New A_{4} lepton flavor model from S_{4} modular symmetry

Tatsuo Kobayashi, ${ }^{a}$ Yusuke Shimizu, ${ }^{b}$ Kenta Takagi, ${ }^{b}$ Morimitsu Tanimoto ${ }^{c}$ and Takuya H. Tatsuishi ${ }^{a}$
${ }^{a}$ Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
${ }^{b}$ Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
${ }^{c}$ Department of Physics, Niigata University, Niigata 950-2181, Japan
E-mail: kobayashi@particle.sci.hokudai.ac.jp,
yu-shimizu@hiroshima-u.ac.jp, takagi-kenta@hiroshima-u.ac.jp,
tanimoto@muse.sc.niigata-u.ac.jp,
t-h-tatsuishi@particle.sci.hokudai.ac.jp

AbSTRACT: We study a flavor model with A_{4} symmetry which originates from S_{4} modular group. In S_{4} symmetry, Z_{2} subgroup can be anomalous, and then S_{4} can be violated to A_{4}. Starting with a S_{4} symmetric Lagrangian at the tree level, the Lagrangian at the quantum level has only A_{4} symmetry when Z_{2} in S_{4} is anomalous. We obtain modular forms of two singlets and a triplet representations of A_{4} by decomposing S_{4} modular forms into A_{4} representations. We propose a new A_{4} flavor model of leptons by using those A_{4} modular forms. We succeed in constructing a viable neutrino mass matrix through the Weinberg operator for both normal hierarchy (NH) and inverted hierarchy (IH) of neutrino masses. Our predictions of the CP violating Dirac phase δ_{CP} and the mixing $\sin ^{2} \theta_{23}$ depend on the sum of neutrino masses for NH.

Keywords: Discrete Symmetries, Neutrino Physics, Compactification and String Models, CP violation

ArXiv EPrint: 1907.09141

Contents

1 Introduction 1
2 Modular symmetry and S_{4} anomaly 3
2.1 Modular forms 3
2.2 Anomaly 4
$3 \quad A_{4}$ lepton model from S_{4} modular symmetry 5
4 Numerical result 7
5 Summary 10
A S_{4} and A_{4} representations 11
B Input data 12

1 Introduction

The origin of the flavor structure is one of important issues in particle physics. The recent development of the neutrino oscillation experiments provides us important clues to investigate the flavor physics. Indeed, the neutrino oscillation experiments have presented two large flavor mixing angles, which is a contrast to the quark mixing angles. In addition to the precise measurements of the flavor mixing angles of leptons, the T 2 K and $\mathrm{NO} \nu \mathrm{A}$ strongly indicate the CP violation in the neutrino oscillation [1, 2]. We are in the era to develop the flavor theory of leptons with the observation of flavor mixing angles and CP violating phase.

It is interesting to impose non-Abelian discrete symmetries for flavors. In the last twenty years, the studies of discrete symmetries for flavors have been developed through the precise observation of flavor mixing angles of leptons [3-11]. Many models have been proposed by using the non-Abelian discrete groups $S_{3}, A_{4}, S_{4}, A_{5}$ and other groups with larger orders to explain the large neutrino mixing angles. Among them, A_{4} flavor symmetry is attractive because A_{4} group is the minimal one including a triplet irreducible representation. A triplet representation allows us to give a natural explanation of the existence of three families of leptons [12-18]. However, a variety of models is so wide that it is difficult to obtain a clear evidence of the A_{4} flavor symmetry.

Superstring theory is a promising candidate for the unified theory of all interactions including gravity and matter fields such as quarks and leptons as well as the Higgs field. Superstring theory predicts six-dimensional compact space in addition to four-dimensional
space-time. Geometrical aspects, i.e. the size and shape of the compact space, are described by moduli parameters. Gauge couplings and Yukawa couplings as well as higher order couplings in four-dimensional low-energy effective field theory depend on moduli parameters. A geometrical symmetry of the six-dimensional compact space can be the origin of the flavor symmetry. ${ }^{1}$

The torus compactification as well as the orbifold compactification has the modular symmetry $\Gamma .{ }^{2}$ It is interesting that the modular symmetry includes $\Gamma_{2} \simeq S_{3}, \Gamma_{3} \simeq A_{4}$, $\Gamma_{4} \simeq S_{4}, \Gamma_{5} \simeq A_{5}$ as finite groups [24]. Inspired by these aspects, recently a new type of flavor models was proposed [25]. In ref. [25], the A_{4} flavor symmetry is assumed as a finite group of the modular symmetry. Three families of leptons are assigned to certain A_{4} representations like conventional flavor models. Furthermore, Yukawa couplings as well as Majorana masses are assumed to be modular forms which are functions of the modular parameter τ and they are non-trivial representations under A_{4}. We have a modular form of A_{4} triplet with weight $2[25]$. The flavor symmetry A_{4} is broken when the value of the modular parameter τ is fixed. It is noted that one can construct flavor models without flavon fields.

The modular forms of the weight 2 have been constructed for the S_{3} doublet [26], the S_{4} triplet and doublet [27], and the A_{5} quintet and triplets [28], as well as the $\Delta(96)$ triplet and the $\Delta(384)$ triplet [29]. The modular forms of the weight 1 and higher weights are also given for T^{\prime} doublet [30]. By use of these modular forms, new flavor models have been constructed [31-44].

Discrete symmetries can be anomalous [45-47]. Anomalies of non-Abelian symmetries were studied in [48]. (See also [4, 5].) The anomaly of the modular symmetry was also discussed [49]. In the S_{4} symmetry, the Z_{2} subgroup can be anomalous and then S_{4} can be violated to A_{4}. The A_{5} symmetry is always anomaly-free. Both S_{3} and A_{4} can be anomalous, and then they can be violated to Abelian discrete symmetries. Thus, the S_{4} is unique among $S_{3}, A_{4}, S_{4}, A_{5}$ in the sense that it can be violated by anomalies to another non-Abelian symmetry, A_{4}. Even starting with a S_{4} symmetric Lagrangian at the tree level, the Lagrangian at the quantum level has only the A_{4} symmetry when Z_{2} subgroup of S_{4} is anomalous. Our purpose is to show such a possibility in a phenomenological viewpoint. We decompose S_{4} modular forms into A_{4} representations. Such modulus functions are different from the modular forms in Γ_{3}. We propose a new A_{4} flavor model with those A_{4} modular forms, which is much different from the typical modular A_{4} models [25, 31, 32].

This paper is organized as follows. In section 2 , we give a brief review on the modular symmetry and the S_{4} anomaly. In section 3 , we present our model for lepton mass matrices. In section 4, we show our numerical results for lepton mixing angles, the CP violating Dirac phase and neutrino masses. Section 5 is devoted to a summary. Relevant representations of S_{4} and A_{4} groups are presented in appendix A. We list the input data of neutrinos in appendix B.

