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Leaf senescence is the last stage of leaf development, manifested by leaf yellowing due

to the loss of chlorophyll, along with the degradation of macromolecules and facilitates

nutrient translocation from the sink to the source tissues, which is essential for the

plants’ fitness. Leaf senescence is controlled by a sophisticated genetic network that

has been revealed through the study of the molecular mechanisms of hundreds of

senescence-associated genes (SAGs), which are involved in multiple layers of regulation.

Leaf senescence is primarily regulated by plant age, but also influenced by a variety

of factors, including phytohormones and environmental stimuli. Phytohormones, as

important signaling molecules in plant, contribute to the onset and progression of

leaf senescence. Recently, peptide hormones have been reported to be involved in

the regulation of leaf senescence, enriching the significance of signaling molecules in

controlling leaf senescence. This review summarizes recent advances in the regulation

of leaf senescence by classical and peptide hormones, aiming to better understand the

coordinated network of different pathways during leaf senescence.

Keywords: leaf senescence, plant hormones, peptide, senescence-associated gene, regulatory network

INTRODUCTION

Leaf senescence occurs as the final step of leaf development, preceding the ultimate cell death
or completion of life cycle (Pennell and Lamb, 1997; Lim et al., 2007). Leaves are the important
organ that can store energy in form of carbohydrate molecules converted from light energy
through photosynthesis. As leaves age, photosynthetic efficiency declines and chloroplasts degrade,
accompanied by the degradation of macromolecules such as lipids, proteins, and nucleic acids
(Gan and Amasino, 1997; Lim et al., 2007). Leaf senescence is crucial for plant development and
fitness because the nutrients released from senescent leaves are reallocated to other developing
young organs for better reproductive growth in annual plants, or to be stored in phloem tissues
for successful growth of next season in perennial plants (Cooke and Weih, 2005; Lim et al., 2007).
Premature or delayed leaf senescence evidently reduces the yield and quality of crop plants such as
rice and wheat (Buchanan-Wollaston et al., 2005; Srivalli and Khanna-Chopra, 2009; Breeze et al.,
2011; Su et al., 2017; Piao et al., 2019). Studying regulatory mechanisms of leaf senescence will
provide instructive hints for precise improvement of agronomic yield and quality.

The onset of leaf senescence depends mainly on the developmental age, as demonstrated by the
fact that only plants older than 24 days induced significant yellowing on cotyledons after ethylene
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treatment, while plants younger than 17 days did not (Jing
et al., 2002). It is also influenced by various endogenous and
environmental factors. Out of them, plant hormones play pivotal
roles in the regulation of leaf senescence. Basically, cytokinins
(CKs), auxin, and gibberellins (GAs) delay leaf senescence,
whereas ethylene, salicylic acid (SA), jasmonic acid (JA), abscisic
acid (ABA), brassinosteroids (BRs), and strigolactones (SLs)
accelerate senescence (Gan and Amasino, 1995; Li et al., 1996,
2013; Morris et al., 2000; Kim et al., 2011; Jibran et al., 2013;
Yamada and Umehara, 2015; Zhu et al., 2015; Mao et al., 2017;
Guo et al., 2021). Hormones not only directly regulate leaf
senescence process, but also link environmental signals into the
modulation of leaf senescence (Yang et al., 2011; Zhang et al.,
2019). Briefly, plant hormones regulate leaf senescence through
the following pathways: (i) affect leaf growth and development
and alter the state of leaves that can be used to induce senescence;
(ii) influence the progression and features of senescence via
genetic transduction; (iii) integrate the environmental signals
into developmental processes. Recently, peptide hormones were
found to participate in the regulation of leaf senescence (Aghdam
et al., 2021a; Zhang et al., 2022b), and studies on mechanism of
senescence regulated by peptide hormones enrich the knowledge
to understand regulation of leaf senescence. In this review, we
provide an overview and highlight new advances in the regulation
of leaf senescence by classical and peptide hormones. Major
components of hormones biosynthesis and signaling involving in
leaf senescence are presented (Table 1).

PLANT HORMONES THAT DELAY LEAF
SENESCENCE

Cytokinins
Cytokinins (CKs) are N6-substituted adenine derivatives that
regulate diverse aspects of plant growth and development
processes, including shoot meristems, vascular development,
root growth, nodulation, as well as leaf initiation and leaf
senescence (Argueso et al., 2010; Perilli et al., 2010; Wu et al.,
2021). CK works as a negative regulator of senescence, which
was supported by the evidences that exogenous application
CK retards senescence and endogenous CKs decrease during
senescence (Singh et al., 1992; Gan and Amasino, 1996).
Expressions of CK synthesis-associated genes decrease and a
CK oxidase involving CK degradation is up-regulated when
the senescence occurs, which is consistent with the gradually
decrease of CKs content along with senescence (Buchanan-
Wollaston et al., 2005). The expression of isopentenyl transferase
(IPT) driven by a senescence-specific promoter SAG12 obviously
delays leaf senescence process (Gan and Amasino, 1995). The
autoregulatory proSAG12:IPT system has been widely utilized
in numerous important crop plants that exhibit retarded
leaf senescence, indicative of the negative regulation of leaf
senescence by CK. Therefore, the researchers manipulated the
leaf senescence process by regulating the CK content through
molecular genetic pathways. Overexpression of FPS1S (Farnesyl
diphosphate synthase) leads to the declined endogenous zeatin-
type CK with a concomitant senescence-like phenotype in

Arabidopsis (Masferrer et al., 2002). SlymiRNA208 suppresses the
post-transcriptional expression of SlIPT2 and SlIPT4 in tomato,
resulting in the premature leaf senescence in the SlymiRNA208-
overexpressing plants by reducing the endogenous concentration
of CKs (Zhang et al., 2020b). APT1 (Adenine phosphoribosyl
transferase 1), which catalyzes the CK conversion from free bases
to nucleotides, acts as a positive regulator of leaf senescence. Loss
of APT1 activity causes a delayed leaf senescence due to the excess
accumulation of CKs (Zhang et al., 2013b).

The CK signaling pathway initiates with the binding of CKs
to histidine kinase receptors, known as AHK2, AHK3, and
CRE1/WOL/AHK4, then involves a phosphotransfer cascade,
and ultimately triggers transcription of CK-responsive genes in
the nucleus (Argueso et al., 2010). Several components of CK
signal transduction are found to function in leaf senescence
(Table 1). Gain-of-function of AHK3 leads to the extended
leaf longevity, conversely ahk3 loss-of-function mutant exhibits
early leaf senescence during dark-induced senescence (Kim
et al., 2006). AHK3 mediates the specific phosphorylation of
downstream type-B response regulator ARR2 that plays a crucial
role in CK-mediated leaf longevity. Consistently, the plants
overexpressing ARR2 show delayed leaf senescence during dark-
induced and age-dependent senescence, but not overexpression
of ARR2D80N, in which the phosphotransfer to ARR2 is abolished
(Hwang and Sheen, 2001; Kim et al., 2006). Interestingly, the
inhibition of ARR2 degradation through a substitution of Lys90
with Gly also delays leaf senescence (Kim et al., 2012). Although
AHK3 plays a major role in CK-dependent chlorophyll retention
in the detached leaves, AHK2 and AHK4 also contribute to
CKs-mediated leaf longevity (Riefler et al., 2006). Cytokinin
response factors (CRFs) are transcriptionally induced by CK
and act downstream of AHK3 to regulate leaf senescence.
Plants with overexpressing CRF6 possess a higher chlorophyll
retention than wild type without exogenous CK (Zwack et al.,
2013), unraveling CRF6 as a negative regulator during dark-
induced leaf senescence. In contrast, simultaneous silencing
of CRF1/3/5/6 delays leaf senescence and overexpression of
CRF1/3/5 accelerates senescence, accompanied by an induction
of SAG12 and reduction of CAB2 (Raines et al., 2016). The
different roles in regulating leaf senescence imply that CRFs
are involved in regulating the leaf senescence process through
different pathways downstream of CK.

