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Abstract

Recursive Conditioning (RC) was introduced
recently as an any–space algorithm for infer-
ence in Bayesian networks which can trade
time for space by varying the size of its
cache at the increment needed to store a
floating point number. Under full caching,
RC has an asymptotic time and space com-
plexity which is comparable to mainstream
algorithms based on variable elimination
and clustering (exponential in the network
treewidth and linear in its size). We show
two main results about RC in this paper.
First, we show that its actual space require-
ments under full caching are much more mod-
est than those needed by mainstream meth-
ods and study the implications of this find-
ing. Second, we show that RC can effec-
tively deal with determinism in Bayesian net-
works by employing standard logical tech-
niques, such as unit resolution, allowing a sig-
nificant reduction in its time requirements in
certain cases. We illustrate our results using
a number of benchmark networks, including
the very challenging ones that arise in genetic
linkage analysis.

1 INTRODUCTION

Recursive Conditioning, RC, was recently proposed as
an any–space algorithm for exact inference in Bayesian
networks [3]. The algorithm works by using condi-
tioning to decompose a network into smaller subnet-
works that are then solved independently and recur-
sively using RC. It turns out that many of the subnet-
works generated by this decomposition process need
to be solved multiple times redundantly, allowing the
results to be stored in a cache after the first compu-
tation and then subsequently fetched during further

computations. This gives the algorithm its any–space
behavior since any number of results may be cached,
where a “result” corresponds to a floating point num-
ber which represents a probability.

The ability of RC to provide a refined framework for
time–space tradeoff has been explored in some depth
recently [1] and will not be the subject of this paper.
Instead, we focus on two key aspects of RC. First, its
actual space requirements under full caching, as com-
pared to the space requirements needed by variable
elimination (VE) and jointree (JT) algorithms [4; 21;
11; 3; 10], where we show experimentally, and argue
theoretically, for the modest space demands of RC as
compared to other methods. Second, we discuss the
ability of RC in taking advantage of some very effec-
tive techniques, which appear to be best realized in
a conditioning setting. Among these techniques are
the ability of RC to accommodate any representation
of network parameters (CPTs) without requiring an
algorithmic change, and the ability of RC to exploit
network determinism by easily incorporating standard
techniques from the SAT community, including unit
resolution.

2 RECURSIVE CONDITIONING

RC works by using conditioning and case analysis to
decompose a network into smaller subnetworks that
are solved independently and recursively. The algo-
rithm is driven by a structure known as a decompo-
sition tree (dtree), which controls the decomposition
process at each level of the recursion. We will first
review the dtree structure and then discuss RC.

2.1 DTREES

Definition 1 [3] A dtree for a Bayesian network is a
full binary tree, the leaves of which correspond to net-
work variables. If a leaf node t corresponds to variable
X with parents U, then vars(t) is defined as {X} ∪U.
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Figure 1: An example dtree.

Dtrees correspond to branch–decompositions as known
in the graph–theoretic literature [19]. In particular,
dtrees are for branch–decompositions what jointrees
are for tree–decompositions [18].

Figure 1 depicts a simple dtree. The root node t of the
dtree represents the entire network. To decompose this
network, the dtree instructs us to condition on variable
B, called the cutset of root node t. Conditioning on
a set of variables leads to removing edges outgoing
from these variables, which for a cutset is guaranteed
to disconnect the network into two subnetworks, one
corresponding to the left child of node t and another
corresponding to the right child of node t; see Figure 1.
This decomposition process continues until a boundary
condition is reached, which is a subnetwork that has a
single variable.

We will now present some notation needed to define
additional concepts with regard to a dtree. The nota-
tion tl and tr will be used for the left child and right
child of node t, and the function vars will be extended
to internal nodes t: vars(t)

def
= vars(tl)∪vars(tr). Each

node in a dtree has three more sets of variables associ-
ated with it. The first two of these sets are used by the
RC algorithm, while the third set is used to analyze
the complexity of the algorithm.