[^0]
2 Modular symmetry and S_{4} anomaly

2.1 Modular forms

We give a brief review on the modular symmetry and modular forms. The torus compactification is the simplest compactification. We consider a two-dimensional torus which can be constructed as a division of the two-dimensional real space \mathbb{R}^{2} by a lattice Λ, i.e. $T^{2}=\mathbb{R}^{2} / \Lambda$. We use the complex coordinate on \mathbb{R}^{2}. The lattice Λ is spanned by two vectors, $\alpha_{1}=2 \pi R$ and $\alpha_{2}=2 \pi R \tau$, where R is a real and τ is a complex modulus parameter. The same lattice is spanned by the following lattice vectors,

$$
\binom{\alpha_{2}^{\prime}}{\alpha_{1}^{\prime}}=\left(\begin{array}{ll}
a & b \tag{2.1}\\
c & d
\end{array}\right)\binom{\alpha_{2}}{\alpha_{1}},
$$

where a, b, c, d are integer with satisfying $a d-b c=1$. That is, the $\operatorname{SL}(2, \mathbb{Z})$ symmetry. Under $\operatorname{SL}(2, \mathbb{Z})$, the modulus parameter transforms

$$
\begin{equation*}
\tau \longrightarrow \tau^{\prime}=\gamma \tau=\frac{a \tau+b}{c \tau+d} \tag{2.2}
\end{equation*}
$$

This modular symmetry is generated by two elements, S and T, which $\operatorname{transform} \tau$ as

$$
\begin{equation*}
S: \tau \longrightarrow-\frac{1}{\tau}, \quad T: \tau \longrightarrow \tau+1 \tag{2.3}
\end{equation*}
$$

They satisfy the following algebraic relations,

$$
\begin{equation*}
S^{2}=(S T)^{3}=\mathbb{I} . \tag{2.4}
\end{equation*}
$$

If we impose the algebraic relation $T^{N}=\mathbb{I}$, we obtain the finite groups Γ_{N} for $N=$ $2,3,4,5$, and these are isomorphic to $S_{3}, A_{4}, S_{4}, A_{5}$, respectively. We define the congruence subgroups of level N as

$$
\Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \tag{2.5}\\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z}), \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad(\bmod N)\right\} .
$$

For $N=2$, we define $\bar{\Gamma}(2) \equiv \Gamma(2) /\{\mathbb{I},-\mathbb{I}\}$. Since the element $-\mathbb{I}$ does not belong to $\Gamma(N)$ for $N>2$, we have $\bar{\Gamma}(N)=\Gamma(N)$. The quotient groups defined as $\Gamma_{N} \equiv \bar{\Gamma} / \bar{\Gamma}(N)$ are finite modular groups.

Modular forms of weight k are the holomorphic functions of τ and transform as

$$
\begin{equation*}
f_{i}(\tau) \longrightarrow(c \tau+d)^{k} \rho(\gamma)_{i j} f_{j}(\gamma \tau), \tag{2.6}
\end{equation*}
$$

where $\rho(\gamma)_{i j}$ is a unitary matrix. Also, matter fields $\phi^{(I)}$ with the modular weight k_{I} transform

$$
\begin{equation*}
\left(\phi^{(I)}\right)_{i}(x) \longrightarrow(c \tau+d)^{k_{I}} \rho(\gamma)_{i j}\left(\phi^{(I)}\right)_{j}(x), \tag{2.7}
\end{equation*}
$$

under the modular symmetry.

In ref. [27], the modular form of the level $N=4$ for $\Gamma_{4} \simeq S_{4}$ have been constructed with the Dedekind eta function, $\eta(\tau)$,

$$
\begin{equation*}
\eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right) \tag{2.8}
\end{equation*}
$$

where $q=e^{2 \pi i \tau}$. The modular forms of the weight 2 are written by

$$
\begin{align*}
& Y_{1}(\tau)=Y\left(1,1, \omega, \omega^{2}, \omega, \omega^{2} \mid \tau\right), \\
& Y_{2}(\tau)=Y\left(1,1, \omega^{2}, \omega, \omega^{2}, \omega \mid \tau\right), \\
& Y_{3}(\tau)=Y(1,-1,-1,-1,1,1 \mid \tau), \tag{2.9}\\
& Y_{4}(\tau)=Y\left(1,-1,-\omega^{2},-\omega, \omega^{2}, \omega \mid \tau\right), \\
& Y_{5}(\tau)=Y\left(1,-1,-\omega,-\omega^{2}, \omega, \omega^{2} \mid \tau\right),
\end{align*}
$$

where $\omega=e^{2 \pi i / 3}$ and

$$
\begin{align*}
Y\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6} \mid \tau\right)= & a_{1} \frac{\eta^{\prime}(\tau+1 / 2)}{\eta(\tau+1 / 2)}+4 a_{2} \frac{\eta^{\prime}(4 \tau)}{\eta(4 \tau)} \\
& +\frac{1}{4} \sum_{m=0}^{3} a_{m+3} \frac{\eta^{\prime}((\tau+m) / 4)}{\eta((\tau+m) / 4)} . \tag{2.10}
\end{align*}
$$

These five modular forms are decomposed into the $\mathbf{3}^{\prime}$ and $\mathbf{2}$ representations under S_{4},

$$
Y_{S_{4} \mathbf{2}}(\tau)=\binom{Y_{1}(\tau)}{Y_{2}(\tau)}, \quad Y_{S_{4} 3^{\prime}}(\tau)=\left(\begin{array}{c}
Y_{3}(\tau) \tag{2.11}\\
Y_{4}(\tau) \\
Y_{5}(\tau)
\end{array}\right) .
$$

The generators, S and T, are represented on the above modular forms,

$$
\rho(S)=\left(\begin{array}{cc}
0 & \omega \tag{2.12}\\
\omega^{2} & 0
\end{array}\right), \quad \rho(T)=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

for 2 , and

$$
\rho(S)=-\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 \omega^{2} & 2 \omega \tag{2.13}\\
2 \omega & 2 & -\omega^{2} \\
2 \omega^{2} & -\omega & 2
\end{array}\right), \quad \rho(T)=-\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 \omega & 2 \omega^{2} \\
2 \omega & 2 \omega^{2} & -1 \\
2 \omega^{2} & -1 & 2 \omega
\end{array}\right)
$$

for $\mathbf{3}^{\prime}$. The modular form of larger weights are obtained as products of $Y_{S_{4}}(\tau)$ and $Y_{S_{4} 3^{\prime}}(\tau)$. Other representations are shown in appendix A.

2.2 Anomaly

A discrete symmetry can be anomalous. Each element g in a non-Abelian symmetry satisfies $g^{N}=1$, that is, the Abelian Z_{N} symmetry. If all of such Abelian symmetries in a non-Abelian symmetry are anomaly-free, the whole non-Abelian symmetry is anomaly-free. Otherwise, the non-Abelian symmetry is anomalous, and anomalous sub-group is violated.

Furthermore, each element g is represented by a matrix $\rho(g)$. If $\operatorname{det} \rho(g)=1$, the corresponding Z_{N} is always anomaly-free. On the other hand, if $\operatorname{det} \rho(g) \neq 1$, the corresponding Z_{N} symmetry can be anomalous. See anomalies of non-Abelian symmetries [4, 5, 48].