CKs participate in the regulation of sink/source relations
during leaf senescence, which partially depends upon the activity
of cell-wall invertase (CWINV) (Godt and Roitsch, 1997; Balibrea
Lara et al., 2004). CWINV and hexose transporters are effective
enzymes in mediating the phloem unloading process of sucrose.
Expression of CWINV under the control of SAG12 promoter
(proSAG12:CWINV) delays leaf senescence (Godt and Roitsch,
1997; Balibrea Lara et al., 2004). Further, a link between CK
and CWINV underlying leaf senescence is substantiated by the
evidence that expression of an invertase inhibitor driven by
a CK-inducible promoter does not show delayed senescence
in the presence of CKs (Balibrea Lara et al., 2004; Jin et al.,
2009). Taken together, CWINV is an essential component that
mediates CK-conferred leaf longevity. Besides, CKs influence
leaf senescence via interaction with other hormones. For
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TABLE 1 | List of the key components in hormone pathway involved in leaf senescence.

Gene Hormone Effect Species Reference

IPT CK Delay Arabidopsis thaliana Gan and Amasino, 1995

FPS1S CK Promote Arabidopsis thaliana Masferrer et al., 2002

SlymiRNA208 CK Promote Solanum lycopersicon Zhang et al., 2020b

APT1 CK Promote Arabidopsis thaliana Zhang et al., 2013b

AHK3 CK Delay Arabidopsis thaliana Kim et al., 2006

AHK2, AHK4 CK Delay Arabidopsis thaliana Riefler et al., 2006

ARR2 CK Delay Arabidopsis thaliana Kim et al., 2006

CRF6 CK Delay Arabidopsis thaliana Zwack et al., 2013

YUC6 Auxin Delay Arabidopsis thaliana Kim et al., 2011

ZmGH3.8 Auxin Delay Zea mays Feng et al., 2021

IAA17 Auxin Promote Arabidopsis thaliana Shi et al., 2015

ARF2 Auxin Promote Arabidopsis thaliana Lim et al., 2010

ARF1, ARF7, ARF19 Auxin Promote Arabidopsis thaliana Ellis et al., 2005

ANT Auxin Delay Arabidopsis thaliana Feng et al., 2016

SAUR36 Auxin Promote Arabidopsis thaliana Hou et al., 2013

SAUR39 Auxin Promote Oryza sativa Kant et al., 2009

SAUR49 Auxin Promote Arabidopsis thaliana Wen et al., 2020

BrGA20ox3 GA Delay Brassica rapa Xiao et al., 2019

GAI, RGA, RGL1, RGL2 GA Delay Arabidopsis thaliana Chen et al., 2014

ScGAI GA Delay Saccharum spp. Fang et al., 2021

ACS Ethylene Promote Arabidopsis thaliana Tsuchisaka et al., 2009

ETR1, ERS1 Ethylene Delay Arabidopsis thaliana Qu et al., 2007

EIN2 Ethylene Promote Arabidopsis thaliana Oh et al., 1997

EIN3, EIL1 Ethylene Promote Arabidopsis thaliana Chao et al., 1997

miRNA164 Ethylene Delay Arabidopsis thaliana Li et al., 2013

ORE1 Ethylene Promote Arabidopsis thaliana Kim et al., 2009

ORS1, AtNAP, ANAC019/047/055 Ethylene Promote Arabidopsis thaliana Kim et al., 2014

ZmNAC126 Ethylene Promote Zea mays Yang et al., 2020

ERF4, ERF8 Ethylene Promote Arabidopsis thaliana Koyama et al., 2013

SID2 SA Promote Arabidopsis thaliana Abreu and Munne-Bosch, 2009

PAD4 SA Promote Arabidopsis thaliana Morris et al., 2000

WHY1 SA Delay Arabidopsis thaliana Lin et al., 2020

S3H SA Delay Arabidopsis thaliana Zhang et al., 2013a

S5H/DMR6 SA Delay Arabidopsis thaliana Zhang et al., 2017b

NPR1 SA Promote Arabidopsis thaliana Morris et al., 2000

PVA31 SA Promote Arabidopsis thaliana Ichikawa et al., 2015

LOX1, LOX2, LOX3, LOX4 JA Promote Arabidopsis thaliana He et al., 2002

KAT2 JA Promote Arabidopsis thaliana Castillo and Leon, 2008

TaWRKY13-A JA Promote Triticum aestivum Qiao et al., 2021

TaWRKY42-B JA Promote Triticum aestivum Zhao et al., 2020

miR139 JA Delay Arabidopsis thaliana Schommer et al., 2008

TCP2, TCP4, TCP10 JA Promote Arabidopsis thaliana Schommer et al., 2008

COI1 JA Promote Arabidopsis thaliana Castillo and Leon, 2008

COS1 JA Delay Arabidopsis thaliana Xiao et al., 2004

JAZ7 JA Delay Arabidopsis thaliana Yu et al., 2016

MYC2, MYC3, MYC4 JA Promote Arabidopsis thaliana Zhu et al., 2015; Yu et al., 2016

Dof2.1 JA Promote Arabidopsis thaliana Zhuo et al., 2020

OsERF101 JA Promote Oryza sativa Lim et al., 2020

MdBT2, MdJAZ2 JA Delay Malus pumila Mill. An et al., 2021a

ESR/ESP JA Delay Arabidopsis thaliana Miao and Zentgraf, 2007

(Continued)
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TABLE 1 | Continued

Gene Hormone Effect Species Reference

PSF ABA Delay Oryza sativa Wang et al., 2016

ES3(t) ABA Delay Oryza sativa Su et al., 2017

PvCCCH69 ABA Delay Panicum virgatum Xie et al., 2021

CsHB5 ABA Promote Citrus reticulata Blanco. Zhang et al., 2021d

OsNAC2 ABA Promote Oryza sativa Mao et al., 2017

CDF4 ABA Promote Arabidopsis thaliana Xu et al., 2020

OsMYB102 ABA Delay Oryza sativa Piao et al., 2019

AAO3 ABA Promote Arabidopsis thaliana Yang et al., 2014

SAG113 ABA Promote Arabidopsis thaliana Zhang et al., 2012

ABA2 ABA Delay Arabidopsis thaliana Song et al., 2016

PYL8 ABA Promote Arabidopsis thaliana Lee et al., 2015

PYL9 ABA Promote Arabidopsis thaliana Zhao et al., 2016

ABIG1 ABA Promote Arabidopsis thaliana Liu et al., 2016

ABF2, ABF3, ABF4 ABA Promote Arabidopsis thaliana Gao et al., 2016

OsNAP ABA Promote Oryza sativa Liang et al., 2014

ONAC054 ABA Promote Oryza sativa Sakuraba et al., 2020

ABI5 ABA Promote Arabidopsis thaliana Su et al., 2016

DET2 BR Promote Arabidopsis thaliana Li et al., 1996

UGT73C6 BR Delay Arabidopsis thaliana Husar et al., 2011

CYP105A1 BR Delay Arabidopsis thaliana Dasgupta et al., 2011

DRL1/BAT1 BR Delay Agrostis stolonifera L. Han et al., 2017

BRI1 BR Promote Arabidopsis thaliana Li and Chory, 1997

BES1 BR Promote Arabidopsis thaliana Yin et al., 2002

AIF2 BR Delay Arabidopsis thaliana Kim et al., 2020

CCD7 SL Promote Lotus japonicus Liu et al., 2013

CCD8 SL Promote Petunia hybrida Snowden et al., 2005

ORE9/MAX2 SL Promote Arabidopsis thaliana Woo et al., 2001

CLE14 Peptide Delay Arabidopsis thaliana Zhang et al., 2022b

CLE42 Peptide Delay Arabidopsis thaliana Zhang et al., 2022a

PSKR1 Peptide Delay Arabidopsis thaliana Matsubayashi et al., 2006

TPST Peptide Delay Arabidopsis thaliana Komori et al., 2009

example, CKs reduce ABA content through suppressing the
transcription of ABA synthesis-related genes but elevating the
expression of ABA degradation genes, which leads to the retarded
leaf senescence (Zhang et al., 2021c). Given the regulatory
mechanism of CKs in sink/source relations is largely unknown,
more investigations needs to be done to unravel the role of
CKs in the regulation of leaf senescence, especially regarding
sink/source relations, which will be useful for application in
molecular breeding.

