure 1: Trapezoidal fuzzy number Ã

The TrFN Ã is denoted by the quadruplet Ã=(a1, a2, a3, a4)
where a1,a2,a3,a4 are the real numbers and a1 ≤ a2 ≤ a3 ≤
a4. The value of x at [a2, a3] gives the maximum of µÃ(x), i.e.,

µÃ(x) =1; it is the most probable value of the evaluation data.

The value of x outside the interval [a1, a4] gives the minimum

of µÃ(x), i.e., µÃ(x) = 0; it is the least probable value of the

evaluation data. Constants a1 and a4 are the lower and upper

bounds of the available area for the evaluation data. The α−cut

of TrFN Ã=(a1, a2, a3, a4) is the closed interval

Aα = [Lα(Ã), Rα(Ã)]

= [(a2 − a1)α+ a1,−(a4 − a3)α+ a4], α ∈ [0, 1].

Definition 4. [20] A single valued neutrosophic set Ã in a uni-

verse of discourse X is given by

Ã =
{

〈

x, TÃ(x), IÃ(x), FÃ(x)
〉

|x ∈ X
}

,

where, TÃ : X → [0, 1], IÃ : X → [0, 1] and FÃ : X → [0, 1],
with the condition

0 ≤ TÃ(x) + IÃ(x) + FÃ(x) ≤ 3, for all x ∈ X.

The numbers TÃ(x), IÃ(x) and FÃ(x) respectively represent the

truth membership, indeterminacy membership and falsity mem-

bership degree of the element x to the set Ã.

Definition 5. An (α, β, γ)-cut set of SVNS Ã, a crisp subset of R

is defined by

Ãα,β,γ =
{

x|TÃ(x) ≥ α, IÃ(x) ≤ β, FÃ(x) ≤ γ
}

(1)

where, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1, and 0 ≤ α+β+ γ ≤
3.

Definition 6. A single-valued neutrosophic set

Ã=
{

〈

x, TÃ(x), IÃ(x), FÃ(x)
〉

|x ∈ X
}

is called neut-

normal, if there exist at least three points x0, x1, x2 ∈ X such

that TÃ(x0) = 1, IÃ(x1) = 1, FÃ(x2) = 1.

Definition 7. A single-valued neutrosophic set

Ã=
{

〈

x, TÃ(x), IÃ(x), FÃ(x)
〉

|x ∈ X
}

is a subset of the
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real line, called neut-convex if for all x1, x2 ∈ R and λ ∈ [0, 1]
the following conditions are satisfied

1. TÃ(λx1 + (1− λ)x2) ≥ min
(

TÃ(x1), TÃ(x2)
)

;

2. IÃ(λx1 + (1− λ)x2) ≤ max
(

IÃ(x1), IÃ(x2)
)

;

3. FÃ(λx1 + (1− λ)x2) ≤ max
(

FÃ(x1), FÃ(x2)
)

.

That is Ã is neut-convex if its truth membership function is fuzzy

convex, indeterminacy membership function is fuzzy concave and

falsity membership function is fuzzy concave.

3 Single-valued neutrosophic number

and some arithmetic operations

Single valued neutrosophic set is a flexible and practical tool to

handle incomplete, indeterminate or uncertain type information.

However, it is often hard to express this information with the

truth membership degree, the indeterminacy degree, and the fal-

sity degree represented by the exact real values. Thus extension

of SVNSs is required to deal the issues.

Definition 8. A single-valued neutrosophic set

Ã=
{

〈

x, TÃ(x), IÃ(x), FÃ(x)
〉

|x ∈ X
}

, subset of the real

line, is called single-valued neutrosophic number if

1. Ã is neut-normal,

2. Ã is neut-convex,

3. TA(x) is upper semi continuous, IA(x) is lower semi con-

tinuous, and FA(x) is lower semi continuous, and

4. the support of Ã, i.e. S(Ã)={x ∈ X : TÃ(x) > 0, IÃ(x) <
1, FÃ(x) < 1} is bounded.

Thus for any SVNNs Ã, there exist twelve numbers a11, a21,

a31, a41, b11, b21, b31, b41, c11, c21, c31, c41 ∈ R such that

c11 ≤ b11 ≤ a11 ≤ c21 ≤ b21 ≤ a21 ≤ a31 ≤ b31 ≤ c31 ≤
a41 ≤ b41 ≤ c41 and the six functions TL

Ã
(x), TR

Ã
(x),IL

Ã
(x),

IR
Ã
(x),FL

Ã
(x), FR

Ã
(x) : R → [0, 1] to represent the truth mem-

bership, indeterminacy membership,and falsity membership de-

gree of Ã. The three non decreasing functions TL
Ã
(x), IL

Ã
(x),

and FL
Ã
(x) represent the left side of truth, indeterminacy, and

falsity membership functions of a SVNN Ã respectively. Simi-

larly, the three non increasing functions TR
Ã
(x), IR

Ã
(x), FR

Ã
(x)

represent the right side of truth membership, indeterminacy, and

falsity membership functions of a SVNN Ã, respectively.

Then the truth membership, indeterminacy membership and

falsity membership functions of Ã can be defined in the following

form:

TÃ(x) =



















TL
Ã
(x), a11 ≤ x ≤ a21,

1, a21 ≤ x ≤ a31,

TU
Ã
(x), a31 ≤ x ≤ a41,

0, otherwise.

(2)

IÃ(x) =



















IL
Ã
(x), b11 ≤ x ≤ b21,

1, b21 ≤ x ≤ b31,

IU
Ã
(x), b31 ≤ x ≤ b41,

0, otherwise,

(3)

FÃ(x) =



















FL
Ã
(x), c11 ≤ x ≤ c21,

1, c21 ≤ x ≤ c31,

FU
Ã
(x), c31 ≤ x ≤ c41,

0, otherwise.

(4)

The sum of three independent membership degrees of a SVNN

Ã lie between the interval [0, 3] i.e,

0 ≤ TU
Ã
(x) + IU

Ã
(x) + FU

Ã
(x) ≤ 3, x ∈ Ã.

Definition 9. A single-valued trapezoidal neutrosophic number

(SVTrNN) Ã with the set of parameters c11 ≤ b11 ≤ a11 ≤
c21 ≤ b21 ≤ a21 ≤ a31 ≤ b31 ≤ c31 ≤ a41 ≤ b41 ≤ c41 is

denoted as

Ã= 〈(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)〉
in the set of real numbers R. The truth membership, indeter-

minacy membership and falsity membership degree of Ã can be

defined as follows:

TÃ(x) =



























x− a11

a21 − a11
, a11 ≤ x ≤ a21,

1, a21 ≤ x ≤ a31,
a41 − x

a41 − a31
, a31 ≤ x ≤ a41,

0, otherwise.

(5)

IÃ(x) =































x− b11

b21 − b11
, b11 ≤ x ≤ b21,

1, b21 ≤ x ≤ b31,
x− b31

b41 − b31
, b31 ≤ x ≤ b41,

0, otherwise.

(6)

FÃ(x) =



























x− c11

c21 − c11
, c11 ≤ x ≤ c21,

1, c21 ≤ x ≤ c31,
x− c31

c41 − c31
, c31 ≤ x ≤ c41,

0, otherwise.

(7)

For a SVTrNN Ã, a21=a31 for truth membership, b21=b31
for indeterminacy membership, and c21=c31 for falsity member-

ship degree yield a single-valued triangular neutrosophic num-

bers which is a special case of SVTrNNs.
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3.1 Cuts of single-valued trapezoidal neutro-

sophic numbers

Let Ã =
〈

(a11, a21, a31, a41), (b11, b21, b31, b41),

(c11, c21, c31, c41)
〉

be the SVTrNN in the set of real numbers R,

where TÃ(x), IÃ(x), and FÃ(x) be the truth, indeterminacy and

falsity membership functions.

Definition 10. A α-cut set of SVTrNN
Ã=〈(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)〉 is

a crisp subset of R defined by Ãα=
{

x|TÃ(x) ≥ α
}

, where 0 ≤ α ≤ 1.

