
F force

i electrical current

m variable for neuro-fuzzy controller selection

N number of rules

Re Reynolds number

T temperature of the smart material actuator

Tamb ambient temperature

V speed

wi degree of fulfillment of the antecedent, i.e., the firing level

of the ith rule

x input vector

xq individual input variables (q = 1,2
—

)

y output of the fuzzy model

y i first-order polynomial function in the consequent (i = 1,N
—

)

α angle-of-attack

σ dispersion

σ
i
q dispersion of the cluster

Δt time

Δδ elongation of the actuator

ABSTRACT

A neuro-fuzzy controller method for smart material actuator (SMA)
hysteresis modelling is presented, conceived for a morphing wing
application. The controller correlates each set of forces and electrical
currents that are applied to the smart material actuators with the
actuator elongation. The actuator is experimentally tested for four
forces, using a variable electrical current. The final controller is
obtained through the Matlab/Simulink integration of three
independent neuro-fuzzy controllers, designed for the increase and
decrease of electrical current, and for null electrical current in the
cooling phase of the actuator. This final controller gives a very small
error with respect to the experimental values. 

NOMENCLATURE

Ai
q associated individual antecedent fuzzy sets of each input 

variable 
a i

k parameters of the linear function (k = 1,2
—

, i = 1,N
—

)
bi

0 scalar offset (i = 1,N
—

)
Cp pressure coefficient
C i

q cluster centre
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effectiveness of the neural network open loop controller for tracking
control of the SMA wire actuator. A nonlinear control system for an
SMA actuator using neural network based controllers was designed,
and the experimental results showed that an SMA resistance control
was possible(5). There are other approaches for controller modelling
of SMA actuators, based on neural network and fuzzy logic
techniques. The technique presented is a combination of both, and
thus it is called the neuro-fuzzy method. The model is empirical,
based on the numerical values resulting from the SMA’s experi-
mental testing. It profits by the outstanding properties of fuzzy logic,
which allows the empirical processing of the signals without mathe-
matical analytical models. Another advantage of fuzzy logic is that it
works very well on nonlinear and multi-dimensional systems.

To elaborate the model, a fuzzy rules set and the membership
functions (mf) associated with each of the inputs are required(6,7).
Obtaining a good fuzzy model depends on the ability and the
experience of the designer to consider the rules and the membership
functions of each of the inputs. However, a relatively new design
method allows a competitive model to be built by using a combi-
nation of fuzzy logic and neural-network techniques. Moreover, this
method makes it possible to generate and to optimise the fuzzy rules
set and the parameters of the membership functions. Already imple-
mented in Matlab(6,8), the method is easy to use, and gives very good
results very quickly.

2.0 SMA EXPERIMENTAL TESTING 

The SMA actuating system has the structure shown in Fig. 2. Each
system actuating line contains a cam, which moves in translation
relative to the structure (on the x-axis in Fig. 2); this cam causes the
movement of the related rod on the roller and on the skin (on the z-
axis). The recall is in the form of a compression spring. When the
SMA is heated, the actuator contracts and the cam moves to the right,
resulting in the upwards roller movement and in the upwards skin
displacement. On the contrary, SMA cooling results in a movement of
the cam to the left, and thus into a downwards skin displacement.

As illustrated in Fig. 3, the SMA model’s aim is to achieve
actuator elongation (Δδ) under the application of a thermo-electro-
mechanical load over a certain period of time (Δt). The load’s
actuator can be operated by varying the temperature (Tamb), by
injecting an electric current (i) or by application of a force (F). The
actuator geometry consists of an SMA wire with constant section
area and perimeter.

The SMA testing was performed at Tamb = 24°C using the bench
test shown in Fig. 4, for four load cases of values 60N, 110N, 160N
and 205N. During these tests, electrical current was supplied by use
of a zero-increasing-decreasing-zero cycle for each of these four
load cases. The following parameters were recorded: the time, the
SMA supplying electrical current, the load force, the material
temperature and the actuator elongation (which was measured using
a linear variable differential transformer LVDT).