Auxin
Auxin not only functions in cell growth in response to
environmental stimuli, but also fulfills an important role in
leaf initiation, morphogenesis, as well as senescence (Vanneste
and Friml, 2009). Indole-3-acetic acid (IAA), a major natural
auxin, transiently inhibits the expression level of SAG12 (Noh
and Amasino, 1999), indicating that exogenous auxin represses
leaf senescence process. Surprisingly, the endogenous IAA levels
detected in senescent leaves were 2-fold higher than in fully

expanded young leaves (Quirino et al., 1999; van der Graaff
et al., 2006). Although this increase may be due to non-uniform
regulation between cells in the senescent and non-senescent
parts, the significance of this increase during leaf senescence is
not clear. A recent study on the effect of IAA on gene expression
during leaf senescence reported that IAA treatment accelerated
the progression of senescence-related changes, and furthermore,
it revealed that the earlier treatment time, i.e. 27 DAS (a few days
after sowing), resulted in the most significant acceleration of late
leaf senescence compared to 35 DAS (Goren-Saglam et al., 2020).
Further microarray analysis of gene expression of IAA treatment
at different time points showed that the effect of IAA on leaf
senescence was not only time-dependent but also interacted with
ethylene and JA pathways. Therefore, discussion of the function
of IAA in leaf senescence requires consideration of the balance of
endogenous hormone networks.

Activating or mutating components of the auxin pathway in
planta helps us to better understand the function of IAA in leaf
senescence. YUCCAs (YUCs) encoding flavin monooxygenases
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catalyze a restrictive step in auxin biosynthesis, namely the
conversion from indole-3-pyruvic acid (IPA) to auxin (Kim
et al., 2007). Activation of YUC6 in Arabidopsis increases
free IAA levels, reduces expression of SAGs and exhibits a
delayed senescence phenotype (Kim et al., 2011). The thiol-
reductase activity of YUC6 also mediates reactive oxygen
species (ROS) content and auxin availability to influence leaf
senescence (Cha et al., 2016). Auxin signal is perceived by
its receptor protein TRANSPORT INHIBITOR RESPONSE 1
(TIR1)/AUXIN SIGNALING F BOX PROTEINs (AFBs), leading
to the ubiquitin-mediated degradation of AUX/IAA proteins,
which are repressors of auxin response factors (ARFs) (Vanneste
and Friml, 2009). Then activation of auxin response genes is
accompanied by the release of ARFs. The plant overexpressing
signaling component AtIAA17 displays early leaf senescence with
lower chlorophyll content in rosette leaves, conversely iaa17
mutant shows a delayed senescence phenotype (Shi et al., 2015).
ARF2, a transcriptional repressor of auxin signaling, is induced in
senescing leaves. The arf2mutant displays the delayed senescence
symptoms of rosette leaves in natural and dark conditions
(Lim et al., 2010). AINTEGUMENTA (ANT), a member of the
AP2/ERF TF family, is demonstrated to act downstream of ARF2
to extend leaf longevity (Feng et al., 2016). Moreover, mutations
in ARF7 and ARF19, two transcriptional activators, enhance
arf2 phenotype (Ellis et al., 2005), which indicates that auxin
is involved in the regulation of leaf senescence by controlling
gene expression in manifold ways. The early auxin-responsive
genes, including SMALL AUXIN-UP RNA (SAURs) genes such as
SAUR36, SAUR39, and SAUR49, are involved in leaf senescence
(Kant et al., 2009; Hou et al., 2013; Wen et al., 2020). The soybean
(Glycine max) SENESCENCE-ASSOCIATED RECEPTOR-LIKE
KINASE (GmSARK) and its ortholog in Arabidopsis AtSARK act
as positive regulators of leaf senescence through a widespread
mechanism relating to auxin, ethylene, and cytokinin (Xu et al.,
2011). SAUR49 promotes leaf senescence via activation of SARK-
mediated signaling by repressing SENESCENCE SUPPRESSED
PROTEIN PHOSPHATASE (SSPP) (Wen et al., 2020). Therefore,
SAURs-SARK regulation mode may be significant for integrating
the senescence signals and hormone signaling in plants. Recently,
modification of autophagy and auxin signals via manipulating
expression of ZmATG18b and ZmGH3.8 gene alters the time
of maize leaf senescence (Feng et al., 2021). Besides, IAA29 is
involved in the PIF4 and PIF5-mediated regulation of heat stress-
induced leaf senescence (Li et al., 2021b). Taken together, these
studies suggest that auxin may interact with other hormones and
environmental signals to coordinate plant growth and the onset
of leaf senescence at the right time.

Gibberellins
Gibberellins (GAs) are a class of tetracyclic diterpenoid,
some of which are bioactive in regulating many aspects of
plant growth and development, such as stem elongation, leaf
expansion, seed dormancy and germination, plant flowering,
and response to abiotic and biotic stresses (Gao and Chu,
2020). The content of endogenous GAs declines as leaves age,
and exogenous application of GA3 retards the degradation of
chlorophyll (Aharoni, 1978; Li et al., 2010), indicating that GAs
repress the progression of senescence. The GA 2-oxidase 2

(GA2OX2) gene, which causes GA inactivation, is up-regulated
18-fold during leaf senescence (van der Graaff et al., 2006),
suggesting that the decrease in active GA may be a cause of
leaf senescence. TEOSINTE BRANCHED1/CYCLOIDEA/PCF
(TCP) TF BrTCP21 directly binds the promoter of GA
biosynthetic gene BrGA20ox3, activates its transcription, and
delays leaf senescence (Xiao et al., 2019). The transcript of
BrTCP21 decreases along with leaf senescence, while GA3

treatment keeps BrTCP21 expression in a higher level, which
suggests that the positive feedback loop of GA-BrTCP21-GA
plays an important role in leaf senescence. In Arabidopsis, GA
signal is received by the receptor GID1 and then transduced
to release the repression of TFs by negative regulator DELLA
proteins, including GAINSENSITIVE (GAI), REPRESSOR OF
GA1-3 (RGA), RGA-LIKE1 (RGL1), RGA-LIKE2 (RGL2), and
RGA-LIKE3 (RGL3) (Olszewski et al., 2002; Hedden and Sponsel,
2015). The natural leaf senescence occurs earlier when four
DELLA proteins (gai-t6 rga-t2 rgl1-1 rgl2-1) are knocked-out
(Chen et al., 2014), which suggests what appears to be a
contradiction with GA inhibition of leaf senescence. Since GA
is an important regulator of plant flowering and the gai-t6 rga-t2
rgl1-1 rgl2-1 mutant has an early flowering phenotype, it cannot
be simply assumed that GA promotes senescence. Therefore, the
functions of DELLA and GA cannot be equated in the regulation
of leaf senescence. In supporting this hypothesis, DELLA proteins
delay leaf senescence by interacting with and suppressing the
functions of WRKY45, WRKY6, WRKY75, and NAP, positive
regulators of leaf senescence (Chen et al., 2017; Zhang et al.,
2018a, 2021b; Lei et al., 2020). Similarly, ScGAI delays age-trigged
senescence by interacting with and then repressing the function
of ScNAC23 in sugarcane (Fang et al., 2021). Additionally, GAs
might indirectly regulate leaf senescence via crosstalk with other
hormones. The decline of GA level is usually accompanied by an
increase of ABA content, and exogenous GA3 treatment could
inhibit the surge of ABA during leaf senescence (Yu et al., 2009),
implying an antagonistic effect of GA and ABA in regulation of
leaf senescence.