According to the definition of SVTrNN of Ã and Definition 1, it can

be shown that Ãα is a closed interval. This interval is denoted by

Ãα=
[

Lα(Ã), Rα(Ã)
]

and defined by

[

L
α(Ã), Rα(Ã)

]

=
[

a11 + α(a21 − a11), a41 − α(a41 − a31)
]

. (8)

Definition 11. A β-cut set of SVTrNN
Ã=〈(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)〉 is

a crisp subset of R defined by Ãβ=
{

x|TÃ(x) ≤ β
}

, where 0 ≤ β ≤ 1.

Similarly, the close interval is denoted by Ãβ=
[

Lβ(Ã), Rβ(Ã)
]

and

defined by

[

L
β(Ã), Rβ(Ã)

]

=
[

b21 + β(b21 − b11), b31 + β(b41 − b31)
]

. (9)

Definition 12. A γ-cut set of SVTrNN
Ã=〈(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)〉 is

a crisp subset of R defined by Ãα=
{

x|TÃ(x) ≤ γ
}

, where 0 ≤ γ ≤ 1.

The close interval obtained from Ã is denoted by Ãγ=
[

Lγ(Ã), Rγ(Ã)
]

and defined by

[

L
γ(Ã), Rγ(Ã)

]

=
[

c21 + γ(c21 − c11), c31 + γ(c41 − c31)
]

. (10)

The (α, β, γ)-cut set of SVTrNN
Ã=〈(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)〉
can be defined by using Eqs.(8),(9), and (10) simultaneously.

Definition 13. An (α, β, γ)-cut set of SVTrNN

Ã=〈(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)〉 is

a crisp subset of R, which is defined by

Ãα,β,γ =
{

x|TÃ(x) ≥ α, IÃ(x) ≤ β, FÃ(x) ≤ γ
}

=

{
[

L
α(Ã), Rα(Ã)

]

,
[

L
γ(Ã), Rγ(Ã)

]

,
[

L
γ(Ã), Rγ(Ã)

]

}

(11)

=











[

a11 + α(a21 − a11), a41 − α(a41 − a31)
]

,
[

b21 + β(b21 − b11), b31 + β(b41 − b31)
]

,
[

c21 + γ(c21 − c11), c31 + γ(c41 − c31)
]











(12)

where, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1, and 0 ≤ α+ β + γ ≤ 3.

We observe for the (α, β, γ)-cut set of SVTrNN Ã that

1.
dLα(Ã)

dα
> 0,

dRα(Ã)
dα

< 0 for all α ∈ [0, 1], thus L1(Ã) ≥

R1(Ã),

2.
dLβ(Ã)

dβ
< 0,

dRβ(Ã)
dβ

> 0 for all β ∈ [0, 1], thus L0(Ã) ≤

R0(Ã),

3.
dLγ(Ã)

dγ
< 0,

dRγ(Ã)
dγ

> 0 for all γ ∈ [0, 1], thus L0(Ã) ≤

R0(Ã).

4 Some arithmetic operations of single-

valued trapezoidal neutrosophic num-

bers

In this section, some arithmetic operations of SVTrNNs have been

presented by using neutrosophic extension principle and (α, β, γ)-cuts

method.

4.1 Arithmetic Operations of single-valued neu-

trosophic numbers based on extension princi-

ple

The arithmetic operation (∗) of two SVTrNNs is a mapping of an input

vectorX = [x1, x2]
T defined in the Cartesian product space R×R on to

an output y defined in the real space R. Let Ã and B̃ be two SVTrNNs,

then their outcome of arithmetic operation is also an SVTrNN defined

by the form

(

Ã ∗ B̃
)

(y) =



























(

y, sup
y=x1∗x2

[

min
(

TÃ(x1), TB̃(x1)
)

]

,

inf
y=x1∗x2

[

max
(

IÃ(x1), IB̃(x1)
)

]

,

inf
y=x1∗x2

[

max
(

FÃ(x1), FB̃(x1)
)

])

,



























. (13)

for all x1, x2 in R.

To calculate the arithmetic operation of NTrFNs, it is sufficient to

determine truth, indeterminacy and falsity membership function of re-

sultant NTrFN as

TÃ∗B̃(y) = sup
y=x1∗x2

[

min
(

TÃ(x1), TB̃(x1)
)

]

;

IÃ∗B̃(y) = inf
y=x1∗x2

[

max
(

IÃ(x1), IB̃(x1)
)

]

and FÃ∗B̃(y) = inf
y=x1∗x2

[

max
(

FÃ(x1), FB̃(x1)
)

]

.

4.2 Arithmetic operations of single-valued trape-

zoidal neutrosophic numbers based on

(α, β, γ)-cuts method

Some properties of SVTrNNs in the set of real numbers are presented

here.

Property 1. If Ã=
〈

(a11, a21, a31, a41), (b11, b21, b31, b41),

(c11, c21, c31, c41)
〉

and B̃=
〈

(a12, a22, a32, a42),
(b12, b22, b32, b42), (c12, c22, c32, c42)

〉

be two SVTrNNs in the set of

real numbers R then, C̃ = Ã⊕ B̃ is also a SVTrNN and

Ã⊕ B̃ =

〈 (a11 + a12, a21 + a22, a31 + a32, a41 + a42),

(b11 + b12, b21 + b22, b31 + b32, b41 + b42),

(c11 + c12, c21 + c22, c31 + c32, c41 + c42)

〉

. (14)

Proof. Based on the extensible principle of single valued neutrosophic

set and (α, β, γ)-cut sets of Ã and B̃ for α, β, γ ∈ [0, 1], it sufficient

to prove that Aα,β,γ + Bα,β,γ = (A + B)α,β,γ . Using Eq.(12), the

P. Biswas, S. Pramanik and B.C. Giri, Value and ambiguity index based ranking method of single-valued trapezoidal neutrosophic numbers and its
application to multi-attribute decision making.

130



Neutrosophic Sets and Systems, Vol. 12, 2016

summation of (α, β, γ)-cut sets of Ã and B̃ is

Aα,β,γ +Bα,β,γ

=







[

a11 + α(a21 − a11), a41 − α(a41 − a31)
]

,
[

b21 + β(b21 − b11), b31 + β(b41 − b31)
]

,
[

c21 + γ(c21 − c11), c31 + γ(c41 − c31)
]






(15)

+







[

a12 + α(a22 − a12), a42 − α(a42 − a32)
]

,
[

b22 + β(b22 − b12), b32 + β(b42 − b32)
]

,
[

c22 + γ(c22 − c12), c32 + γ(c42 − c32)
]







=























[

a11 + a12 + α(a21 + a22 − a11 − a12),

a41 + a42 − α(a41 + a42 − a31 − a32)
]

,
[

b21 + b22 + β(b21 + b22 − b11 − b12),

b31 + b32 + β(b41 + b42 − b31 − b32)
]

,
[

c21 + c22 + γ(c21 + c22 − c11 − c12),

c31 + c32 + γ(c41 + c42 − c31 − c32)
]























= (A+B)α,β,γ . (16)

This establishes the property.

Property 2. If Ã=
〈

(a11, a21, a31, a41), (b11, b21, b31, b41),
(c11, c21, c31, c41)

〉

be a SVTrNN in the set of real numbers R

and k be a real number then, kÃ is also a SVTrNN and

kÃ =























〈

(ka11, ka21, ka31, ka41), (kb11, kb21, kb31, b41),

(kc11, kc21, kc31, kc41)

〉

〈

(ka41, ka31, ka21, ka11), (kb41, kb31, kb21, b11),

(kc41, kc31, kc21, kc11)

〉

,

(17)

for k > 0 and k < 0 respectively.

Proof. To establish this property, it has to be proved that

kÃα,β,γ=(kÃ)α,β,γ .

From Eq.(12), the (α, β, γ)-cut sets of Ã multiplied with the real num-

ber k > 0 can be taken as

kÃα,β,γ = k







[

a11 + α(a21 − a11), a41 − α(a41 − a31)
]

,
[

b21 + β(b21 − b11), b31 + β(b41 − b31)
]

,
[

c21 + γ(c21 − c11), c31 + γ(c41 − c31)
]







=







[ka11 + α(ka21 − ka11), ka41 − α(ka41 − ka31)],

[kb21 + β(kb21 − kb11), kb31 + β(kb41 − kb31)],

[kc21 + γ(kc21 − kc11), kc31 + γ(kc41 − kc31)]







= (kÃ)α,β,γ .

Similarly, it can be shown that kÃα,β,γ=(kÃ)α,β,γ for real number k <

0. The two results for k > 0 and k < 0 prove this property.

Now we define some arithmetical operation of SVTrNN.

