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Abstract 20 

It has been suggested that the ‘small tool’ and microblade Upper Palaeolithic 21 

industries coexisted in the Nihewan Basin of northern China for about 8–14 thousand 22 

years during Marine Isotope Stage (MIS) 2. This inference was based on uranium-23 

series ages of around 15 and 18 ka for bovid teeth recovered from the ‘latest’ small-24 

tool site of Xibaimaying—the youngest occurrence of such tools in the region—and 25 

optically stimulated luminescence (OSL) dating of the earliest typical microblade site 26 

(Youfang: ~26–29 ka). In this study, we re-dated the Xibaimaying site using single-27 

grain OSL methods and the resulting ages indicate that the cultural layer was 28 

deposited 46 ± 3 ka ago, during MIS 3—more than 20 millennia earlier than 29 

previously thought and older also than the so-called earliest ‘primitive’ and typical 30 

microblade tools found at Zhiyu (~31–39 ka cal BP) and Youfang. These new ages 31 

for human occupation of Xibaimaying remove support for the parallel development of 32 

the small-tool and microblade industries in the Nihewan Basin during the Upper 33 

Palaeolithic, but reliable age estimates from additional sites are needed to 34 

confidently infer the nature of the chronological relationship between these two 35 

Upper Palaeolithic industries and the associated toolmakers. 36 

Keywords: quartz OSL; single-grain dating; Chinese Palaeolithic; stone artefacts; 37 

MIS 3. 38 

39 
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Introduction 40 

The ‘small tool’ industry is one of the two major Palaeolithic traditions in North 41 

China (Jia et al., 1972). It was first recognised and classified as the Zhoukoudian 42 

Locality 1–Zhiyu series (in the boat-shaped scrapers–burins tradition) (Jia et al., 43 

1972), and was later named the small-tool technology or industry (Zhang, 1990; Liu, 44 

2014). The small-tool assemblage is characterised by rare prepared cores and 45 

production of small, irregular flakes, some of which were probably used as scrapers 46 

(Zhang, 1999). The small-tool industry is considered to be the most abundant 47 

Palaeolithic industry known from northern China during the Pleistocene (Zhang, 48 

1999), found across northern China (107°29’–122°10’ E, 34°10’–41°15’ N) during the 49 

Lower and Middle Palaeolithic and across almost all of China (87°21’–126°18’ E, 50 

24°55’–45°36’ N) in the Upper Palaeolithic (Fig. 1) (Zhang, 1999). Representative 51 

sites include Zhoukoudian Locality 1 (Teihard de Chardin and Pei, 1932), 52 

Zhoukoudian Locality 15 (Gai, 1991), Salawusu (Teihard de Chardin and Licent, 53 

1924), Zhiyu (Jia et al., 1972) and Xiaonanhai (An, 1965) (Fig. 1).  54 

The small-tool industry is commonly considered to have originated and 55 

developed primarily in the Nihewan Basin (Fig. 1) since the Early Pleistocene (Liu, 56 

2014). The Basin is key to the study of the Palaeolithic archaeology of East Asia, 57 

with more than 100 Palaeolithic sites spanning the entire Pleistocene (e.g., Schick et 58 

al., 1991; Zhu et al., 2001, 2004; Hou, 2008; Norton and Gao, 2008; Nian et al., 59 

2014; Guo et al., 2016). The small-tool industry is considered to be ‘continuous’ from 60 

the Early to the Late Pleistocene (Liu et al., 2013), whereas the typical microblade 61 

industry emerged ~29 ka ago in this region (Nian et al., 2014). Representative small-62 

tool sites in the Basin include Heitugou (~1.77–1.95 Ma: Wei et al., 2016), 63 

Majuangou (~1.66 Ma: Zhu et al., 2004), Xiaochangliang (~1.36 Ma: Zhu et al., 64 
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2001), Donggutuo (~1.1 Ma: Wang et al., 2005), Sankeshu (~200–300 ka: Hou et al., 65 

2010), Xujiayao (~240 ka: Tu et al., 2015, or ~220–160 ka: Mu et al., 2015 and 66 

Zhang et al., 2015), Banjingzi (~86 ka: Guo et al., 2016), Zhiyu (~31–36 ka cal BP: 67 

Institute of Archaeology of Chinese Academy of Social Sciences, 1991, or ~36–39 ka 68 

cal BP: Yuan, 1993; and discussed further below) and Xibaimaying (~15–18 ka: Xie 69 

and Yu, 1989). These form an ‘evolutionary line’ for the small-tool industry during the 70 

Pleistocene (Liu, 2014). 71 

Although the small-tool industry appears to have developed gradually in the 72 

Nihewan Basin over the last two million years, some ‘advanced’ or ‘developed’ traits 73 

have been reported at several sites, including Donggutuo, Xujiayao, Banjingzi and 74 

Zhiyu (Liu et al., 2013; Liu, 2014). One of the most important discoveries associated 75 

with small-tool lithic assemblages is the prepared, wedge-shaped core found at 76 

Donggutuo (the so-called ‘Donggutuo Core’: Hou et al., 1999; Hou, 2003, 2008). 77 

Some archaeologists consider the ‘Donggutuo Core’, which was used to produce 78 

small elongated flakes, as the ancestral form of the wedge-shaped, microblade cores 79 

found at Upper Palaeolithic sites across northeast Asia (Hou et al., 1999; Hou, 2003, 80 

2008). Donggutuo Cores (or their equivalent) have also been described from the 81 

sites of Sankeshu, Xujiayao and Zhiyu in the Nihewan Basin, Zhoukoudian Localities 82 

1 and 15 and Shuidonggou in northern China (Liu et al., 2013), Kara-Bom, Denisova 83 

and Ust-Karakol in southern Siberia (Hou, 2005), and Chikhen Agui Cave in 84 

Mongolia (Derevianko, 2001). 85 

During the Upper Palaeolithic, lithic technologies in the Nihewan Basin became 86 

more complex. It has been argued that the microblade culture and the small tool 87 

culture “developed simultaneously, but without mutual influence” (Liu et al., 2013). 88 

Animal bone fragments from the Zhiyu site have been dated by 14C to 28,945 ± 1370 89 
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BP (Institute of Archaeology of Chinese Academy of Social Sciences, 1991) and 90 

33,155 ± 645 BP (Yuan, 1993), which correspond to calendar-year ages (95% 91 

confidence intervals) of 30.5–35.7 and 35.8–38.8 ka cal BP, respectively. The lithic 92 

technology at this site has been described as ‘transitional’ between small-tool and 93 

microblade (Jia et al., 1972; Jia, 1978) or ‘primitive’ microblade (Chun, 1984). 94 