In particular, in refs. [4, 5], it shows which sub-groups can be anomalous in nonAbelian discrete symmetries. The S_{4} group is isomorphic to $\left(Z_{2} \times Z_{2}\right) \rtimes S_{3}$, and then the Z_{2} symmetry of S_{3} can be anomalous in S_{4}. In general, the $\mathbf{2}$ and $\mathbf{3}$ representations as well as $\mathbf{1}^{\prime}$ have $\operatorname{det} \rho(g)=-1$ while the $\mathbf{1}$ and $\mathbf{3}^{\prime}$ representations have $\operatorname{det} \rho(g)=1$. Indeed $\rho(S)$ and $\rho(T)$ for $\mathbf{2}$ as well as $\mathbf{3}$ and $\mathbf{1}^{\prime}$ have $\operatorname{det}(\rho(S))=\operatorname{det}(\rho(T))=-1$. Thus, the odd number of $\mathbf{2}$'s as well as $\mathbf{3}$ and $\mathbf{1}^{\prime}$ can lead to anomalies.

If the above Z_{2} symmetry in S_{4} is anomalous, S_{4} is violated to A_{4}. In this case, S and T themselves are anomalous, but $\tilde{S}=T^{2}$ and $\tilde{T}=S T$ are anomaly-free. These anomaly-free elements satisfy

$$
\begin{equation*}
(\tilde{S})^{2}=(\tilde{S} \tilde{T})^{3}=(\tilde{T})^{3}=\mathbb{I}, \tag{2.14}
\end{equation*}
$$

if we impose $T^{4}=\mathbb{I}$. That is, the A_{4} algebra is realized. The explicit representations of generators \tilde{S} and \tilde{T} for the A_{4} triplet and singlets are presented in appendix A. The modular forms for S_{4} act under the A_{4} symmetry as follows:

$$
\begin{equation*}
Y_{S_{4} 2}(\tau) \rightarrow\left(Y_{A_{4} 1^{\prime \prime}}(\tau), Y_{A_{4} 1^{\prime}}(\tau)\right), \quad Y_{S_{4} 3^{\prime}}(\tau) \rightarrow Y_{A_{4} 3}(\tau) \tag{2.15}
\end{equation*}
$$

That is, we have

$$
Y_{A_{4} 1^{\prime}}(\tau)=Y_{2}(\tau), \quad Y_{A_{4} 1^{\prime \prime}}(\tau)=Y_{1}(\tau), \quad Y_{A_{4} 3}(\tau)=\left(\begin{array}{c}
Y_{3}(\tau) \tag{2.16}\\
Y_{4}(\tau) \\
Y_{5}(\tau)
\end{array}\right) .
$$

Note that these are different from modular forms of the level $N=3$ for Γ_{3} because they do not transform as A_{4} multiplets under S and T.

Anomalies of the S_{4} symmetry, in particular its Z_{2} sub-symmetry, depend on models, that is, the numbers of $\mathbf{2}, \mathbf{3}$ and $\mathbf{1}^{\prime}$. If the S_{4} symmetry is anomaly-free and exact, the model building follows the study in ref. [27] and its extension. If the S_{4} is anomalous and violated to A_{4}, that leads to a new type of model building. In the next section, we study such a new possibility for lepton mass matrices.

$3 \quad A_{4}$ lepton model from S_{4} modular symmetry

We present a viable A_{4} model of leptons originated from the subgroup of S_{4} group. The charge assignment of the fields and modular forms is summarized in table 1 . We assign the modular weight -1 to the left- and right-handed leptons. If the S_{4} is exact, $\mu_{1^{\prime \prime}}^{c}$ and $\tau_{1^{\prime}}^{c}$ are combined to the S_{4} doublet. The odd number of doublets can lead to anomalies.

The modular forms of weight 2 that transform non-trivially under the A_{4} symmetry are given in S_{4} modular group as discussed in section 2. The A_{4} triplet $Y_{A_{4} 3}$ and nontrivial A_{4} singlets $Y_{A_{4} 1^{\prime}}, Y_{A_{4} 1^{\prime \prime}}$ are constructed by five modular forms in eq. (2.9), which is a difference from the $\Gamma_{3} \simeq A_{4}$ modular symmetry with three modular forms.

	$L_{\mathbf{3}}$	$e_{\mathbf{1}}^{c}, \mu_{\mathbf{1}^{\prime \prime}}^{c}, \tau_{\mathbf{1}^{\prime}}^{c}$	$H_{u, d}$	$Y_{A_{4} \mathbf{3}}$	$Y_{A_{4} \mathbf{1}^{\prime}}$	$Y_{A_{4} \mathbf{1}^{\prime \prime}}$
$\mathrm{SU}(2)$	2	1	2	1	1	1
A_{4}	3	$1,1^{\prime \prime}, 1^{\prime}$	1	3	1^{\prime}	$1^{\prime \prime}$
$-k_{I}$	-1	-1	0	$k=2$	$k=2$	$k=2$

Table 1. The charge assignment of $\mathrm{SU}(2), A_{4}$, and the modular weight ($-k_{I}$ for fields and k for coupling Y).

Suppose neutrinos to be Majorana particles. The superpotential of the neutrino mass term is given by the Weinberg operator:

$$
\begin{equation*}
w_{\nu}=\frac{1}{\Lambda}\left[Y_{A_{4} \mathbf{3}}+a Y_{A_{4} \mathbf{1}^{\prime \prime}}+b Y_{A_{4} \mathbf{1}^{\prime}}\right] L_{\mathbf{3}} L_{\mathbf{3}} H_{u} H_{u} \tag{3.1}
\end{equation*}
$$

where $L_{\mathbf{3}}$ denote the A_{4} triplet of the left-handed lepton doublet, $\left(L_{e}, L_{\mu}, L_{\tau}\right)^{T}$, and H_{u} stands for the Higgs doublet which couples to the neutrino sector. Parameters a and b are complex constants in general. If the S_{4} symmetry is exact, $Y_{A_{4} \mathbf{1}^{\prime}}$ and $Y_{A_{4} \mathbf{1}^{\prime \prime}}$ are combined to the S_{4} doublet $Y_{S_{4} \mathbf{2}}$. That is, the second and third terms are originated from $a Y_{S_{4} 2} L L H_{u} H_{u}$, where L is taken to be $\mathbf{3}^{\prime}$ of S_{4}, and we have $a=b$. Breaking of S_{4} to A_{4} leads to the above terms with $a \neq b$. One naively expects to be $a \sim b$, although their difference depends on breaking effects. At any rate, we treat them as independent parameters from the phenomenological viewpoint. We also discuss the situation with $a \sim b$.