Definition 14. If Ã=
〈

(a11, a21, a31, a41), (b11, b21, b31, b41),
(c11, c21, c31, c41)

〉

be a SVTrNN in the set of real numbers R and k be

a real number, then the following operations are valid:

1. Ã⊕ B̃ =

〈 (a11 + a12, a21 + a22, a31 + a32, a41 + a42),

(b11 + b12, b21 + b22, b31 + b32, b41 + b42),

(c11 + c12, c21 + c22, c31 + c32, c41 + c42)

〉

2. Ã⊗ B̃ =

〈 (a11a12, a21a22, a31a32, a41a42),
(b11b12, b21b22, b31b32, b41b42),
(c11c12, c21c22, c31c32, c41c42)

〉

3. λÃ =

〈 (λa11, λa21, λa31, λa41),
(λb11, λb21, λb31, λb41),
(λc11, λc21, λc31, λc41)

〉

4. Ãλ =

〈

(aλ11, a
λ
21, a

λ
31, a

λ
41), (b

λ
11, b

λ
21, b

λ
31, b

λ
41),

(cλ11, c
λ
21, c

λ
31, c

λ
41)

〉

5 Value and ambiguity index based

ranking method for SVTrNNs

Definition 15. Let Ãα, Ãβ , and Ãγ be the α-cut, β-cut, and γ-cut sets

of a SVTrNN Ã . Then the value of truth(TÃ(x)), indeterminacy(IÃ(x)),
and falsity(TÃ(x)) membership degree of Ã are respectively defined by

VT (Ã) =

∫ 1

0

(

L
α(Ã) +R

α(Ã)
)

f(α)dα; (18)

VI(Ã) =

∫ 1

0

(

L
β(Ã) +R

β(Ã)
)

g(β)dβ; (19)

VF (Ã) =

∫ 1

0

(

L
γ(Ã) +R

γ(Ã)
)

h(γ)dγ. (20)

Weighting functions f(α), g(β) and h(γ) can be set according to na-

ture of decision making in real situations. The function f(α) = α(α ∈
[0, 1]) gives different weights to elements in different α-cut sets which

make less the contribution of the lower α-cut sets as these cut sets aris-

ing from values of TÃ(x) have a considerable amount of uncertainty.

Thus, VT (Ã) synthetically reflects the information on every membership

degree and may be regarded as a central value that represents from the

membership function point of view. Similarly, the function g(β) = 1−β
has the effect of weighting on the different β-cut sets. g(β) diminishes

the contribution of the higher β-cut sets, which is reasonable since these

cut sets arising from values of IÃ(x) have a considerable amount of

uncertainty. VT (Ã) synthetically reflects the information on every inde-

terminacy degree and may be regarded as a central value that represents

from the indeterminacy function point of view. Similarly, the function

h(γ) = 1−γ has the effect of weighting on the different γ-cut sets. g(γ)
diminishes the contribution of the higher γ-cut sets, which is reasonable

since these cut sets arising from values of FÃ(x) have a considerable

amount of uncertainty. VF (Ã) synthetically reflects the information on

every falsity degree and may be regarded as a central value that repre-

sents from the falsity membership function point of view.

Taking f(α) = α in Eq.(18), the value of truth membership function

can be obtained as:

VT =

∫ 1

0

(

LÃ(α) +RÃ(α)
)

f(α) dα

=

∫ 1

0

[

a11 + α(a21 − a11) + a41 − α(a21 − a11)
]

αdα

=
1

6

(

a11 + 2a21 + 2a31 + a41
)

. (21)

Similarly, considering g(β) = 1− β in Eq.(19), the value of indetermi-
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nacy membership function can be defined as:

VI =

∫ 1

0

(

LÃ(α) +RÃ(α)
)

g(β) dβ

=

∫ 1

0

[

b21 − γ(b21 − b11) + b31 + γ(b41 − b31)
]

(1− β)dβ

=
1

6

(

b11 + 2b21 + 2b31 + b41
)

. (22)

and by considering h(γ) = 1 − γ in Eq.(20), the value of falsity mem-

bership function is defined by

VF =

∫ 1

0

(

LÃ(γ) +RÃ(γ)
)

g(γ) dγ

=

∫ 1

0

[

c21 − γ(c21 − c11) + c31 + γ(c41 − c31)
]

(1− γ)dγ

=
1

6

(

c11 + 2c21 + 2c31 + c41
)

. (23)

Definition 16. Let Ãα, Ãβ , and Ãγ be the α-cut, β-cut, and γ-

cut sets of a SVTrNN Ã . Then the ambiguity of truth(TÃ(x)),
indeterminacy(IÃ(x)), and falsity(TÃ(x)) membership function of a

SVTrNN Ã are respectively defined by

AT (Ã) =

∫ 1

0

(

R
α(Ã)− L

α(Ã)
)

f(α)dα; (24)

AI(Ã) =

∫ 1

0

(

R
β(Ã)− L

β(Ã)
)

g(β)dβ; (25)

AF (Ã) =

∫ 1

0

(

R
γ(Ã)− L

γ(Ã)
)

h(γ)dγ. (26)

It is observed that Rα(Ã)−Lα(Ã), Rβ(Ã)−Lβ(Ã), and Rγ(Ã)−
Lγ(Ã) represent the length of the intervals of Ãα, Ãβ , and Ãγ respec-

tively. Thus, AT (Ã), AI(Ã), and AF (Ã) can be regarded as the global

spreads of the truth, indeterminacy, and falsity membership function re-

spectively. The ambiguity of three membership functions determine the

measure of vagueness of Ã.

Now, putting the values of α-cut of Ã and f(α) = α in Eq.(24), the

ambiguity of membership function TÃ(x) can be determined as:

AT (Ã) =

∫ 1

0

(

R
α(Ã)− L

α(Ã)
)

f(α)dα

=

∫ 1

0

[

a41 − α(a41 − a31)− a11 − α(a21 − a11)
]

αdα

=
1

6

(

−a11 − 2a21 + 2a31 + a41
)

. (27)

Similarly, putting the values of β-cut of Ã and f(β) = 1−β in Eq.(25),

the ambiguity of membership function IÃ(x) can be determined as:

AT (Ã) =

∫ 1

0

(

R
β(Ã)− L

α(Ã)
)

f(β)dβ

=

∫ 1

0

[

b31 + β(b41 − b31)− b21

+ β(b21 − b11)

]

(1− β)dβ

=
1

6

(

−b11 − 2b21 + 2b31 + b41
)

; (28)

and setting the values of γ-cut of Ã and f(γ) = 1 − γ in Eq.(26), the

ambiguity of membership function IÃ(x) can be determined as:

AT (Ã) =

∫ 1

0

(

R
β(Ã)− L

α(Ã)
)

f(γ)dγ

=

∫ 1

0

[

b31 + γ(b41 − b31)− b21

+ γ(b21 − b11)

]

(1− γ)dγ

=
1

6

(

−c11 − 2c21 + 2c31 + c41
)

. (29)

Definition 17. Let Ã =
〈

(a11, a21, a31, a41), (b11, b21, b31, b41),
(c11, c21, c31, c41)

〉

be a SVTrNN. A value index and ambiguity index

for Ã can be defined by

Vλ,µ,ν = λVT + µVI + νVF (30)

=
λ

6

(

a11 + 2a21 + 2a31 + a41

)

+
µ

6

(

b11 + 2b21 + 2b31 + b41

)

+
ν

6

(

c11 + 2c21 + 2c31 + c41

)

(31)

Aλ,µ,ν = λAT + µAI + νAF (32)

=
λ

6

(

−a11 − 2a21 + 2a31 + a41

)

+
µ

6

(

−b11 − 2b21 + 2b31 + b41

)

+
ν

6

(

−c11 − 2c21 + 2c31 + c41

)

(33)

where, the co-efficients λ, µ, ν of Vλ,µ,ν and Aλ,µ,ν represent the deci-

sion makers’ preference value with the condition λ + µ + ν = 1. The

decision maker may intend to take decision pessimistically in uncertain

environment for λ ∈ [0, 1
3
] and µ + ν ∈ [ 1

3
, 1]. On the contrary, the

decision maker may intend to take decision optimistically in uncertain

environment for λ ∈ [ 2
3
, 1] and µ + ν ∈ [0, 1

3
]. The impact of truth,

indeterminacy, and falsity degree are same to the decision maker for

λ = µ = ν = 1
3

. Therefore, the value index and the ambiguity index

may reflect the decision makers attitude for SVTrNN.

