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Abstract. The coupled tasks scheduling problem is a class of schedul-
ing problems introduced for beam steering software of sophisticated
radar devices, called phased arrays. Due to increasing popularity of such
radars, the importance of coupled tasks scheduling is constantly grow-
ing. Unfortunately, most of the coupled tasks problems are NP-hard,
and only a few practically usable algorithms for such problems were
found. This paper provides a survey of already known complexity re-
sults of various variants of coupled tasks problems. Then, it comple-
ments previous results by providing experimental results of two new
polynomial algorithms for coupled tasks scheduling, which are: an exact
algorithm for 1|(1, 4, 1), strict chains|Cmax problem, and a fast heuris-
tic algorithm for more general 1|(1, 2k, 1), strict chains|Cmax problem,
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Keywords. Coupled tasks, scheduling, complexity theory, heuristic
algorithms.

Mathematics Subject Classification. 9002, 9008, 90B30,
90B35, 90C27, 90C59, 90C60.

Received October 5, 2012. Accepted October 12, 2012.

1 Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Z. Noskowskiego 12/14,
61-704 Poznan, Poland. jblazewicz@cs.put.poznan.pl
2 Institute of Computing Science, Poznan University of Technology, ul. Piotrowo 2, 60-965
Poznan, Poland
3 Computer Science Division, Physics Faculty, Adam Mickiewicz University, ul. Umultowska
85, 61-614 Poznan, Poland

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2012

http://dx.doi.org/10.1051/ro/2012020
http://www.rairo-ro.org
http://www.edpsciences.org


336 J. BLAZEWICZ ET AL.

Figure 1. An example of a coupled task.

1. Introduction

According to the definition given by Baker in [3], scheduling is a problem of
allocating resources over time in order to perform a given set of tasks. In practice,
resources are processors, tools, manpower or money. Tasks could be characterized
by parameters like due dates, deadlines, ready times, precedence constraints etc.
The schedule quality can be measured using various criteria, depending e.g. on the
optimization function. A survey of the many important results can be found in the
handbooks [10, 25]. The commonly used notation, as well as general formulation
of scheduling problems are provided by Brucker [13] and Blazewicz et al. [10].

The coupled tasks problem was firstly stated in early eighties by Shapiro [31].
A task is called coupled if it contains two operations Ti1 and Ti2 where processing
of the second operation can start only after given delay (called gap) succeeding
completion of the first operation. An example of a coupled task is given in Figure 1

This problem was used to model phased array radars, which were being installed
on board of US Navy ships to track incoming guided missiles. According to the
classic definition (see [32]) a phased array radar is “a directive antenna made up
of individual radiating antennas, or elements, which generate a radiation pattern
whose shape and direction is determined by the relative phases and amplitudes of
the currents at the individual elements”. For the scope of this paper, we wish to
emphasize the most distinctive feature of phased array radar - its ability to perform
beam steering and directing in pure electronic way, without any mechanically
rotating antennas. This gives the phased array radar unique ability to transmit
several pulses into different directions before the echo of the first pulse manages to
return to the antenna. Therefore, a single phased array radar is able to track several
targets simultaneously, but only if the antenna is directed to collect echoes in the
perfectly appropriate time units. This is the classical coupled tasks example: the
first operation is the transmission of a pulse, the gap is the period where the pulse
travels somewhere in the air but the radar itself is idle and the second operation
is the reception of the echo.

From this time importance of such type of scheduling constantly grows, due to
increasing popularity of phased array radars in various military applications (see
for example Orman et al. [29]). Moreover, due to replacement of the first gener-
ation phased array radars by various navies and the availability of obsolete but
still operational military radars to some civilian institutions, the last years bring
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several new applications of phased array radars and applications of coupled tasks
scheduling. The most notable application is an experimental phased array weather
radar capable of measuring the speed of wind inside violent weather phenomena,
like hurricanes and tornadoes (see [22]). Some new applications of coupled tasks
scheduling were described in [21].

Brauner, Finke, Lehoux-Lebacque, Potts and Whitehead [12] used the coupled
tasks scheduling approach for modeling a single machine no-wait robotic cell in
production systems. In general, a robotic cell is a fully automated production
node in a flexible manufacturing system (FMS). Such systems constantly become
more and more popular in industrial plants due to their flexibility. The important
feature of the robotic cell is that its input and output are transported by a robot
and the transport time is greater than zero(cf. [11]). Therefore, the periods where
the robot carries parts are modeled by operations and the period in which the
robot is idle and waits for the output to be processed, is modeled by the gap.

