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1 Introduction

The origin of the flavor structure is one of important issues in particle physics. The

recent development of the neutrino oscillation experiments provides us important clues to

investigate the flavor physics. Indeed, the neutrino oscillation experiments have presented

two large flavor mixing angles, which is a contrast to the quark mixing angles. In addition

to the precise measurements of the flavor mixing angles of leptons, the T2K and NOνA

strongly indicate the CP violation in the neutrino oscillation [1, 2]. We are in the era to

develop the flavor theory of leptons with the observation of flavor mixing angles and CP

violating phase.

It is interesting to impose non-Abelian discrete symmetries for flavors. In the last

twenty years, the studies of discrete symmetries for flavors have been developed through

the precise observation of flavor mixing angles of leptons [3–11]. Many models have been

proposed by using the non-Abelian discrete groups S3, A4, S4, A5 and other groups with

larger orders to explain the large neutrino mixing angles. Among them, A4 flavor symmetry

is attractive because A4 group is the minimal one including a triplet irreducible represen-

tation. A triplet representation allows us to give a natural explanation of the existence of

three families of leptons [12–18]. However, a variety of models is so wide that it is difficult

to obtain a clear evidence of the A4 flavor symmetry.

Superstring theory is a promising candidate for the unified theory of all interactions

including gravity and matter fields such as quarks and leptons as well as the Higgs field.

Superstring theory predicts six-dimensional compact space in addition to four-dimensional
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space-time. Geometrical aspects, i.e. the size and shape of the compact space, are described

by moduli parameters. Gauge couplings and Yukawa couplings as well as higher order cou-

plings in four-dimensional low-energy effective field theory depend on moduli parameters.

A geometrical symmetry of the six-dimensional compact space can be the origin of the

flavor symmetry.1

The torus compactification as well as the orbifold compactification has the modular

symmetry Γ.2 It is interesting that the modular symmetry includes Γ2 ≃ S3, Γ3 ≃ A4,

Γ4 ≃ S4, Γ5 ≃ A5 as finite groups [24]. Inspired by these aspects, recently a new type

of flavor models was proposed [25]. In ref. [25], the A4 flavor symmetry is assumed as a

finite group of the modular symmetry. Three families of leptons are assigned to certain

A4 representations like conventional flavor models. Furthermore, Yukawa couplings as well

as Majorana masses are assumed to be modular forms which are functions of the modular

parameter τ and they are non-trivial representations under A4. We have a modular form

of A4 triplet with weight 2 [25]. The flavor symmetry A4 is broken when the value of the

modular parameter τ is fixed. It is noted that one can construct flavor models without

flavon fields.

The modular forms of the weight 2 have been constructed for the S3 doublet [26], the

S4 triplet and doublet [27], and the A5 quintet and triplets [28], as well as the ∆(96) triplet

and the ∆(384) triplet [29]. The modular forms of the weight 1 and higher weights are

also given for T ′ doublet [30]. By use of these modular forms, new flavor models have been

constructed [31–44].

Discrete symmetries can be anomalous [45–47]. Anomalies of non-Abelian symmetries

were studied in [48]. (See also [4, 5].) The anomaly of the modular symmetry was also

discussed [49]. In the S4 symmetry, the Z2 subgroup can be anomalous and then S4 can

be violated to A4. The A5 symmetry is always anomaly-free. Both S3 and A4 can be

anomalous, and then they can be violated to Abelian discrete symmetries. Thus, the S4 is

unique among S3, A4, S4, A5 in the sense that it can be violated by anomalies to another

non-Abelian symmetry, A4. Even starting with a S4 symmetric Lagrangian at the tree level,

the Lagrangian at the quantum level has only the A4 symmetry when Z2 subgroup of S4

is anomalous. Our purpose is to show such a possibility in a phenomenological viewpoint.

We decompose S4 modular forms into A4 representations. Such modulus functions are

different from the modular forms in Γ3. We propose a new A4 flavor model with those A4

modular forms, which is much different from the typical modular A4 models [25, 31, 32].

This paper is organized as follows. In section 2, we give a brief review on the modular

symmetry and the S4 anomaly. In section 3, we present our model for lepton mass matrices.

In section 4, we show our numerical results for lepton mixing angles, the CP violating Dirac

phase and neutrino masses. Section 5 is devoted to a summary. Relevant representations

of S4 and A4 groups are presented in appendix A. We list the input data of neutrinos in

appendix B.