In the following, some properties regarding value and ambiguity in-

dex have been presented.

Theorem 3. Let Ã1 =
〈

(a11, a21, a31, a41), (b11, b21, b31, b41),

(c11, c21, c31, c41)
〉

and Ã2 =
〈

(a12, a22, a32, a42),
(b12, b22, b32, b42), (c12, c22, c32, c42)

〉

be two SVTrNN in the set

of real numbers R. Then for λ, µ, ν ∈ [0, 1] and ψ ∈ R, the following

results hold good.

Vλ,µ,ν

(

Ã1 + Ã2

)

=Vλ,µ,ν

(

Ã1

)

+ Vλ,µ,ν

(

Ã2

)

(34)

Vλ,µ,ν

(

φÃ1

)

=φVλ,µ,ν

(

Ã1

)

(35)

Proof. From definition-14, the sum of two NTrFNs Ã1 and Ã2 can be

written as follows:

Ã⊕ B̃ =
〈

(a11 + a12 − a11a12, a21 + a22 − a21a22,

a31 + a32 − a31a32, a41 + a42 − a41a42),

(b11b12, b21b22, b31b32, b41b42),

(c11c12, c21c22, c31c32, c41c42)
〉

Now, by Eq.(31) the value index of the sum of two SVTrNNs Ã1 and
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Ã2 can be written as follows:

Vλ,µ,ν

(

Ã1 + Ã2

)

(36)

= λVT

(

Ã1 + Ã2

)

+ µVI

(

Ã1 + Ã2

)

+ νVF

(

Ã1 + Ã2

)

(37)

=















λ

6

[

(a11 + a21) + 2(a12 + a22) + 2(a13 + a23) + (a14 + a24)
]

+
µ

6

[

(b11 + b21) + 2(b12 + b22) + 2(b13 + b23) + (b14 + b24)
]

+
ν

6

[

(c11 + c21) + 2(c12 + c22) + 2(c13 + c23) + (c14 + c24)
]















(38)

=
λ

6

(

a11 + 2a12 + 2a13 + a14

)

+
λ

6

(

a21 + 2a22 + 2a23 + a24

)

+
µ

6

(

b11 + 2b12 + 2b13 + b14

)

+
µ

6

(

b21 + 2b22 + 2b23 + b24

)

+
ν

6

(

c11 + 2c12 + 2c13 + c14

)

+
ν

6

(

c21 + 2c22 + 2c23 + c24

)

= Vλ,µ,ν

(

Ã1

)

+ Vλ,µ,ν

(

Ã2

)

(39)

For the second part of the theorem,

Vλ,µ,ν

(

φÃ1

)

(40)

= λVT

(

φÃ1

)

+ µVI

(

φÃ1

)

+ νVI

(

φÃ1

)

=













λ

6

(

φa11 + 2φa12 + 2φa13 + φa14
)

+
µ

6

(

φb11 + 2φb12 + 2φb13 + φb14
)

+
ν

6

(

φc11 + 2φc12 + 2φc13 + φc14
)













= φ













λ

6

(

a11 + 2a12 + 2a13 + a14
)

+
µ

6

(

b11 + 2b12 + 2b13 + b14
)

+
ν

6

(

c11 + 2c12 + 2c13 + c14
)













= φVλ,µ,ν

(

Ã1

)

(41)

Therefore, Vλ,µ,ν

(

Ã1 + Ã2

)

=Vλ,µ,ν

(

Ã1

)

+ Vλ,µ,ν

(

Ã2

)

and

Vλ,µ,ν

(

φÃ1

)

= φVλ,µ,ν

(

Ã1

)

.

Theorem 4. Let Ã1=
〈

(a11, a21, a31, a41), (b11, b21, b31, b41),

(c11, c21, c31, c41)
〉

and Ã2 =
〈

(a12, a22, a32, a42),
(b12, b22, b32, b42), (c12, c22, c32, c42)

〉

be two SVTrNNs in the set

of real numbers R. Then for λ, µ, ν ∈ [0, 1] and ψ ∈ R, the following

equations hold good.

Aλ,µ,ν

(

Ã1 + Ã2

)

=Aλ,µ,ν

(

Ã1

)

+Aλ,µ,ν

(

Ã2

)

(42)

Aλ,µ,ν

(

φÃ1

)

=φAλ,µ,ν

(

Ã1

)

(43)

Proof. From definition-14, the sum of two SVTrNNs Ã1 and Ã2 , the

ambiguity index of the sum of two SVTrNNs Ã1 and Ã2 can be written

as:

Aλ,µ,ν

(

Ã1 + Ã2

)

(44)

= λAT

(

Ã1 + Ã2

)

+ µAI

(

Ã1 + Ã2

)

+ νAF

(

Ã1 + Ã2

)

(45)

=















λ

6

[

−(a11 + a21)− 2(a12 + a22) + 2(a13 + a23) + (a14 + a24)
]

+
µ

6

[

−(b11 + b21)− 2(b12 + b22) + 2(b13 + b23) + (b14 + b24)
]

+
ν

6

[

−(c11 + c21)− 2(c12 + c22) + 2(c13 + c23) + (c14 + c24)
]















(46)

=
λ

6

(

−a11 − 2a12 + 2a13 + a14

)

+
λ

6

(

−a21 − 2a22 + 2a23 + a24

)

+
µ

6

(

−b11 − 2b12 + 2b13 + b14

)

+
µ

6

(

−b21 − 2b22 + 2b23 + b24

)

+
ν

6

(

−c11 − 2c12 + 2c13 + c14

)

+
ν

6

(

−c21 − 2c22 + 2c23 + c24

)

= Aλ,µ,ν

(

Ã1

)

+Aλ,µ,ν

(

Ã2

)

For the second part of the theorem,

Aλ,µ,ν

(

φÃ1

)

(47)

= λAT

(

φÃ1

)

+ µAI

(

φÃ1

)

+ νAI

(

φÃ1

)

=













λ

6

(

− φa11 − 2φa12 + 2φa13 + φa14
)

+
µ

6

(

−φb11 − 2φb12 + 2φb13 + φb14
)

+
ν

6

(

−φc11 − 2φc12 + 2φc13 + φc14
)













= φ













λ

6

(

−a11 − 2a12 + 2a13 + a14
)

+
µ

6

(

−b11 − 2b12 + 2b13 + b14
)

+
ν

6

(

−c11 − 2c12 + 2c13 + c14
)













= φAλ,µ,ν

(

Ã1

)

(48)

Therefore, Aλ,µ,ν

(

Ã1 + Ã2

)

=Aλ,µ,ν

(

Ã1

)

+ Vλ,µ,ν

(

Ã2

)

and

Aλ,µ,ν

(

φÃ1

)

= φAλ,µ,ν

(

Ã1

)

.

Proposition 1. Let Ã1=
〈

(a11, a21, a31, a41), (b11, b21, b31, b41),

(c11, c21, c31, c41)
〉

and Ã2 =
〈

(a12, a22, a32, a42),
(b12, b22, b32, b42), (c12, c22, c32, c42)

〉

be two SVTrNNs in the set

of real numbers R. Then ranking of two SVTrNNs Ã1 and Ã2 can be

done by using the value and ambiguity of SVTrNN. The procedures have

been defined as follows:

P1. If Vλ,µ,ν

(

A1

)

≤ Vλ,µ,ν

(

A1

)

, then Ã1 is smaller than Ã2, i.e,

Ã1 ≺ Ã2.

P2. If Vλ,µ,ν

(

A1

)

≥ Vλ,µ,ν

(

A1

)

, then Ã1 is greater than Ã2, i.e,

Ã1 ≻ Ã2.

P3. If Vλ,µ,ν

(

A1

)

= Vλ,µ,ν

(

A1

)

and Aλ,µ,ν

(

A1

)

≥ Vλ,µ,ν

(

A1

)

,

then Ã1 is smaller than Ã2, i.e, Ã1 ≺ Ã2.