For the purpose of modeling various applications described above, a large num-
ber of different subproblems and variants of coupled tasks scheduling were formu-
lated and investigated in the past.

Taking into consideration applications, the case of scheduling identical coupled
tasks with unit processing times on a single machine is specially interesting, i.e.
the problem 1|(1, L, 1)|Cmax and its various subproblems (cf. Sect. 2 for prob-
lem notation). The strong NP-completeness of the case, where the precedence
constraints graph is a general graph, was shown in [8]. On the other hand,
polynomial solvability of the 1|(1, 2, 1), strict tree|Cmax case was shown in [34]
and polynomial solvability of the 1|(1, L = 2k, 1), strict chains|Cmax was shown
in [15]. These results were generalized by a proof of polynomial solvability of the
1|(1, L, 1), strict chains|Cmax problem in[16]. However, the algorithms used for
the proofs of polynomial solvability are not well suited for practical applications
due to the huge complexity constants. Therefore, in this paper, we complement
the above results by presenting analysis of practically usable algorithms (exact
and a heuristic) for the problem 1|(1, 4, 1), strict chains|Cmax and thus present a
way to solve the considered problem in practice.

In general, the problem analyzed in the paper concerns coupled tasks schedul-
ing on a single processor. After a detailed introduction of the subject and a pre-
sentation of the most interesting results in the area, new scheduling algorithms,
complementing the existing ones will be presented. The organization of the paper
is as follows. Section 2 contains problem formulation while the state of the art
of the most important results in the area of coupled tasks scheduling is given in
Section 3. The algorithms tested in our experiment are described in Section 4. The
results of the experiment are presented in Section 5. We conclude in Section 6.

2. General problem formulation

In general, a scheduling problem is characterized by two sets: the set
T = {T1, T2, . . . , Tn} of tasks to be processed and the set P = {P1, P2, . . . , Pm}
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of processors (machines) being able to process the tasks. Thus, scheduling means
finding an assignment of processors from P to tasks from T in order to complete all
these tasks. Sometimes a single task Tj may be divided into a sequence of smaller
subtasks, called operations.

Our scheduling problem has certain specificity which will be explained in the
following section. As defined in Section 1 in the coupled task scheduling problem,
each task Ti is composed of two operations Ti1 and Ti2 which must be processed
one after the other on the same processor at the distance (gap) of L units. Their
processing times are pi1 and pi2, respectively. Tasks may be also ordered by the
precedence relation. Further details are given below together with a description of
the notation of scheduling problems.

To describe scheduling problems the standard α|β|γ notation, introduced by
Graham, Lawler, Lenstra and Rinnooy Kan [19] and then further extended by
Blazewicz et al. [10], is commonly used.

Field α characterizes the processors in the system. In this paper two types of
processor systems are considered:

• Single machine system. In such case α = 1.
• Systems which contain fixed number of parallel processors. In such case α =

Pm where m is the number of processors in the system. (For the description
of other types of processors see [10] or [6, 7]).

Field β characterizes the set of tasks and additional resources. In this paper the
following notation in this field is used:

• (pj1, [L
min
j , Lmax

j ], pj2) means that the tasks are coupled, where
– pj1 is the processing time of the first operation.
– [Lmin

j , Lmax
j ] is the lower and upper bound of the gap. If ∀j Lmin

j = Lmax
j

this field is usually shortened to Lj and such problem is called the exact
gap problem.

– pj2 is the processing time of the second operation.
• pj = 1 means that the processing time of each task is equal to 1. This notation

is used for non-coupled task problems.
• strict signifies that the precedence constraints are strict. It implies that the

processing of the first operation of a subsequent task is not started un-
til the processing of the second operation of the preceding task is finished
(i.e. strict precedence constraints mean that Ti → Tj =⇒ Ti2 → Tj1). The
other type of precedence constraints are weak precedence constraints where
Ti → Tj =⇒ Ti1 → Tj1 ∧ Ti2 → Tj2. In general, precedence constraints may be
represented by different graphs. In this paper, chains, intrees, outtrees and
general graphs (prec) are used. An interested reader may consult [10] for the
definitions of these graphs.