The superpotential of the mass term of charged leptons is described as

$$
\begin{equation*}
w_{e}=\left[\alpha e_{\mathbf{1}}^{c}+\beta \mu_{\mathbf{1}^{\prime \prime}}^{c}+\gamma \tau_{\mathbf{1}^{\prime}}^{c}\right] Y_{A_{4} \mathbf{3}} L_{\mathbf{3}} H_{d} \tag{3.2}
\end{equation*}
$$

where charged leptons $e_{\mathbf{1}}^{c}, \mu_{\mathbf{1}^{\prime \prime}}^{c}, \tau_{\mathbf{1}^{\prime}}^{c}$ are assigned to the A_{4} singlets of $\mathbf{1}, \mathbf{1}^{\prime \prime}, \mathbf{1}^{\prime}$ respectively. The H_{d} is a Higgs doublet which couples to the charged lepton sector. Coefficients α, β and γ can be taken to be real. Then, charged lepton masses are given in terms of $\tau,\left\langle H_{d}\right\rangle, \alpha, \beta$ and γ. Similar to eq. (3.1), if the S_{4} is exact, $\mu_{1^{\prime \prime}}^{c}$ and $\tau_{1^{\prime}}^{c}$, are combined to the S_{4} doublet. That is, we have to require $\beta=\gamma$. Here, we also treat these parameters as independent parameters from the phenomenological viewpoint.

The relevant mass matrices are given by using the multiplication rules based on \tilde{S} and \tilde{T} in appendix A. The Majorana neutrino mass matrix is:

$$
M_{\nu}=\frac{\left\langle H_{u}\right\rangle^{2}}{\Lambda}\left[\left(\begin{array}{ccc}
2 Y_{3} & -Y_{5} & -Y_{4} \tag{3.3}\\
-Y_{5} & 2 Y_{4} & -Y_{3} \\
-Y_{4} & -Y_{3} & 2 Y_{5}
\end{array}\right)+a Y_{1}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)+b Y_{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\right]
$$

while the charged lepton matrix is given as:

$$
M_{e}=\left\langle H_{d}\right\rangle\left(\begin{array}{lll}
\alpha & 0 & 0 \tag{3.4}\\
0 & \beta & 0 \\
0 & 0 & \gamma
\end{array}\right)\left(\begin{array}{lll}
Y_{3} & Y_{5} & Y_{4} \\
Y_{4} & Y_{3} & Y_{5} \\
Y_{5} & Y_{4} & Y_{3}
\end{array}\right)_{R L}
$$

where α, β and γ are taken to be real positive without loss of generality.

4 Numerical result

We discuss numerical results for the lepton flavor mixing by using eqs. (3.3) and (3.4). Parameters of the model are α, β, and γ of the charge lepton mass matrix; and a and b of the neutrino mass matrix in addition to modulus τ. Parameters α, β, and γ are real while a and b are complex in general. However, we take a and b to be real in order to present a simple viable model, that is to say, the CP violation comes from modular forms in section 2. Parameters α, β, and γ are given in terms of τ after inputting three charged lepton masses. Therefore, we scan the parameters in the following ranges as:

$$
\begin{equation*}
\tau=[-2.0,2.0]+i[0.1,2.8], \quad a=[-15,15], \quad b=[-15,15], \tag{4.1}
\end{equation*}
$$

where the fundamental domain of $\Gamma(4)$ is taken into account. The fundamental region is shown in figure 5 . The lower-cut 0.1 of $\operatorname{Im}[\tau]$ is artificial to keep the accurate numerical calculation. The upper-cut 2.8 is enough large to estimate the modular forms.

We input the experimental data within 3σ C.L. [51] of three mixing angles in the lepton mixing matrix [52] in order to constrain magnitudes of parameters. We also put the two observed neutrino mass square differences ($\Delta m_{\text {sol }}^{2}, \Delta m_{\mathrm{atm}}^{2}$) and the cosmological bound for the neutrino masses $\sum m_{i}<0.12[\mathrm{eV}][53,54]$. Since parameters are severely restricted due to experimental data, the Dirac phase δ_{CP} is predicted. Furthermore, we also discuss the effective mass of the $0 \nu \beta \beta$ decay $\left\langle m_{e e}\right\rangle$:

$$
\begin{equation*}
\left\langle m_{e e}\right\rangle=\left|m_{1} c_{12}^{2} c_{13}^{2}+m_{2} s_{12}^{2} c_{13}^{2} e^{i \alpha_{21}}+m_{3} s_{13}^{2} e^{i\left(\alpha_{31}-2 \delta_{\mathrm{CP}}\right)}\right|, \tag{4.2}
\end{equation*}
$$

where α_{21} and α_{31} are Majorana phases defined in ref. [52].
There are two possible spectra of neutrinos masses m_{i}, which are the normal hierarchy (NH), $m_{3}>m_{2}>m_{1}$, and the inverted hierarchy (IH), $m_{2}>m_{1}>m_{3}$. At first, we show the predicted region of $\sin ^{2} \theta_{23}-\delta_{\mathrm{CP}}$ in figure 1, where cyan-points and red-points denote cases of NH and IH , respectively. For NH of neutrino masses, the predicted δ_{CP} is $\left|\delta_{\mathrm{CP}}\right|<70^{\circ}$ and $\left|\delta_{\mathrm{CP}}\right|=135^{\circ}-160^{\circ}$. It is noticed that $\left|\delta_{\mathrm{CP}}\right| \simeq 90^{\circ}$ is excluded. The prediction of δ_{CP} becomes clear if $\sin ^{2} \theta_{23}$ is precisely measured. Indeed, δ_{CP} is predicted around $\pm 40^{\circ}$ and $\pm 140^{\circ}$ at the observed best fit point of $\sin ^{2} \theta_{23}=0.582$ [51].

For IH of neutrino masses, the predicted δ_{CP} is $\left|\delta_{\mathrm{CP}}\right|=40^{\circ}-70^{\circ}$ and $\left|\delta_{\mathrm{CP}}\right|=110^{\circ}-180^{\circ}$. It is found that $\left|\delta_{\mathrm{CP}}\right| \simeq 90^{\circ}$ is also excluded for IH .

We present the prediction of the effective mass of the $0 \nu \beta \beta$ decay, $\left\langle m_{e e}\right\rangle$ versus the lightest neutrino mass for both NH and IH of neutrino masses in figure 2. The upperbound of the lightest neutrino mass is given by the cosmological upper-bound of the sum of neutrino masses. For NH, the lower-bound of the lightest neutrino mass is $12[\mathrm{meV}]$. The predicted range of $\left\langle m_{e e}\right\rangle$ is $5-22[\mathrm{meV}]$ depending on the lightest neutrino mass. For $\mathrm{IH},\left\langle m_{e e}\right\rangle$ is predicted in $15-30[\mathrm{meV}]$. Hence, the $0 \nu \beta \beta$ decay will be possibly observed in the future [55].

Figure 1. Predicted δ_{CP} versus $\sin ^{2} \theta_{23}$, where cyan-points and red-points denote cases of NH and $I H$, respectively. The vertical red lines denote 3σ interval of data.

Figure 3. Predicted δ_{CP} versus $\sum m_{i}$, where cyan-points and red-points denote cases of NH and IH , respectively. The vertical red line denotes the cosmological upper-bound.