PLANT HORMONES THAT ACCELERATE
LEAF SENESCENCE

Ethylene
Ethylene is a well-known gas phytohormone that acts as an
endogenous facilitator of plant aging, including the senescence
processes of leaf and petal, as well as fruit ripening. Exogenous
application of ethylene or increase in endogenous ethylene
content promotes leaf senescence, while inhibitors of ethylene
biosynthesis retard senescence (Abeles et al., 1988; Grbić and
Bleecker, 1995; Wang et al., 2001). Ethylene does not directly
determine the onset of leaf senescence, since ethylene only
accelerates the progression of leaf senescence when leaves reach a
defined age (Jing et al., 2002, 2005). Transcription analysis reveals
that a number of genes involving ethylene biosynthesis and
signaling components are regulated in senescent leaves (van der
Graaff et al., 2006). 1-aminocyclopropane-1-carboxylate (ACC)
synthases (ACS) are biosynthetic enzymes to produce the key
precursor of ethylene, and the acs octuple mutant exhibits a
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prominently delayed senescence (Tsuchisaka et al., 2009). The
role of ethylene in the control of leaf senescence is also explained
by the function of signaling elements, as evidenced by the etr1-
1, ein2, and ein3 eil1 mutants with extended leaf longevity
(Grbić and Bleecker, 1995; Chao et al., 1997; Oh et al., 1997),
and etr1 ers1 with earlier senescence (Qu et al., 2007), which
is consistent with the positive effect of ethylene in regulating
leaf senescence.

ETHYLENE-INSENSITIVE2 (EIN2) is a central positive
regulator of ethylene signaling and mediates most of the ethylene
response. Expression of ORE1/NAC092, one target of miR164,
is up-regulated by EIN2 during gradually leaf aging, while
miR164 expression is suppressed by EIN2 (Kim et al., 2009).
The trifurcate feed-forward pathway involving ORE1, miR164
and EIN2 finally results in increased expression of ORE1 that
promotes leaf senescence. ETHYLENE-INSENSITIVE3 (EIN3)
is a master transcription factor in ethylene signaling, and
acts downstream of EIN2 to regulate ethylene response. EIN3
repressesmiR164 transcription via directly binding the promoter
of miR164, leading to increased transcript levels of ORE1
(Li et al., 2013). The linear pathway involving EIN2-EIN3-
miR164-ORE1 sheds light on accelerated leaf senescence by
ethylene regulation. However, EIN2 does not fully depend on
ORE1 in regulating senescence, since EIN2 still contributes to
senescence-associated cell death in the absence of ORE1. More
senescence-associated NAC transcription factors are found to
act as the downstream components of EIN2 governing leaf
senescence, including ANAC019, AtNAP, ANAC047, ANAC055,
and ORS1 (Kim et al., 2014). WRKY71 functions as a positive
regulator of leaf senescence by communicating with ethylene
signal in Arabidopsis. WRKY71 is an ethylene-inducible gene
and influences leaf senescence by directly regulating EIN2
and ORE1 (Yu et al., 2021b). EIN3 and ORE1 induce the
chlorophyll degradation through directly activating chlorophyll
catabolic genes (Qiu et al., 2015). ZmNAC126 is transactivated
by ZmEIN3 and regulates chlorophyll degradation of ethylene-
induced senescence in maize (Yang et al., 2020). Therefore, an
intricate transcription network involving EIN2 and EIN3 plays
significant roles in ethylene-triggered leaf senescence. AP2/ERF
transcription factors such as AtERF4 and AtERF8, activated by
ethylene, also involve in modulating the onset of leaf senescence
(Koyama et al., 2013; Koyama, 2014). Additionally, ethylene
interacts with other hormones to influence leaf senescence (Kim
et al., 2015; Iqbal et al., 2017). For example, the detached leaves
of ein2 and ein3 eil1 mutants are insensitive to MeJA-induced
leaf senescence compared to that in wild type (Li et al., 2013),
indicating that JA-induced leaf senescence is dependent upon
ethylene signal. Ethylene is thought to be a downstream signal
that promotes the progression of leaf senescence in an age-
dependent manner. However, the mechanisms involved are not
fully understood. Figuring out the relationship between ethylene
and age information and how age information is encoded will
really help to understand the nature of leaf senescence.

Salicylic Acid
Salicylic acid (SA) is a phenolic hormone involved in plant
development, abiotic and biotic stress adaption. It is critical for

defense against plant pathogens, especially as a component of
systemic acquired resistance (Malamy et al., 1990; Metraux et al.,
1990). SA content gradually increases in the senescing leaves
of multiple species (Zhang et al., 2017b), and SA deficiency
mediated by transgenic NahG line and defect in SID2, an
isochorismate synthase of SA biosynthesis, delays leaf senescence
in Arabidopsis (Abreu and Munne-Bosch, 2009), depicting a
connection between SA and leaf senescence. The intact SA
signaling pathway contributes to control the expression of
senescence-enhancing genes whose increased transcripts are
disrupted by mutations in NPR1 or PAD4 (Morris et al.,
2000). PHYTOALEXIN DEFICIENT4 (PAD4) promotes SA
accumulation, especially in response to pathogen infection
(Makandar et al., 2015). PAD4-dependent SA pathway has
a central role in saul1 mutant-mediated initiation of leaf
senescence to induce visible symptoms of senescence, and
activation of senescence in the aphid-infested leaves (Pegadaraju
et al., 2005; Vogelmann et al., 2012). Leaf senescence induced
by SA is associated with SA-dependent cell death, since pad4
mutant exhibits a delayed yellowing and reduced necrosis
at the final stage of senescence (Morris et al., 2000). The
retrograde signaling protein WHIRLY1 (WHY1) alters its
organelle isoforms in nucleus or chloroplasts, and perturbs SA
homeostasis via regulating expression of SA biosynthesis genes
SID2 and PAL1 (Lin et al., 2020). SA 3-hydroxylase (S3H)
and S5H are involved in the SA catabolism by catalyzing SA
conversion into 2,3- and 2,5-dihydroxybenzoic acid, and the
defect in S3H and S5H over-accumulates active SA content,
leading to an early senescence (Zhang et al., 2013a, 2017b).
Thus, the active SA content, accompanied by regulation of SA
homeostasis plays an essential role in promoting leaf senescence.
A number of WRKY TFs are unraveled to influence leaf
senescence via modulating SA pathway by different modes.
WRKY75, WRKY28, WRKY55, WRKY40, WRKY46, WRKY51,
WRKY60, and WRKY63 activate the expression of SID2 by
binding to its promoter, thus augment the accumulation of SA
to accelerate leaf senescence (Guo et al., 2017; Zhang et al.,
2017a; Tian et al., 2020; Wang et al., 2020). WRKY TFs are
also able to affect senescence through indirectly regulating
the biosynthesis and signaling of SA, for example, WRKY28
mediates SA biosynthesis in response to light signals (Tian et al.,
2020). WRKY46 also interacts with NPR1, the core component
of SA signal transduction, to improve WRKY6 expression to
mediate probenazole/SA-elicited leaf senescence (Zhang et al.,
2021a).

SA pathway integrates many signals or physiological processes
to change states of leaf senescence. Recently, two groups
simultaneously reveal that SA coordinates with ethylene to
accelerate leaf senescence, achieved by interaction of NPR1 and
EIN3 to promote expression of SAGs synergistically (Wang et al.,
2021; Yu et al., 2021a). In addition, SA signaling is involved in leaf
senescence induced by autophagy, PVA31-mediated membrane
trafficking, membrane phospholipid metabolism, and ROS
(Yoshimoto et al., 2009; Xiao et al., 2010; Ichikawa et al., 2015;
Guo et al., 2017). In summary, SA plays an important role in the
onset and development of leaf senescence and is coordinated by
multiple factors. Since SAmediates both immunity and aging, SA
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is the best link to explore the relationships between immunity
and senescence.