1.0 INTRODUCTION

The continuous need to reduce fuel consumption and other direct
operating costs for new aircraft has spurred significant research
efforts in the morphing wing area. These technologies will enable
aircraft to be more efficient and operate under a wide range of
varying flight conditions. Also, the morphing technologies will be
used to improve aircraft performance, expand the flight envelope,
replace conventional control surfaces, reduce drag and thus improve
range, and reduce vibrations and flutter(1).

Multidisciplinary morphing wing research projects involve
extremely complex interactions between controls, aerodynamics,
structures, actuator power requirements, sensor integrations and all
of the other components(2).

Within this context, our team has included wind tunnel simula-
tions and experimental multidisciplinary studies for a morphing
wing equipped with a flexible skin, smart material actuators (SMAs)
and optical sensors. The aim of these studies is to move the
transition point from the laminar to the turbulent regime closer to the
trailing edge by use of a controller in order to obtain a larger laminar
flow region. This research project included the following: optical
sensor selection and testing for laminar-to-turbulent flow transition
validation (by use of XFoil code and Matlab), smart material
actuator controller methods, aeroelasticity wing studies using
MSC/Nastran, open loop and closed loop transition delay controller
design, integration and validation on a wing equipped with SMAs
and optical sensors (simulation versus test results).

As shown in Fig. 1(3), a complex system was obtained, which
modifies the aerofoil shape in order to optimise it from the
perspective of the laminar flow region. For various flight conditions
(angles-of-attack α, speeds V and Reynolds numbers Re), the loop
controller would receive the aerofoil upper surface Cp distribution,
determined from the surface pressure distribution measured by the
optical sensors. The Cp distribution is compared with a computa-
tional fluid dynamics (CFD) database, which is generated so that for
different aerpfoil types, the transition point is given as a function of
the Cp distribution. Once a match is found, a transition point is
offered to the loop controller by the CFD database; the controller
will be able to decide if the aerofoil shape must be adjusted or not.
The adjustment of the aerofoil shape is made in real time using the
SMA actuators. The loop is closed by the aerofoil shape, which
offers the optical sensors another surface pressure distribution.

In order to validate the morphing wing system (numerical
simulation versus test results), good numerical models for each of
the physical elements in the system must be obtained. The aim of
this paper is to offer a good model for SMA actuators, with direct
application to our morphing wing system.

Our goal is to build a neuro-fuzzy controller for SMA hysteresis
modelling that is focused directly on our application. Other authors
have presented SMA modelling using Neural Network methods(4)

where the SMA actuator was controlled without using a position
sensor, and then the neural network inverse model was used as a
feedforward controller. The experimental results demonstrated the
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Figure 1. Closed-loop morphing wing system. Figure 2. Structure of the actuating system with SMAs.



remain one of the model outputs. The time values are very relevant
for this phase as they represent actuator thermal inertia measures.
Therefore, time is the second input of the third controller, with force
as its first input (the time should be counted as starting when the
current becomes null).

In this study, the hysteresis cycles of elongation as a function of
temperature were shown. The ambient temperature, the electrical
currents and the forces, experimentally obtained, were applied to the
SMA model as inputs, with the elongation and the material temper-
ature considered as outputs. The elongation curves as a function of
temperature for different load cases, and the 3D characteristics for
the experimental data in terms of temperature, elongation and force
are depicted in Fig. 5. A comparison between the elongation curves
obtained experimentally and those obtained with the new technique
is presented in the next sections.

3.0 THE NEW APPROACH

A neuro-fuzzy network empirical model is devised based on the
numerical values from the SMA experimental testing. This model
can learn the process behaviour, based on the input-output process
data, by using a fuzzy inference system (FIS) to model the experi-
mental data. The experimental elongation-current curves obtained in
the four load cases considered here are represented in Fig. 6.

One can observe that each of these curves describes a hysteresis
cycle, characterised by three distinct zones: electrical current
increase, electrical current decrease and null electrical current in the
cooling phase of the actuator. Therefore, three fuzzy inference
systems FISs are used to obtain three neuro-fuzzy controllers: one
for the current increase, one for the current decrease, and one for the
null current (after its decrease).

For the first and for the second controller, the force and the
current inputs are used, while for the third controller, the force and
the time inputs are required for the SMA to recover its initial
temperature (of approximately 24°C). Finally, the three controllers
would be integrated into a single controller.