Definition 2 The cutset of internal node t in a dtree
is: cutset(t)

def
= vars(tl) ∩ vars(tr) − acutset(t), where

acutset(t) is the union of cutsets associated with ances-
tors of node t in the dtree. The context of node t in a
dtree is: context(t)

def
= vars(t)∩acutset(t). The cluster

of node t in a dtree is: cutset(t) ∪ context(t) if t is a
non-leaf, and as vars(t) if t is a leaf.

The width of a dtree is the size of its largest cluster −1.
It is known that the minimum width over all dtrees for
a network is the treewidth of corresponding network [3].
The context width of a dtree is the size of its largest
context. Moreover, the minimum context width over
all dtrees is the branchwidth of corresponding network

Algorithm 1 RC(t): Returns the probability of evi-
dence e recorded on the dtree rooted at t.
1: If t is a leaf node, return LOOKUP(t)
2: y ← recorded instantiation of context(t)
3: If cachet[y] 6= nil, return cachet[y]
4: p ← 0
5: for instantiations c of uninst. vars in cutset(t) do
6: record instantiation c
7: p ← p + RC(tl)RC(tr)
8: un–record instantiation c
9: cachet[y] ← p

10: return p

Algorithm 2 LOOKUP(t)
X ← variable associated with t
if X is instantiated then

x ← recorded instantiation of X
u ← recorded instantiation of X’s parents
return Pr(x|u)

else
return 1

[19]. It is also known that the treewidth is no more
than a constant factor from branchwidth [19].

The cutset of a dtree node t is used to decompose the
network associated with node t into the smaller net-
works associated with the children of t. That is, by
conditioning on variables in cutset(t), one is guaran-
teed to disconnect the network associated with node
t. The context of dtree node t is used to cache results:
Any two computations on the subnetwork associated
with node t will yield the same result if these compu-
tations occur under the same instantiation of variables
in context(t). Hence, a cache is associated with each
internal dtree node t, which stores the results of such
computations (probabilities) indexed by instantiations
of context(t). This means that the size of a cache as-
sociated with dtree node t can grow as large as the
number of instantiations of context(t). The total space
requirement of RC is then

∑
t ‖context(t)‖, where ‖S‖

represents the number of instantiations of variables S.

2.2 INFERENCE USING RC

Given a Bayesian network and a corresponding dtree
with root t, the RC algorithm given in Algorithm 1 can
be used to compute the probability of evidence e by
first “recording” the instantiation e and then calling
RC(t), which returns the probability of e.

Note that Line 9 is where space is used by RC as it
is on this line that a cache entry is filled. When ev-
ery computation is cached, RC uses O(n exp(w)) time,
where n is the number of nodes in the network and w
is the width of used dtree. This corresponds to the
complexity of JT algorithms, assuming that the dtree
is generated from a jointree, and to VE algorithms,



Table 1: Space/Time Requirements for Various Formalisms. The time for Hugin is broken down into the time
to compile a jointree (excluding triangulation), and the time to propagate. The experiments used a Pentium 4,
2.4 Ghz processor, with 512 MB RAM.

Network Hugin (sec) Hugin (MB) SS (MB) VE (MB) RC (sec) RC Cache (MB)

barley 4.987+1.522 151.137 10.499 140.637 6.43 11.002
diabetes 3.245+0.661 88.147 4.731 83.417 3.044 5.334
mildew 1.732+0.561 74.895 1.91 72.985 2.434 1.907
water 0.961+0.320 30.221 3.778 26.443 1.402 3.871
munin3 2.133+0.320 27.428 3.677 23.752 1.633 5.86
munin4 5.898+1.423 123.353 13.951 109.402 6.76 13.281
link 9.264+3.325 318.502 12.036 306.466 17.936 14.54
pigs 0.391+0.080 6.361 0.95 5.412 0.351 1.02
alarm 0.020+0.000 0.01 0.002 0.008 0.01 0.001
b 0.070+0.070 7.276 1.055 6.221 0.43 1.008

assuming that the dtree is generated from an elimina-
tion order [3]. As for space requirements under full
caching, RC uses O(n exp(wc)) space where wc is the
context width of used dtree (wc ≤ w + 1).1