Jasmonic Acid
Jasmonic acid (JA) is a class of oxylipin phytohormones derived
from polyunsaturated fatty acids, preferentially α-linolenic acid
(Li et al., 2021a). JA regulates myriad aspects of plant growth
and development, as well as stress responses. JA accumulates
in senescing leaves and positively regulates leaf senescence (He
et al., 2002). JA biosynthesis-associated genes are differentially
regulated during leaf senescence, including LOX, AOS, AOC,
and thiolase (He et al., 2002). LOX1, LOX3, and LOX4 are
obviously up-regulated with the progression of leaf senescence,
while LOX2 is down-regulated (He et al., 2002). This difference
implies different roles for LOXs in regulating senescence,
such as the exclusive role of LOX2 in stress-induced leaf
senescence (Seltmann et al., 2010).KAT2 (3-ketoacyl-CoA thiolase
2), a gene encoding the JA-biosynthetic β-oxidation enzyme,
is strongly activated in natural and dark-induced senescing
leaves, while reduction of KAT2 expression leads to significantly
delayed senescence (Castillo and Leon, 2008). Several factors
involve in regulation of leaf senescence through modulating
JA biosynthesis. TaWRKY13-A and TaWRKY42-B facilitate
the onset and progression of leaf senescence by promoting
the expression of LOX genes, which consequently induces
accumulation of JA content in wheat (Zhao et al., 2020; Qiao
et al., 2021). miR139 indirectly controls JA biosynthesis via
changing TCPs activity, thus overexpression of miR139 delays
leaf senescence (Schommer et al., 2008).

Components of JA signaling pathway take part in the
regulation of leaf senescence. JA perception is achieved
by receptors complex comprised of COI1 (CORONATINE
INSENSITIVE1) and JAZ family proteins, subsequentially
leading to the degradation of JAZ proteins via 26S-proteosome
(Li et al., 2021a). JA-induced premature senescence is blocked
in JA insensitive mutant coi1 (He et al., 2002; Castillo and
Leon, 2008), suggesting the intact JA pathway is necessary
for senescence activation. Xiao et al. (2004) screened for the
suppressors of coi1 and isolated the cos1 (coi1 suppressor1)
mutant. Defect in COS1 gene, which encodes lumazine synthase
for riboflavin pathway, severely reduces the higher chlorophyll
content in the coi1 mutant compared with wild type (Xiao
et al., 2004). The constant yellowing phenotype of cos1 coi1
leaves points out a novel function of riboflavin pathway in
regulating leaf senescence. As a negative regulator of JA signaling,
JAZ7 is induced by darkness, thus disturbs the functions of
downstream MYC2/MYC3/MYC4 TFs to suppress dark-induced
leaf senescence (Yu et al., 2016). Meanwhile, the jaz7 mutant
exhibits more severe leaf yellowing and chlorophyll degradation
(Yu et al., 2016). MYC2/MYC3/MYC4 are the master TFs of
JA signaling pathway mediating JA-induced leaf senescence.
JA-modulated leaf senescence is demonstrated to associate with
regulation of ROS and chlorophyll degradation. For example,
MYC2 represses the expression of CATALASE 2 (CAT2) gene
in JA-treated leaves, and the subsequent H2O2 accumulation
leads to advanced leaf senescence (Zhang et al., 2020a). CAT2
mutation correctly rescuing delayed leaf senescence of myc2

mutant further proves the important roles of ROS in JA-induced
senescence. Moreover, MYC2/MYC3/MYC4 promote expression
of chlorophyll catabolic genes, such as PAO, NYC1, and NYE1,
by directly binding to their promoters, respectively, thus causing
chlorophyll degradation, so that myc2 myc3 myc4 exhibits a
severe stay-green phenotype (Zhu et al., 2015). Additionally,
MYCs proteins are not the only TFs participating in JA-regulated
leaf senescence. ANAC019/055/072 exerts synergistic effects and
bHLH subgroup IIId factors act antagonistically with MYCs
to regulate JA-related leaf senescence (Qi et al., 2015; Zhu
et al., 2015). Interestingly, the MYC2-Dof2.1-MYC2 feedforward
transcriptional loop positively regulates dark-induced and age-
dependent leaf senescence (Zhuo et al., 2020). In addition,
the key components of JA signaling are also targeted by
other factors to regulate leaf senescence process. For example,
OsERF101 elevates the expression of OsMYC2 and OsCOI1a to
promote JA-mediated leaf senescence in rice (Lim et al., 2020).
Apple MdBT2, a scaffold protein having ubiquitination activity,
accelerates MdMYC2 degradation and stabilizes MdJAZ2 protein
through direct interactions, thereby antagonistically regulates
JA-activated leaf senescence (An et al., 2021a). Crosstalk between
circadian clock and JA pathway finely cooperates many processes
of plant growth and development. The Evening Complex (EC)
in circadian oscillator negatively regulates JA-mediated leaf
senescence via repressing the expression of MYC2 (Zhang et al.,
2018b, 2019). Furthermore, JA integrates with other endogenous
phytohormones to affect leaf senescence. WRKY57 acts as a
suppressor of JA-induced leaf senescence. Auxin antagonizes
JA-induced leaf senescence process via up-regulating expression
of WRKY57 (Jiang et al., 2014). Additionally, JAZ4/8 and
IAA29, repressors of the JA and auxin signaling pathways
respectively, competitively interact with WRKY57 (Jiang et al.,
2014). Therefore, WRKY57 functions as an important integrator
of JA and auxin pathways in leaf senescence modulation.
JA-inducible ESR/ESP inhibits the functions of WRKY53, a
positive regulator of leaf senescence. ESR/ESP and WRKY53
mediate leaf senescence on the basis of JA and SA homeostasis
and the consequent regulation of these two genes antagonistically
(Miao and Zentgraf, 2007). Autophagy up-regulated by low
concentration SA alleviates JA-induced leaf senescence (Yin et al.,
2020), further indicating a compact antagonistic interaction of
SA and JA in leaf senescence. In summary, JA acts as an important
integrative signal that communicates with other plant hormones
to regulate leaf senescence and adjust the response to biotic and
abiotic factors.

Abscisic Acid
Abscisic acid (ABA) is a kind of phytohormone constituted of
sesquiterpenoid. ABA regulates a myriad of plant development
processes, such as seed dormancy and germination, stomatal
closure, shoot and root growth, leaf senescence, as well as
abiotic responses (Chen et al., 2020; Sano and Marion-Poll,
2021). ABA induces premature leaf senescence, and endogenous
ABA content is an important regulatory factor affecting leaf
senescence. Phenotype of rice psf (premature senescence of flag
leaves) mutant that exhibits premature senescence lesion in
senescent leaves results from high level of ABA accumulation,
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concomitantly with low rate of D1 protein synthesis and
aggravated PSII photodamage during leaf senescence (Wang
et al., 2016). The level of ABA content increases in the early
senescence 3 (es3) mutant, leading to the upregulation of SAGs
(Su et al., 2017). Zinc finger protein PvCCCH69 suppresses age-
and dark-induced leaf senescence via antagonizing ABA pathway
(Xie et al., 2021). Several other factors modulate leaf senescence
with regulation of ABA biosynthesis and metabolism. CsHB5,
OsNAC2, and CDF4 elevate the expression of ABA biosynthetic
genes, increase ABA content, and promote leaf senescence (Mao
et al., 2017; Xu et al., 2020; Zhang et al., 2021d). OsMYB102
and OsNAC2 are involved in ABA metabolism via regulating
expression of ABA catabolic enzymes (Mao et al., 2017; Piao
et al., 2019). OsMYB102 inhibits ABA accumulation by inducing
ABA catabolic gene OsCYP707A6, thereby delaying age- or
dark-induced leaf senescence (Piao et al., 2019). NAP promotes
chlorophyll degradation by upregulating ABA biosynthetic gene
AAO3, and accelerates leaf senescence (Yang et al., 2014).
Moreover, the ABA-NAP-SAG113 module controls stomatal
movement and water loss during leaf senescence (Zhang and
Gan, 2012; Zhang et al., 2012). In view of ABA actions in leaf
senescence, it is thought that loss function of ABA biosynthetic
genes should cause a delayed senescence. On the contrary,
mutation in ABA2 (aba2/eas1) decreases ABA content but
accelerates leaf senescence (Pourtau et al., 2004; Song et al., 2016).
This opposite role may be explained by the role of ABA in
both cytoprotective and senescence activities, and the function of
ABA in influencing leaf yellowing is accurately balanced by both
processes depending on plant age or environmental conditions.