The design of the first two controllers is based on the available
experimental data, in which two elongations are used for the same
values of forces and currents (see Fig. 6). Due to the experimental
data hysteresis, they cannot be represented as algebraic functions.
Therefore, it is impossible to use data in the same FIS representation
because an interpolation between the two elongation values is
obtained for the same values of forces and currents. On the other
hand, the null current values following the current decrease phase
should not be considered as inputs in the third controller, because
they are not suggestive. During this phase, for practical reasons, the
actuator temperatures should be used instead, but temperature should

GRIGORIE AND BOTEZ NEW ADAPTIVE CONTROLLER METHOD FOR SMA HYSTERESIS MODELLING OF A MORPHING WING 3

Figure 3. The SMA model input/output structure.

Figure 4. The SMA bench test.

Figure 5. Experimental data evaluation.

Figure 6. Elongation versus the current values for four forces.



wi (x) represents the degree of fulfillment of the antecedent, that is,
the level of firing of the ith rule.

The Matlab ‘genfis2’ function generates Gaussian type
membership functions, defined as follows(7), (10):

where ci
q is the cluster centre and σ i

q is its dispersion.
The FIS’s training is achieved with the Matlab ‘ANFIS’ function,

which uses a learning algorithm for the identification of the
membership functions’ Sugeno-type FIS parameters with two
outputs and one input. As a starting point, the input-output data and
the FIS model generated with the ‘genfis2’ function are considered.
Matlab’s ‘ANFIS’ optimises the membership functions’ (mf)
parameters for a given number of training epochs; a number set by
the user. This optimisation is realised so that a better process approx-
imation can be performed by the neuro-fuzzy model thanks to a
quality parameter in the training algorithm(8). Following the training,
the models may be used for elongation value generation corre-
sponding to the input parameters.

After the three controllers (Controller 1 for increasing current,
Controller 2 for decreasing current and Controller 3 for null current)
have been obtained, they should be integrated. This scheme is shown
in Fig. 7. The decision to use one of the three controllers depends on
the current vector type (increasing (I(j) > I(j – 1)), decreasing (I(j) <
I(j – 1)), constant (I(j) = I(j – 1)) or zero(I(j) = 0)) and on the ‘m’
variable value. This ‘m’ value determines if a constant current value
is part of an increasing vector or part of a decreasing vector. The
initial ‘m’ value is equal to 1 when Controller 1 is used, and is equal
to 0 when Controller 2 or Controller 3 is used.

It is also possible to create fuzzy inference systems (FISs) using
the Matlab ‘genfis2’ function, which generates an initial Sugeno-
type FIS by decomposition of the operation domain into different
regions using the fuzzy subtractive clustering method. For each
region, the local process parameters could be described with a low
order linear model. The non-linear process is thereby linearised
locally around a functioning point by using the least squares method.
The obtained model is then considered valid in the entire region
around this point. The limitations of the operating regions imply the
existence of overlapping among these different regions; their defin-
ition is given in a fuzzy manner. 

Thus, for each model input, several fuzzy sets are associated with
their membership function (mf) definitions. By combining these
fuzzy inputs, the input space is divided into fuzzy regions. For each
such region, a local linear model is used, while a global model is
obtained by defuzzification with the gravity centre method (Sugeno),
through which the interpolation of the local models’ outputs is
realised(6, 8).

The Sugeno fuzzy model was proposed by Takagi, Sugeno and
Kang to generate fuzzy rules from a given input-output data set(9).
For our system, and for all the three FISs (two inputs and one
output), a first-order model was considered; the description of the N
rules is given as Refs 9 and 10:

Rule 1: If x1 is A1
1 and x2 is A1

2, then y1(x1,x2) = b1
0 + a1

1x1 + a1
2x2,

Rule i: If x1 is A1
i and x2 is Ai

2, then y i(x1,x2) = b i
0 + a1

1x1 + a i
2x2,   . . . (1)

Rule N: If x1 is A1
N and x2 is AN

2, then yN(x1,x2) = bN
0 + aN

1x1 + aN
2x2,

where xq(q = 1,2
—

) are the individual input variables, Ai
q(i = 1,N

—
) are

the associated individual antecedent fuzzy sets of each input variable
and y i(i = 1,N

—
) is the first-order polynomial function in the conse-

quent. In addition, a i
k(k = 1,2

—
, i = 1,N

—
) contains the linear function

parameters and bi
0(i = 1,N

—
)  denotes a scalar offset. The parameters a i

k

,bi
0(k = 1,2

—
, i = 1,N

—
) bi

0 (i = 1,N
—

)  are optimised by use of the least
square method.