According to some other archaeologists, the stone artefacts at this site may not be 95 

related to microblade technology, but their alternative interpretations have yet to be 96 

published. The Youfang site—dated to about 26–29 ka based on OSL analyses of 97 

quartz grains (Nian et al., 2014)—is considered to be the earliest ‘typical’ microblade 98 

site known from the northern high latitudes of China (40°N) (Nian et al., 2014), while 99 

the Xibaimaying site is considered to be the ‘latest’ small-tool site discovered in the 100 

Nihewan Basin (Xie et al., 2006). The age range of ~15–18 ka for Xibaimaying is 101 

based on uranium-series dating of bovid teeth (Xie and Yu, 1989). These ages, 102 

together with those for Zhiyu and Youfang, have led to the suggestion that the small-103 

tool and microblade industries coexisted in the Nihewan Basin (Xie et al., 2006; Liu 104 

et al., 2013; Jia et al., 2015) from at least ~30 ka ago until as recently as ~15 ka ago. 105 

The coexistence of these two industries raises a number of questions, including 106 

the reason for the lack of technological ‘development’ at Xibaimaying, the youngest 107 

of these sites. Jia et al. (2015) showed that the availability of raw material was not 108 

the main factor governing the absence of microblade technology at this site. They 109 

also argued that microblade technology did not appear to spread as an adaptive 110 

response to deteriorating environmental conditions associated with the Last Glacial 111 

Maximum (LGM), ~21 ka ago, as has been hypothesised previously (Institute of 112 

Archaeology of Northern Ethnicity and Department of Archaeology and Museology, 113 

Renmin University, 2006). Others have proposed that microblade technology was 114 



6 

 

introduced to northern China by people migrating from Siberia or Mongolia (e.g., 115 

Keates, 2007; Kuzmin, 2007; Nian et al., 2014), whereas Xibaimaying might be 116 

inhabited by a local group who maintained their small-tool tradition (Jia et al., 2015). 117 

If so, then the prehistory of the Nihewan Basin might be much complex than 118 

currently thought (Liu et al., 2013). 119 

These archaeological discussions are based on the presumption that the ages 120 

for Xibaimaying and Youfang are accurate, which may not be true. In particular, 121 

uranium-series dating is now well-known to be poorly suited to faunal remains, owing 122 

to their open-system geochemical behaviour (Hellstrom and Pickering, 2015). 123 

Uranium-series dating typically provides only minimum age estimates for fossil 124 

bones and teeth, even when modern methods of data collection and analysis are 125 

used (Grün et al., 2014). In view of the questionable accuracy of the uranium-series 126 

ages for Xibaimaying, the aim of this study is to provide more reliable estimates of 127 

age for human occupation of this ‘latest’ small-tool site using OSL dating methods 128 

applied to quartz grains. This method has previously been applied to deposits 129 

elsewhere in the Nihewan Basin (e.g., Zhao et al., 2010; Nian et al., 2014; Guo et al., 130 

2015, 2016), so OSL dating of Xibaimaying would enable a direct chronological 131 

comparison with other sites in the region—including the microblade site of Youfang. 132 

The study site 133 

The Xibaimaying site (40°07’28”N, 114°14’19”E, 915 m above mean sea level) 134 

is located on the second terrace of the east bank of the Nangou gully (Fig. 2a), a 135 

tributary of the Sanggan River, ~300 m south of Xibaimaying village in Yangyuan 136 

County of Hebei Province (Xie et al., 2006). The site was discovered in 1985 and a 137 

total area of 76 m2 excavated in 1985 and 1986. The sedimentary profile of the east 138 
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wall of the excavation pit consists of 5 layers (Fig. 2b,d), which are as follows (top to 139 

bottom): soil (~0.1 m in depth), red-yellow silty clay (~0.7 m), white-yellow silty clay 140 

(~0.5 m), yellow silty clay (~1.4 m) and fluvially interbedded grey-green and red-141 

yellow clayey fine sands (~0.4 m). The basal unit (Layer 5) yielded abundant stone 142 

artefacts, animal bone remains (Fig. 2c), burnt soil blocks, burnt bones and charcoal, 143 

and represents the cultural layer at this site (Xie and Yu, 1989). 144 

A total of 1546 stone artefacts have been recovered from the cultural layer at 145 

this site (Xie and Yu, 1989), including cores (n = 78), flakes (n = 184), tools (n = 230) 146 

and waste objects (e.g., chunks, debris; n = 1054) produced during the process of 147 

lithic reduction. Some typical stone artefacts are shown in Fig. 3. The general 148 

properties of the stone artefacts are described by Xie and Yu (1989) in Chinese, so 149 

we have summarised them below in English: 150 

(1) Cores include 75 hammered cores and 3 percussion cores. Most of the 151 

hammered cores are small, with the largest and smallest being 104×74×52 mm 152 

and 18×10×9 mm in size, respectively. The hammered cores can be further 153 

divided into single platform (n = 31), double platform (n = 27) and multi-platform 154 

(n = 17). Platforms are dominated by plain platforms, followed by natural 155 

platforms; scarred platforms are rare. Some multi-platform cores are nearly 156 

spheroidal in shape. Several single-platform cores (Fig. 3i,j) show some traits of 157 

micro-cores: cone-shaped with plain platforms and flaking scars that are 158 

elongated and dense. The three percussion cores are small in size (< 30 mm) 159 

and slightly elongated in shape (Fig. 3k,l). 160 

(2) Flakes are composed of hammered flakes (n = 179) and percussion flakes (n = 161 

5). The flake platforms are dominated by plain platforms, followed by natural 162 
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platforms and scarred platforms; prepared platforms are rare. Flakes are 163 

generally irregular in shape, but dominated by flakes that are wider than they are 164 

long. Most of the flakes are small in size, with the largest and smallest being 165 

92×98×25 mm and 8×12×3 mm, respectively.  166 

(3) Tools are commonly less than 40 mm in maximum dimension, dominated by 167 

scrapers (n = 216) associated with points (n = 11), burins (n = 2) and a chopper 168 

(n = 1). The tool blanks are mainly flakes (66%) and chunks (34%). The fracture 169 

method was mainly hammering. Most of the tools are retouched, with fine regular 170 

scars, and several scrapers have been retouched by indirect pressure.  171 

(4) Raw materials are dominated by pyroclastic rock (35.6%) associated with vein 172 

quartz (18.6%), agate (13.6%), siliceous limestone (12.7%), flint (9.9%), 173 

hornstone (6.1%), quartz sandstone (2.1%) and schist (1.4%). The tools, 174 

however, are mostly made from flint and agate. Du (2003) analysed the raw 175 

materials at Xibaimaying and argued that the agate, flint and vein quartz are 176 

similar as those at the Shenquansi site (Fig. 1), the pyroclastic rocks are similar 177 

to those at the Xinmiaozhuang site (Fig. 1) and the occupants of Xibaimaying 178 

had no preference for a particular raw material type; all the raw materials are 179 

available within ~10 km of the site (Du, 2003). 180 

The cultural layer contains abundant vertebrate and freshwater mollusc fossils 181 