1It was shown that stringy selection rules in addition to geometrical symmetries lead to certain non-

Abelian flavor symmetries [19–22].
2For example, zero-modes in the torus compactification with magnetic fluxes transform non-trivially

under the modular symmetry [23].
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2 Modular symmetry and S4 anomaly

2.1 Modular forms

We give a brief review on the modular symmetry and modular forms. The torus com-

pactification is the simplest compactification. We consider a two-dimensional torus which

can be constructed as a division of the two-dimensional real space R
2 by a lattice Λ, i.e.

T 2 = R
2/Λ. We use the complex coordinate on R

2. The lattice Λ is spanned by two vec-

tors, α1 = 2πR and α2 = 2πRτ , where R is a real and τ is a complex modulus parameter.

The same lattice is spanned by the following lattice vectors,

(

α′

2

α′

1

)

=

(

a b

c d

)(

α2

α1

)

, (2.1)

where a, b, c, d are integer with satisfying ad − bc = 1. That is, the SL(2,Z) symmetry.

Under SL(2,Z), the modulus parameter transforms

τ −→ τ ′ = γτ =
aτ + b

cτ + d
. (2.2)

This modular symmetry is generated by two elements, S and T , which transform τ as

S : τ −→ −1

τ
, T : τ −→ τ + 1. (2.3)

They satisfy the following algebraic relations,

S2 = (ST )3 = I. (2.4)

If we impose the algebraic relation TN = I, we obtain the finite groups ΓN for N =

2, 3, 4, 5, and these are isomorphic to S3, A4, S4, A5, respectively. We define the congruence

subgroups of level N as

Γ(N) =

{(

a b

c d

)

∈ SL(2,Z),

(

a b

c d

)

=

(

1 0

0 1

)

(mod N)

}

. (2.5)

For N = 2, we define Γ̄(2) ≡ Γ(2)/{I,−I}. Since the element −I does not belong to Γ(N)

for N > 2, we have Γ̄(N) = Γ(N). The quotient groups defined as ΓN ≡ Γ̄/Γ̄(N) are finite

modular groups.

Modular forms of weight k are the holomorphic functions of τ and transform as

fi(τ) −→ (cτ + d)kρ(γ)ijfj(γτ), (2.6)

where ρ(γ)ij is a unitary matrix. Also, matter fields φ(I) with the modular weight kI
transform

(φ(I))i(x) −→ (cτ + d)kIρ(γ)ij(φ
(I))j(x), (2.7)

under the modular symmetry.
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In ref. [27], the modular form of the level N = 4 for Γ4 ≃ S4 have been constructed

with the Dedekind eta function, η(τ),

η(τ) = q1/24
∞
∏

n=1

(1− qn) , (2.8)

where q = e2πiτ . The modular forms of the weight 2 are written by

Y1(τ) = Y (1, 1, ω, ω2, ω, ω2|τ),
Y2(τ) = Y (1, 1, ω2, ω, ω2, ω|τ),
Y3(τ) = Y (1,−1,−1,−1, 1, 1|τ),
Y4(τ) = Y (1,−1,−ω2,−ω, ω2, ω|τ),
Y5(τ) = Y (1,−1,−ω,−ω2, ω, ω2|τ),

(2.9)

where ω = e2πi/3 and

Y (a1, a2, a3, a4, a5, a6|τ) = a1
η′(τ + 1/2)

η(τ + 1/2)
+ 4a2

η′(4τ)

η(4τ)

+
1

4

3
∑

m=0

am+3
η′((τ +m)/4)

η((τ +m)/4)
. (2.10)

These five modular forms are decomposed into the 3′ and 2 representations under S4,

YS42
(τ) =

(

Y1(τ)

Y2(τ)

)

, YS43
′(τ) =







Y3(τ)

Y4(τ)

Y5(τ)






. (2.11)

The generators, S and T , are represented on the above modular forms,

ρ(S) =

(

0 ω

ω2 0

)

, ρ(T ) =

(

0 1

1 0

)

, (2.12)

for 2, and

ρ(S) = −1

3







−1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2






, ρ(T ) = −1

3







−1 2ω 2ω2

2ω 2ω2 −1

2ω2 −1 2ω






, (2.13)

for 3′. The modular form of larger weights are obtained as products of YS42
(τ) and YS43

′(τ).