In addition to the endogenous ABA content, ABA signaling
pathway also plays essential roles in regulation of leaf senescence.
As members of the receptors for ABA signaling, plants
overexpressing PYL8 and PYL9 exhibit enhanced dark-induced
or ABA-induced leaf senescence (Lee et al., 2015; Zhao et al.,
2016). Correspondingly, pyl duodecuple mutant is extremely
insensitive to ABA-induced leaf senescence (Zhao et al., 2018).
Diverse TFs contribute to ABA-mediated leaf senescence. ABIG1
is induced by drought and ABA, and relays drought through
ABA signal to promote leaf senescence (Liu et al., 2016). ABA-
responsive element (ABRE)-binding TFs, ABF2/ABF3/ABF4
directly activate expression of chlorophyll catabolic enzyme
genes (NYE1, NYC1, and PAO) and SAGs to mediate ABA-
triggered leaf senescence and chlorophyll degradation (Gao et al.,
2016). Similarly, OsNAP and ONAC054 which are induced by
ABA promote the onset and progression of leaf senescence via
positively regulating chlorophyll degradation and SAGs (Liang
et al., 2014; Sakuraba et al., 2020), thus OsNAP and ONAC054
link ABA to leaf senescence by fine-tuning expression of SAGs.
ABI5 acts as another core regulator in ABA-mediated leaf
senescence. In apple, MdBBX22, MdWRKY40, and MdbZIP44
all interact with MdABI5 to delay or promote leaf senescence
via repressing or enhancing its transcriptional activity (An et al.,
2021b). The LEA protein, ABR, is also regulated by ABI5
involving in dark-induced leaf senescence (Su et al., 2016).

As a stress-responsive hormone, ABA mediates the
environmental stress-induced leaf senescence process. AtMYBL
substantially expresses in old leaves, and is also induced by ABA

and salt stress. Overexpression of AtMYBL displays an enhanced
leaf senescence with corresponding changes of chlorophyll
content, ion leakage and SAGs expression (Zhang et al., 2011).
As an ABA-induced transcription factor, NTL4 mediates
drought-induced leaf senescence by promoting ROS production
in Arabidopsis (Lee et al., 2012). VND-INTERACTING 2
(VNI2), an ABA-responsive NAC transcription factor, integrates
ABA-associated abiotic stress signals into modulation of leaf
longevity by regulating a subset of COR and RD genes (Yang
et al., 2011). Additionally, ABA regulates leaf senescence by
interplaying with other phytohormones. For example, ABA
antagonizes CKs-delayed leaf senescence by upregulating the
expression of OsCKX11, which catalyzes the degradation of
CKs in senescing leaves (Zhang et al., 2021c). Collectively, ABA
is a key regulator for integrating environmental stress signals
into leaf senescence regulation, and is an important target for
improving crop yield and quality through molecular breeding.

Brassinosteroids
Brassinosteroids (BRs) are a class of plant-specific steroid
hormones, regulating many aspects of plant physiological
processes, such as shoot, root, leaf development, and resistance
to biotic stress (Peres et al., 2019). BRs accelerate leaf
senescence in a dose-dependent manner (Saglam-Çag, 2007).
The application of higher doses of exogenous epibrassinolide
promotes leaf senescence, increases peroxidase activity and
decreases chlorophyll content in wheat leaves. According to
some studies on endogenous BR homeostasis, the stimulating
effect of BR on leaf senescence was also elucidated. DET2
encodes a steroid 5α-reductase, and the delayed leaf senescence
associated with an apparent phenotype of det2 mutants in the
brassinolide biosynthetic pathway may be due to the elimination
of BR biosynthesis (Li et al., 1996). UGT73C6 was identified
as an enzyme that catalyzes BR glucosylation and inactivates
BR in the phytoplankton. Consistently, overexpression of
UGT73C6 delays leaf senescence (Husar et al., 2011). Transgenic
plants overexpressing P450su1, which encodes the CYP105A1
monooxygenase gene disrupt BR signaling by inactivating BRs,
display the delayed senescence phenotype (Dasgupta et al., 2011).
In addition, a dominant mutant drl1-D exhibited prolonged
senescence as the endogenous levels of several BRs were
significantly reduced (Zhu et al., 2013). The DRL1/BAT1 gene
encodes an acyltransferase that catalyzes the conversion of BR
intermediates to inactive conjugates via esterification. Transgenic
creeping bentgrass overexpressing AtBAT1 also showed delayed
senescence (Han et al., 2017). These results suggest functional
manipulation of BR levels to improve agronomic traits by
regulating leaf senescence in dicot and monocot crops.

BR is perceived by leucine-rich repeat receptor kinase
BRI1 (BRASSINOSTEROID INSENSITIVE 1) to induce signal
transduction. The bri1 exhibits a delay in leaf senescence,
supporting a positive role of BR in senescence (Li and Chory,
1997). BES1 (BRI1 EMS SUPPRESSOR 1), a TF of BR signaling,
accumulates in the nucleus in response to BR and accelerates
leaf senescence once BES1 is activated (Yin et al., 2002). BRI1-
associated kinase1 (BAK1), as a part of BR receptor complex,
mediates BR-dependent responses. BAK1-LIKE 1 (BKK1) and
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BAK7, the homologous of BAK1 are respectively reported
to act redundantly with BAK1, however bak1 bkk1 and loss
function of both bak1 and bak7 display early senescence with
upregulated SAGs (He et al., 2007; Jeong et al., 2010). These
phenomena suggest that a BR-independent pathway involves
in BAK1, BKK1, and BAK7-mediated senescence. Recently,
ATBS1-INTERACTING FACTOR 2 (AIF2), a non-DNA-binding
bHLH TF has been demonstrated to retard dark-triggered and
BR-induced leaf senescence. BR-induced reduction of AIF2
protein associates with the promotion of leaf senescence (Kim
et al., 2020). In summary, BR as an important growth-related
hormone, its regulation of leaf senescence is always closely linked
to the leaf development phenotype, so it may be integrated with
other factors, similar to CK and auxin signaling to regulate
age-induced or environmental stimulus-induced leaf senescence.