For any input vector x = [x1, x2]
T, in the case with a singleton

fuzzifier, the product fuzzy inference and the centre-average
defuzzifier are applied and the fuzzy model output y is inferred as
follows (weighted average):

where

4 THE AERONAUTICAL JOURNAL JANUARY 2010

. . . (2)

. . . (3)

. . . (4)

Figure 7. Logical scheme for the three controller’s integration.

Figure 8. The structure of ‘ElongationFis’ FIS.

Figure 9. The structure of Controller 1.



4.0 THE CONTROLLER DESIGN AND 

EVALUATION

The ‘genfis2’ Matlab function(8) was used to build and train the
following three fuzzy inference systems: ‘ElongationFis’ (for the
current increase phase), ‘dElongationFis’ (for the current decrease
phase), and ‘d0ElongationFis’ (for the null current values obtained
after the decrease phase). The three FISs were trained for different
training epochs and the best results were obtained for 250,000
epochs.

For the system presented here, a set of eight rules are obtained for
‘ElongationFis’, seven for ‘dElongationFis’ and ten for
‘d0ElongationFis’. These rules are of the following types: if (in1 is
in1cluster‘k’) and (in2 is in 2 cluster‘k’) then (out1 is out1cluster‘k’).
The number of rules is generated automatically by the ‘genfis2’
Matlab function starting from the experimental data set.

For each of the two FIS’s inputs, 8, 7 and 10 Gaussian-type
membership functions (mf) were generated, respectively; within this set
of rules, these mf are denoted by: in‘j’ cluster‘k’; j is the input number
(j = 1 or 2 for all of the three FISs), and k is the number of membership
functions (k = 1÷8 for ‘ElongationFis’, k = 1÷7 for ‘dElongationFis’,
and k = 1÷10 for ‘d0ElongationFis’). For example, the ‘ElongationFis’
FIS has the structure shown in Fig. 8, while its corresponding controller
(Controller 1) has the structure shown in Fig. 9.

By using the ‘ANFIS’ Matlab function, an adaptive neuro-fuzzy
type algorithm is used for the identification and modification of the
membership function’s parameters for the previously generated
FISs. In Fig. 10, the deviation between the neuro-fuzzy models and
the experimentally obtained data is shown for different training
epochs, where the quality parameter is defined from the training
algorithm. Figure 10 shows a rapid decrease in the deviation
between the experimental data and the neuro-fuzzy model’s data for
the quality parameter within the training algorithm over the first 104

training epochs and for all three FISs. This decrease is followed by a
slower decrease over subsequent epochs, and finally by constant
values of approximately 0.012 for the first FIS, 0.01 for the second,
and 0.0018 for the third FIS. From Fig. 10, it can also be observed
that the FIS models may be trained on 250,000 epochs, since the
deviations have approximately constant values after this number of
training periods.

In order to visualise the FIS’s features, the Matlab ‘anfisedit’
command is used(8) followed by the FISs’ importation at the interface
level. Visualisation of the following FIS characteristics is achieved
via the interface: (a) for the ‘ElongationFis’: the FIS rules, the mfs
for input 1 (force), the mfs for input 2 (current) and the surface —
Fig. 11; (b) for the ‘dElongationFis’: the FIS rules, the mfs for the
input 1 (force), the mf’s for the input 2 (current) and the surface —
Fig. 12; and (c) for the ‘d0ElongationFis’: the FIS rules, the mf’s for
input 1 (force), the mfs for input 2 (time) and the surface — Fig. 13.
The left-column figures show the untrained FIS’s, and the right-
column figures show the trained FIS’s results. The parameters of the
input’s membership functions for each of the three FIS’s before and
after training are shown in Table 1 and in Table 2, respectively.
These parameters are one-half of the dispersion (σ /2) and the centre
of the membership functions.