Suppose now that the available memory is limited and
we can only cache a subset of the computations per-
formed by RC. The specific subset that we cache can
have a dramatic effect on the algorithm’s running time.
A key question is then to choose that subset which
minimizes the running time, a problem referred to as
the secondary optimization problem. This problem has
been addressed in [1], which also discusses a version
of RC that not only computes the probability of evi-
dence e, but also posterior marginals over families and,
hence, posterior marginals over individual variables.2

3 MEMORY USAGE IN RC

We start with our first analysis of RC which focuses
on its space requirements under full caching. We were
prompted to look into this issue after realizing that
some networks which could not be solved by VE or JT
methods due to space limitations were solved relatively
easily by RC without a need to invoke its time–space
tradeoff engine, i.e., these networks were solved under
full caching without hitting the same memory limits.
This was mostly true for the genetic linkage networks
that we discuss in Section 6, whose severe memory
requirements have prompted another line of research
into time–space tradeoffs [7; 8].

We start our analysis by pointing out that one can talk
about three measures of space requirements for VE
and JT algorithms. In particular, given an elimination

1Note, however, that RC does not cache results at leaf
nodes, so the size of contexts at leaf nodes are not relevant
in practice.

2The version of RC in [1] uses a decomposition graph
(dgraph), which is basically a set of dtrees that share struc-
ture.

order π and a corresponding jointree τ , one can define
the following space models:

JT/Hugin [11]: Requires one table per cluster and
another per separator in the jointree τ .

JT/Shenoy–Shafer [20]: Requires one table per
separator in the jointree τ (assuming that we will
only perform the inward pass, otherwise, two ta-
bles per separator).

VE [4]: Requires one table for each cluster con-
structed when eliminating a variable in π. Note
that this is no less than the space needed for the
cluster tables of Hugin (which is the one we re-
port) and can be a lot more. This is the measure
used in [8].

To get a feel of these space requirements on some real–
world networks, we list in Table 1 these requirements
for some networks from [2; 9]. It should be obvious
from this table that the JT/Shenoy–Shafer model is
much more space efficient than JT/Hugin and VE.3

Note that the space requirements of VE are worse than
what is shown in the table since a jointree contains
fewer clusters than those created by VE. Note also
that JT/Shenoy–Shafer and RC are almost the same
as far as space requirements are concerned. We will
next provide an analytic explanation for this. Before
we do this, we point out that Table 1 shows the time
to perform the inward pass on a jointree using Hugin
system (www.hugin.com), a C++ implementation, and
the time needed to run RC using the SamIam system
(http://reasoning.cs.ucla.edu/samiam/), a JAVA im-
plementation. Hugin is about twice as fast on these
networks. All comparisons in this table are based on
an elimination order/jointree constructed by Hugin,
which is then converted to a dtree by SamIam.

3One can develop a special implementation of VE which
requires less memory than standard VE; see [6, Sectiom
10.3].



Table 2: Dead Caches in RC.
Network Full (MB) Useful (MB)
barley 35.579 11.002
diabetes 13.364 5.334
mildew 4.139 1.907
water 9.159 3.871
munin3 14.187 5.86
munin4 32.641 13.281
link 21.036 14.54
pigs 1.508 1.02
alarm 0.005 0.001
b 5.704 1.008

One can analytically show that the JT/Shenoy–Shafer
model would require less space than the JT/Hugin and
VE models, given that each separator is contained in
its neighboring cluster, and given that the number of
separators is one less the number of clusters in a join-
tree. But what explains the correspondence between
the space requirements of JT/Shenoy–Shafer and RC?

As was shown in [3], the structure of a dtree and its
clusters form a jointree. In fact, it is a binary join-
tree since each cluster will have at most 3 neighbors
[14]. Moreover, it was shown in [3] that the contexts
of a dtree correspond to the separators of induced join-
tree. This shows analytically that RC on a dtree τ ,
and JT/Shenoy–Shafer on the binary jointree induced
by τ , should require the same space. But binary join-
trees are known to take much more space than non–
binary ones, and the jointrees in Table 1 are in fact
non–binary. Hence, the expectation is that RC should
require more space than JT/Shenoy–Shafer since the
dtree that SamIam constructs based on a non–binary
jointree is binary and, hence, must require more space.
We note, however, that the space requirements for RC
in Table 1 are after removing dead caches. Specifically,
if a dtree node t has context(t) which is a superset of
the context of its parent node, then the cache asso-
ciated with node t is called dead as its entries will
never be looked up [3]. Hence, there is no need to
cache at node t, therefore, reducing the space require-
ments of RC. Table 2 provides some data on the sig-
nificant amount of memory reduced due to removing
dead caches. Hence, even though dtrees correspond
to binary jointrees, they do not suffer from the space
disadvantage of binary jointrees due to the removal of
dead caches.4