P4. If Vλ,µ,ν

(

A1

)

= Vλ,µ,ν

(

A1

)

and Aλ,µ,ν

(

A1

)

≤ Vλ,µ,ν

(

A1

)

,

then Ã1 is grater than Ã2, i.e, Ã1 ≻ Ã2.

P5. If Vλ,µ,ν

(

A1

)

= Vλ,µ,ν

(

A1

)

and Aλ,µ,ν

(

A1

)

= Vλ,µ,ν

(

A1

)

,

then Ã1 is equal Ã2, i.e, Ã1 ≈ Ã2.

Theorem 5. Let Ã1=
〈

(a11, a21, a31, a41), (b11, b21, b31, b41),

(c11, c21, c31, c41)
〉

and Ã2 =
〈

(a12, a22, a32, a42),
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(b12, b22, b32, b42), (c12, c22, c32, c42)
〉

be two NTrFNs in the set

of real numbers R.If a11 > a42, b11 > b42 and c11 > c42 then

Ã1 > Ã2.

Proof. We can obtain the following results from Eq.(21), (22) and (23):

VT (Ã1) =
λ

6

(

a11 + 2a21 + 2a31 + a41
)

> a11,

VT (Ã2) =
λ

6

(

a12 + 2a22 + 2a32 + a42
)

< a42

VI(Ã1) =
λ

6

(

b11 + 2b21 + 2b31 + b41
)

> b11,

VI(Ã2) =
λ

6

(

b12 + 2b22 + 2b32 + b42
)

< b42

and VF (Ã1) =
λ

6

(

c11 + 2c21 + 2c31 + c41
)

> c11,

VF (Ã2) =
λ

6

(

c12 + 2c22 + 2c32 + c42
)

< c42

With the relations a11 > a42, b11 > b42 and c11 > c42, it follows

that VT (Ã1) > VT (Ã2), VI(Ã1) > VI(Ã2), and VF (Ã1) > VF (Ã2).
Therefore from Eq.(30), we can obtain

Vλ,µ,ν(Ã1) = λVT (Ã1) + µVI(Ã1) + νVF (Ã1)

> λVT (Ã2) + µVI(Ã2) + νVF (Ã2) = Vλ,µ,ν(Ã2)

This completes the proof.

Theorem 6. Let A1, A2 and A3 be three SVTrNNs, where

Ãi=〈(a1i, a2i, a3i, a4i), (b1i, b2i, b3i, b4i), (c1i, c2i, c3i, c4i)〉 for i =
1, 2, 3. If Ã1 > Ã2, then Ã1 + Ã3 > Ã2 + Ã3.

Proof. For A1, A2 and A3, we can write the following results from

Eq.(30):

Vλ,µ,ν(Ã1 + Ã2) = Vλ,µ,ν(Ã1) + Vλ,µ,ν(Ã2)

and Vλ,µ,ν(Ã2 + Ã3) = Vλ,µ,ν(Ã2) + Vλ,µ,ν(Ã3).

Since Ã1 > Ã2, then we have

Vλ,µ,ν(Ã1 + Ã2) = Vλ,µ,ν(Ã1) + Vλ,µ,ν(Ã2)

> Vλ,µ,ν(Ã2) + Vλ,µ,ν(Ã3)

= Vλ,µ,ν(Ã2 + Ã3).

This completes the proof.

6 Formulation of MADM model under

SVTrNNs information

In this section, we present value and ambiguity based ranking

method to MADM in which the ratings of alternatives over the at-

tributes have been expressed with NTrFNs. Assume that for a

MADM problem, A = {A1, A2, . . . , Am} be a set of m alter-

natives, C = {C1, C2, . . . , Cn} be a set of n attributes. The

weight vector of the attributes provided the decision makers is W

= (w1, w2, . . . , wn)
T , where wj ∈ [0, 1],

∑n

j=1 wj = 1 and wj

is the degree of importance for the attribute Cj . The rating of al-

ternative Ai with respect to attribute Cj has been expressed with

NTrFN dij=
〈

(a1ij , a
2
ij , a

3
ij , a

4
ij), (b

1
ij , b

2
ij , b

3
ij , b

4
ij), (c

1
ij , c

2
ij , c

3
ij , c

4
ij)

〉

,

where a1ij , a2ij , a3ij , a4ij , b1ij , b2ij , b3ij , b4ij , c1ij , c2ij , c3ij , c4ij ∈ R and

c1ij ≤ b1ij ≤ a1ij ≤ c2ij ≤ b2ij ≤ a2ij ≤ a3ij ≤ b3ij ≤ c3ij ≤
a4ij ≤ b4ij ≤ c4ij for i = 1, 2, . . . ,m; j = 1, 2, . . . , n. The compo-

nent (a1ij , a
2
ij , a

3
ij , a

4
ij), (b

1
ij , b

2
ij , b

3
ij , b

4
ij), and (c1ij , c

2
ij , c

3
ij , c

4
ij) repre-

sent the truth membership degree, the indeterminacy membership de-

gree and the falsity membership degree, respectively, of the alternative

Ai with respect to the attribute Cj .

In a MADM problem, the rating values

d̃ij=
〈

(a1ij , a
2
ij , a

3
ij , a

4
ij), (b

1
ij , b

2
ij , b

3
ij , b

4
ij), (c

1
ij , c

2
ij , c

3
ij , c

4
ij)

〉

can

be arranged in a matrix format, we call it neutrosophic decision matrix

D=
(

d̃ij
)

m×n
where,

(

d̃ij
)

m×n
=

C1 C2 · · · Cn

A1 d̃11 d̃12 · · · d̃13

A2 d̃21 d̃22 · · · d̃2n
...

...
...

...
...

Am d̃m1 d̃m2 · · · d̃mn

(49)

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Here, value index and ambi-

guity index of SVTrNN have been applied to solve a MADM problem

with SVTrNN by the following steps:

Step 1. Normalization of SVTrNNs based decision matrix

The decision matrix
(

d̃ij
)

m×n
needs to be normalized

into
(

r̃ij
)

m×n
to eliminate the effect of different physi-

cal dimensions during final decision making process, where

r̃ij=
〈

(x1ij , x
2
ij , x

3
ij , x

4
ij), (y

1
ij , y

2
ij , y

3
ij , y

4
ij), (z

1
ij , z

2
ij , z

3
ij , z

4
ij)

〉

. Linear

normalization technique has been used to normalize the decision matrix

for the benefit type attribute (B) and cost type attribute (C) by the

following formulas:

r̃ij =

〈(

x1ij

x4+j
,
x2ij

x4+j
,
x3ij

x4+j
,
x4ij

x4+j

)

,

(

y1ij

y4+j
,
y2ij

y4+j
,
y3ij

y4+j
,
y4ij

y4+j

)

,

(

z1ij

z4+j
,
z2ij

z4+j
,
z3ij

z4+j
,
z4ij

z4+j

)〉

for j ∈ B;

(50)

r̃ij =

〈(

x1−j

x1ij
,
x1−j

x2ij
,
x1−j

x3ij
,
x1−j

x4ij

)

,

(

y1−j

y1ij
,
y1−j

y2ij
,
y1−j

y3ij
,
y1−j

y4ij

)

,

(

z1−j

z1ij
,
z1−j

z2ij
,
z1−j

z3ij
,
z1−j

z4ij

)〉

for j ∈ C

(51)

where, x4+j =max
i

(x4ij), y4+j =max
i

(y4ij), z4+j =max
i

(z4ij),

x1−j =max
i

(x1ij), y1−j =max
i

(y1ij), and z1−j =max
i

(z1ij) for

i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Step 2. Aggregation of the weighted rating values of alternatives

According to definition-14, the aggregated weighted rating values of the

alternatives Ai(i = 1, 2, . . . ,m) can be determined as

S̃i =

n
∑

j=1

wj r̃ij , (52)

respectively. Here, the aggregated weighted rating values S̃i(i =
1, 2, . . . ,m) are considered as SVTrNNs.

Step 3. Ranking of all alternatives

According to Eq.(52) and Proposition-1, ranking of all alternatives

can be determined to the non-increasing order of SVTrNNs Ãi(i =
1, 2, . . . ,m) by using the value and ambiguity index of SVTrNN.
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7 An illustrative Example

Consider a decision making problem in which a customer intends to

buy a tablet from the set of primarily chosen five tablets Ai(i =
1, 2, 3, 4, 5).The customer takes into account of the four attributes

namely:

1. features (C1);

2. hardware specification (C2);

3. affordable price (C3);

4. customer care (C4).

