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Abstract The failure prediction in sheet metal forming is
typically realized by evaluating the so called forming limit
curves (FLC). The standard experimental method is the
Nakajima test, where sometimes also the Marciniak test
setup is used. Up to now, the FLC determination was
performed with failed specimens and an one-directional
intersection line method or by manually analyzing the
estimated strains before cracking. Both methods determine
the failure by considering the occurrence of cracking and do
not consider the possibility of time continuous recording of
the Nakajima test. Consequently forming limit curves
which have been evaluated in such way are often
“laboratory dependent” and deviate for identical materials
significantly. This paper presents an algorithm for a fully
automatic and time-dependent determination of the begin-
ning plastic instability based on physical effects. The
algorithm is based on the evaluation of the strain
distribution based on the displacement field which is
evaluated by optical measurement and treated as a mesh
of a finite element calculation. The critical deformation

states are then defined by 2D-consideration of the strain
distribution and their time derivates using a numerical
evaluation procedure for detecting the beginning of the
localization. The effectiveness of the proposed algorithm
will be presented for different materials used for the
Numisheet’08 Benchmark-1 with Nakajima test.

Keywords FLC . Local necking . Optical detection of strain
localizations . Nakajima-test

Introduction

The forming limit curve (FLC) was established as one of
the most utilized tools in detecting failure due to necking or
cracks in FE-simulation. The curves of experimental
methods are normally obtained with Nakajima or Marciniak
[1] tests and have to be accomplished under laboratory-like
conditions. The ISO standardization is given in [1]. Both of
these methods are based on experimental series where
gridded samples are being deformed and simultaneously the
position of the intersection of the grid lines is being
recorded with photogrammetrical methods (Fig. 1). Typical
boundary conditions are punch velocity of 1 mm/s and
recording frequency of 10 pictures per second.

By using different sample geometries, various strain
conditions can be traced to get the corresponding points in
the FLD (Fig. 2). ß denotes the strain ratio

b ¼ 82

81
ð1Þ

Currently, different methods are used in industrial
practice for the identification of the FLC’s (Fig. 3).

W. Volk
BMW Group, Forming Technology,
Product and Process Planning,
Munich, Germany
e-mail: wolfram.volk@bmw.de
URL: www.bmwgroup.com

P. Hora (*)
Institute of Virtual Manufacturing, ETH Zurich,
Tannenstrasse 3,
8092 Zurich, Switzerland
e-mail: hora@ivp.mavt.ethz.ch
URL: www.ivp.ethz.ch

Int J Mater Form (2011) 4:339–346
DOI 10.1007/s12289-010-1012-9



The 0d-method considers usually the last detected
deformation state (“picture”) before the crack occurs and
defines the achieved maximal principal strain as the critical
strain value.

The ISO definition identifies strain distribution along a
cross section (1d-method). The FLD major strain value is
defined at the position where the second derivate of 8maj
reaches the maximum. This definition is mathematically
clear but has no physical background.

Therefore, in the present paper, an alternative will be
presented which calculates the occurrence of plastic
instability on the basis of the recorded time-dependent
crosspoint position data from the experiments and evaluate
the strain distribution in a 2D section (2d-method).

Evaluation of the strain and strain rate distributions

Input data and finite element approach

The only required input data for the new method is a full set
of global coordinates of the grid line crosspoints, which can
be handled like global coordinates of a finite element mesh,
see Fig. 4.

Following this idea all interesting physical quantities
(strains, strain rate etc.) can be calculated by using well
established methods of FE theory. If the test data is

obtained with a regular grid pattern the crosspoints of the
grid can be directly used as the vertices of the FE mesh. If
crosspoints of the optical measurement are missing the
coordinates of the voids can be calculated by suitable
mathematical methods, e.g. [3] or [4]. If stochastic spray
structures are applied for the optical measurement an
additional preparation step to generate the grid pattern
before starting the evaluation process is necessary.

Calculation of strains

For the determination of the forming limit strains a Total
Lagrange description is used, where the initial mesh is
taken as reference configuration Xk and the current picture
as present configuration xk. The strains are evaluated using
classical FEM 4-node membrane element theory, described
for example by [5].