(Xie and Yu, 1989). The identified freshwater molluscs include Corbicula fluminea, 182 

Gyraulus convediusculus, G. compressus and Radxi auricularia. The identified 183 

vertebrate fossils include Strothio sp. (ostrich), Bos primigenius (cow), Equus 184 

pnzewalskyi (horse), E. hemionus (donkey), Gazella przewalskyi (antelope), Cervus 185 

sp. (deer), Sus sp. (pig), Coelodonta sp. (rhinoceros), Elephas sp (elephant) and 186 
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Carnivora (not identifiable to genus or species). A total of 315 fossil bones, most of 187 

which are broken, were analysed by Xie and Yu (1989); 24 bones had been gnawed 188 

by rodents and 31 were identified as bone tools (e.g., Fig. 3m). The artefacts from 189 

this site are thought to be in primary depositional context, based on the well-190 

preserved state of the cultural remains and the lack of evidence of any disturbance 191 

of the artefact-bearing layer (Xie et al., 2006). This site was probably used to 192 

manufacture stone tools, with the lithic reduction process accounting for the large 193 

number of waste objects recovered (Xie et al., 2006). Two uranium-series ages of 18 194 

± 1 and 15 ± 1 ka were obtained for bovid teeth from the cultural layer (Xie and Yu, 195 

1989), on which basis the site was assigned to the Upper Palaeolithic. 196 

In this study, five sediment samples (XBMY-OSL-1 to -5) were collected from 197 

the sedimentary profile at Xibaimaying (Fig. 2). Only four of these samples were 198 

subsequently prepared for OSL dating (XBMY-OSL-1, -2, -3 and -5), of which XBMY-199 

OSL-1 was collected from the cultural layer (Layer 5). 200 

OSL dating 201 

Over the last 30 years, OSL dating has been become one of the most widely 202 

used numerical dating methods to determine burial ages for Quaternary sediments in 203 

variety of a depositional environments (Huntley et al., 1985; Aitken, 1998; Lian and 204 

Roberts, 2006; Jacobs and Roberts, 2007; Preusser, 2008; Rhodes, 2011; Wintle, 205 

2014; Roberts et al., 2015). The method determines the time elapsed since common 206 

minerals, such as quartz and potassium feldspar (K-feldspar), were last exposed to 207 

light or heat (temperatures above ~300 °C). Exposure to sunlight empties the light-208 

sensitive electron ‘traps’ in these minerals, and these traps then steadily refill with 209 

electrons while the mineral grains are buried in the ground, where they are shielded 210 
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from sunlight and exposed to background levels of ionising radiation. In the 211 

laboratory, the grains are exposed to green or blue light, which causes the light-212 

sensitive electrons to escape from their traps and their subsequent recombination at 213 

luminescence centres results in the emission of photons (i.e., OSL). 214 

The burial time of a mineral grain can be estimated from the intensity of this 215 

OSL signal, by converting it into a dose equivalent (De) and dividing the De by the 216 

environmental dose rate. The latter represents the rate of supply of ionising radiation 217 

to the grain over the period of burial from environmental sources of alpha, beta and 218 

gamma radiation (due to the decay of radionuclides in the uranium and thorium 219 

decay chains and 40K) and from cosmic rays. 220 

Sample collection, preparation and dose rate determination 221 

Block samples about 10x10x10 cm in size were collected from the cleaned 222 

section faces. After the blocks were removed, they were immediately wrapped in 223 

light-proof plastic and transported to the Luminescence Dating Laboratory at the 224 

University of Wollongong for preparation and analysis. In the laboratory, the outer 225 

layer (~2 cm) of the blocks was removed under subdued red light and the materials 226 

from the outer layer were used for dose rate determination. Quartz grains were 227 

extracted from each of the trimmed blocks using standard mineral separation 228 

procedures (Aitken, 1998). Carbonate and organic matter were removed using HCl 229 

and H2O2 solutions, respectively, and quartz grains of 125–150 μm in diameter were 230 

isolated by wet sieving and density separation (2.62 and 2.70 g/cm3). These grains 231 

were then etched in 40% HF acid for 40 min to dissolve any remaining feldspar 232 

grains and to remove the alpha-irradiated outer layer of each quartz grain. The 233 

etched quartz grains were then washed in HCl solution to remove any precipitated 234 

fluorides. 235 
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For dose rate determinations, the beta dose rates were measured directly using 236 

a low-level beta counter (Bøtter-Jensen and Mejdahl, 1988; Jacobs and Roberts, 237 

2015) and the gamma dose rates were calculated from the U and Th contents 238 

determined by thick-source alpha counting (Aitken, 1985) and the K contents 239 

measured by X-ray fluorescence spectroscopy. Cosmic-ray dose rates were 240 

estimated from the burial depth of each sample and the latitude, longitude and 241 

altitude of Xibaimaying (Prescott and Hutton, 1994). As the sampled section at this 242 

site has been aerially exposed for a prolonged period since excavation, it is likely to 243 

have dried out considerably. Accordingly, we did not adjust the dry beta, gamma and 244 

cosmic-ray dose rate using the measured (field) water contents, but instead used 245 

water contents of 15 ± 5% for fluvial sample XBMY-OSL-1 and 10 ± 3% for samples 246 

XBMY-OSL-2, 3 and 5 (probably aeolian or waterlain aeolian deposits), following 247 

Guo et al. (2016). The calculated OSL ages increase (or decrease) by ~1% for each 248 

1% increase (or decrease) in water content. A small, internal dose rate of 0.03 ± 0.01 249 

Gy/ka due to U and Th inclusions within the quartz grains (e.g., Jacobs et al., 2008) 250 

was included in the total environmental dose rate for each of the four samples. 251 

De determination 252 

OSL measurements were made on individual grains using standard single-grain 253 

discs drilled with 100 holes, each 300 μm wide and 300 μm deep (Bøtter-Jensen et 254 

al., 2000). Discs were checked under the microscope to verify that each hole 255 

contained only one grain; this was true for most holes, but some contained two or 256 

three grains. For the latter holes, the OSL signals should be derived predominantly 257 

from only one grain, because ~90% of the total light sum for our samples originates 258 

from the ~11% brightest grains (Figure S1). Thus, the OSL results for our samples 259 

are considered representative of true single-grain analyses. Measurements were 260 
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performed on an automated Risø TL/OSL-DA-20 reader equipped with a calibrated 261 