Before we close this section, we point to Table 3 which
depicts some networks from genetic linkage analysis to
be discussed later. It is these networks that prompted
us to look into the space requirements of RC under full

4The notion of dead caches can be applied to jointrees,
allowing one to avoid storing some separator tables without
affecting the running time. This works, however, only if one
is interested in inward–pass propagation: the separators
will be needed in case an outward–pass is performed.

Table 3: Space for Genetic Linkage Networks.
Network Hugin (MB) SS (MB) VE (MB) RC (MB)

EA8 3.609 0.822 2.786 2.37
EA9 229.786 20.777 209.009 26.25
EA10 320.013 48.064 271.949 166.63
EA11 1,144.075 129.135 1,014.94 112.10
EB6 24,485.118 4,136.345 20,348.773 131.71
EB7 17,669.819 3,984.558 13,685.261 420.34
EB8 6,078.274 301.371 5,776.903 41.96
EB9 277.12 22.121 254.999 43.03
EB10 12,571.118 2,183.242 10,387.876 1115.81
EC6 213.252 17.498 195.754 5.67
EC7 81.856 6.639 75.216 9.70
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Figure 2: An example dtree.

caching as their space under VE/JT is so demanding
that it requires some time–space tradeoff to be invoked
under these formalisms [7; 8]. Yet, RC was able to
handle them all under full caching. We note here that
the dtrees used in this table are not built based on
the corresponding jointree, but directly from a min–
fill elimination order as described in [3]. Hence, the
space requirements of RC and JT/Shenoy–Shafer did
not correspond in this table as they did in Table 1.

4 REPRESENTING CPTS IN RC

One of the key properties of RC is that it does not
require any particular representation of conditional
probability tables (CPTs). Specifically, as shown by
Algorithm 1, the only function that depends on the
CPT representation is LOOKUP, which is given in Al-
gorithm 2. LOOKUP is called on a leaf node t corre-
sponding to network variable X only after all its par-
ents U have been instantiated to u. If before the call,
X is instantiated to x, LOOKUP returns Pr(x|u), oth-
erwise, it returns 1. Hence, whether the CPT for X is
a table, a decision tree, a set of rules, a formula, or a
noisy–or model, that does not affect the statement of
the algorithm. As for time complexity of RC, that also
remains the same as long as the probability Pr(x|u)
can be retrieved in constant time.



This flexibility of RC with respect to the representa-
tion of CPTs can have a dramatic effect on its space re-
quirements compared to other methods. Consider for
example a simple network where variables X1, . . . , Xn

are the parents of variable Y . Figure 2 depicts a dtree
for this network, with the cutset (left) and context
(right) shown next to each dtree node. Since the
context of each node is a superset of the context of
its parent, all caches in this dtree are dead. Hence,
RC does not cache any results in this case, requiring
no space whatsoever except that needed to store the
CPTs. Hence, if the CPT for node Y has a represen-
tation which is linear in n, then the space complexity
of RC on this network is linear in n.

More generally, let N be a Bayesian network with a
polytree structure with m nodes, where each node has
up to n parents. There is a dtree for N under which
RC requires O(m) space for caching, and O(m exp(n))
time. Thus, although the worst–case space complexity
of RC is exponential in branchwidth, which is n in this
case, this is not necessarily the best–case complexity.