• rj means different ready (arrival) times of tasks.
• pmtn means that the tasks are preemptive, i.e. processing of each tasks may be

stopped at any moment and resumed later. Lack of pmtn in the description of
the problem means that once started, processing of a task cannot be preempted
until its completion.



NEW ALGORITHMS FOR COUPLED TASKS SCHEDULING – A SURVEY 339

Field γ characterizes the optimality criterion of the problem. In this paper the
following criteria are considered:

• Cmax is called makespan or schedule length. Cmax is equal to completion time
of the last processed task, i.e. Cmax = max

j=1,...,n
(Cj) where Cj is the completion

time of the last operation of task Tj .
•

∑

Cj - mean flow time is the sum of completion times of all tasks in the

instance, i.e.
∑

Cj =
n
∑

j=1

Cj , where Cj is the completion time of the last

operation of task Tj .

A brief summary of the notation used in this paper is as follows:

• n is the number of coupled tasks,
• h is the number of chains in a precedence graph,
• L is the length of the gap,
• hi is the number of coupled tasks in i-th chain,
• I is a given instance of the problem,
• S is a schedule, either complete or partial,
• segment is a coupled tasks partial schedule.

As an example, one of the problems considered in this paper 1|(1, 4, 1), strict
chains|Cmax shall be defined as follows:

• there is a single processor in the system,
• all tasks are coupled,
• all tasks are identical,
• all gaps are exact,
• processing time of each operation is equal to 1,
• length of each gap is equal to 4,
• precedence constrains are strict,
• precedence constraints’ graph has a form of chains,
• the optimization criterion is Cmax.

We refer the reader to [8,10,13] for a more detailed description of the notation
used in scheduling area.

3. Coupled tasks - the state of the art

For the purpose of modeling different applications described above, a large num-
ber of different subproblems and variants of coupled tasks scheduling were formu-
lated and investigated in the past. This section tries to provide a brief survey of
current coupled tasks research domain and to point out the most important results
achieved.
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3.1. Arbitrary processing times and exact gap

The coupled task problems with arbitrary processing times and exact gap were
studied first by Orman and Potts [27]. Most of these problems were proved to
be NP-hard in the strong sense, however, a few important polynomial algorithms
were also found. It is interesting that the case of identical tasks, which seems to be
the simplest, was solved by Ahr et al. [2] almost a decade after the other variants.
The summary of the arbitrary processing times with exact gap case is as follows:

• NP-hard problems (in the strong sense)
– 1|(aj , Lj , bj)|Cmax – Orman and Potts [27].
– 1|(pj , pj , pj)|Cmax – Orman and Potts [27].
– 1|(a, Lj , b)|Cmax – Orman and Potts [27].
– 1|(a, L, bj)|Cmax – Orman and Potts [27].

• Polynomially solvable problems
– 1|(a, L, b)|Cmax – Ahr, Bekesi, Galambos, Oswald and Reinelt [2] and a

logarithmic complexity algorithm by Baptiste [4].
– 1|(p, p, bj)|Cmax – Orman and Potts [27].
– 1|(p, L, p)|Cmax – Orman and Potts [27].

3.2. Unit processing times and exact gap

The coupled task problem with unit processing times and exact gap was intro-
duced as a relaxation of the original problem, due to NP-hardness of the most
interesting arbitrary processing times cases. The unit processing times variant of
the coupled task problem was initially developed by Wenci Yu [35, 36] and then
investigated by Blazewicz, Ecker and Tanas mainly in [8, 9, 15, 16]. The summary
of the unit processing times with exact gap case is as follows:

• NP-hard problems (in the strong sense)
– 1|(1, Lij , 1), strict chains|Cmax – Wenci Yu [35,36].
– 1|(1, L, 1), strict prec|Cmax – Blazewicz, Ecker and Tanas [8, 9].

• Polynomially solvable problems
– 1|(1, L, 1), strict chains|Cmax – Ecker and Tanas proved polynomial solv-

ability in [16], although with huge constant. A much more practically usable
O(n log n) approximation is given in this paper (the FALE algorithm).