From Tables 1 and 2, the comparison of the FIS’s characteristics
and the membership functions’ parameters before and after their
training indicates that a membership function’s redistribution in the
working domain and a change in their shapes are affected by the
dispersion modification. According to the parameter values given in
Table 1, generating FIS’s with the ‘genfis2’ function gives as 1st
result the same dispersion choices for all of the membership
functions which characterises an input. The working space
separation for the respective input is shown as second result, so that
its local linear model can be approximated through the use of the
least squares method.

The evaluation of the FISs (untrained and trained) is performed
using the ‘evalfis’ Matlab command; in Fig. 14, the experimental
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Figure 10. The training error for all three fuzzy inference systems.
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Figure 11. Properties of the ‘ElongationFis’. 
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Figure 12. Properties of the ‘dElongationFis’. 
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Figure 13. Properties of the ‘d0ElongationFis’. 



scheme shown in Fig. 7; the Matlab/Simulink model is obtained as
shown in Fig. 16.

In the Matlab/Simulink model, the second input of Controller 3
(Time) is generated by using an integrator, and starts at the time
when Controller 3 is used. Since it is possible that the simulation
sample time may be different than the sample time used in the exper-
imental data acquisition process, the ‘Gain’ block giving their ratio
was used; ‘Te’ is the sample time in the experimental data and “T” is
the simulation sample time. The ‘C’ constant represents the
maximum time considered for the actuator to recover its initial
temperature when the current becomes null (approximately 24oC).

Evaluating the integrated controller model (see Fig. 16) for all
four of the experimental data cases produces the results shown in
Fig. 17. These results are represented in the form of elongations
versus temperature using the experimental data and the neuro-fuzzy
controller model for the SMA hysteresis. The curves show that there
is a good overlap between the neuro-fuzzy integrated controller
outputs and the experimental data.

The same conclusions are obtained from the 3D characteristics of
the experimental data and for the neuro-fuzzy modelled data in terms
of temperature, elongation, and force, depicted in Fig. 18.

The mean absolute relative errors of the neuro-fuzzy controller
versus the experimental data have the following values: 4.15% and
0.64% for a neuro-fuzzy controller with untrained and trained FISs,
respectively.

data and their corresponding FIS models are shown for untrained
(left-column figures) and trained (right-column figures) FISs. Figure
14 reveals the same observations as those shown in Fig. 10. Note the
overlapping of the FIS models with their experimental elongation
data. This superposition is dependent on the training epochs’
number, so that it is much better when the training epochs’ number
is higher. In other words, an improved real model approximation can
be achieved with the neuro-fuzzy methods when a higher experi-
mental data number is used. 

Representations of the elongations (both those obtained experi-
mentally and from using the three FIS models) expressed as
functions of the electrical current for the first two FISs, and as a
function of time for the third, are shown in Fig. 15. The curves for
all four SMA load cases are represented, before and after the FIS’s
training (left- and right-column figures). One can easily observe that
with training, the FIS’s data model fits the experimental data very
well, and that the SMA has different thermal constants, depending
on the force values.

The mean absolute relative errors between the experimental data
and the FIS models for untrained and for trained FISs are given in
Table 3.

Starting from the three obtained FISs, three controllers are
generated: Controller 1 (‘ElongationFis’), Controller 2
(‘dElongationFis’) and Controller 3 (‘d0ElongationFis’). The
integration of these three controllers is realised by using the logical
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Table 1
Parameters of the input’s FIS membership functions before training

ElongationFis dElongationFis dElongationFis 

Force [N] Current [A] Force [N] Current [A] Force [N] Time [s]