Strigolactones
Strigolactones (SLs) are a group of terpenoid lactones consisting
of a tricyclic lactone and hydroxymethyl butanolide. SLs
are well known as communication signals for parasitic and
symbiotic interactions, and they were first identified to
function as phytohormones to inhibit shoot branching in
plants (Yamada and Umehara, 2015; Omoarelojie et al., 2019).
The role of SLs in regulating plant growth and development
was investigated, and the enhancement of leaf senescence
by SLs was gradually elucidated. MAX3/RMS5/D17/DAD3
and MAX4/RMS1/D10/DAD1 encode carotenoid cleavage
dioxygenases 7 (CCD7) and 8 (CCD8) respectively, involving
in biosynthetic reactions of carlactone, the key precursor of
SL. Interestingly, a reduction in expression of CCD7 and
CCD8 results in delayed leaf senescence (Snowden et al.,
2005; Ledger et al., 2010; Liu et al., 2013; Ueda and Kusaba,
2015), correlating with a positive role of SLs in senescence.
ORE9, identical to MAX2, encoding an F-box protein of SL
signal pathway, functions in degrading target proteins through
ubiquitin-dependent proteolysis, and ore9/max2 exhibits
increased leaf longevity (Woo et al., 2001; Stirnberg et al.,
2007). The orthologous of MAX2/ORE9 in rice, D3, disruption
of which also delays leaf senescence with lower decrease of
chlorophyll content and membrane ion leakage compared to
wild type (Yan et al., 2007). A key characteristic of SLs regulation
in leaf senescence is the coordination with other hormones and
environmental cues. Leaf senescence was not affected by the
application of GR24 (an artificial SL analog), however, once
ethylene was present, GR24 strongly enhanced senescence (Ueda
and Kusaba, 2015). MAX3 and MAX4 genes are drastically
induced by ethylene, and SLs biosynthesis mutants such as
max1, max3, and max4 show a delayed senescence phenotype
in the presence of ethylene (Ueda and Kusaba, 2015), indicating
that ethylene mediates SLs biosynthesis during senescence.
Furthermore, ENHANCED DISEASE RESISTANCE 1 (EDR1)
mediates a phenotype of ethylene-induced senescence, which
can be suppressed by mutation in ORE9/MAX2 (Tang et al.,
2005). Therefore, this suggests that SLs are likely to accelerate
leaf senescence following ethylene signaling. In numerous plants,
the levels of endogenous SLs are elevated under conditions of
phosphate deficiency (Yamada et al., 2014; Yamada andUmehara,

2015). In rice, SLs-deficient mutants were overly sensitive to
GR24 application promoting leaf senescence when assessing
chlorophyll content compared with adequate phosphate
conditions. It was reported by Yamada et al. (2014) that SLs
integrate with nutrient signals to regulate leaf senescence. The
similar findings were described in the study that the addition of
exogenous sugars alleviated SL-induced senescence in bamboo
leaves under dark conditions (Tian et al., 2018). Analysis of
transcription abundance in max1 mutant during an extended
night also deciphers a valuable association of carbon starvation
and SLs signal in regulating leaf senescence (Xu et al., 2021). In
conclusion, SLs are an important class of plant hormones that
integrate multiple signals in the regulation of leaf senescence.
Identification of more direct downstream targets of the SLs
pathway, especially MAX2, is of great interest to elucidate the
molecular mechanisms of SLs in leaf senescence.

PEPTIDE HORMONES THAT REGULATE
LEAF SENESCENCE

Intercellular communication is important to coordinate the
growth and developmental programs of multicellular organisms.
In plants, classical phytohormones associated with small
lipophilic compounds, such as auxin, CKs, GAs, ABA, and
ethylene, greatly contribute to intercellular interactions involving
different aspects of growth and development. In addition
to classical hormones, researches show that multiple families
of small polypeptide signaling molecules also play crucial
roles in cell-to-cell interaction (Kende and Zeevaart, 1997;
Matsubayashi and Sakagami, 2006). These secretory or non-
secretory peptides regulate plant growth and development, and
responses to environmental stresses, including defense responses,
shoot meristem maintenance, root growth, leaf-shape regulation,
nodule development, and organ abscission (Matsubayashi and
Sakagami, 2006; Marmiroli and Maestri, 2014; Grienenberger
and Fletcher, 2015). For examples, systemin induces production
of proteinase inhibitors I and II, and plays obvious roles in
systemic wound responses in distal leaves (Pearce et al., 1991;
Lee and Howe, 2003). RALF (Rapid ALkalinization Factor) can
cause alkalinization of the culture medium and a concomitant
activation of an intracellular mitogen-activated protein kinase
(Pearce et al., 2001). With the progress of researches, RALFs
were unraveled to regulate myriad physiological processes, such
as root growth and development, root hair size, pollen tube
growth, polytubey block, salt stress, and so on (Pearce et al., 2001;
Mecchia et al., 2017; Zhu et al., 2020; Zhao et al., 2021; Zhong
et al., 2022). These results strengthen the importance of peptides’
functions in plants. As the biological activities and functions of
these peptidemolecules are understood, they are considered to be
“peptide hormones”. However, the function of peptide hormones
in leaf senescence is largely unknown.

Recently, several researches provide insight into the regulatory
mechanism of peptide hormones in leaf senescence. The
small secreted peptide CLE14 (CLAVATA3/ESR-RELATED 14)
postpones leaf senescence by transcriptional activation of JUB1-
dependent ROS scavenging genes (Figure 1), leading to reduced
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FIGURE 1 | Regulation of leaf senescence by classical and peptide hormones. IPT and APT1 participate in CK biosynthesis and catabolism, respectively. AHK2/3/4,

ARR2, and CDF6, signaling components of CK, delay leaf senescence. CWINV (cell-wall invertase) delays senescence via regulating sink-source relations. YUC6

delays leaf senescence by increasing auxin biosynthesis, while ARF2 and SAUR36/49 promote leaf senescence by transmitting auxin signal. ANT, a downstream

component of ARF2, postpones senescence phenotype. DELLA proteins delay processes of GA-induced leaf senescence via inhibiting functions of various WRKYs.

ACS is involved in ethylene biosynthesis. ETR1, one receptor of ethylene signaling pathway, is involved in ethylene-induced leaf senescence. Ethylene promotes leaf

senescence through EIN2-EIN3-miR164-ORE1 pathway or several EIN2 downstream components, including NAP, ORS1, and ANAC019/047/055. SL accelerates

leaf senescence via functions of MAX2/ORE9. NAP can elevate ABA biosynthesis via inducing AAO3 expression, and ABA-NAP-SAG113 pathway promotes leaf

senescence. The receptors of ABA, PYLs and the downstream TFs, ABF2/3/4 and ABI5 all promote ABA-triggered leaf senescence. LOXs promote leaf senescence

by increasing JA content under stress conditions. JA promotes senescence via signaling pathway relating to COI1, JAZs, and MYC2/3/4, with increased expression of

SAGs and enhanced ROS. WHY1 and several WRKYs promote SA content through elevating expression of SID2, a key synthase for SA biosynthesis. S3H and S5H

catalyze SA to decline activated form of SA. SA promotes leaf senescence dependent on NPR1 and PAD4, associated with ROS. Peptide hormones including

CLE42/41/44, CLE14, and PSK delay leaf senescence. CLE42/41/44 function redundantly to delay senescence via antagonizing with ethylene pathway. CLE14 is

induced by high salinity and drought stresses and reduces ROS level via transcriptional activation of JUB1, a NAC TF. PSK may be perceived by its receptor PSKRs to

contribute to ROS scavenging. In addition, GA, ethylene, SL, and ABA are also associated with regulation of a series of SAGs expression. DET2 contributes to BR

biosynthesis and BAT1 inactivates BR. BR accelerates leaf senescence through signaling transduction involving positive regulators, BRI1 and BES1. Hormones

including ethylene, SL, ABA, JA, and SA play significant roles in integrating environmental signals into the regulation of leaf senescence. Hormones presented in green

ellipses including CK, auxin, GA, and mentioned peptides delay leaf senescence, whereas ethylene, SL, ABA, JA, SA, and BR in orange ellipses promote leaf

senescence, according to phenotypic changes caused by exogenous application. SAGs, senescence-associated genes; ROS, reactive oxygen species.