90Sr/90Y beta source, a green (532 nm) laser for optical stimulation of individual 262 

grains and blue light-emitting diodes (470 ± 30 nm) to stimulate single aliquots in the 263 

preheat temperature test described below. The ultraviolet OSL emissions were 264 

detected by an Electron Tubes Ltd 9235B photomultiplier fitted with Hoya U-340 265 

filters. 266 

De measurements were made using the single-aliquot regenerative-dose (SAR) 267 

procedure (Murray and Roberts, 1998; Roberts et al., 1998a, 1998b; Galbraith et al., 268 

1999; Murray and Wintle, 2000, 2003; Wintle and Murray, 2006; Jacobs et al., 2006, 269 

2008). In this procedure, the dose response curve (DRC) for each grain is 270 

constructed using the sensitivity-corrected OSL signals (Lx/Tx) induced from a series 271 

of regenerative doses, including a duplicate dose and a zero dose to monitor the 272 

recycling ratio and the extent of recuperation, respectively. The De value of each 273 

grain was obtained by interpolating the sensitivity-corrected natural OSL signal 274 

(Ln/Tn) on to its corresponding DRC, which was fitted using a single saturating 275 

exponential function, an exponential plus linear function, or the sum of two saturating 276 

exponential functions—whichever provided the best fit to the Lx/Tx data. For each De 277 

estimate, the associated uncertainty includes photon counting statistics, an 278 

instrumental irreproducibility error of 2% for each OSL measurement (following 279 

Jacobs et al., 2006), the curve fitting error, and the error involved in determining the 280 

calibrated beta dose rate delivered to each grain position on a disc. 281 

We also included an additional regenerative dose cycle at the end of the SAR 282 

sequence (using an infrared stimulation for 40 s at 50 °C prior to measuring the OSL 283 

signal) to determine the OSL IR depletion ratios and check for any remnant feldspar 284 

contamination (Duller, 2003). Table S1b lists the full SAR measurement sequence 285 
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used for single grains in this study. The net OSL signals used for De estimation were 286 

calculated as the sum of counts in the first 0.12 s of OSL decay minus a ‘late light’ 287 

background estimated from the mean count rate over the final 0.12 s. Grains were 288 

held for 0.1 s before and after optical stimulation to monitor and minimise any 289 

interference from isothermal decay. A typical OSL decay curve and DRC is shown in 290 

Fig. 4 for a single grain of quartz from sample XBMY-OSL-1. 291 

To choose a suitable preheat temperature, we made De measurements on 292 

single aliquots of sample XBMY-OSL-5 (where each aliquot consisted of ~200 293 

grains) using the SAR procedure listed in Table S1a and preheat temperatures of 294 

between 180 and 300 °C (step 2). Thirteen to twenty aliquots were measured at 295 

each preheat temperature. The net OSL signal was determined as the sum of counts 296 

in the first 0.64 s of OSL decay minus a background estimated from the mean count 297 

rate over the final 3.2 s. The preheat given in step 5 after a fixed test dose (12.6 Gy) 298 

was set 40 °C lower than that applied to the natural and regenerative doses; the sole 299 

exception was the 180 °C preheat in step 2, which was accompanied by a preheat of 300 

160 °C in step 5. At the end of each SAR cycle, a ‘hot optical bleach’ was performed 301 

at a temperature 20 °C higher than the corresponding preheat in step 2, to erase any 302 

remnant OSL signal. The weighted mean De values and the recycling and 303 

recuperation ratios are plotted as a function of preheat temperature in Fig. 5. This 304 

plot shows that a De ‘plateau’ (46 ± 3 Gy) is obtained at preheat temperatures of 305 

220–260 °C and that the recycling ratios are consistent with unity at all preheat 306 

temperatures (except 280 °C). This experiment indicates, therefore, that preheat 307 

temperatures of between 220 and 260 °C should be suitable for determining De 308 

values for the Xibaimaying samples. 309 
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A dose recovery test (Galbraith et al., 1999) was conducted using single grains 310 

of quartz from sample XBMY-OSL-1. Measurement conditions included a natural and 311 

regenerative dose preheat of 240 °C and a test dose preheat of 200 °C, based on 312 

the preheat plateau test mentioned above. Two thousand grains were first bleached 313 

for ~2 hr using a Dr Hönle solar simulator (Model: UVACUBE 400) and a dose of 140 314 

Gy was then given to the bleached grains as the surrogate ‘natural’ dose. The grains 315 

were measured using the procedures listed in Table S1b, with the test dose fixed at 316 

30 Gy. Grains were rejected if the resulting OSL data failed to satisfy a series of well-317 

established criteria similar to those proposed by Jacobs et al. (2006), namely if: 1) 318 

the initial Tn signal was less than 3 times its corresponding background or its relative 319 

error was greater than 25%; 2) the recuperation ratio was larger than 10%; 3) the 320 

recycling ratio or OSL IR depletion ratio differed from unity by more than 2σ; 4) the 321 

DRC provided an obviously poor fit to the Lx/Tx data points; and 5) the Ln/Tn value 322 

was consistent with or exceeded the saturation level of the corresponding DRC. The 323 

number of grains rejected according to each of these criteria are summarised (in 324 

order of rejection) in Table S2.  325 

A total of 122 grains (6% of the 2000 grains measured) were accepted for dose 326 

determination after applying these rejection criteria. The distribution of the dose 327 

recovery ratios (i.e., ratios of measured to given dose) for all accepted grains is 328 

shown in Fig. 6a. The over-dispersion (OD) value for this dose distribution, 329 

calculated using the Central Age Model (CAM: Galbraith et al., 1999; Galbraith and 330 

Roberts, 2012) is 23.5 ± 2.9 % and the weighted mean ratio is 0.90 ± 0.03 (also 331 

calculated using the CAM). The latter value is slightly less than unity and indicates 332 

that the given dose was not recovered fully using the measurement conditions and/or 333 

the data selection criteria. 334 
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Li et al. (2016) have suggested that if a significant proportion of grains in a 335 

sample yield infinite De values (i.e., Ln/Tn values in the saturated region of the DRC), 336 

then this could result in a truncated De distribution and a corresponding 337 

underestimation of true De and age. They suggested that a more reliable estimate of 338 