σ/2 Centre σ/2 Centre σ/2 Centre σ/2 Centre σ/2 Centre σ/2 Centre  

mf1 26.32 109.5 0.9413 1.65 26.75 109.5 0.9413 3.038 26.55 155.4 16.57 50.11
mf2 26.32 107.2 0.9413 4.05 26.75 109.4 0.9413 0.975 26.55 60.07 16.57 43.68
mf3 26.32 205.7 0.9413 1.725 26.75 203.7 0.9413 3.15 26.55 207 16.57 67.04
mf4 26.32 60.17 0.9413 1.575 26.75 59.86 0.9413 1.65 26.55 108.7 16.57 21.53
mf5 26.32 157.7 0.9413 3.225 26.75 60.55 0.9413 4.35 26.55 206.3 16.57 19.81
mf6 26.32 60.77 0.9413 4.425 26.75 205.2 0.9413 0.975 26.55 59.66 16.57 9.794
mf7 26.32 156.3 0.9413 0.375 26.75 157.3 0.9413 4.275 26.55 60.05 16.57 77.72
mf8 26.32 206.9 0.9413 4.35 - - - - 26.55 107.2 16.57 64.59
mf9 - - - - - - - - 26.55 156.9 16.57 4.837
mf10 - - - - - - - - 26.55 159.1 16.57 89.18

Table 2 
Parameters of the input’s FIS membership functions after training

ElongationFis dElongationFis d0ElongationFis

Force [N] Current [A] Force [N] Current [A] Force [N] Time [s]

σ/2 Centre σ/2 Centre σ/2 Centre σ/2 Centre σ/2 Centre σ/2 Centre

mf1 26.01 109.1 0.6943 2.577 26.88 109.8 1.013 2.175 35.16 147.3 20.34 35.98
mf2 26.41 107 0.4827 3.939 25.9 109.3 1.432 0.565 16.3 65 11.33 37.54
mf3 26.2 205 0.7779 2.371 26.31 203.6 0.7056 2.187 6.908 197.8 11.48 68.71
mf4 26.1 59.87 0.6785 2.597 26.32 59.35 1.685 0.8776 36.63 146.6 19.68 22.61
mf5 25.91 157.9 0.7936 2.618 26.78 60.56 1.113 4.044 13.25 195.1 21.38 36.73
mf6 26.33 60.83 0.6774 2.598 27.22 205.2 0.7129 2.123 13.38 68.84 52.35 8.052
mf7 27.29 156.5 0.7837 2.417 26.83 157.3 0.723 2.856 18.04 49.84 11.3 93.61
mf8 27.4 206.4 0.2733 3.968 - - - - 18.04 49.84 23.84 42.91
mf9 - - - - - - - - 29.28 138.6 10.18 –5.898
mf10 - - - - - - - - 10.11 160.3 20.34 77.51
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Figure 14. FIS evaluation as a function of the experimental data points number.
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Figure 15. FIS’s evaluation as functions of current or time.



5.0 CONCLUSIONS

A neuro-fuzzy controller for smart material actuator (SMA)
hysteresis modelling was obtained. The direct controller application
is a morphing wing system. This controller connects the forces and
the electrical currents applied for different time periods to a smart
material actuator in the morphing wing system. The controller was
built by integrating, using Matlab/Simulink, three independent
neuro-fuzzy controllers designed for the increase and the decrease of
electrical current and for null electrical current in the actuator
cooling phase. During the design of the integrated controller, experi-
mental phase data were used for four smart material actuator load
cases. The three fuzzy inference systems (FISs) associated with the
independent controllers were trained for 250,000 epochs. The
resulting mean absolute relative errors of the neuro-fuzzy controller
versus the experimental data are: 4.15% for the neuro-fuzzy
controller with untrained FISs and 0.64% for the neuro-fuzzy
controller with trained FISs. 
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Table 3 
The mean absolute relative errors between experimental data and FIS’s models

FISs ElongationFis dElongationFis d0ElongationFis

Untrained FIS’s 5.751968437978% 5.905991709200% 0.817600754857%
Trained FIS’s 0.509291574547% 1.345191820144% 6.730977419645e–002%

Figure 16. The integration model scheme in Matlab/Simulink.

Figure 17. The integrated neuro-fuzzy controller evaluation versus experimental data.
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A main advantage of this new model is its rapid generation due to
the ‘genfis2’ and ‘ANFIS’ functions implemented already in Matlab.
The user then only needs to assess the three FIS’s training perfor-
mances using the ‘anfisedit’ interface generated with Matlab.
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Figure 18. 3D evaluation of the integrated neuro-fuzzy controller
versus experimental data.
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