We tried to use Netica and Hugin, both of which are
based on jointrees, to construct a network with ternary
variables X1, . . . , X20, and binary variable Y which is
a noisy–or of its parents X1, . . . , X20. On a Windows
2000 platform with 1 GB of RAM, neither Netica nor
Hugin were able to create this network, both running
out of memory as we tried to add the 17th parent of
Y . The reason for this is that these systems will have
to convert the noisy–or model to a tabular CPT be-
fore they can use the classical jointree method. It is
true that there are new variations on the jointree al-
gorithm which attempt to deal with this problem by
adopting non–tabular representations, but these ex-
tensions require serious algorithmic changes as they
have to propose algorithms for replacing classical ta-
ble operations, such as multiplication and marginal-
ization. The key property of RC is that no algorith-
mic changes are needed to accommodate non–tabular
CPTs, which is a significant advantage that is mostly
enabled by the conditioning nature of the algorithm.

5 UNIT RESOLUTION

We now turn to the important subject of handling
determinism in Bayesian network inference. It has
long been observed that the presence of many ze-
ros and ones in the network CPTs can be a source
of great savings. One of the earliest approaches to
handle determinism is the method of zero compres-
sion proposed for jointrees [12], which reduces the size
of a jointree by eliminating table entries that con-
tain zeros. The method, however, requires that we
first build a jointree, and then perform inference on

it in order to reduce its size. This method can be
extremely effective as long as one can construct the
full jointree, which may not be possible for some net-
works. Another recent method for handling logical
constraints was proposed for variable elimination [5;
13] and is closely related to the approach we will pro-
pose next for recursive conditioning. We will say more
about the relationship between the two approaches
later.

The approach we take for handling determinism in
RC is based on a key technique in the SAT litera-
ture, known as unit resolution. Given a logical knowl-
edge base (KB) in the form of propositional clauses,
unit resolution is a linear time method for deriving
logical implications of the KB based on setting the
values of some variables, allowing one to efficiently de-
tect variable assignments which are inconsistent with
a KB. Unit resolution is a very important part of any
Boolean satisfiability engine, where a major portion of
the engine’s run time is spent doing it [15]. Our use
of unit resolution in Algorithm 1 is for detecting in-
stantiations c of cutset variables that are guaranteed
to have zero probabilities on Line 7, and then skipping
these instantiations.

The input to unit resolution is a KB in the form of
clauses, where each clause is a disjunction of literals.
Each literal is either positive (X = true) or negative
(¬(X = true)), assuming that every variable has only
one of two values. Since Bayesian networks usually
contain multi–valued variables, we extend the notion
of a literal to either a positive literal (X = x) or a
negative literal (X 6= x).

A clause is satisfied whenever at least one of its literals
is satisfied. The basic concept of unit resolution is that
when all but one literal l in a clause have been falsified,
then literal l must be satisfied in order to satisfy the
clause. A literal is falsified when the current setting
of variables contradict the literal. A positive literal
X = x is satisfied by setting the value of X to x. A
negative literal X 6= x is satisfied by eliminating the
value x from the domain of X.

The first step in utilizing unit resolution by RC is to
create a KB from a Bayesian network based on the
zero/one CPT entries. This can be achieved by mak-
ing each variable in the network a variable in the KB,
and then iterating through each CPT entry to create
clauses as follows. Consider the following CPT, where
variables A and B have values {1, 2} and variable C
has values {1, 2, 3}:



A B C Pr(C|A, B) Clauses

1 1 1 1 (C = 1 ∨A 6= 1 ∨B 6= 1)
1 1 2 0
1 1 3 0
1 2 1 0
1 2 2 1 (C = 2 ∨A 6= 1 ∨B 6= 2)
1 2 3 0
2 1 1 .2
2 1 2 .8
2 1 3 0 (C 6= 3 ∨A 6= 2 ∨B 6= 1)
2 2 1 .7
2 2 2 .3
2 2 3 0 (C 6= 3 ∨A 6= 2 ∨B 6= 2)

To generate the clauses in the knowledge base, we be-
gin by iterating through the parent instantiations of
the CPT for variable C. Whenever one of the states c
of C has a probability of 1 we generate a clause which
contains the positive literal C = c, and negative literals
A 6= a,B 6= b where A = a,B = b is the corresponding
parent instantiation. The first two clauses in the above
table are generated using this method. Whenever no
state c contains a probability of 1, each state which has
a probability of 0 will generate a clause. This clause
contains the negative literal C 6= c, as well as the neg-
ative literals A 6= a,B 6= b where A = a,B = b is
the corresponding parent instantiation. The last two
clauses in the above table are examples of this.