De could be obtained based on those grains that saturate at larger doses. Rejection 339 

of quartz grains with low characteristic saturation doses (D0 values) has been used 340 

previously in single-grain OSL dating to improve the accuracy of the resulting De 341 

estimates (e.g., Duller, 2012; Gliganic et al., 2012). We hypothesised, therefore, that 342 

underestimation of the applied dose in the dose recovery test may be due to the 343 

given dose (140 Gy) lying at or close to the saturation level of a significant proportion 344 

of the measured grains. 345 

To test this hypothesis, after applying the first 4 rejection criteria mentioned 346 

above, we sorted the accepted grains according to their D0 values, which we 347 

calculated from the DRCs fitted to the Lx/Tx data points using a single saturating 348 

exponential function; the latter has the form 0/
0(1 )D D

I I e c , where I is the 349 

sensitivity-corrected OSL intensity, D is the regenerative dose, and I0 and c are 350 

constants. We then applied the fifth rejection criterion to recalculate the recovered 351 

dose (using the CAM) while increasing the minimum D0 threshold from 0 to 300 Gy 352 

in steps of 30 Gy. The CAM dose estimates, OD values and the numbers of 353 

accepted and saturated grains at different minimum D0 thresholds are summarised in 354 

Table S3, and the corresponding dose recovery ratios are plotted in Fig. 6b. The 355 

dose recovery ratios increase in concert with the D0 threshold, achieving values 356 

consistent with unity at a D0 threshold of 90 Gy and above. 357 

We then scrutinised these data further to identify the D0 threshold at which the 358 

number of the saturated grains reached zero (Table S3); we define this value as the 359 
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‘optimum-D0 threshold’. For the dose recovery test, the optimum-D0 threshold is 120 360 

Gy—resulting in a dose recovery ratio of 0.97 ± 0.04 (Fig. 6b), which is consistent 361 

with unity (Table S3). For the single-grain measurements of the older samples from 362 

Xibaimaying, therefore, it would appear necessary to first sort the accepted grains 363 

according to their grain-specific D0 values and then determine the optimum-D0 364 

threshold to avoid truncating the upper end of the single-grain De distribution.  365 

The preheat temperature test on sample XBMY-OSL-5 and the dose recovery 366 

test and D0-threshold procedure applied to sample XBMY-OSL-1 have yielded a set 367 

of SAR measurement conditions and data analysis procedures that should be 368 

suitable for dating the Xibaimaying samples. We measured a total of 3400, 2800, 369 

1400 and 1900 grains of samples XBMY-OSL-1, -2, -3 and -5, respectively, using the 370 

procedures in Table S1b; the test dose was fixed at 30 Gy for samples XBMY-OSL-371 

1, -2 and -3 and 10 Gy for sample XBMY-OSL-5. Of the measured grains, 135, 141, 372 

71 and 82 were accepted for samples XBMY-OSL-1, -2, -3 and -5, respectively, after 373 

applying the 5 rejection criteria described above (Table S2). The De values for these 374 

grains are displayed in Fig. 7. Note that these De estimates were obtained before 375 

applying the optimum-D0 threshold criterion, so that we could evaluate its 376 

subsequent effect on the De distributions.  377 

Samples XBMY-OSL-1, -2, -3 and -5 each contained some saturated grains, 378 

amounting to approximately 29, 29, 13 and 3% of the total number of accepted 379 

grains, respectively (Table S2). The CAM De values of samples XBMY-OSL-1 and -380 

2, in particular, are thus potentially underestimated, owing to the high proportion 381 

(>20%) of saturated grains. After applying the first 4 rejection criteria mentioned 382 

above, we then sorted the accepted grains by the D0 values of their DRCs. The 383 

corresponding recalculated CAM De values are plotted as a function of D0 threshold 384 
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in Fig. 8; the optimum-D0 threshold values are 120, 150, 120 and 30 Gy for samples 385 

XBMY-OSL-1, -2, -3 and -5, respectively (Table S3). For samples XBMY-OSL-1 and 386 

-2, the CAM De estimates attain a ‘plateau’ close to and above the optimum-D0 387 

threshold value (zero saturated grains), while the CAM De values are statistically 388 

consistent for all D0 thresholds for samples XBMY-OSL-3 and -5 due to less 389 

saturated grains (< 13 %) in the latter two samples. The De estimates for grains with 390 

D0 values at or above the optimum thresholds are displayed as solid triangles in Fig. 391 

7. The OD values for these samples are reduced from 46–50% to 35–42% after 392 

applying the optimum-D0 threshold criterion, and the De values appear to be 393 

randomly distributed around a central value. We calculated the final De estimates 394 

using the CAM, which yielded values of 147.2 ± 7.5, 112.4 ± 6.5, 82.7 ± 7.5 and 39.3 395 

± 2.5 Gy for samples XBMY-OSL-1, -2, -3 and -5, respectively. We note that the 396 

single-grain De value for sample XBMY-OSL-1 (39.3 ± 2.5 Gy) is consistent at 2σ 397 

with its single-aliquot De ‘plateau’ value (46 ± 3 Gy). 398 

Ages and implications 399 

Table 1 summarises the dose rates, De values and OSL ages for the four 400 

samples from Xibaimaying. The ages are in correct stratigraphic order (Fig. 2d), 401 

increasing down-profile from early Holocene in Layer 2 (13 ± 1 ka: XBMY-OSL-5) to 402 

early MIS 2 or late MIS 3 in the middle and lower parts of Layer 4 (24 ± 2 and 32 ± 2 403 

ka: XBMY-OSL-3 and -2, respectively), with the basal, artefact-bearing sediments 404 

(Layer 5) deposited in mid-MIS 3 (46 ± 3 ka: XBMY-OSL-1). The latter age is 405 

consistent with a recent 14C age determination of 47–50 ka cal BP for a fragment of 406 

ostrich eggshell recovered from the cultural layer at this site (Ying Guan, Institute of 407 

Vertebrate Paleontology and Paleoanthropology, personal communication). The 408 

coherent stratigraphic ordering of OSL ages, and the agreement with the 14C age 409 
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determination for the cultural layer, supports the reliability of our chronology. These 410 

results also suggest that the uranium-series ages of 18 ± 1 and 15 ± 1 ka obtained 411 

from bovid teeth (Xie and Yu, 1989) should be viewed as minimum estimates of age, 412 

as might be expected for such materials given their open-system geochemical 413 

behaviour (Grün et al., 2014). 414 

The age of 46 ± 3 ka for the cultural layer potentially falls within the 43–51 ka 415 

period of MIS 3 during which the local landscape was indicated covered by sparse 416 

desert-steppe vegetation in lowland areas and the northern Loess Plateau, merging 417 

into a mixture of steppe and coniferous forest in the surrounding highlands (Liu et al., 418 

2014). The pollen and spore composition has also been examined for the cultural 419 

layer at the site, and this also indicates a sparse coniferous forest and desert steppe 420 

vegetation (Xie and Yu, 1989): herbs (mainly Artenmisia) account for 93.4% of the 421 

pollen and spores, with trees (mostly Pinus and Picea) and ferns accounting for only 422 

4.4% and 2.2%, respectively. 423 

As mentioned above, it has long been regarded by Chinese archaeologists that 424 

the small-tool and microblade industries coexisted without mutual influence in the 425 