Other representations are shown in appendix A.

2.2 Anomaly

A discrete symmetry can be anomalous. Each element g in a non-Abelian symmetry sat-

isfies gN = 1, that is, the Abelian ZN symmetry. If all of such Abelian symmetries in a

non-Abelian symmetry are anomaly-free, the whole non-Abelian symmetry is anomaly-free.

Otherwise, the non-Abelian symmetry is anomalous, and anomalous sub-group is violated.
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Furthermore, each element g is represented by a matrix ρ(g). If det ρ(g) = 1, the corre-

sponding ZN is always anomaly-free. On the other hand, if det ρ(g) 6= 1, the corresponding

ZN symmetry can be anomalous. See anomalies of non-Abelian symmetries [4, 5, 48].

In particular, in refs. [4, 5], it shows which sub-groups can be anomalous in non-

Abelian discrete symmetries. The S4 group is isomorphic to (Z2 × Z2)⋊ S3, and then the

Z2 symmetry of S3 can be anomalous in S4. In general, the 2 and 3 representations as

well as 1′ have det ρ(g) = −1 while the 1 and 3′ representations have det ρ(g) = 1. Indeed

ρ(S) and ρ(T ) for 2 as well as 3 and 1′ have det(ρ(S)) = det(ρ(T )) = −1. Thus, the odd

number of 2’s as well as 3 and 1′ can lead to anomalies.

If the above Z2 symmetry in S4 is anomalous, S4 is violated to A4. In this case,

S and T themselves are anomalous, but S̃ = T 2 and T̃ = ST are anomaly-free. These

anomaly-free elements satisfy

(S̃)2 = (S̃T̃ )3 = (T̃ )3 = I, (2.14)

if we impose T 4 = I. That is, the A4 algebra is realized. The explicit representations

of generators S̃ and T̃ for the A4 triplet and singlets are presented in appendix A. The

modular forms for S4 act under the A4 symmetry as follows:

YS42
(τ) → ( YA41

′′(τ), YA41
′(τ) ) , YS43

′(τ) → YA43
(τ) . (2.15)

That is, we have

YA41
′(τ) = Y2(τ), YA41

′′(τ) = Y1(τ), YA43
(τ) =







Y3(τ)

Y4(τ)

Y5(τ)






. (2.16)

Note that these are different from modular forms of the level N = 3 for Γ3 because

they do not transform as A4 multiplets under S and T .

Anomalies of the S4 symmetry, in particular its Z2 sub-symmetry, depend on models,

that is, the numbers of 2, 3 and 1′. If the S4 symmetry is anomaly-free and exact, the

model building follows the study in ref. [27] and its extension. If the S4 is anomalous and

violated to A4, that leads to a new type of model building. In the next section, we study

such a new possibility for lepton mass matrices.

3 A4 lepton model from S4 modular symmetry

We present a viable A4 model of leptons originated from the subgroup of S4 group. The

charge assignment of the fields and modular forms is summarized in table 1. We assign the

modular weight −1 to the left- and right-handed leptons. If the S4 is exact, µc
1′′ and τ c

1′

are combined to the S4 doublet. The odd number of doublets can lead to anomalies.

The modular forms of weight 2 that transform non-trivially under the A4 symmetry

are given in S4 modular group as discussed in section 2. The A4 triplet YA43
and non-

trivial A4 singlets YA41
′ , YA41

′′ are constructed by five modular forms in eq. (2.9), which

is a difference from the Γ3 ≃ A4 modular symmetry with three modular forms.
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L3 ec
1
, µc

1′′ , τ c1′ Hu,d YA43
YA41

′ YA41
′′

SU(2) 2 1 2 1 1 1

A4 3 1 , 1′′ , 1′ 1 3 1′ 1′′

−kI −1 −1 0 k = 2 k = 2 k = 2

Table 1. The charge assignment of SU(2), A4, and the modular weight (−kI for fields and k for

coupling Y ).