We also need the following operations on the KB to
support unit resolution: assert(X = x), assert(X 6=
x), and retract(X) to remove an assertion and any as-
sertions it leads to based on unit resolution. Whenever
the knowledge base receives an assertion or retraction,
it updates the affected clauses. Anytime all but one
literal in a clause is determined to be falsified, it forces
the satisfaction of the last literal by calling assert re-
cursively.

The changes needed in RC are then as follows. The
operation of “record instantiation c” on Line 6 of Al-
gorithm 1 is changed so that it asserts instantiation
c, and the operation of “un-record instantiation c” on
Line 8 is changed to retract the instantiation c. More-
over, Line 7 will be skipped in case the assertion on
Line 6 leads to a contradiction due to unit resolution
as this implies a case c which has a probability of zero.

We note here that the use of unit resolution has been
explored in [5]—and a more general form of constraint
propagation has also been explored in [13]—in the
context of a variable elimination algorithm, where a
KB is also constructed based on the 0/1 probabili-
ties in a Bayesian network. A key difference between
these previous approaches and ours is that not only do
we exploit unit resolution with respect to the original
KB, but also with respect to augmentations of the KB
which result from adding further assumptions during
conditioning. This provides many more opportunities

to discover inconsistencies, which may not exist in the
original KB.

We study the effectiveness of our proposed technique
for handling determinism in the following section.

6 EXPERIMENTAL RESULTS

We will use networks from two different repositories
to display the affect of using unit resolution in con-
junction with RC, and to provide further data on the
actual memory requirements of RC under full caching.

We start with networks from the field of genetic link-
age analysis [16], where we use a set of benchmark
networks from [7]. The problem here is to compute
the probability of some evidence with respect to a
given network, known as the likelihood of the pedi-
gree. We will not discuss the details of these net-
works, except to say that (a) they are quite large,
containing up to about 9000 variables; (b) require
significant memory, upwards of 20 GB for VE and
JT/Hugin on some networks; and (3) contain a signif-
icant amount of determinism. These challenges make
the benchmarks especially suitable for evaluating RC
across the dimensions discussed earlier. In fact, the
memory demands of these networks have prompted an-
other line of research on time–space tradeoffs, which
combines variable elimination and conditioning [7;
8]. Yet, as we shall see next, the memory demands
of RC under full caching are modest enough to allow
the handling of these networks without invoking its
time–space tradeoff engine.

Table 4 depicts the results of running RC on the ge-
netic linkage networks from [7], in addition to report-
ing the performance of SUPERLINK 1.0 [7] and SU-
PERLINK 1.1 [8] on these networks. We note here
that SUPERLINK is currently the most efficient soft-
ware system for genetic linkage analysis, and is dedi-
cated to this problem, although it is based on proba-
bilistic inference using a combination of variable elim-
ination and conditioning. Hence, gauging our results
with respect to SUPERLINK is quite revealing.

A number of observations are in order about the re-
sults in Table 4. First, the results reported for RC
and SUPERLINK 1.1 are on a Linux system, with a
2.4 GHz Xeon processor, and 1.5 GB of RAM, while
the results for SUPERLINK 1.0 are for a slower ma-
chine with 2 GB of RAM and are adapted from [7] (we
could not obtain a version that runs on the above plat-
form). Second, given this memory constraint, many of
the networks in Table 4 are beyond the limits of stan-
dard methods based on VE and JT/Hugin and, some-
times, JT/Shenoy–Shafer; see Table 3. Third, the RC
results are based on SamIam, using a special imple-



Table 4: Genetic Linkage Analysis: Experimental Results.
Number RC Time Superlink Time (sec) Dtree Cache KB Size Actual Ratio