ROS level in leaves (Zhang et al., 2022b). CLE14 is significantly
induced by age, high salinity, drought, ABA, SA, and JA, thus it
acts as a “brake signal” to modulate age-dependent and stress-
induced leaf senescence (Zhang et al., 2022b). In another work,
CLE42 delays leaf senescence by antagonizing ethylene signaling
pathway. CLE42 suppresses ethylene biosynthesis and increases
the accumulation of EBF proteins, sequentially resulting in the
decreased function of EIN3. Additionally, CLE41/44 function

redundantly with CLE42 to regulate leaf senescence (Zhang
et al., 2022a). The peptides are usually recognized by membrane-
localized receptors and transduce the signaling responses. It was
reported that the CLE41/44, also called TDIF, could be bound
by receptor TDR/PXY, a leucine rich repeat receptor-like kinase
(LRR-RK) (Fisher and Turner, 2007; Hirakawa et al., 2008). With
the help of co-receptor SERK, the TDIF-TDR/PXY signaling
plays an important role in plant vascular development (Zhang
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FIGURE 2 | Interplays among classic and peptide hormones in senescence regulation. CK inhibits ABA biogenesis and ABA represses CK content through elevating

expression of OsCKX11. GA treatment inhibits the increase of ABA content during leaf senescence. CLE14 is induced by ABA, JA, and SA, and CLE14 act as a

“brake signal” to these hormones-induced leaf senescence though repressing ROS level. CLE41/42/44 delay leaf senescence by antagonizing with ethylene signaling

pathway. Ethylene promotes SL biosynthesis via inducing expression of MAX3 and MAX4 during senescence, so ethylene and SL coordinately regulate leaf

senescence. Phytohormone ABA and the core component of ethylene, EIN2, induce the expression of NAP, a positive regulator of leaf senescence. Conversely, NAP

increases ABA biosynthesis through inducing expression of AAO3. JA-induced leaf senescence is dependent on EIN2. WRKY57 is a negative regulator of JA-induced

leaf senescence. JA inhibits accumulation of WRKY57 protein and auxin promotes WRKY57, so that WRKY57 acts as an integrator of JA and auxin. Besides, the

repressors of JA and auxin signaling pathway, JAZ4/8 and IAA29 both interact with WRKY57, which may be another regulatory level of interplay between JA and

auxin. Ethylene and SA synergistically accelerate leaf senescence through interaction of NPR1 and EIN3 and a concomitant promotion of SAGs expression. SA

represses the JA-inducible protein ESR, and ESR inhibits the functions of WRKY53, a positive regulator of leaf senescence. Furthermore, JA reduces the expression

of WRKY53 and SA induces WRKY53 oppositely. Thus, ESR and WRKY53 are integrators of antagonism between JA and SA in leaf senescence. Moreover, low

concentration of SA can alleviate JA-induced leaf senescence. Generally, hormones presented in green ellipses including CK, auxin, GA, CLE41/42/44, and CLE14

delay leaf senescence (bold green symbol). Hormones in orange ellipses including ABA, SL, ethylene, JA, and SA promote leaf senescence (bold orange arrow).

et al., 2016). Whether these receptors also take part in leaf
senescence regulation is an interesting question for investigation.
Especially, beyond the role of CLE41/CLE44 themselves in
senescence, the TDIF-TDR/PXY can lead to inactivation of BES1
TF, a crucial regulator of senescence-promotion hormone BR,
through regulation of GSKs activity (Kondo et al., 2014). The
known CLE receptors are limited, it is necessary to find more
CLE receptors for better understanding their functions in leaf
senescence. In addition to CLE peptides, PSK (Phytosulfokine)
and PSY1 are also involved in the regulation of leaf senescence.
The membrane-localized PSKR is the receptor of PSK, and loss-
of-function pskr1-1 mutant exhibits premature leaf senescence,
which is consistent with a delayed effect of exogenous PSK-
α on senescence (Yamakawa et al., 1999; Matsubayashi et al.,
2006). Interestingly, two other homologs of PSKR also encode
LRR-RKs, one of which acts on PSY1 perception and has an
overlapping function with PSKR; thus, the triple mutant shows

an enhanced senescence phenotype compared to the single pskr1

mutant (Amano et al., 2007). Posttranslational modification

of small peptides is essential for their biological functions
(Matsubayashi, 2014). Biological activities of PSK and PSY1 need
tyrosine sulfation, catalyzed by transmembrane tyrosylprotein
sulfotransferase (TPST). Interestingly, loss-of-function of TPST
accelerates leaf senescence (Komori et al., 2009). PSK may
influence leaf senescence through protective action in chlorophyll
content under heat stress (Yamakawa et al., 1999), or delays
senescence by elevating expression of ROS scavenging genes
and reducing endogenous H2O2 accumulation during storage of
fruits and flowers (Aghdam et al., 2021a,b). In summary, peptide
hormones interact with classical hormones to regulate leaf
senescence. Hundreds of peptide hormones and putative peptide
molecules have been identified in plants, and their functions in
the regulation of leaf senescence deserve further exploration.

CONCLUSIONS AND PERSPECTIVES

Leaf senescence is a highly coordinated process controlled by
a complex network of genes. The classical plant hormones
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and peptide hormones contribute significantly to the
regulation of the initiation and progression of leaf senescence
(Figure 1), which underlies the orderly degradation and
macromolecular degradation of chloroplasts and is closely linked
to the maximization of nutrient utilization for growth and
development. Hormones can precisely regulate leaf senescence,
thanks to the flexibility of their action. CKs, auxins and GA are
known to delay leaf senescence, while ethylene, SA, JA, ABA,
BRs and SLs promote senescence, and even peptides can regulate
senescence in a viable manner. However, when referring to the
role of a certain hormone in the regulation of leaf senescence,
we must be aware of the dosage effect. Hormones at low
concentrations delay leaf senescence, but high concentrations
promote senescence (Song et al., 2016). This is partly attributed
to the interactions between hormones (Saglam-Çag, 2007).
Hormone-mediated leaf senescence involves signal transduction
pathways and a myriad of transcriptional regulations, yet an
increasing number of studies have reported multi-level gene
regulation of leaf senescence. For example, post-transcriptional
alternative splicing regulation of ONAC054 involves in ABA-
induced leaf senescence (Sakuraba et al., 2020). Although
ONAC054α is only induced by ABA, its alternative splicing
form ONAC054β is induced by ABA and high concentration of
ACC, thus the multilayered regulation provides more available
regulatory nodes for hormonal interplays. The interaction
between plant hormones is another advantage of their precise
regulation of leaf senescence under different environmental
conditions, which is crucial for the operation of agronomic
improvement. The interplays among classic and peptide
hormones in the regulation of leaf senescence was summarized
in Figure 2. Understanding the functions of key genes or proteins
that link different hormone signals will help us to understand
the intrinsic regulation of leaf senescence by hormone signaling
networks. In addition, hormones play an important role in
integrating environmental signals into specific components
or pathways associated with leaf senescence. In conclusion,
dissecting the novel functions of hormone signaling components
in leaf senescence is worth further attention.

The integration of plant hormones affecting the process of leaf
senescence and environmental factors is more easily achieved in
traditional experimental systems. Nevertheless, the initiation of
leaf senescence depends on age-related factors, which is a major
part of the mystery explored. Although hormones, for instance
ethylene, cannot affect leaf senescence until leaf age reaches
a certain developmental stage (Jing et al., 2002), they ensure
the regulation of plant growth and development, which may
contribute to the accumulation of age factors that alter the onset

of aging. The initiation of senescence is not uniform, as leaf cells
are usually in different states of senescence over a certain period
of time. Taking advantage of single-cell sequencing, combined
with spatiotemporal transcriptome analysis, offers the possibility
to address the challenges of senescence research, leading to a
better understanding of the initiation of senescence and the
corresponding hormonal functions during this process.

Peptide hormones consist of a family of different classes
of peptides that regulate plant growth, development and
response to environmental stresses. So far, CLEs and PSK

have been described as substances that regulate leaf senescence
(Matsubayashi et al., 2006; Zhang et al., 2022a), and more
peptide signaling molecules deserve to be explored to expand the
understanding of leaf senescence. LRR-RKs work redundantly in
perception of PSK and PSY1, and sometimes one LRR-RK does
not only recognize one particular peptide (Amano et al., 2007),
suggesting difficulties in finding novel peptide components
and establishing explicit signaling transduction. Distinct from
forward genetic screening and reverse genetic analysis, chemical
genetic screening can overcome the problem of gene functional
redundancy and is a good option to further explore more
components of leaf senescence. With the establishment of
more complex hormonal signaling pathways associated with leaf
senescence, we expect that the regulatory mechanisms of leaf
senescence will provide important clues for improving crop yield
and quality.
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