Figure 2. Predicted $\left\langle m_{e e}\right\rangle$ versus the lightest neutrino mass, where cyan-points and redpoints denote cases of NH and IH , respectively. The cosmological bound of $\sum m_{i}$ is imposed.

Figure 4. Predicted $\sin ^{2} \theta_{23}$ versus $\sum m_{i}$. The notation is the same as in figure 3. Horizontal red lines denote 3σ interval of the experimental data.

Let us discuss the neutrino mass dependence of δ_{CP} and $\sin ^{2} \theta_{23}$. We present the predicted δ_{CP} versus the sum of neutrino masses $\sum m_{i}$ in figure 3 , where the cosmological bound $\sum m_{i}<120[\mathrm{meV}]$ is imposed. The predicted δ_{CP} depends on the sum of neutrino masses, where $\sum m_{i}>78[\mathrm{meV}]$ for NH of neutrino masses. In the range of $78<\sum m_{i}<$ $88[\mathrm{meV}], \delta_{\mathrm{CP}} \simeq \pm\left(135^{\circ}-160^{\circ}\right)$ is predicted. In the range of $\sum m_{i}>88[\mathrm{meV}]$, we obtain $\left.\left|\delta_{\mathrm{CP}}\right|<70^{\circ}\right)$. For IH, the sum of neutrino mass is predicted for $98[\mathrm{meV}]<\sum m_{i}<$ $110[\mathrm{meV}]$ with $\left|\delta_{\mathrm{CP}}\right|>110^{\circ}$ or $40^{\circ}<\left|\delta_{\mathrm{CP}}\right|<70^{\circ}$.

The predicted $\sin ^{2} \theta_{23}$ is also presented versus $\sum m_{i}$ in figure 4 . In the case of NH , the observed best fit point of $\sin ^{2} \theta_{23}=0.582$ [51] is realized at $\sum m_{i}=80-85[\mathrm{meV}]$. For IH, we get $\sum m_{i}=100-105[\mathrm{meV}]$ for the best fit point of $\sin ^{2} \theta_{23}=0.582$. Hence, the observation of the sum of neutrino masses in the cosmology will provide a severe constraint to the flavor model.

We present the set of best-fit parameters and observables. For NH, we obtain:

$$
\begin{aligned}
& \tau=-1.717+0.5852 i, \quad a=0.2178, \quad b=-1.141, \\
& \alpha v_{d}=1.73 \times 10^{5} \mathrm{eV}, \quad \beta v_{d}=4.64 \times 10^{8} \mathrm{eV}, \quad \gamma v_{d}=3.34 \times 10^{7} \mathrm{eV}, \\
& \sin ^{2} \theta_{12}=0.299, \quad \quad \sin ^{2} \theta_{23}=0.587, \quad \sin ^{2} \theta_{13}=0.0228, \quad \delta_{\mathrm{CP}}=-142.9^{\circ}, \\
& \Delta m_{21}^{2}=7.38 \times 10^{-5} \mathrm{eV}^{2}, \quad \Delta m_{31}^{2}=2.54 \times 10^{-3} \mathrm{eV}^{2}, \\
& \left\langle m_{e e}\right\rangle=13.4 \mathrm{meV}, \quad \sum m_{i}=81.5 \mathrm{meV},
\end{aligned}
$$

where $\chi^{2}=0.31$. For IH, we have:

$$
\begin{aligned}
& \tau=-1.508+1.288 i, \quad a=-1.230, \quad b=-3.616, \\
& \alpha v_{d}=7.01 \times 10^{7} \mathrm{eV}, \quad \beta v_{d}=1.04 \times 10^{9} \mathrm{eV}, \quad \gamma v_{d}=3.57 \times 10^{5} \mathrm{eV}, \\
& \sin ^{2} \theta_{12}=0.292, \quad \quad \sin ^{2} \theta_{23}=0.586, \quad \sin ^{2} \theta_{13}=0.0227, \quad \delta_{\mathrm{CP}}=-133.4^{\circ}, \\
& \Delta m_{21}^{2}=7.16 \times 10^{-5}, \quad \Delta m_{31}^{2}=-2.51 \times 10^{-3} \text {, } \\
& \left\langle m_{e e}\right\rangle=27.7 \mathrm{meV}, \quad \sum m_{i}=101.5 \mathrm{meV},
\end{aligned}
$$

where $\chi^{2}=0.70$.
We show the allowed region of $\operatorname{Re}[\tau]-\operatorname{Im}[\tau]$ in figure 5 , where cyan-points and redpoints denote the NH and IH cases, respectively. The fundamental domain of $\Gamma(4)$ is also presented by olive-green in this figure, where the real part of τ is $[-2,2]$ and the imaginary part of τ is expanded downward. Some points are outside of the fundamental domain of $\Gamma(4)$. Those points are transformed into the inside of the fundamental domain by the S_{4} transformations. In this figure, the $\tau \rightarrow \tau+1$ shift symmetry of eq. (2.3) is clearly seen. In order to show $\tau \rightarrow-1 / \tau$ symmetry of eq. (2.3), we plot one pair by small white triangles. It is seen that the plotted points (red) on $\operatorname{Re}[\tau]=0.5$ inside the fundamental region of $\mathrm{SL}(2, \mathbb{Z})$ are converted to the points on the circles.

We show the allowed region of $a-b$ in figure 6. The magnitudes of a and b are found to be of order one for both NH and IH , which is consistent with the conventional A_{4} flavor model [16]. It is noticed that the $(a, b)=(0,0)$ point is excluded. That is to say, we need either singlet modular forms of 1^{\prime} or $1^{\prime \prime}$ in order to reproduce the experimental data of leptons in appendix B. One naively expects to be $a \simeq b$ since $\Gamma_{4} \simeq S_{4}$ is broken to A_{4} due to quantum effects (anomaly) as discussed in section 3. Obtained values of a and b deviate from $a \simeq b$ as seen in eq. (4.3) for NH while the desirable region of $a \simeq b$ exists as seen in eq. (4.4) for IH. Thus, we should discuss the magnitude of the S_{4} breaking beyond the naive expectation. However, it is out of scope in this paper.

In our work, we take a and b to be real in a simple viable model. Our predicted regions of δ_{CP} and $\left\langle m_{e e}\right\rangle$ are possibly enlarged if a and b are complex. Whereas, it is worthwhile to discuss the case of real a and b because the case is attractive in the context of the generalized CP violation of modular-invariant flavor model [39].

Finally, we also comment on numerical values on α, β and γ of the charged lepton mass matrix. These ratios are typically $\gamma / \beta=\mathcal{O}(0.1)$ and $\alpha / \beta=\mathcal{O}\left(10^{-4}\right)$ for the case of NH as seen in eq. (4.3). The value of α is much smaller than β and γ, on the other hand, we need

Figure 5. Allowed region on the $\operatorname{Re}[\tau]-$ $\operatorname{Im}[\tau]$ plane. The fundamental domain of $\Gamma(4)$ are shown by olive-green. Cyan-points and redpoints denote cases of NH and IH , respectively. Two small white triangles denote a pair connecting by the S symmetry.