File Variables (sec) 1.0 1.1 Size (MB) (clauses:literals) RC Calls RC Calls

noKB 0.2 116,233
EA5 KB 2092 0.2 1.2 0.2 0.10 1588 : 4500 70,175 1.66

noKB 0.5 293,507
EA6 KB 2491 0.4 4.7 1.6 0.28 1838 : 5112 113,699 2.58

noKB 1.0 651,151
EA7 KB 2928 0.4 3.0 0.6 0.66 2114 : 5812 94,583 6.88

noKB 3.1 1,944,307
EA8 KB 3790 1.3 21.0 3.3 2.37 2410 : 6424 245,429 7.92

noKB 175.4 64,926,609
EA9 KB 7747 23.8 8510.2 356.4 26.25 4600 : 11784 3,347,807 19.39

noKB 685.9 325,061,629
EA10 KB 7970 201.1 10446.3 451.7 166.63 4762 : 12200 17,258,401 18.83

noKB 710.4 > 100 245,669,493
EA11 KB 9027 195.0 hours 12,332.0 112.10 5286 : 13424 14,358,315 17.11

noKB 0.2 100,773
EB0 KB 1926 0.2 2.6 0.1 0.11 1751 : 5121 33,153 3.04

noKB 0.3 157,915
EB1 KB 2317 0.2 2.6 0.2 0.18 2025 : 5723 47,499 3.32

noKB 0.6 396,027
EB2 KB 3919 0.2 82.6 0.7 0.39 2961 : 7831 83,307 4.75

noKB 48.3 28,593,739
EB3 KB 4710 11.6 437.6 4.1 10.00 3537 : 9233 2,102,409 13.60

noKB 19.1 7,164,295
EB4 KB 5088 13.0 17.3 5.5 5.80 3763 : 9785 1,188,043 6.03

noKB 71.7 29,839,491
EB5 KB 5483 8.0 278.8 12.4 23.82 4007 : 10297 1,574,619 18.95

noKB 981.1 477,764,683
EB6 KB 5860 281.9 935.9 15.5 131.72 4220 : 10787 43,572,385 10.96

noKB 3107.8 1,379,395,611
EB7 KB 6240 610.3 902.8 4.0 420.34 4564 : 11595 83,540,347 16.51

noKB 1009.1 322,142,481
EB8 KB 6623 54.4 288.2 18.0 41.96 4945 : 12577 4,474,309 72.00

noKB 1656.2 713,453,263
EB9 KB 7039 123.7 114.0 27.9 43.03 5126 : 13011 18,814,149 37.92

noKB > 3600.0 1,452,529,921
EB10 KB 7428 650.4 2901.3 85.1 1115.81 5473 : 13994 76,309,713 19.03

noKB 26.7 5.89 8,612,171
EC5 KB 1194 5.6 44.1 1.6 5.89 788 : 2192 577,315 14.92

noKB 29.8 5.67 11,896,861
EC6 KB 1200 6.3 35.3 124.9 5.67 704 : 1968 1,298,445 9.16

noKB 59.7 9.70 19,053,079
EC7 KB 1321 25.0 102.6 123.0 9.70 762 : 2108 4,742,827 4.02

mentation which works in log–space given the small
numbers involved in genetic linkage analysis. Finally,
all dtrees used in these experiments were created from
elimination orders based on the min–fill heuristic [3].

Note that each row in Table 4 contains two lines, one
for standard RC (noKB) and another for RC with
unit resolution (KB). The running time, actual num-
ber of recursive calls, and the ratio of recursive calls,
noKB/KB, is also reported. The running time for RC
is for two likelihood calculations, while the other val-
ues are for a single calculation. Some computations
could be stored from one calculation to the next [7],
however our current implementation does not use this
speedup. Based on this table, it is obvious that the
use of unit resolution has only improved performance,
considerably in many cases, with some minor excep-
tions where standard RC was so fast that the use of
unit resolution was not justified. To highlight some im-
provements, consider EB10 which could not be solved
within 1 hour, but was then solved in under 10 min-

utes using unit resolution. For EB9, the running time
dropped from 1656 to 124 seconds. The last column in
Table 4 reports on the factor of reduction in the num-
ber of recursive calls made by RC, showing a factor of
72 for EB8.

Another key point to observe is the size of KBs gener-
ated for these networks, which contained up to about
5000 clauses. This is a relatively large number of
clauses, at least by SAT standards, yet is not as large
as some of the other networks we shall consider later.