Following this the linear Cauchyian strain tensor can be
described with:

eij ¼ 1

2
ðHij þ ðHijÞT Þ ð2Þ

where

Hij ¼ @ui
@xj

¼ J�1 @Ni

@xa
ðxj � XjÞ ¼ J�1 @Ni

@xa
uj ð3Þ

Fig. 1 Nakajima test setup.
Optical measurement system [2]

Fig. 2 Nakajima specimen
shapes (W. Hotz, FLC-Zurich).
Dependency of sample
geometry from strain path
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Therein ui is the displacement vector, J−1 is the inverse
of the Jacobian and Ni the isoparametric functions
Ni ¼ 1=4 ð1� x1Þð1� x2Þ.

The plane principal strains result from the characteristic
equation detðeij � ldijÞ ¼ 0 with:

e1 ¼ 1
2 ðe11 þ e22 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe11 � e22Þ2 þ 4e122

q
e2 ¼ 1

2 ðe11 þ e22 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe11 � e22Þ2 þ 4e122

q ð4Þ

Ultimately the Henckyian strain gauge is applied due to
large strain components because of the Total Lagrange
description:

81 ¼ lnð1þ e1Þ
82 ¼ lnð1þ e2Þ
83 ¼ �ð81 þ 82Þ

ð5Þ

With these strain components, the points in the FLC are
determined.

Calculation of strain rates

For the determination of the strain rates and especially of
the thinning rate, it is necessary to take the numerical
derivative of the deformation gradient with respect to time
into account. The determination of the deformation gradient
tensor on the basis of the displacement gradient is
performed as follows:

Fij ¼ ðI þ HijÞ ð6Þ
Subsequently, with the derivative of the deformation

gradient, the velocity gradient tensor is figured out
according to the following formula [6]:

Lij ¼ @Fij

@t
Fij

�1 ¼ �
FijFij

�1 ð7Þ

Fig. 4 Interpretation of measurement grid as finite element mesh

0D-Method [2] 

1D-Method [1] 
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Fig. 3 Different areas of the FLC evaluation methods

Fig. 5 Determination of
�
FijðtÞ by using quadratic least square

interpolation with seven time history points
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and hence, the deformation rate tensor can be computed:

Dij ¼ 1

2
ðLij þ Lij

T Þ ð8Þ

Finally, the plane principal components of the deforma-
tion rate are evaluated by computing the eigenvalues D1

and D2 of the deformation rate tensor Dij. To calculate the
necessary thinning rate, the deviatoric character of D is
used:

�e :¼ D3j j ¼ �ðD1 þ D2Þ ð9Þ

The thinning rate �e is the main physical quantity to
identify the picture with beginning instability and calculat-
ing the strain values for the entries of the FLC.

The numerical derivative of the deformation gradient
will be very un-accurate, if no smoothing over the time
steps is applied. For those reasons in [3] a quadratic
interpolation over time with typically seven time history
points is proposed for the deformation gradient Fij(t), see
Fig. 5. Alternatively one can use Bézier-splines or B-
splines interpolation methods [7].

Algorithm for detection of the forming limit states

Plastic instability

From a continuum mechanical point of view, the plastic
instability is the local concentration of the remaining plastic
deformation in small (shear-) bands and a fall-back of the
other areas in the elastic range (Fig. 6).

Hence, two effects can be noticed, namely the strain
inside this band increases on the one hand and on the other
hand it has to remain roughly constant outside. This is
displayed in Fig. 7. It is remarkable in that figure that the
characteristics of thinning over time seem to grow relatively
continuously, which can cause problems for an automatic
detection of beginning plastic instability.

Therefore, it is helpful to have a look at the distribution of
the thinning rate as shown in Fig. 8. It demonstrates that the
described effect is much more distinct if the strain rate, or
rather the thinning rate, is in focus. This is due to the fact that
the thinning rate outside of the instability area has to
decrease, which intensifies even more the effect of an
increase inside this area. In the given example one can now
identify the beginning instability (marked with white arrow).

Fig. 7 Time dependent evolution of the necking. Mutation of
negative thinning over time until the beginning of instability [8]

Fig. 6 Development of the
localized necking by the
reduction of the plastic zone to
the shear band(s)
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Consequently, the following detailed approach is based
on finding a robust criterion to detect the beginning of
instability by accounting for the distribution of the thinning
rate.

Detection of beginning plastic instability

For the detection of beginning instability it can be used the
two main characteristic effects of localized necking. These
are the local concentration of remaining plastic deformation
and the acceleration of thinning rates in the instability zone
until the crack occurs. In [3] the so-called frequency
diagram was introduced and in [7] an integral value method
is proposed with taking into account the developing
geometrical differences between stable and instable areas.
The following algorithm combines the advantages of these
two methods, the clear physical motivation combined with
an easy implementation.