Nihewan Basin, based largely on the uranium-series ages for Xibaimaying (Xie and 426 

Yu, 1989; Xie et al., 2006; Liu et al., 2013; Jia et al., 2015). Our OSL chronology for 427 

this site shows that the small-tool artefacts are 14–25 ka older than the microblade 428 

artefacts found at the Youfang site (26–29 ka), which are the earliest known 429 

occurrence of typical microblade tools in the Nihewan Basin. The ages of the 430 

artefacts at Xibaimaying are also older than those at the Zhiyu site (~31–39 ka cal 431 

BP), which are considered by some archaeologists (e.g., Jia et al., 1972; Jia, 1978) 432 

to exhibit ‘transitional’ traits between small-tool and microblade technologies. The 433 

new ages reported here, therefore, are compatible with a developmental trend in 434 
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stone tool technology in the Nihewan Basin from mid-MIS 3 to early MIS 2, from 435 

small-tool technology (Xibaimaying) to ‘transitional’ small-tool/microblade artefacts 436 

(Zhiyu) to typical microblade technology (Youfang). Fig. 9 provides a graphical 437 

summary of the existing and new chronologies for the different technologies in the 438 

basin. 439 

The origin of the microblade technology in North China has been the subject of 440 

considerable debate over the past few decades, as summarised in the reviews by 441 

Zhu (2006: 130–135) and Yi et al. (2016). There are two general hypotheses: this 442 

technology emerged in situ from the local small-tool tradition (e.g., Jia et al., 1972; 443 

Jia, 1978) or was introduced from northern Siberia or Mongolia (e.g., Keates, 2007; 444 

Kuzmin, 2007). The first hypothesis is based on discoveries of ‘microblade traits’ at 445 

some local small-tool sites (e.g., the ‘Donggutuo Core’); whereas the second 446 

hypothesis argued that the microblades were not “simply a type of small tool”, but 447 

“stand for products of a special technology including microblades, microblade cores, 448 

and tools made with microblades”, and this hypothesis has received support from the 449 

chronological sequence of microblade sites in Siberia, Mongolia and North China (Yi 450 

et al., 2016: 131). Microblade artefacts appear in Siberia as early as ~35 ka 451 

(Derevianko et al., 1998) and the earliest known sites in China with typical 452 

microblade artefacts are Longwangchan and Youfang (Fig. 1), which have been 453 

dated by OSL to 25–29 ka (Zhang et al., 2011) and 26–29 ka (Nian et al., 2014), 454 

respectively. 455 

Our OSL dating results for Xibaimaying are consistent with the small-tool 456 

industry preceding the microblade industry in the Nihewan Basin and, thus, lend 457 

support to the ‘local origin’ hypothesis for microblade technology. But in the absence 458 

of independent evidence for the identity of the toolmakers, we cannot discount the 459 
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possibility that the technology was introduced by people migrating from northern 460 

Siberia or Mongolia. Furthermore, an issue with the study of the origins of the 461 

microblade in North China is that many Chinese archaeologists have focussed on 462 

artefacts found in northeast Asia. Microblade tools have been reported from earlier 463 

contexts in other parts of the world, such as ~71 ka in South Africa (Brown et al., 464 

2012) and ~48 ka in India (Mishra et al., 2013; Basak et al., 2014), so a southern 465 

origin for this technology should also be taken into consideration. The key to 466 

revealing the origin of the microblade in North China will be to establish reliable 467 

spatial and temporal distribution patterns for this technology not only in northeast 468 

Asia but also throughout East and South Asia. 469 

Conclusions 470 

In this study, we have re-dated the ‘latest’ small-tool industry site (Xibaimaying) 471 

in the Nihewan Basin using single-grain OSL methods for quartz. Our chronology 472 

indicates that the cultural layer was deposited 46 ± 3 ka ago, corresponding to the 473 

middle of MIS 3, rather than the later part of MIS 2 as suggested previously by 474 

uranium-series dating of bovid teeth (Xie and Yu, 1989). A developmental trend in 475 

artefact technology is one inference from our data—that is, a change from the small-476 

tool industry at Xibaimaying (46 ± 3 ka) to the earliest microblade at Zhiyu (31–39 ka 477 

cal BP) and the typical microblade at Youfang (26–29 ka). This pattern contrasts with 478 

the parallel development of these two lithic technologies in the basin during the 479 

Upper Palaeolithic (Fig. 9), which is the prevailing view among many archaeologists. 480 

However, until further archaeological and chronological studies are conducted on 481 

Late Pleistocene sites containing small-tool and microblade artefacts in northern 482 

China—and in other parts of Asia—we cannot be certain of the temporal relation 483 
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between these two industries or the geographic origin of the local microblade 484 

technology. 485 
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Figure captions 739 

Fig. 1: (a) Map of China showing the Palaeolithic sites mentioned in this study 740 

(modified after Han et al., 2012). Triangles and circles represent small-tool and 741 

microlithic sites, respectively. (b) Map of the Nihewan Basin showing the Palaeolithic 742 

sites mentioned in this study (modified after Wei, 2004). Zhiyu has artefacts 743 

‘transitional’ between small-tool and microlithic technologies (Jia et al., 1972; Jia, 744 

1978). 745 

Fig. 2: (a) Photo looking northwest, showing the location of the Xibaimaying site on 746 

the east bank of the Nangou gully. (b) Sedimentary profile of the excavated east 747 

face, showing locations of the OSL samples. (c) Animal remains in the cultural layer, 748 

from which OSL sample XBMY-OSL-1 was collected. (d) Schematic of the excavated 749 

sedimentary profile, with OSL sample positions and ages. 750 

Fig. 3: Typical artefacts from the Xibaimaying site (Xie and Yu, 1989; Xie et al., 751 

2006): (a)–(e) scrapers, (f) and (g) points, (h) flake, (i) and (j) hammered core, (k) 752 

and (l) percussion core, (m) bone tool. 753 

Fig. 4: (a) Typical OSL decay curve and (b) dose response curve for a single grain of 754 

quartz from sample XBMY-OSL-1. The dose response curves are fitted using a 755 

single saturating exponential function of the form 0/
0(1 )D D

I I e c , where I is the 756 

sensitivity-corrected OSL intensity, D is the regenerative dose, D0 is the 757 

characteristic saturation dose, and I0 and c define the saturation value of the 758 

exponential curve. The De is obtained by projecting the sensitivity-corrected natural 759 

OSL signal (the upper point on the y-axis) on to the fitted curve and interpolating the 760 

dose (dashed line).  761 
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Fig. 5: Results of the preheat temperature test on sample XBMY-OSL-5, conducted 762 

using the single-aliquot regenerative-dose procedure in Table S1a. The De values 763 

and corresponding recycling and recuperation ratios are plotted as a function of 764 

preheat temperature in (a), (b) and (c), respectively. Each data point represents the 765 

weighted mean for 13–20 aliquots and the vertical bars indicate the corresponding 766 