Figure 6. Allowed region on the $a-b$ plane, where a and b are taken to be real. Cyan-points and red-points denote cases of NH and IH , respectively.
a mild hierarchy of $\mathcal{O}(0.1)$ between β and γ although one may naively expect $\beta \sim \gamma$ as discussed in section 3. Thus, the magnitude of the S_{4} breaking is somewhat large beyond the naive expectation. For the case of IH, we need a strong hierarchy between β and γ as seen in eq. (4.4). Therefore, the IH case is not favored in our model.

In our calculations, we take Yukawa couplings of charged leptons at the GUT scale $2 \times 10^{16} \mathrm{GeV}$, where $v_{u} / v_{d}=2.5$ is taken as discussed in appendix B. However, we input the data of NuFIT 4.0 [51] for three lepton mixing angles and neutrino mass parameters. The renormalization group equation (RGE) effects of mixing angles and the mass ratio $\Delta m_{\text {sol }}^{2} / \Delta m_{\mathrm{atm}}^{2}$ are negligibly small in the case of $\tan \beta=2.5$ even if IH of neutrino masses is considered (see appendix B).

5 Summary

In the S_{4} symmetry, the Z_{2} subgroup can be anomalous, and then S_{4} can be violated to A_{4}. The S_{4} symmetry is unique among $S_{3}, A_{4}, S_{4}, A_{5}$ in the sense that it can be violated by anomalies to another non-Abelian symmetry, A_{4}. Starting with a S_{4} symmetric Lagrangian at the tree level, the Lagrangian at the quantum level has only A_{4} symmetry when Z_{2} in S_{4} is anomalous. We have studied such a possibility that the A_{4} flavor symmetry is originated from the S_{4} modular group. Decomposing S_{4} modular forms into A_{4} representations, we have obtained the modular forms of two singlets, $\mathbf{1}^{\prime}$ and $\mathbf{1}^{\prime \prime}$, in addition to triplet, $\mathbf{3}$ for A_{4}. Using those modular forms, we have succeeded in constructing the viable neutrino mass matrix through the Weinberg operator for both NH and IH of neutrino masses. Our model presents a new possibility of flavor model with the modular symmetry.

Indeed, we have obtained an interesting prediction of δ_{CP} for both NH and IH , and their predictions also depend on the sum of neutrino masses. Hence, the observation of the sum of neutrino masses in the cosmology will provide a severe constraint to the flavor model.

Realistic mass matrices are realized in the parameter region with small $\operatorname{Im}[\tau]$ as well as large $\operatorname{Im}[\tau]$. If our four-dimensional field theory is originated from extra dimensional theory or superstring theory on a compact space, the volume of compact space is proportional to $\operatorname{Im}[\tau]$. Such volume of the compact space must be larger than the string scale. For example, the volume of torus compactification is obtained by $(2 \pi R)^{2} \operatorname{Im}[\tau]$. Thus, larger $2 \pi R$ will be required for smaller $\operatorname{Im}[\tau]$.

Furthermore, it is important how to derive the preferred values of τ in such compactified theory. That is the so-called moduli stabilization problem. However, that is beyond our scope. We can study this problem elsewhere. ${ }^{3}$

Acknowledgments

This work is supported by MEXT KAKENHI Grant Number JP19H04605 (TK), and JSPS Grants-in-Aid for Scientific Research 18J11233 (THT). The work of YS is supported by JSPS KAKENHI Grant Number JP17K05418 and Fujyukai Foundation.

A $\quad S_{4}$ and A_{4} representations

The representations S and T of $\Gamma_{4} \simeq S_{4}$ are given for the representations 2 and $\mathbf{3}^{\prime}$ in section 2 . Here, we give other representations. The generators S and T are represented by

$$
\rho(S)=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 \omega^{2} & 2 \omega \tag{A.1}\\
2 \omega & 2 & -\omega^{2} \\
2 \omega^{2} & -\omega & 2
\end{array}\right), \quad \rho(T)=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 \omega & 2 \omega^{2} \\
2 \omega & 2 \omega^{2} & -1 \\
2 \omega^{2} & -1 & 2 \omega
\end{array}\right),
$$

on the $S_{4} \mathbf{3}$ representation, where $\omega=e^{i \frac{2}{3} \pi}$, and

$$
\begin{equation*}
\rho(S)=\rho(T)=-1, \tag{A.2}
\end{equation*}
$$

for $\mathbf{1}^{\prime}$, while $\rho(S)=\rho(T)=1$ for $\mathbf{1}$.
On the other hand, we take the generators of A_{4} group \tilde{S} and \tilde{T} for $\mathbf{3}$ by using the S and T of the S_{4} group as follows:

$$
\rho(\tilde{S})=\rho\left(T^{2}\right)=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \tag{A.3}\\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right), \quad \rho(\tilde{T})=\rho(S T)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right) .
$$

Since the doublet 2 of S_{4} group is transformed by \tilde{S} and \tilde{T} as

$$
\rho(\tilde{S})=\rho\left(T^{2}\right)=\left(\begin{array}{ll}
1 & 0 \tag{A.4}\\
0 & 1
\end{array}\right), \quad \rho(\tilde{T})=\rho(S T)=\left(\begin{array}{cc}
\omega & 0 \\
0 & \omega^{2}
\end{array}\right),
$$

[^1]| observable $\& 3 \sigma$ range for NH | 3σ range for IH | |
| :---: | :---: | :---: |
| $\Delta m_{\mathrm{atm}}^{2}$ | $(2.431-2.622) \times 10^{-3} \mathrm{eV}^{2}$ | $-(2.413-2.606) \times 10^{-3} \mathrm{eV}^{2}$ |
| $\Delta m_{\mathrm{sol}}^{2}$ | $(6.79-8.01) \times 10^{-5} \mathrm{eV}^{2}$ | $(6.79-8.01) \times 10^{-5} \mathrm{eV}^{2}$ |
| $\sin ^{2} \theta_{23}$ | $0.428-0.624$ | $0.433-0.623$ |
| $\sin ^{2} \theta_{12}$ | $0.275-0.350$ | $0.275-0.350$ |
| $\sin ^{2} \theta_{13}$ | $0.02044-0.02437$ | $0.02067-0.02461$ |

Table 2. The 3σ ranges of neutrino parameters from NuFIT 4.0 for NH and IH [51].
the doublet of S_{4} can be decomposed into singlets of A_{4} transformed as

$$
\begin{equation*}
\rho(\tilde{S})_{\mathbf{1}^{\prime}}=\rho(\tilde{S})_{\mathbf{1}^{\prime \prime}}=1, \quad \rho(\tilde{T})_{\mathbf{1}^{\prime}}=\omega^{2}, \quad \rho(\tilde{T})_{\mathbf{1}^{\prime \prime}}=\omega \tag{A.5}
\end{equation*}
$$