Suppose neutrinos to be Majorana particles. The superpotential of the neutrino mass

term is given by the Weinberg operator:

wν =
1

Λ

[

YA43
+ aYA41

′′ + bYA41
′

]

L3L3HuHu, (3.1)

where L3 denote the A4 triplet of the left-handed lepton doublet, (Le, Lµ, Lτ )
T , and Hu

stands for the Higgs doublet which couples to the neutrino sector. Parameters a and

b are complex constants in general. If the S4 symmetry is exact, YA41
′ and YA41

′′ are

combined to the S4 doublet YS42
. That is, the second and third terms are originated from

aYS42
LLHuHu, where L is taken to be 3′ of S4, and we have a = b. Breaking of S4 to

A4 leads to the above terms with a 6= b. One naively expects to be a ∼ b, although

their difference depends on breaking effects. At any rate, we treat them as independent

parameters from the phenomenological viewpoint. We also discuss the situation with a ∼ b.

The superpotential of the mass term of charged leptons is described as

we =
[

αec
1
+ βµc

1′′ + γτ c
1′

]

YA43
L3Hd, (3.2)

where charged leptons ec
1
, µc

1′′ , τ c1′ are assigned to the A4 singlets of 1,1′′,1′ respectively.

The Hd is a Higgs doublet which couples to the charged lepton sector. Coefficients α, β and

γ can be taken to be real. Then, charged lepton masses are given in terms of τ , 〈Hd〉, α, β
and γ. Similar to eq. (3.1), if the S4 is exact, µc

1′′ and τ c
1′ are combined to the S4 doublet.

That is, we have to require β = γ. Here, we also treat these parameters as independent

parameters from the phenomenological viewpoint.

The relevant mass matrices are given by using the multiplication rules based on S̃ and

T̃ in appendix A. The Majorana neutrino mass matrix is:

Mν =
〈Hu〉2
Λ













2Y3 −Y5 −Y4
−Y5 2Y4 −Y3
−Y4 −Y3 2Y5






+ aY1







0 1 0

1 0 0

0 0 1






+ bY2







0 0 1

0 1 0

1 0 0












, (3.3)

while the charged lepton matrix is given as:

Me = 〈Hd〉







α 0 0

0 β 0

0 0 γ













Y3 Y5 Y4
Y4 Y3 Y5
Y5 Y4 Y3







RL

, (3.4)

where α, β and γ are taken to be real positive without loss of generality.
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4 Numerical result

We discuss numerical results for the lepton flavor mixing by using eqs. (3.3) and (3.4).

Parameters of the model are α, β, and γ of the charge lepton mass matrix; and a and b

of the neutrino mass matrix in addition to modulus τ . Parameters α, β, and γ are real

while a and b are complex in general. However, we take a and b to be real in order to

present a simple viable model, that is to say, the CP violation comes from modular forms

in section 2. Parameters α, β, and γ are given in terms of τ after inputting three charged

lepton masses. Therefore, we scan the parameters in the following ranges as:

τ = [−2.0, 2.0] + i[0.1, 2.8], a = [−15, 15], b = [−15, 15], (4.1)

where the fundamental domain of Γ(4) is taken into account. The fundamental region is

shown in figure 5. The lower-cut 0.1 of Im[τ ] is artificial to keep the accurate numerical

calculation. The upper-cut 2.8 is enough large to estimate the modular forms.

We input the experimental data within 3 σ C.L. [51] of three mixing angles in the

lepton mixing matrix [52] in order to constrain magnitudes of parameters. We also put

the two observed neutrino mass square differences (∆m2
sol, ∆m2

atm) and the cosmological

bound for the neutrino masses
∑

mi < 0.12 [eV] [53, 54]. Since parameters are severely

restricted due to experimental data, the Dirac phase δCP is predicted. Furthermore, we

also discuss the effective mass of the 0νββ decay 〈mee〉:

〈mee〉 =
∣

∣

∣m1c
2
12c

2
13 +m2s

2
12c

2
13e

iα21 +m3s
2
13e

i(α31−2δCP)
∣

∣

∣
, (4.2)

where α21 and α31 are Majorana phases defined in ref. [52].

There are two possible spectra of neutrinos masses mi, which are the normal hierarchy

(NH), m3 > m2 > m1, and the inverted hierarchy (IH), m2 > m1 > m3. At first, we

show the predicted region of sin2 θ23–δCP in figure 1, where cyan-points and red-points

denote cases of NH and IH, respectively. For NH of neutrino masses, the predicted δCP

is |δCP| < 70◦ and |δCP| = 135◦–160◦. It is noticed that |δCP| ≃ 90◦ is excluded. The

prediction of δCP becomes clear if sin2 θ23 is precisely measured. Indeed, δCP is predicted

around ±40◦ and ±140◦ at the observed best fit point of sin2 θ23 = 0.582 [51].