1σ errors.  767 

Fig. 6: (a) Distribution of measured (recovered) doses for all accepted grains in the 768 

dose recovery test on sample XBMY-OSL-1, expressed as the ratio of recovered 769 

dose to given dose (140 Gy). Open circles and closed triangles denote grains with 770 

D0 values of less than and more than 120 Gy (the optimum-D0 threshold; see Table 771 

S3), respectively. The grey band is centred on the weighted mean ratio (0.97 ± 0.04) 772 

for the grains above the optimum-D0 threshold of 120 Gy, calculated using the CAM, 773 

which was also used to estimate the over-dispersion (OD) among the individual 774 

recovered doses. (b) Mean dose recovery ratios (recovered dose/given dose) (red 775 

squares) and the corresponding number of accepted grains (grey triangles) for 776 

sample XBMY-OSL-1 plotted as a function of the D0 threshold value. Ratios are 777 

statistically consistent (at 2σ) with unity for all D0 thresholds higher than 90 Gy. 778 

Fig. 7: (a)–(d) De distributions for the accepted grains of samples XBMY-OSL-1, -2, -779 

3 and -5, respectively. Open circles and closed triangles denote De values for grains 780 

with D0 values below and above the optimum-D0 thresholds, respectively. The grey 781 

bands are centred on the weighted mean De values for the grains at and above the 782 

optimum-D0 thresholds. 783 

Fig. 8: Weighted mean (CAM) De estimates (red squares) and the corresponding 784 

number of accepted grains (grey triangles) plotted as a function of the D0 threshold 785 
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value. The dashed lines indicate the CAM De values at the optimum-D0 threshold for 786 

each sample (150, 150, 120 and 30 Gy for samples XBMY-OSL-1, -2, -3 and -5, 787 

respectively). 788 

Fig. 9: Comparison of approximate ages reported previously for small-tool and 789 

microlithic sites in the Nihewan Basin and the OSL ages obtained in this study for the 790 

Xibaimaying site. The vertical grey band indicates the prevailing view that the small-791 

tool and microblade industries coexisted during the Upper Palaeolithic in the 792 

Nihewan Basin, based on U-series dating of bovid teeth at Xiabimaying. The OSL 793 

ages for Xibaimaying reported here imply a developmental trend from small-tool 794 

technology (mid-MIS 3) to ‘transitional’ small/microlithic (Zhiyu, late MIS 3) to typical 795 

microlithic technology (Youfang, early MIS 2) in the Nihewan Basin, denoted by the 796 

dashed arrows. The oxygen isotope (δ18O) curve and Marine Isotope Stage (MIS) 797 

boundaries follow Lisiecki and Raymo (2005). The age range of the Yujiagou site is 798 

based on thermoluminescence (TL) dating of fine-grained quartz (Xia et al., 2001).799 
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Table 1. Dose rates, De values and OSL ages for quartz grains from the Xibaimaying site. 

Sample 
Depth

, m 

Grain 

size, µm 

Water, 
% a 

U, ppm Th, ppm K, % 
Environmental dose rate, Gy/ka b 

De, Gy c Age, ka 
Gamma Beta Cosmic Total 

             

XBMY-OSL-1 2.8 125–150 15 ± 5 3.44 ± 0.15 10.99 ± 1.23 1.98  1.20 ± 0.08 1.82 ± 0.12 0.15 ± 0.03  3.21 ± 0.16 147.2 ± 7.5 46 ± 3 

            (n = 89)  

XBMY-OSL-2 2.5 125–150 10 ± 3 4.15 ± 0.16 10.55 ± 1.22 2.02  1.33 ± 0.07 2.04 ± 0.08 0.17 ± 0.04  3.56 ± 0.12 112.4 ± 6.5 32 ± 2 

            (n = 74)  

XBMY-OSL-3 2.0 125–150 10 ± 3 4.21 ± 0.17 9.74 ± 1.31 1.85  1.26 ± 0.07 1.96 ± 0.08 0.18 ± 0.04  3.42 ± 0.12 82.7 ± 7.5 24 ± 2 

            (n = 32)  

XBMY-OSL-5 0.5 125–150 10 ± 3 3.67 ± 0.14 8.03 ± 1.04 1.61  1.08 ± 0.06 1.65 ± 0.07 0.20 ± 0.05  2.96 ± 0.10 39.3 ± 2.5 13 ± 1 

            (n = 76)  

a Time-averaged water contents for fluvial sample XBMY-OSL-1 and colluvial/aeolian samples XBMY-OSL-2, 3 and 5. 

b Dose rates corrected for water attenuation. The total dose rate also includes an internal dose rate of 0.03 ± 0.01 Gy/ka. 

c A systematic error of 2% has been added in quadrature to the De measurement error to allow for possible bias in the calibration of the laboratory beta 

source. The values in parentheses (n) indicate the number of the final accepted grains with D0 values at and above the optimum-D0 threshold. 
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Fig. 9 



 

Figure S1 The single-grain ‘brightness’ distribution for 200 individual grains of sample 
XBMY-OSL-1. The cumulative light sum of the Tn signals (shown on the y-axis) is plotted as 

a function of the corresponding proportion of grains (shown on the x-axis).



Table S1 The single-aliquot regenerative-dose (SAR) procedures used in 
this study (based on Galbraith et al., 1999; Murray and Wintle, 2000, 2003). 

(a) Single-aliquot procedure: preheat temperature test a 
Step Treatment Signal 
1 b Give regenerative dose, Di  
2 Heat at 180–300 °C for 10 s  
3 Measure OSL at 125 °C for 40 s Ln, Lx 
4 Give test dose, Dt  
5 Heat at 20–40 °C lower than step 2 for 10 s  
6 Measure OSL at 125 °C for 40 s Tn, Tx 
7 c Bleach at 20 °C higher than step 2 for 40 s  
8 Return to step 1   

(b) Single-grain procedure: dose recovery test and De estimation d 
Step Treatment Signal 
1 b Give regenerative dose, Di  
2 Heat at 240 °C for 10 s  
3 Measure OSL at 125 °C for 1–2 s Ln, Lx 
4 Give test dose, Dt  
5 Heat at 200 °C for 10 s  
6 Measure OSL at 125 °C for 1–2 s Tn, Tx 
7 c Bleach at 260 °C for 40 s  
8 Return to step 1   
a The single-aliquot procedure was used to conduct a preheat temperature test 

on sample XBMY-OSL-5. The test dose preheat (step 5) was set 40 °C lower 
than the preheat applied to the natural and regenerative doses in step 2, 
except for the 180 °C preheat in step 2 which was accompanied by a test dose 
preheat of 160 °C in step 5. 