Assume that the weight vector of the four attribute is

W={0.25, 0.25, 0.30, 0.20} and the evaluations of the five alter-

natives with respect to the four attributes have been considered as

SVTrNNs. Then we have a SVTrNNs based decision matrix
(

d̃ij
)

5×4
presented in Table-1.

Table 1: NTrFNs based decision matrix
C1

A1

〈

(0.5, 0.6, 0.7, 0.8), (0.1, 0.1, 0.2, 0.3), (0.1, 0.2, 0.2, 0.3)
〉

A2

〈

(0.3, 0.4, 0.5, 0.5), (0.1, 0.2, 0.2, 0.4), (0.1, 0.1, 0.2, 0.3)
〉

A3

〈

(0.3, 0.3, 0.3, 0.3), (0.2, 0.3, 0.4, 0.4), (0.6, 0.7, 0.8, 0.9)
〉

A4

〈

(0.7, 0.8, 0.8, 0.9), (0.1, 0.2, 0.3, 0.3), (0.2, 0.2, 0.2, 0.2)
〉

A5

〈

(0.1, 0.2, 0.2, 0.3), (0.2, 0.2, 0.3, 0.4), (0.6, 0.6, 0.7, 0.8)
〉

C2

A1

〈

(0.1, 0.1, 0.2, 0.3), (0.2, 0.2, 0.3, 0.4), (0.4, 0.5, 0.6, 0.7)
〉

A2

〈

(0.2, 0.3, 0.4, 0.5), (0.1, 0.1, 0.2, 0.3), (0.2, 0.2, 0.3, 0.3)
〉

A3

〈

(0.1, 0.2, 0.2, 0.3), (0.2, 0.3, 0.3, 0.4), (0.4, 0.5, 0.6, 0.6)
〉

A4

〈

(0.5, 0.6, 0.7, 0.7), (0.2, 0.2, 0.2, 0.2), (0.1, 0.1, 0.2, 0.2)
〉

A5

〈

(0.5, 0.6, 0.6, 0.7), (0.1, 0.2, 0.3, 0.4), (0.2, 0.2, 0.3, 0.4)
〉

C3

A1

〈

(0.3, 0.4, 0.4, 0.5), (0.1, 0.2, 0.2, 0.3), (0.2, 0.2, 0.3, 0.4)
〉

A2

〈

(0.2, 0.2, 0.2, 0.2), (0.1, 0.1, 0.1, 0.1), (0.6, 0.7, 0.8, 0.8)
〉

A3

〈

(0.2, 0.3, 0.4, 0.5), (0.2, 0.3, 0.3, 0.4), (0.3, 0.4, 0.4, 0.5)
〉

A4

〈

(0.3, 0.4, 0.4, 0.5), (0.1, 0.2, 0.2, 0.3), (0.1, 0.2, 0.3, 0.4)
〉

A5

〈

(0.6, 0.7, 0.8, 0.8), (0.2, 0.2, 0.3, 0.3), (0.1, 0.1, 0.2, 0.3)
〉

C4

A1

〈

(0.4, 0.5, 0.6, 0.7), (0.2, 0.2, 0.3, 0.4), (0.1, 0.2, 0.3, 0.4)
〉

A2

〈

(0.4, 0.5, 0.6, 0.6), (0.2, 0.2, 0.3, 0.3), (0.2, 0.3, 0.4, 0.4)
〉

A3

〈

(0.2, 0.2, 0.3, 0.4), (0.3, 0.3, 0.3, 0.3), (0.3, 0.4, 0.5, 0.6)
〉

A4

〈

(0.1, 0.2, 0.3, 0.4), (0.2, 0.2, 0.3, 0.3), (0.5, 0.6, 0.7, 0.8)
〉

A5

〈

(0.2, 0.3, 0.4, 0.4), (0.1, 0.2, 0.3, 0.4), (0.3, 0.4, 0.4, 0.5)
〉

Step 1. Normalization of SVTrNNs based decision matrix

Using Eq.(50), the decision matrix
(

d̃ij

)

5×4
has been normalized to the

decision matrix
(

d̃Nij

)

5×4
by considering the selected four attributes as

benefit type attributes. Then the normalized decision matrix
(

d̃Nij

)

5×4

can be obtained in Table-2.

Step 2. Aggregation of the weighted normalized rating values of alter-

natives

The weighted normalized rating values of the alternative Ai(i =
1, 2, 3, 4, 5) can be determined by using Eq.(52). Table-3 shows the

aggregated weighted normalized rating values of alternatives.

Step 3. Ranking of all alternatives

The value index and ambiguity index of NTrFNs Ãi(i = 1, 2, . . . ,m)
are determined by using Definition-17 and Proposition-1 as

Vλ,µ,ν(A1) = 0.5428λ+ 0.5542µ+ 0.4536ν;

Vλ,µ,ν(A2) = 0.6041λ+ 0.4396µ+ 0.5365ν;

Vλ,µ,ν(A3) = 0.5667λ+ 0.7708µ+ 0.5898ν;

Vλ,µ,ν(A4) = 0.5871λ+ 0.7278µ+ 0.3656ν;

Vλ,µ,ν(A5) = 0.6083λ+ 0.6354µ+ 0.4542ν;

and

Aλ,µ,ν(A1) = 0.0802λ+ 0.1417µ+ 0.0941ν

Aλ,µ,ν(A2) = 0.0847λ+ 0.0979µ+ 0.1260ν

Aλ,µ,ν(A3) = 0.0933λ+ 0.0875µ+ 0.0713ν

Aλ,µ,ν(A4) = 0.0574λ+ 0.1222µ+ 0.0677ν

Aλ,µ,ν(A5) = 0.0625λ+ 0.1729µ+ 0.0750ν.

To rank the alternatives Ai(i = 1, 2, 3, 4, 5), the value index and ambi-

guity index of each alternative have been examined for different values

for λ, µ, ν ∈ [0, 1]. The results have been shown in the Table-4. For

different values of λ, µ, ν ∈ [0, 1], the ranking order of alternatives has

been obtained as follows:

A3 ≻ A5 ≻ A4 ≻ A2 ≻ A1.

Thus A5 is the best alternative.

8 Conclusions

In the present study, we have introduced the concept of SVTrNN and de-

fined some operational rules. We have also defined value index and am-

biguity index of SVTrNN and established some of their properties. Then

we have proposed a ranking method SVTrNN by using these two indices

of SVTrNN. The proposed method has been applied to MADM problem

with SVTrNN information. The method is simple, attractive and effec-

tive to determine the ranking order of alternatives used in neutrosophic

MADM problems. The proposed concept can be easily extended to rank

single-valued triangular neutrosophic numbers. The proposed MADM

approach can be extended to solve the problem of medical diagnosis,

pattern recognition, personal selection, etc.
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Table 2: SVTrNNs based normalized decision matrix
C1

A1

〈

(0.6250, 0.7500, 0.8750, 1.000), (0.2500, 0.2500, 0.5000, 0.7500), (0.1429, 0.2857, 0.2857, 0.4286)
〉

A2

〈

(0.5000, 0.6667, 0.8333, 0.8333), (0.2500, 0.5000, 0.5000, 1.0000), (0.1250, 0.1250, 0.2500, 0.3750)
〉

A3

〈

(0.6000, 0.6000, 0.6000, 0.6000), (0.5000, 0.7500, 1.0000, 1.0000), (0.6667, 0.7778, 0.8889, 1.0000)
〉

A4

〈

(0.7778, 0.8889, 0.8889, 1.0000), (0.3333, 0.6667, 1.0000, 1.0000), (0.2500, 0.2500, 0.2500, 0.2500)
〉

A5

〈

(0.1250, 0.2500, 0.2500, 0.3750), (0.5000, 0.5000, 0.7500, 1.0000), (0.7500, 0.7500, 0.8750, 1.0000)
〉

C2

A1

〈

(0.1250, 0.1250, 0.2500, 0.3750), (0.5000, 0.5000, 0.7500, 1.0000), (0.5714, 0.7143, 0.8571, 1.0000)
〉

A2

〈

(0.3333, 0.5000, 0.6667, 0.8333), (0.2500, 0.2500, 0.5000, 0.7500), (0.2500, 0.2500, 0.3750, 0.3750)
〉