In this base, the multiplication rule of the A_{4} triplet is

$$
\begin{align*}
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)_{\mathbf{3}} \otimes\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)_{\mathbf{3}}= & \left(a_{1} b_{1}+a_{2} b_{3}+a_{3} b_{2}\right)_{\mathbf{1}} \oplus\left(a_{3} b_{3}+a_{1} b_{2}+a_{2} b_{1}\right)_{\mathbf{1}^{\prime}} \\
& \oplus\left(a_{2} b_{2}+a_{1} b_{3}+a_{3} b_{1}\right)_{\mathbf{1}^{\prime \prime}} \\
& \oplus \frac{1}{3}\left(\begin{array}{l}
2 a_{1} b_{1}-a_{2} b_{3}-a_{3} b_{2} \\
2 a_{3} b_{3}-a_{1} b_{2}-a_{2} b_{1} \\
2 a_{2} b_{2}-a_{1} b_{3}-a_{3} b_{1}
\end{array}\right)_{\mathbf{3}} \oplus \frac{1}{2}\left(\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{1} b_{2}-a_{2} b_{1} \\
a_{3} b_{1}-a_{1} b_{3}
\end{array}\right)_{\mathbf{3}} \tag{A.6}
\end{align*}
$$

$1 \otimes 1=1, \quad 1^{\prime} \otimes 1^{\prime}=1^{\prime \prime}, \quad 1^{\prime \prime} \otimes 1^{\prime \prime}=1^{\prime}, \quad 1^{\prime} \otimes 1^{\prime \prime}=1$.
More details are shown in the review [4, 5].

B Input data

We input charged lepton masses in order to constrain the model parameters. We take Yukawa couplings of charged leptons at the GUT scale $2 \times 10^{16} \mathrm{GeV}$, where $\tan \beta=2.5$ is taken [31, 56-58]:

$$
\begin{equation*}
y_{e}=(1.97 \pm 0.02) \times 10^{-6}, \quad y_{\mu}=(4.16 \pm 0.05) \times 10^{-4}, \quad y_{\tau}=(7.07 \pm 0.07) \times 10^{-3} \tag{B.1}
\end{equation*}
$$

where lepton masses are given by $m_{\ell}=\sqrt{2} y_{\ell} v_{H}$ with $v_{H}=174 \mathrm{GeV}$. We also use the following lepton mixing angles and neutrino mass parameters in table 2 given by NuFIT 4.0 [51]. The RGE effects of mixing angles and the mass ratio $\Delta m_{\mathrm{sol}}^{2} / \Delta m_{\mathrm{atm}}^{2}$ are negligibly small in the case of $\tan \beta=2.5$ for both NH and IH as seen in appendix E of ref. [31].