– 1|(1, 2, 1), strict tree|Cmax – Whitehead [34].
– 1|(1, 3, 1), strict chains|Cmax – Ecker and Tanas [15].
– 1|(1, 4, 1), strict chains|Cmax – the algorithm FEL4 in this paper.

3.3. Non-exact gap

As we defined, the variant of coupled tasks problem where the length of the
gap is defined by an interval or a function, is called the non-exact gap prob-
lem. The non-exact gap problems were initially investigated by Gupta [20] and then
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by Wenci Yu [35]. It is not surprising that even the simplest non-exact gap problems
are NP-hard:

• NP-hard problems
– 1|(aj, [Lj ,∞], bj)|Cmax – Gupta [20].
– 1|(aj, [Lj , Lj + ε], bj)|Cmax – exact gap with tolerance (i.e. the gap

may be slightly enlarged without infeasibility of solution) – Potts and
Whitehead [30].

3.4. Problems with ready times

For every scheduling problem its variant with different ready times of the tasks
may be formulated. In this case, a task cannot be started before a particular time
moment, which is called ready time of the task. The coupled tasks problems with
different ready times were analyzed by Brucker and Knust [14], and the results
achieved were as follows:

• NP-hard problems
– 1|(pj, L, pj), strict in − tree, rj |

∑

Cj – Brucker and Knust [14].
• Polynomially solvable problems

– 1|(pj, L, pj), strict out − tree, rj |
∑

Cj – Brucker and Knust [14].
– 1|(1, 1, 1), strict prec, rj |

∑

Cj – Brucker and Knust [14].

3.5. Cyclic problems

A cyclic case of a scheduling problem is when a set of tasks shall be repeated in-
finitely with a given frequency. Therefore, the goal of scheduling is not to minimize
schedule length (which is in such case infinite by assumption) but to ensure that
all tasks fit in the given time-window. Such a variant of scheduling problems is
widely used in embedded machine controller, e.g. embedded computers which con-
trol machinery parameters. The cyclic case was investigated by Lehoux-Lebacque,
Brauner and Finke [24], and the following result was achieved:

• Polynomially solvable problems
– 1|(pj, L, pj), cycl|Ctmin single machine cyclic coupled tasks with the mini-

mization of the cycle time – Lehoux-Lebacque, Brauner and Finke [24].

3.6. Heuristic solutions for some coupled tasks scheduling problems

NP-hardness of important variants of coupled task scheduling problems
caused the need for heuristic algorithms being able to generate acceptable
solutions in practical applications. The most notable results were obtained
in [1, 5, 17, 18, 23, 28, 30]. Table 1 summarizes the current state of the art of coupled
tasks scheduling domain. To let this table remain simple, some special cases (i.e.
cyclic problems) were omitted.
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Table 1. Results.

Problem Complexity Best polynomial

algorithm

1|(aj , Lj , bj)|Cmax strongly NP-hard [27] n/a unless P=NP

1|(pj , pj , pj)|Cmax strongly NP-hard [27] n/a unless P=NP

1|(a, Lj , b)|Cmax strongly NP-hard [27] n/a unless P=NP

1|(a, L, bj)|Cmax strongly NP-hard [27] n/a unless P=NP

1|(a, L, b)|Cmax polynomial [2] O(log n) [4]

1|(aj , p, p)|Cmax polynomial [27] O(n) [27]

1|(p, p, bj)|Cmax polynomial [27] O(n) [27]

1|(p,L, p)|Cmax polynomial [27] O(n) [27]

1|(1, L, 1), strict chains|Cmax polynomial O(n log n),

if L = const. [16] and this paper

1|(1, 2, 1), strict tree|Cmax polynomial [34] O(n2) [34]

1|(1, 3, 1), strict chains|Cmax polynomial [15] O(n log n) [15]

1|(1, 4, 1), strict chains|Cmax polynomial - this paper O(n log n) - FEL4

in this paper

1|(1, Lij , 1), strict]chains|Cmax NP-hard [36] n/a unless P=NP

1|(1, L, 1), strict prec|Cmax strongly NP-hard [8,9] n/a unless P=NP

1|(aj , [Lj ,∞], bj)|Cmax NP-hard [20] n/a unless P=NP

1|(aj , [Lj , Lj + ε], bj)|Cmax NP-hard [30] n/a unless P=NP

1|(pj , L, pj), strict in − tree, rj |
∑

Cj NP-hard [14] n/a unless P=NP

1|(pj , L, pj), strict out − tree, rj |
∑

Cj polynomial [14] O(n2) [14]