Identification of necking area

The first step of the algorithm is the identification of a
sufficient number of elements which are sure in the
instability zone. Therefore Γk is introduced as set of sorted

thinning rates �ekj for all elements j of the analysis area and
every picture k.

Γ k :¼ �ek1
�

; �ek2; ::::; �ekn
�
with �eki�1 � �eki for i ¼ 2; ::::; g

and k ¼ 1; ::::; b

ð10Þ
Therein g is the number of elements of the analysis area

and b the number of pictures. It is recommended to take
about 30–40 pictures to ensure a sufficient database for the
identification of the beginning instability. The representa-
tive maximum thinning rate �emax is now defined as the
arithmetic mean value of the five highest thinning rates in
the second last picture

�emax ¼ 1=5
Xi¼g

i¼g�4

�eb�1
i ð11Þ

It is recommended not to take the last picture before the
crack occurs due to slight numerical problems in the
determination of the time derivative, see Fig. 5. Every
element with a thinning rate higher than a �emax in the
second last picture is identified as element in the necking
zone. The set N is the union of all of these elements and
contains of n elements. The elements of the sets Nk are the
thinning rates of all elements of N for every picture k.

N ¼ 8Elemwith �eb�1
i � a �emax

Nk ¼ N �ek1
�

; N �ek2; ::::; N �ekn
� ð12Þ

The factor α should be chosen that the set Nk contains of
7 to 15 elements for a 1 mm grid and 5 to 10 elements for a
2 mm grid. Experience has shown that this can be obtained
with α between 0.5 and 0.6. In Fig. 9 three examples are
shown of the identified necking area for three different
strain paths (uni-axial, plain strain, bi-axial).

Identification of beginning instability

The next step in the algorithm is the identification of
beginning instability. Therefore the representative thinning

Fig. 9 Identified necking areas N of HC220YD, 1.6 mm (Numisheet 2008 Benchmark material), for uni-axial ( b ≈ − 0.5, left), plain strain ( b ≈ 0,
middle) and bi-axial strains ( b ≈ 1, right), α=0.6

Fig. 8 Time dependent evolution of the necking. Mutation of
negative thinning rate over time until the beginning of instability
[8]
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rate �ekrep is introduced as arithmetic mean value of all
elements of every set Nk for every picture k.

�ekrep ¼ 1=n
Xi¼n

i¼1

N �eki ð13Þ

In Fig. 10 the set of �ekrep (last 30 pictures before the
crack occurs) is plotted for plain strain condition of the
HC220YD Numisheet Benchmark material. The represen-
tation of the diagram is characteristic: A nearly linear
increase with low slope at the beginning, a linear increase
with high slope at the end and a curved area in between.

The interpretation of this characteristic behaviour is
obvious. At the beginning one can see the stable nearly
homogeneous deformation and the localized necking as
instable deformation at the end until the crack occurs. In
Fig. 11 it is shown that this typical behaviour is also
remarkable for uniaxial strain ( b ≈ − 0.5) and biaxial strain
( b ≈ 1.0).

The difference between the strain conditions is the
characteristic occurrence of the curved area, which is also
a measurement for the different amount of diffuse necking.
Due to the fact that all strain conditions show the presented
typical behaviour it is now used for the detection of

beginning instability. The stable and instable areas are fitted
with two linear curves by using the least square method. The
picture which is next to the intersection of these two straight
lines will be defined as beginning instability, see Fig. 12.

For the identification of the stable area it is recommended
to start with the fourth picture because of the determination of
the time derivative with seven history points, see Fig. 5. Then
the sequence of linear curve fitting is applied with at least
four points up to the maximum number of available points.
The coefficients of the fitted linear curve can be calculated
easily with the Gaussian normal form.

�erstðkÞ ¼ arst þ brst � k
arst

brst

 !
¼ Ar

st
TAr

st

� ��1
Ar

st
Tcrst; r ¼ 4; ::::; b� 3

ðAr
stÞj1 ¼ 1; j ¼ 1; ::::; r; ðAr

stÞj2 ¼ jþ 3; j ¼ 1; :::::; r

ðcrstÞj ¼ �e jþ3
rep ; j ¼ 1; ::::; r

ð14Þ

Therein b is the number of available pictures, arst and brst
are the coefficients of the linear curve fitting for the stable
area with taking r-pictures into account starting from the
fourth one. With the coefficients arst and brst one can define
the sequence of mean least square differences drst .