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] T2K collaboration, Search for CP-violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2×10^{21} Protons on Target, Phys. Rev. Lett. 121 (2018) 171802 [arXiv:1807.07891] [INSPIRE].
[2] NOvA collaboration, New constraints on oscillation parameters from ν_{e} appearance and ν_{μ} disappearance in the NOvA experiment, Phys. Rev. D 98 (2018) 032012 [arXiv:1806.00096] [inSPIRE].
[3] G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv: 1002.0211] [InSPIRE].
[4] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].
[5] H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu and M. Tanimoto, An introduction to non-Abelian discrete symmetries for particle physicists, Lect. Notes Phys. $\mathbf{8 5 8}$ (2012) 1 [INSPIRE].
[6] D. Hernandez and A. Yu. Smirnov, Lepton mixing and discrete symmetries, Phys. Rev. D 86 (2012) 053014 [arXiv:1204.0445] [inSPIRE].
[7] S.F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [inSPIRE].
[8] S.F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, Neutrino Mass and Mixing: from Theory to Experiment, New J. Phys. 16 (2014) 045018 [arXiv:1402.4271] [inSPIRE].
[9] M. Tanimoto, Neutrinos and flavor symmetries, AIP Conf. Proc. 1666 (2015) 120002 [inSPIRE].
[10] S.F. King, Unified Models of Neutrinos, Flavour and CP-violation, Prog. Part. Nucl. Phys. 94 (2017) 217 [arXiv:1701.04413] [inSPIRE].
[11] S.T. Petcov, Discrete Flavour Symmetries, Neutrino Mixing and Leptonic CP-violation, Eur. Phys. J. C 78 (2018) 709 [arXiv:1711.10806] [InSPIRE].
[12] E. Ma and G. Rajasekaran, Softly broken A_{4} symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [inSPIRE].
[13] K.S. Babu, E. Ma and J.W.F. Valle, Underlying A_{4} symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [inSPIRE].
[14] G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [InSPIRE].
[15] G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A_{4} and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [inSPIRE].
[16] Y. Shimizu, M. Tanimoto and A. Watanabe, Breaking Tri-bimaximal Mixing and Large θ_{13}, Prog. Theor. Phys. 126 (2011) 81 [arXiv:1105.2929] [inSPIRE].
[17] S.T. Petcov and A.V. Titov, Assessing the Viability of A_{4}, S_{4} and A_{5} Flavour Symmetries for Description of Neutrino Mixing, Phys. Rev. D 97 (2018) 115045 [arXiv:1804.00182] [inSPIRE].
[18] S.K. Kang, Y. Shimizu, K. Takagi, S. Takahashi and M. Tanimoto, Revisiting A_{4} model for leptons in light of NuFIT 3.2, PTEP 2018 (2018) 083B01 [arXiv:1804.10468] [INSPIRE].
[19] T. Kobayashi, H.P. Nilles, F. Ploger, S. Raby and M. Ratz, Stringy origin of non-Abelian discrete flavor symmetries, Nucl. Phys. B 768 (2007) 135 [hep-ph/0611020] [INSPIRE].
[20] T. Kobayashi, S. Raby and R.-J. Zhang, Searching for realistic $4 d$ string models with a Pati-Salam symmetry: Orbifold grand unified theories from heterotic string compactification on a Z(6) orbifold, Nucl. Phys. B 704 (2005) 3 [hep-ph/0409098] [inSPIRE].
[21] P. Ko, T. Kobayashi, J.-h. Park and S. Raby, String-derived D(4) flavor symmetry and phenomenological implications, Phys. Rev. D 76 (2007) 035005 [Erratum ibid. D 76 (2007) 059901] [arXiv:0704.2807] [INSPIRE].
[22] H. Abe, K.-S. Choi, T. Kobayashi and H. Ohki, Non-Abelian Discrete Flavor Symmetries from Magnetized/Intersecting Brane Models, Nucl. Phys. B 820 (2009) 317 [arXiv:0904.2631] [inSPIRE].
[23] T. Kobayashi, S. Nagamoto, S. Takada, S. Tamba and T.H. Tatsuishi, Modular symmetry and non-Abelian discrete flavor symmetries in string compactification, Phys. Rev. D 97 (2018) 116002 [arXiv:1804.06644] [INSPIRE].
[24] R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Finite Modular Groups and Lepton Mixing, Nucl. Phys. B 858 (2012) 437 [arXiv:1112.1340] [INSPIRE].
[25] F. Feruglio, Are neutrino masses modular forms?, in From My Vast Repertoire ... Guido Altarelli's Legacy, A. Levy, S. Forte and G. Ridolfi eds., World Scientific, New York U.S.A. (2018), pg. 227 [arXiv:1706.08749] [INSPIRE].
[26] T. Kobayashi, K. Tanaka and T.H. Tatsuishi, Neutrino mixing from finite modular groups, Phys. Rev. D 98 (2018) 016004 [arXiv:1803.10391] [InSPIRE].
[27] J.T. Penedo and S.T. Petcov, Lepton Masses and Mixing from Modular S S Symmetry, Nucl. Phys. B 939 (2019) 292 [arXiv:1806.11040] [INSPIRE].
[28] P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Modular A_{5} symmetry for flavour model building, JHEP 04 (2019) 174 [arXiv:1812.02158] [inSPIRE].
[29] T. Kobayashi and S. Tamba, Modular forms of finite modular subgroups from magnetized D-brane models, Phys. Rev. D 99 (2019) 046001 [arXiv:1811.11384] [INSPIRE].
[30] X.-G. Liu and G.-J. Ding, Neutrino Masses and Mixing from Double Covering of Finite Modular Groups, JHEP 08 (2019) 134 [arXiv:1907.01488] [INSPIRE].
[31] J.C. Criado and F. Feruglio, Modular Invariance Faces Precision Neutrino Data, SciPost Phys. 5 (2018) 042 [arXiv:1807.01125] [inSPIRE].
[32] T. Kobayashi, N. Omoto, Y. Shimizu, K. Takagi, M. Tanimoto and T.H. Tatsuishi, Modular A_{4} invariance and neutrino mixing, JHEP 11 (2018) 196 [arXiv:1808.03012] [INSPIRE].
[33] P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Modular S_{4} models of lepton masses and mixing, JHEP 04 (2019) 005 [arXiv:1811.04933] [INSPIRE].
[34] G.-J. Ding, S.F. King and X.-G. Liu, Neutrino mass and mixing with A_{5} modular symmetry, Phys. Rev. D 100 (2019) 115005 [arXiv:1903.12588] [INSPIRE].
[35] F.J. de Anda, S.F. King and E. Perdomo, SU(5) grand unified theory with A_{4} modular symmetry, Phys. Rev. D 101 (2020) 015028 [arXiv:1812.05620] [inSPIRE].
[36] P.P. Novichkov, S.T. Petcov and M. Tanimoto, Trimaximal Neutrino Mixing from Modular A4 Invariance with Residual Symmetries, Phys. Lett. B 793 (2019) 247 [arXiv:1812.11289] [inSPIRE].
[37] A. Baur, H.P. Nilles, A. Trautner and P.K.S. Vaudrevange, Unification of Flavor, CP and Modular Symmetries, Phys. Lett. B 795 (2019) 7 [arXiv:1901.03251] [inSPIRE].
[38] I. De Medeiros Varzielas, S.F. King and Y.-L. Zhou, Multiple modular symmetries as the origin of flavour, arXiv:1906.02208 [INSPIRE].
[39] P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Generalised CP Symmetry in Modular-Invariant Models of Flavour, JHEP 07 (2019) 165 [arXiv:1905.11970] [INSPIRE].
[40] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T.H. Tatsuishi and H. Uchida, Finite modular subgroups for fermion mass matrices and baryon/lepton number violation, Phys. Lett. B 794 (2019) 114 [arXiv:1812.11072] [INSPIRE].
[41] H. Okada and M. Tanimoto, CP violation of quarks in A_{4} modular invariance, Phys. Lett. B 791 (2019) 54 [arXiv:1812.09677] [INSPIRE].
[42] T. Nomura and H. Okada, A modular A_{4} symmetric model of dark matter and neutrino, Phys. Lett. B 797 (2019) 134799 [arXiv:1904.03937] [inSPIRE].
[43] T. Nomura and H. Okada, A two loop induced neutrino mass model with modular A_{4} symmetry, arXiv:1906.03927 [INSPIRE].
[44] H. Okada and Y. Orikasa, Modular S_{3} symmetric radiative seesaw model, Phys. Rev. D 100 (2019) 115037 [arXiv:1907.04716] [INSPIRE].
[45] L.M. Krauss and F. Wilczek, Discrete Gauge Symmetry in Continuum Theories, Phys. Rev. Lett. 62 (1989) 1221 [InSPIRE].
[46] L.E. Ibáñez and G.G. Ross, Discrete gauge symmetry anomalies, Phys. Lett. B 260 (1991) 291 [INSPIRE].
[47] T. Banks and M. Dine, Note on discrete gauge anomalies, Phys. Rev. D 45 (1992) 1424 [hep-th/9109045] [INSPIRE].
[48] T. Araki, T. Kobayashi, J. Kubo, S. Ramos-Sanchez, M. Ratz and P.K.S. Vaudrevange, (Non-)Abelian discrete anomalies, Nucl. Phys. B 805 (2008) 124 [arXiv:0805.0207] [INSPIRE].
[49] Y. Kariyazono, T. Kobayashi, S. Takada, S. Tamba and H. Uchida, Modular symmetry anomaly in magnetic flux compactification, Phys. Rev. D 100 (2019) 045014 [arXiv:1904.07546] [INSPIRE].
[50] H. Okada and M. Tanimoto, Towards unification of quark and lepton flavors in A_{4} modular invariance, arXiv:1905.13421 [INSPIRE].
[51] I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of $\theta_{23}, \delta_{\mathrm{CP}}$ and the mass ordering, JHEP 01 (2019) 106 [arXiv:1811.05487] [inSPIRE].
[52] Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [InSPIRE].
[53] S. Vagnozzi et al., Unveiling ν secrets with cosmological data: neutrino masses and mass hierarchy, Phys. Rev. D 96 (2017) 123503 [arXiv:1701.08172] [inSPIRE].
[54] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807. 06209 [INSPIRE].
[55] KamLAND-Zen collaboration, Neutrinoless double beta decay search with liquid scintillator experiments, in Prospects in Neutrino Physics (NuPhys2018), London U.K. (2018) [arXiv:1904.06655] [INSPIRE].
[56] S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [INSPIRE].
[57] S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11 (2013) 115 [arXiv:1306.6879] [inSPIRE].
[58] F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete $A_{4} \times \mathrm{SU}(5)$ SUSY GUT, JHEP 06 (2015) 141 [arXiv:1503.03306] [INSPIRE].
[59] T. Kobayashi, D. Nitta and Y. Urakawa, Modular invariant inflation, JCAP 08 (2016) 014 [arXiv:1604.02995] [INSPIRE].

[^0]: ${ }^{1}$ It was shown that stringy selection rules in addition to geometrical symmetries lead to certain nonAbelian flavor symmetries [19-22].
 ${ }^{2}$ For example, zero-modes in the torus compactification with magnetic fluxes transform non-trivially under the modular symmetry [23].

[^1]: ${ }^{3}$ Realistic results are obtained at some points of τ near edges of the $\mathrm{SL}(2, \mathbb{Z})$ fundamental domain and domains transformed by S, T and their products. The edges of the fundamental domain can be candidates for the minimum of the modulus potential. (See e.g. ref. [59] and its references therein.)