For IH of neutrino masses, the predicted δCP is |δCP| = 40◦–70◦ and |δCP| = 110◦–180◦.

It is found that |δCP| ≃ 90◦ is also excluded for IH.

We present the prediction of the effective mass of the 0νββ decay, 〈mee〉 versus the

lightest neutrino mass for both NH and IH of neutrino masses in figure 2. The upper-

bound of the lightest neutrino mass is given by the cosmological upper-bound of the sum

of neutrino masses. For NH, the lower-bound of the lightest neutrino mass is 12 [meV].

The predicted range of 〈mee〉 is 5–22 [meV] depending on the lightest neutrino mass. For

IH, 〈mee〉 is predicted in 15–30 [meV]. Hence, the 0νββ decay will be possibly observed in

the future [55].

– 7 –
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Figure 1. Predicted δCP versus sin2 θ23, where

cyan-points and red-points denote cases of NH

and IH, respectively. The vertical red lines de-

note 3σ interval of data.

Figure 2. Predicted 〈mee〉 versus the light-

est neutrino mass, where cyan-points and red-

points denote cases of NH and IH, respectively.

The cosmological bound of
∑

mi is imposed.

Figure 3. Predicted δCP versus
∑

mi, where

cyan-points and red-points denote cases of NH

and IH, respectively. The vertical red line de-

notes the cosmological upper-bound.

Figure 4. Predicted sin2 θ23 versus
∑

mi. The

notation is the same as in figure 3. Horizontal

red lines denote 3σ interval of the experimental

data.

Let us discuss the neutrino mass dependence of δCP and sin2 θ23. We present the

predicted δCP versus the sum of neutrino masses
∑

mi in figure 3, where the cosmological

bound
∑

mi < 120 [meV] is imposed. The predicted δCP depends on the sum of neutrino

masses, where
∑

mi > 78 [meV] for NH of neutrino masses. In the range of 78 <
∑

mi <

88 [meV], δCP ≃ ±(135◦–160◦) is predicted. In the range of
∑

mi > 88 [meV], we obtain

|δCP| < 70◦). For IH, the sum of neutrino mass is predicted for 98 [meV] <
∑

mi <

110 [meV] with |δCP| > 110◦ or 40◦ < |δCP| < 70◦.

The predicted sin2 θ23 is also presented versus
∑

mi in figure 4. In the case of NH,

the observed best fit point of sin2 θ23 = 0.582 [51] is realized at
∑

mi = 80–85 [meV]. For

IH, we get
∑

mi = 100–105 [meV] for the best fit point of sin2 θ23 = 0.582. Hence, the

observation of the sum of neutrino masses in the cosmology will provide a severe constraint

to the flavor model.

– 8 –
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We present the set of best-fit parameters and observables. For NH, we obtain:

τ = −1.717 + 0.5852i, a = 0.2178, b = −1.141,

αvd = 1.73×105 eV, βvd = 4.64×108 eV, γvd = 3.34×107 eV, (4.3)

sin2 θ12 = 0.299, sin2 θ23 = 0.587, sin2 θ13 = 0.0228, δCP = −142.9◦,

∆m2
21 = 7.38×10−5 eV2, ∆m2

31 = 2.54×10−3 eV2 ,

〈mee〉 = 13.4meV,
∑

mi = 81.5meV,

where χ2 = 0.31. For IH, we have:

τ = −1.508 + 1.288i, a = −1.230, b = −3.616,

αvd = 7.01× 107 eV, βvd = 1.04× 109 eV, γvd = 3.57× 105 eV, (4.4)

sin2 θ12 = 0.292, sin2 θ23 = 0.586, sin2 θ13 = 0.0227, δCP = −133.4◦,

∆m2
21 = 7.16× 10−5, ∆m2

31 = −2.51× 10−3 ,

〈mee〉 = 27.7meV,
∑

mi = 101.5meV,

where χ2 = 0.70.