drst ¼ 1=ðr þ 2Þ
Xi¼r

i¼�2

arst þ ðiþ 3Þ � brst � �eiþ3
rep

� �2
ð15Þ

The minimum of the sequence drst denotes the coeffi-
cients armin

st and brmin
st for the linear curve fitting of the stable

area of �ekrep.

drmin
st ¼ MinðdrstÞ; r ¼ 4; :::; b� 3 ð16Þ

In the same manner the linear curve fitting of the instable
area of �ekrep can be realized getting the coefficients asmin

in and
bsmin
in . The only difference is to take the last picture as

starting point of the approximation, due to the fact that only

Fig. 11 Representative thinning
rate �ekrep for uniaxial strain (left)
and biaxial strain (right)
specimen, HC220YD, 1.6 mm,
Numisheet 2008 Benchmark
material

Fig. 10 Representative thinning rate �ekrep of last 30 pictures before
crack, plain strain specimen, HC220YD, 1.6 mm, Numisheet 2008
Benchmark material
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a limited number of pictures in the instable area is available
and the numerical deviations of the time derivative can be
accepted.

�esinðkÞ ¼ asin þ bsin � k
asin

bsin

 !
¼ As

in
TAs

in

� ��1
As

in
Tcsin; s ¼ 3; ::::; b

ðAs
inÞj1 ¼ 1; j ¼ 1; ::::; s; ðAs

inÞj2 ¼ b� sþ j; j ¼ 1; :::::; s

ðcsinÞj ¼ �eb�sþj
rep ; j ¼ 1; ::::; s

dsin ¼ 1=s
Xi¼s

i¼1

asin þ ðb� sþ iÞ � bsin � �eb�sþi
rep

� �2
dsmin
in ¼ MinðdsinÞ; s ¼ 3; ::::; b

ð17Þ
The crosspoint kcrit of the linear curve fittings for the

stable and instable area is given by

kcrit ¼ asmin
in � armin

st

brmin
st � bsmin

in
: ð18Þ

The first picture with beginning instability kinst is defined
as the picture which is next to kcrit and the previous picture
as the last stable one kstab.

kinst ¼ Intðkcrit þ 0:5Þ; kstab ¼ kinst � 1 ð19Þ

Calculation of strain values for the FLC

The calculation of strain values for the entries in the
FLC is the last step in the presented algorithm. The
mean values of the principle strains 8kstab

1 and 8kstab
2 of all

elements of the set N (see Formula 12) give a unique
definition for the entries of the FLC for the identified
picturekstab.

8FLC
1 ¼ 1=n

Pi¼n

i¼1

N8kstab
1

8FLC
2 ¼ 1=n

Pi¼n

i¼1

N8kstab
2

ð20Þ

FLC-evaluation examples

Figure 13 demonstrates for the Numisheet BM1 materials
HC220YD with thicknesses of 0.8 mm and 1.6 mm as well
as the HC260LAD (1.1 mm thickness) the strengths of the
proposed 2D evaluation method. Because neither the
position on the specimen nor the time point has to be fixed
manually, the procedure is very robust. The Nakajima
experiments executed by two different labs deliver very
similar FLD results. For the 1.6 mm material laboratory 1
has used a mesh with 2 mm grid size and laboratory 2 a
mesh with 1 mm grid size. Therefore the very slight
differences between the two FLD curves can be explained
by the different resolutions. Nevertheless the robustness of
the algorithm is remarkable even for different grid sizes
(see Fig. 13).

HC220YD, 0.8 mm HC220YD, 1.6 mm HC260LAD, 1.1 mm 

Fig. 13 Detection of the FLC. Comparison of different materials, laboratories and mesh sizes

Fig. 12 Detection of beginning instability with linear curve fitting
using least square method, first instable picture for the example is
identified as number 24, last stable one is number 23
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Conclusions and outlook

The new evaluation method presented here has two crucial
benefits. On the one hand, it allows a fully automatic derivation
of the FLC on the basis of experimental testing results and, on
the other hand, it is now possible to use the time continuous
recording of the testing machines to obtain the beginning of
plastic instability and therefore the first occurrence of material
failure. The algorithm is clear, easy to implement and bases on
a physical motivation. The robustness has been proven by
numerous tests in different laboratories even with different
mesh sizes. It seems to be interesting to compare the obtained
experimental results with theoretical and numerical investiga-
tions, e.g. by evaluating the so called acoustic tensor [9].
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