The final set of remarks relating to Table 4 are with
regards to gauging the running time of RC against SU-
PERLINK, the most efficient software system for ge-
netic linkage analysis. We note here that RC running
times only include two likelihood calculations, while
SUPERLINK running times additionally include the
time to preprocess and create an ordering, as this is
the number reported by SUPERLINK. The prepro-
cessing phase used by RC reads in the genetic files,
converts it to a Bayesian network, and then simplifies



Table 5: KB Compared with No KB.

Network RC (KB) RC (No KB) KB Size RC Cache Ratio
Seconds RC Calls Seconds RC Calls Clauses Literals (MB) RC Calls

munin1 65.875 404,101 351.896 1,059,450,113 8334 26500 452.9 2621.75
munin3 2.544 201,559 3.865 24,743,617 31826 94198 8.4 122.76
munin4 9.293 986,675 16.844 101,264,503 39485 122441 33.5 102.63
water 1.292 31,097 1.422 8,751,957 6362 35249 2.5 281.44
munin2 14.270 582,961 2.383 14,596,471 31365 93775 4.6 25.04
pigs 2.844 1,049,061 0.431 1,717,165 2368 7104 1.4 1.64

it as discussed in [7].5 This phase is currently using
unoptimized Java code, and along with the dtree gen-
eration, took 6 seconds on EA7, 20 seconds on EB6,
and 51 seconds on EA11. It should be noted that
this only needs to be done once for any number of
likelihood calculations, which geneticists would be in-
terested in running. Even after taking this into con-
sideration, RC’s numbers appear competitive with the
newer version of SUPERLINK on this dataset (see, for
example, EA9-11, EB5, EC6-7).

We note here that SUPERLINK 1.1 is quite recent
(the paper to appear). It is based on a new variable
ordering technique, which depends on randomization,
and appears to be extremely effective [8]. This im-
provement is orthogonal to the improvement shown
by using unit resolution, in that by finding better or-
derings, we could also generate better dtrees, therefore
lifting the additional benefits of SUPERLINK 1.1 to
RC. We are currently investigating this direction. We
finally note that the benchmarks in [7] included addi-
tional networks that we omitted here, as they were too
easy, requiring less than a second each.

We now consider another set of networks from a dif-
ferent suite [2], where we will only run one probability
calculation. These networks contain even more deter-
minism than the genetic linkage networks, to the point
where unit resolution stops being helpful in some cases
due to the significant size of KBs. Specifically, consider
Table 5 and the munin2 network, which generates a
KB with 31, 365 clauses. RC with unit resolution re-
duced the number of recursive calls by a factor of ≈ 25,
yet it slowed down the overall running time by a factor
of ≈ 6. A slowdown is also observed for pigs since the
initial running time was very small to start with. An
impressive case is the one concerning munin1, where
unit resolution reduced the number of recursive calls
by a factor of ≈ 2, 600, and reduced the running time
from ≈ 352 to 66 seconds. One key observation about
these networks is the significant size of KBs, which
explains why the reduction in running time is not pro-
portional to the reduction in number of recursive calls.

5This involves value and allele exclusion, variable trim-
ming, and merging variables.

We note here that our implementation of unit resolu-
tion is quite straightforward, especially that it contains
multi–valued variables. There is very little published
literature on optimization techniques for unit resolu-
tion with multi–valued variables (as opposed to binary
variables) and we have yet to invest in such techniques.
The promising experimental results we report in this
section, however, appear to justify such an investment.

7 CONCLUSIONS

This paper rests on two key contributions. First, an
analytic and experimental study of the space require-
ments of RC under full caching, suggesting that it is
one of the most space–efficient algorithms for exact in-
ference in Bayesian networks, aside from its ability to
allow a smooth tradeoff between time and space. Sec-
ond, a principled approach for handling determinism
in probabilistic inference, which builds upon progress
made in the SAT community. Both contributions are
supported by experimental results on a variety of real–
world networks, including some very challenging net-
works from the field of genetic linkage analysis. The
combination of unit resolution with RC in particular
shows a lot of promise in terms of time complexity,
suggesting some new directions of research on the in-
terplay between probabilistic and symbolic reasoning.
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