We show the allowed region of Re[τ ]–Im[τ ] in figure 5, where cyan-points and red-

points denote the NH and IH cases, respectively. The fundamental domain of Γ(4) is also

presented by olive-green in this figure, where the real part of τ is [−2, 2] and the imaginary

part of τ is expanded downward. Some points are outside of the fundamental domain of

Γ(4). Those points are transformed into the inside of the fundamental domain by the S4

transformations. In this figure, the τ → τ +1 shift symmetry of eq. (2.3) is clearly seen. In

order to show τ → −1/τ symmetry of eq. (2.3), we plot one pair by small white triangles.

It is seen that the plotted points (red) on Re[τ ] = 0.5 inside the fundamental region of

SL(2,Z) are converted to the points on the circles.

We show the allowed region of a–b in figure 6. The magnitudes of a and b are found

to be of order one for both NH and IH, which is consistent with the conventional A4 flavor

model [16]. It is noticed that the (a, b) = (0, 0) point is excluded. That is to say, we need

either singlet modular forms of 1′ or 1′′ in order to reproduce the experimental data of

leptons in appendix B. One naively expects to be a ≃ b since Γ4 ≃ S4 is broken to A4 due

to quantum effects (anomaly) as discussed in section 3. Obtained values of a and b deviate

from a ≃ b as seen in eq. (4.3) for NH while the desirable region of a ≃ b exists as seen

in eq. (4.4) for IH. Thus, we should discuss the magnitude of the S4 breaking beyond the

naive expectation. However, it is out of scope in this paper.

In our work, we take a and b to be real in a simple viable model. Our predicted regions

of δCP and 〈mee〉 are possibly enlarged if a and b are complex. Whereas, it is worthwhile

to discuss the case of real a and b because the case is attractive in the context of the

generalized CP violation of modular-invariant flavor model [39].

Finally, we also comment on numerical values on α, β and γ of the charged lepton mass

matrix. These ratios are typically γ/β = O(0.1) and α/β = O(10−4) for the case of NH as

seen in eq. (4.3). The value of α is much smaller than β and γ, on the other hand, we need

– 9 –
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Figure 5. Allowed region on the Re[τ ]–

Im[τ ] plane. The fundamental domain of Γ(4)

are shown by olive-green. Cyan-points and red-

points denote cases of NH and IH, respectively.

Two small white triangles denote a pair con-

necting by the S symmetry.

Figure 6. Allowed region on the a–b plane,

where a and b are taken to be real. Cyan-points

and red-points denote cases of NH and IH, re-

spectively.

a mild hierarchy of O(0.1) between β and γ although one may naively expect β ∼ γ as

discussed in section 3. Thus, the magnitude of the S4 breaking is somewhat large beyond

the naive expectation. For the case of IH, we need a strong hierarchy between β and γ as

seen in eq. (4.4). Therefore, the IH case is not favored in our model.

In our calculations, we take Yukawa couplings of charged leptons at the GUT scale

2 × 1016GeV, where vu/vd = 2.5 is taken as discussed in appendix B. However, we input

the data of NuFIT 4.0 [51] for three lepton mixing angles and neutrino mass parameters.

The renormalization group equation (RGE) effects of mixing angles and the mass ratio

∆m2
sol/∆m2

atm are negligibly small in the case of tan β = 2.5 even if IH of neutrino masses

is considered (see appendix B).

5 Summary

In the S4 symmetry, the Z2 subgroup can be anomalous, and then S4 can be violated to A4.

The S4 symmetry is unique among S3, A4, S4, A5 in the sense that it can be violated by

anomalies to another non-Abelian symmetry, A4. Starting with a S4 symmetric Lagrangian

at the tree level, the Lagrangian at the quantum level has only A4 symmetry when Z2 in S4

is anomalous. We have studied such a possibility that the A4 flavor symmetry is originated

from the S4 modular group. Decomposing S4 modular forms into A4 representations, we

have obtained the modular forms of two singlets, 1′ and 1′′, in addition to triplet, 3 for A4.

Using those modular forms, we have succeeded in constructing the viable neutrino mass

matrix through the Weinberg operator for both NH and IH of neutrino masses. Our model

presents a new possibility of flavor model with the modular symmetry.

Indeed, we have obtained an interesting prediction of δCP for both NH and IH, and their

predictions also depend on the sum of neutrino masses. Hence, the observation of the sum

of neutrino masses in the cosmology will provide a severe constraint to the flavor model.
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Realistic mass matrices are realized in the parameter region with small Im[τ ] as well as

large Im[τ ]. If our four-dimensional field theory is originated from extra dimensional theory

or superstring theory on a compact space, the volume of compact space is proportional to

Im[τ ]. Such volume of the compact space must be larger than the string scale. For example,

the volume of torus compactification is obtained by (2πR)2Im[τ ]. Thus, larger 2πR will be

required for smaller Im[τ ].