b For the natural dose, i = 0 and Di = 0 Gy. The OSL signals induced by 
stimulation of the natural dose and its corresponding test dose are denoted Ln 
and Tn respectively, and the OSL signals induced by stimulation of the 
regenerative doses and their corresponding test doses are denoted Lx and Tx, 
respectively. The entire sequence is repeated for several regenerative doses, 
including a zero dose and a duplicate dose, to monitor the extent of 
recuperation and to determine the recycling ratio, respectively. 

c The ‘hot optical bleach’ in step 7 consists of OSL stimulation using blue light-
emitting diodes with the sample held at a temperature 20 °C higher than the 
corresponding preheat in step 2. 

d A further (triplicate) regenerative dose cycle was included at the end of the 
single-grain SAR sequence to check for feldspar contamination of individual 
quartz grains on the basis of their OSL IR depletion ratios (Duller, 2003). The 
regenerative dose was stimulated using infrared light-emitting diodes for 40 s 
at 50 oC prior to stimulation of the OSL signal using a green laser. 



Table S2 Number of individual quartz grains measured, rejected and accepted for De determination, and the reasons for their rejection. 

Sample 

No. of 

grains 

measured 

Weak Tn signal a 

or test dose 

error >25% b 

Recuperation 

ratio >10% c 

Poor recycling 

ratio or OSL IR 

depletion ratio d 

Poor DRC fit 

to Lx/Tx e 

Ln/Tn 

consistent 

with or above 

saturation f 

Sum of 

rejected 

grains 

No. of grains 

accepted for 

De estimation 

dose recovery 
test g 

2000 1715 11 101 2 49 1878 122 

XBMY-OSL-1 3400 3066 9 118 5 46 3244 156 
XBMY-OSL-2 2800 2492 63 53 10 41 2659 141 
XBMY-OSL-3 1400 1267 23 28 2 9 1329 71 
XBMY-OSL-5 1900 1738 17 60 0 2 1815 83 

 

a Initial 0.12 s of the Tn signal is less than 3 times the corresponding background (determined from the last 0.12 s of stimulation). 

b Relative error on the Tn signal exceeds 25%. 

c Extent of recuperation (ratio of zero dose Lx/Tx signal to the Ln/Tn signal, expressed as a percentage) exceeds 10%. 

d Recycling ratio or the OSL IR depletion ratio differs from unity by more than 2σ. 
e DRC is an obviously poor fit to the Lx/Tx data points. 

f Ln/Tn signal consistent with or exceeding the saturation level of the corresponding DRC (i.e., does not intersect the DRC), and, hence, no finite 
estimate of De can be obtained. 

g Conducted on sample XBMY-OSL-1. 

 

 



Table S3 Central Age Model (CAM) De values, over-dispersion values, and number of accepted and saturated grains at 
various characteristic saturation dose (D0) thresholds. The optimum-D0 threshold values are highlighted in bold. 

Sample 

D0 

threshold 

(Gy) 

No. of grains with Ln/Tn 

values consistent with 

or above saturation 

No. of grains 

used for De 

estimation 

CAM De 

(Gy) 

Over-dispersion 

(%) 

XBMY-OSL-1 
dose recovery test 

0 49 122 126.7 ± 4.7 23.5 ± 2.9 
30 35 121 126.7 ± 4.7 23.5 ± 2.9 
60 20 116 129.9 ± 4.7 21.4 ± 2.9 
90 8 93 132.8 ± 4.9 18.5 ± 3.1 

120 0 65 136.2 ± 5.3 15.7 ± 3.6 

150  46 138.6 ± 8.0 19.3 ± 4.4 
180  39 142.6 ± 8.8 23.1 ± 5.3 
210  34 145.1 ± 8.4 22.3 ± 6.0 
240  29 147.6 ± 9.3 18.9 ± 6.9 
300  23 151.1 ± 10.1 16.1 ± 7.9 
400  18 144.1 ± 10.8 17.8 ± 8.3 

 500  16 144.1 ± 11.4 18.6 ± 8.4 

XBMY-OSL-1 

0 46 156 128.2 ± 6.2 47.4 ± 3.6 
30 40 153 130.9 ± 6.3 45.9 ± 3.5 
60 19 143 136.1 ± 6.2 40.9 ± 3.4 
90 4 114 142.6 ± 6.6 36.1 ± 3.5 

120 0 89 147.2 ± 7.5 35.3 ± 3.9 

150  67 147.8 ± 8.8 38.2 ± 4.7 
180  57 144.0 ± 9.1 37.6 ± 5.1 
210  53 146.6 ± 9.8 38.4 ± 5.4 

 240  45 155.8 ± 9.6 29.5 ± 5.3 
 270  41 151.0 ± 9.7 29.2 ± 5.5 
 300  38 152.4 ± 10.1 29.3 ± 5.7 

 0 41 141 97.7 ± 5.2 48.4 ± 4.0 



 30 37 140 98.7 ± 5.1 47.4 ± 3.9 
 60 24 132 101.8 ± 5.2 44.3 ± 3.9 
 90 9 110 105.5 ± 5.6 41.7 ± 4.1 
XBMY-OSL-2 120 2 95 110.2 ± 6.0 39.4 ± 4.2 
 150 0 74 112.4 ± 6.5 37.2 ± 4.6 
 180  61 106.8 ± 6.7 37.3 ± 5.0 
 210  48 107.9 ± 7.1 33.9 ± 5.5 
 240  41 110.7 ± 7.7 32.9 ± 5.8 
 270  36 112.6 ± 7.6 27.5 ± 6.0 
 300  30 110.9 ± 7.9 25.4 ± 6.7 

XBMY-OSL-3 

0 9 71 83.0 ± 5.6 49.6 ± 5.6 
30 6 70 84.1 ± 5.6 49.2 ± 5.6 
60 4 63 85.5 ± 5.7 46.5 ± 5.7 
90 1 43 78.5 ± 6.9 45.6 ± 6.9 

120 0 32 82.7 ± 7.5 41.3 ± 7.5 

150  25 82.7 ± 7.3 29.8 ± 7.3 
180  23 83.6 ± 7.5 28.5 ± 7.5 
210  17 79.5 ± 8.6 27.4 ± 8.6 

XBMY-OSL-5 

0 2 83 41.0 ± 2.7 46.4 ± 4.9 
30 0 76 39.3 ± 2.5 42.0 ± 4.8 

60  55 40.5 ± 2.8 39.3 ± 5.5 
90  35 43.2 ± 3.8 40.4 ± 7.2 

120  26 44.8 ± 4.9 45.3 ± 8.9 
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