A3

〈

(0.2000, 0.4000, 0.4000, 0.6000), (0.5000, 0.7500, 0.7500, 1.0000), (0.4444, 0.5556, 0.6667, 0.6667)
〉

A4

〈

(0.5556, 0.6667, 0.7778, 0.7778), (0.6667, 0.6667, 0.6667, 0.6667), (0.1250, 0.1250, 0.2500, 0.2500)
〉

A5

〈

(0.6250, 0.7500, 0.7500, 0.8750), (0.2500, 0.5000, 0.7500, 1.0000), (0.2500, 0.2500, 0.3750, 0.5000)
〉

C3

A1

〈

(0.3750, 0.5000, 0.5000, 0.6250), (0.2500, 0.5000, 0.5000, 0.7500), (0.2857, 0.2857, 0.4286, 0.5714)
〉

A2

〈

(0.3333, 0.3333, 0.3333, 0.3333), (0.2500, 0.2500, 0.2500, 0.2500), (0.7500, 0.8750, 1.0000, 1.0000)
〉

A3

〈

(0.4000, 0.6000, 0.8000, 1.0000), (0.5000, 0.7500, 0.7500, 1.0000), (0.3333, 0.4444, 0.4444, 0.5556)
〉

A4

〈

(0.3333, 0.4444, 0.4444, 0.5556), (0.3333, 0.6667, 0.6667, 1.0000), (0.1250, 0.2500, 0.3750, 0.5000)
〉

A5

〈

(0.7500, 0.8750, 1.0000, 1.0000), (0.5000, 0.5000, 0.7500, 0.7500), (0.1250, 0.1250, 0.2500, 0.3750)
〉

C4

A1

〈

(0.5000, 0.6250, 0.7500, 0.8750), (0.5000, 0.5000, 0.7500, 1.0000), (0.1429, 0.2857, 0.4286, 0.5714)
〉

A2

〈

(0.6667, 0.8333, 1.0000, 1.0000), (0.5000, 0.5000, 0.7500, 0.7500), (0.2500, 0.3750, 0.5000, 0.5000)
〉

A3

〈

(0.4000, 0.4000, 0.6000, 0.8000), (0.7500, 0.7500, 0.7500, 0.7500), (0.3333, 0.4444, 0.5556, 0.6667)
〉

A4

〈

(0.1111, 0.2222, 0.3333, 0.4444), (0.6667, 0.6667, 1.0000, 1.0000), (0.6250, 0.7500, 0.8750, 1.0000)
〉

A5

〈

(0.2500, 0.3750, 0.5000, 0.5000), (0.2500, 0.5000, 0.7500, 1.0000), (0.3750, 0.5000, 0.5000, 0.6250)
〉

Table 3: Aggregated rating values of attributes

Alternative Aggregated rating values of Attributes

A1

〈

(0.4000, 0.4938, 0.5813, 0.7063), (0.3625, 0.4375, 0.6125, 0.8625), (0.2929, 0.3928, 0.5000, 0.6429)
〉

A2

〈

(0.4417, 0.5583, 0.6750, 0.7166), (0.3000, 0.3625, 0.4750, 0.6625), (0.3688, 0.4313, 0.5563, 0.8750)
〉

A3

〈

(0.4000, 0.5100, 0.6100, 0.7600), (0.5500, 0.7500, 0.8125, 0.9500), (0.4444, 0.5556, 0.6333, 0.7167)
〉

A4

〈

(0.4556, 0.5667, 0.6167, 0.7000), (0.4833, 0.6667, 0.8167, 0.9167), (0.2563, 0.3188, 0.4125, 0.4750)
〉

A5

〈

(0.4625, 0.5875, 0.6500, 0.7125), (0.3875, 0.5000, 0.7500, 0.9250), (0.3625, 0.3875, 0.4875, 0.6125)
〉
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Table 4: Ranking results for alternatives

Alternative Value of λ, µ, ν Value index Ambiguity index Ranking order

A1 0.5027 0.1117

A2 0.5045 0.1107

A3 λ = .10;µ = .40; 0.6599 0.0800 A3 ≻ A5 ≻ A4 ≻ A2 ≻ A1

A4 ν = .50 0.5327 0.0885

A5 0.5421 0.1129

A1 0.5125 0.1051

A2 0.5258 0.1046

A3 λ = .30;µ = .32; 0.6408 0.0831 A3 ≻ A5 ≻ A4 ≻ A2 ≻ A1

A4 ν = .38 0.5480 0.0821

A5 0.5584 0.1026

A1 0.5168 0.1053

A2 0.5267 0.1029

A3 λ = 1

3
;µ = 1

3
; 0.6424 0.0840 A3 ≻ A5 ≻ A4 ≻ A2 ≻ A1

A4 ν = 1

3
0.5602 0.0824

A5 0.5660 0.1035

A1 0.5283 0.1014

A2 0.5412 0.0969

A3 λ = .50;µ = .30; 0.6325 0.0872 A3 ≻ A5 ≻ A4 ≻ A2 ≻ A1

A4 ν = .20 0.5850 0.0789

A5 0.5856 0.0981

A1 0.5361 0.0939

A2 0.5645 0.0915

A3 λ = .70;µ = .20; 0.6098 0.0900 A3 ≻ A5 ≻ A4 ≻ A2 ≻ A1

A4 ν = .10 0.5931 0.0714

A5 0.5983 0.0858
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Abstract. Brick plays a significant role in building con-
struction. So we should use the effective mathematical 
decision making tool to select quality clay-bricks for 
building construction. The purpose of this paper is to pre-
sent a projection model of neutrosophic numbers and its 
decision-making method for the selecting problems of 
clay-bricks with neutrosophic number information. The 
projection method of neutrosophic numbers is one useful 

tool that can deal with decision-making problems with 
indeterminacy data. By the projection measure between 
each alternative and the ideal alternative, all the alterna-
tives can be ranked to select the best one. Finally, an ac-
tual example on clay-brick selection in construction field 
demonstrates the application and effectiveness of the pro-
jection method. 

Keywords: Neutrosophic number, projection method, clay-brick selection, decision making. 

1 Introduction

As we know, in realistic decision making situations, 
some information cannot be described only by unique crisp 
numbers, and then may imply indeterminacy. In order to 
deal with this situation, Smarandache [1-3] introduced 
neutrosophic numbers. To apply them in real situations, Ye 
[4, 5] proposed the method of de-neutrosophication and 
possibility degree ranking order of neutrosophic numbers 
and the bidirectional projection method respectively, and 
then applied them to multiple attribute group decision-
making problems under neutrosophic number 
environments. Then, Ye [6] developed a fault diagnosis 
method of steam turbine using the exponential similarity 
measure of neutrosophic numbers. Further Kong et al. [7] 
presented the misfire fault diagnosis method of gasoline 
engine by using the cosine similarity measure of 
neutrosophic numbers. 

Clay-brick selection problem in construction field is a 
multiple attribute decision-making problem. Hence, 
Mondal and Pramanik [8] presented a quality clay-brick 
selection approach based on multiple attribute decision 
making with single valued neutrosophic grey relational 
analysis. However, so far neutrosophic numbers are not 
applied to decision making problems in construction field. 
To do it, this paper introduces a projection-based model of 
neutrosophic numbers and applies it to the multiple 
attribute decision-making problem of clay-brick selection 
in construction field under neutrosophic number 
environment.  

The rest of the paper is organized as the following. 
Section 2 reviews basic concepts of neutrosophic numbers. 
Section 3 introduces a projection measure of neutrosophic 

numbers. Section 4 presents a multiple attribute decision-
making method based on the projection model under 
neutrosophic number environment. In section 5, an actual 
example is provided for the decision-making problem of 
clay-brick selection to illustrate the application of the 
proposed method. Section 6 presents conclusions and 
future research direction. 

2 Basic concept of neutrosophic numbers 

A neutrosophic number, proposed by Smarandache [1-
3], consists of the determinate part and the indeterminate 
part, which is denoted by N = d + uI, where d and u are real 
numbers and I is indeterminacy, such that In = I for n > 0, 
0×I = 0, and uI/kI = undefined for any real number k. 