Furthermore, it is important how to derive the preferred values of τ in such compact-

ified theory. That is the so-called moduli stabilization problem. However, that is beyond

our scope. We can study this problem elsewhere.3
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A S4 and A4 representations

The representations S and T of Γ4 ≃ S4 are given for the representations 2 and 3′ in

section 2. Here, we give other representations. The generators S and T are represented by

ρ(S) =
1

3







−1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2






, ρ(T ) =

1

3







−1 2ω 2ω2

2ω 2ω2 −1

2ω2 −1 2ω






, (A.1)

on the S4 3 representation, where ω = ei
2

3
π, and

ρ(S) = ρ(T ) = −1, (A.2)

for 1′, while ρ(S) = ρ(T ) = 1 for 1.

On the other hand, we take the generators of A4 group S̃ and T̃ for 3 by using the S

and T of the S4 group as follows:

ρ(S̃) = ρ(T 2) =
1

3







−1 2 2

2 −1 2

2 2 −1






, ρ(T̃ ) = ρ(ST ) =







1 0 0

0 ω2 0

0 0 ω






. (A.3)

Since the doublet 2 of S4 group is transformed by S̃ and T̃ as

ρ(S̃) = ρ(T 2) =

(

1 0

0 1

)

, ρ(T̃ ) = ρ(ST ) =

(

ω 0

0 ω2

)

, (A.4)

3Realistic results are obtained at some points of τ near edges of the SL(2,Z) fundamental domain and

domains transformed by S, T and their products. The edges of the fundamental domain can be candidates

for the minimum of the modulus potential. (See e.g. ref. [59] and its references therein.)
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observable &3 σ range for NH 3σ range for IH

∆m2
atm (2.431–2.622)× 10−3 eV2 −(2.413–2.606)× 10−3 eV2

∆m2
sol (6.79–8.01)× 10−5 eV2 (6.79–8.01)× 10−5 eV2

sin2 θ23 0.428–0.624 0.433–0.623

sin2 θ12 0.275–0.350 0.275–0.350

sin2 θ13 0.02044–0.02437 0.02067–0.02461

Table 2. The 3σ ranges of neutrino parameters from NuFIT 4.0 for NH and IH [51].

the doublet of S4 can be decomposed into singlets of A4 transformed as

ρ(S̃)1′ = ρ(S̃)1′′ = 1, ρ(T̃ )1′ = ω2, ρ(T̃ )1′′ = ω. (A.5)

In this base, the multiplication rule of the A4 triplet is







a1
a2
a3







3

⊗







b1
b2
b3







3

=(a1b1 + a2b3 + a3b2)1 ⊕ (a3b3 + a1b2 + a2b1)1′

⊕ (a2b2 + a1b3 + a3b1)1′′

⊕ 1

3







2a1b1 − a2b3 − a3b2
2a3b3 − a1b2 − a2b1
2a2b2 − a1b3 − a3b1







3

⊕ 1

2







a2b3 − a3b2
a1b2 − a2b1
a3b1 − a1b3







3

,

1⊗ 1 = 1 , 1′ ⊗ 1′ =1′′ , 1′′ ⊗ 1′′ = 1′ , 1′ ⊗ 1′′ = 1 . (A.6)

More details are shown in the review [4, 5].

B Input data

We input charged lepton masses in order to constrain the model parameters. We take

Yukawa couplings of charged leptons at the GUT scale 2 × 1016GeV, where tan β = 2.5 is

taken [31, 56–58]:

ye = (1.97± 0.02)× 10−6, yµ = (4.16± 0.05)× 10−4, yτ = (7.07± 0.07)× 10−3, (B.1)

where lepton masses are given by mℓ =
√
2yℓvH with vH = 174GeV. We also use the

following lepton mixing angles and neutrino mass parameters in table 2 given by NuFIT

4.0 [51]. The RGE effects of mixing angles and the mass ratio ∆m2
sol/∆m2

atm are negligibly

small in the case of tan β = 2.5 for both NH and IH as seen in appendix E of ref. [31].
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