For example, assume that there is a neutrosophic 
number N = 2 + 2I. If I  [0, 0.2], it is equivalent to N  [2, 
2.4] for sure N ≥ 2, this means that its determinate part is 2 
and its indeterminate part is 2I with the indeterminacy I 
[0, 0.2] and the possibility for the number ‘‘N’’ is within 
the interval [2, 2.4]. In general, a neutrosophic number 
may be considered as a changeable interval. 

Let N = d + uI be a neutrosophic number. If d, u ≥ 0, 
then N is called positive neutrosophic numbers. In the 
following, all neutrosophic numbers are considered as 
positive neutrosophic numbers, which are called 
neutrosophic numbers for short, unless they are stated. 
Based on the cosine measure and projection model [5, 7], 
we introduce the following definitions. 

Let N1 = d1 + u1I and N2 = d2 + u2I be two neutrosophic 
numbers, then there are the following operational relations 
of neutrosophic numbers [1-3]: 
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(1) N1 + N2 = d1 + d2 + (u1 + u2)I; 

(2) N1  N2 = d1  d2 + (u1  u2)I;; 

(3) N1  N2 = d1d2 + (d1u2 + u1d2 + u1u2)I; 

(4) N1
2 = (d1 + u1I)2 = d1

2 + (2d1u1 + u1
2)I;

(5) I
udd
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Definition 1 [7]. Let a = (a1, a2, …, an) and b = (b1, b2, …, 
bn) be two neutrosophic number vectors, where aj = [daj + 
uajI

L, daj + uajI
U] and bj = [dbj + ubjI

L, dbj + ubjI
U] for I  [IL,

I
U] and j = 1, 2, …, n. Then, the modules of a and b are 

defined as    22

1
U

ajaj

n

j

L

ajaj IudIuda   
and
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L
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, the inner product 

between a and b is defined as 
  
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n

j

U

bjbj
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Thus, a cosine measure is defined as 
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which is called the cosine of the included angle between a 
and b. 

3 Projection measure of neutrosophic numbers 

Definition 2 [5]. Let a = (a1, a2, …, an) and b = (b1, b2, …, 
bn) be two neutrosophic number vectors, where aj = [daj + 
uajI

L, daj + uajI
U] and bj = [dbj + ubjI

L, dbj + ubjI
U] for I  [IL,

I
U] and j = 1, 2, …, n. Then the projection of the vector a 

on the vector b is defined as 
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If one considers the importance of each element in 
neutrosophic number vectors a and b, the weight of each 
element can be introduced by wj (j = 1, 2, …, n) with wj  
[0, 1] and 1

1
 

n

j jw . Thus, we introduce the following 
definition. 

Definition 3. Let a = (a1, a2, …, an) and b = (b1, b2, …, bn) 
be two neutrosophic number vectors, where aj = [daj + uajI

L,
daj + uajI

U] and bj = [dbj + ubjI
L, dbj + ubjI

U] for I  [IL, IU]
and j = 1, 2, …, n. The weight of the elements is wj (j = 1, 
2, …, n) with wj  [0, 1] and 1

1
 

n

j jw . Then the 

projection of the vector a on the vector b is defined as 
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Based on the projection model of interval numbers 
improved by Xu and Liu [9], the projection model of Eq. 
(3) is improved as the following form: 
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Obviously, the closer the value of WPb(a) is to 1, the 
closer the vector a is to the vector b. 

4 Decision-making method based on the projec-
tion measure 

In this section, we present a handling method for 
multiple attribute decision-making problems by using the 
proposed projection measure under neutrosophic number 
environment. 

In a multiple attribute decision-making problem, let S = 
{S1, S2, ..., Sm} be a set of alternatives and A = {A1, A2, ..., 
An} be a set of attributes. If the decision maker provides an 
evaluation value of the attribute Aj (j=1,2,...,n) for the 
alternative Si (i = 1, 2,…, m) by using a scale from 1 (less 
fit) to 10 (more fit) with indeterminacy I, which is 
represented by the form of a neutrosophic number aij = dij 

+ uijI for I  [IL, I
U] and constructed as a set of

neutrosophic numbers Si = {ai1, ai2, ..., ain} for i = 1, 2,…, 
m and j = 1, 2,…, n.

 
Thus, we can establish the 

neutrosophic number decision matrix M = (aij)mn.
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If the weights of attributes are considered as the 
different importance of each attribute Aj (j = 1, 2, …, n), 
the weight vector of attributes is W = (w1, w2, …, wn) with 
wj ≥ 0 and  


n

j jw
1

1 . Then, the procedure of the 

decision-making problem is described as follows: 

Step 1: Specify the indeterminacy I  [IL, I
U] 

according to decision makers’ preference and real 
requirements, each neutrosophic number aij = dij + uijI in 
the neutrosophic number decision matrix M can be 
transformed into an interval numbers aij = [dij + uijI

L, dij +
uijI

U] for I  [IL, IU] for i = 1, 2, …, m and j = 1, 2, …, n.
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can be determined as the ideal alternative 
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Step 2: According to Eq. (4), the projection measure 
between each alternative Si (i = 1, 2, …, m) and the ideal 
alternative S* can be calculated by 
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Step 3: The alternatives are ranked in a descending 
order according to the values of WPS*(Si) for i = 1, 2, …, m. 
The greater value of WPS*(Si) means the better alternative 
Si. 

Step 4: End. 

5 Actual example of clay-brick selection 

In this section, an actual example on clay-brick 
selection in construction field adapted from [8] illustrates 
the application of the projection method.  

Let us consider a set of four possible alternatives 
(providers of clay-bricks) S = {S1, S2, ..., Sm} in 
construction field, which need to satisfy six attributes 
(criteria) of clay-bricks: solidity (A1), color (A2), size and 
shape (A3), and strength of brick (A4), brick cost (A5), 
carrying cost (A6) [8]. Then, the weighting vector of the six 
attributes is W = (0.275, 0.175, 0.2, 0.1, 0.05, 0.2). 

When the four alternatives with respect to the six 
attributes are evaluated by the expert corresponding to a 
scale from 1 (less fit) to 10 (more fit) with indeterminacy I, 
we can obtain the evaluation values of neutrosophic 
numbers. For example, the expert give the neutrosophic 
number of an attribute A1 for an alternative S1 as a11 = 7 + 

2I by using a scale from 1 (less fit) to 10 (more fit) with 
indeterminacy I, which indicates that the evaluation value 
of the attribute A1 for the alternative S1 is the determinate 
degree 7 with the indeterminate degree 2I with some 
indeterminacy I  [IL, I

U]. By the similar evaluation 
process, we can obtain the following decision matrix: 
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Assume I  [0,1], then the above neutrosophic number 
decision matrix can be transformed into the following de-
neutrosophication matrix: 
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By )](max),(max[],[ *** U

ijij
i

L

ijij
i

U

j

L

jj IudIudaaa   (j 

= 1, 2, …, 6), the ideal solution (ideal neutrosophic 
numbers) can be determined as the following ideal 
alternative: 

S
* ={[8, 9], [9, 10], [8, 10], [8, 10], [8, 9], [7, 10]}. 

According to Eq. (5), the weighted projection measure 
values between each alternative Si (i = 1, 2, 3, 4) and the 
ideal alternative S* can be obtained as follows: 

WPS*(S1) = 0.8554, WPS*(S2) =0.9026, WPS*(S3) = 
0.8826, and WPS*(S4) = 0.9366. 

Since the values of the projection measure are WPS*(S4) 
> WPS*(S2) > WPS*(S3) > WPS*(S1), the ranking order of the 
four alternatives is S4 > S2 > S3 > S1. Hence, the alternative 
S4 is the best choice among all the alternatives. 

Compared with the neutrosophic grey relational analy-
sis for clay-brick selection [8], the proposed approach is 
more convenient and less calculation steps. 

6 Conclusion 

This paper presented a projection measure of neutro-
sophic numbers and a projection model-based multiple at-
tribute decision-making method under a neutrosophic 
number environment. In the decision-making process, 
through the projection measure between each alternative 
and the ideal alternative, the ranking order of all alterna-
tives can be determined in order to select the best alterna-
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tive. Finally, an actual example on the selecting problem of 
clay-bricks demonstrated the application of the proposed 
method. However, the main advantage of the proposed ap-
proach is easy evaluation and calculation in actual applica-
tions. In the future work, we shall extend the proposed de-
cision-making method with neutrosophic numbers to the 
decision-making method with refine neutrosophic numbers. 
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