1|(1, 1, 1), strict prec, rj |
∑

Cj polynomial [14] O(n2) [14]

4. Polynomial algorithms for 1|(1, 4, 1), strict chains|Cmax

As we mentioned in Section 3, we complement the existing results by present-
ing an analysis of practically usable algorithms (exact and a heuristic one) for
1|(1, 4, 1), strict chains|Cmax. Three algorithms will be given and analyzed. The
first one is a greedy algorithm that is very fast but not necessarily optimal. The
second - FEL4 - is an optimal algorithm specialized for the case where L = 4.
The third one - FALE - is an approximation algorithm for any even gap length. In
Section 5 they will be submitted to tests.

4.1. Greedy algorithm

The first algorithm considered is a simple and quick greedy algorithm that is
used as the upper bound on the quality of the obtained solutions (i.e. no practically
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Figure 2. An example - greedy schedule (top) and the optimal one (bottom).

Figure 3. Constructing schedule from segments.

usable algorithm shall generate results worse than the greedy algorithm). The logic
behind the greedy algorithm is as follows: it assigns to the first allowed position,
the first available task (starting from the longest chain to the shortest one), and
repeats this step until all tasks are scheduled. The complexity of the algorithm
is obviously O(n log n) but it does not yield optimal solutions in some cases, as
illustrated in the following example.

Example 4.1. Let us consider an example with four chains; the first one consists
of 2 tasks while the remaining have only one task each. The makespan for greedy
schedule is 15, while the optimal solution’s makespan is 12. Both schedules are
presented in Figure 2; idle times are marked with grey.

4.2. The FEL4 algorithm

The second algorithm analyzed in this paper is FEL4, which is a specialized
exact algorithm designed for the L = 4 case. The algorithm is an improved and
optimized version of a more general algorithm mentioned in [15] which was adopted
to solve problem 1|(1, 4, 1), strict chains|Cmax. FEL4 is based on the idea that
every feasible schedule can be presented as linearly ordered set of partial schedules
(segments), each of which contains a limited number of tasks. An upper limit on
this number does not depend on the instance size. In case of Example 1, these
segments will have the form presented in Figure 3. It is obvious that there must be
at least one task in a segment and that a segment should be constructed in O(1)
time because the size of the segment is limited by a constant.
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Such approach divides our problem into maximum n subproblems, each of com-
plexity O(1). Since FEL4 guarantees the optimal results [15], it provides the lower
bound on the makespan used for evaluation of other algorithms.

In the FEL4 algorithm, the following procedure is applied to find the optimal
schedule. Firstly, the optimal order of the set of tasks shall be obtained:

1. Sort all chains in not ascending order of their lengths.
2. Convert the given instance I1 of the problem 1|(1, 4, 1), strict chains|Cmax to

the instance I2 of the problem P5|pmtn|Cmax as follows:
• The number of tasks in I2 is equal to the number of chains in I1.
• Processing time of a task in I2 is equal to the length of the chain corre-

sponding to this task in I1.
• Preemptions are allowed only in integer points of time.

3. Compute the value of

D = max

{⌈

1

5
n

⌉

, max
1≤i≤h

hi

}

4. Create a schedule S2 for the instance I2 using the McNaughton’s, [10,26] algo-
rithm in time-window 〈0, D〉.

5. Sort the coupled tasks in non-ascending order of starting times of their cor-
responding tasks in the schedule S2. If for two tasks their starting times are
equal, the task with the lower number processed on the machine, goes first.
Create the list L containing all the coupled tasks in that order.

Secondly, when the coupled tasks are sorted in proper order, the optimal sched-
ule shall be created:

6. Create FALE schedule SFALE (see Sect. 4.3) for the instance I1. Then compute
the length CFALE

max of the schedule SFALE and the number and the number
IDLE(SFALE) of the units of idle time in the schedule SFALE.

7. Create all possible segments S1
i which contain no less than 1 and no more than

5 tasks taken from the beginning of the list L and such that no segment is
longer than 24 units of time. Let us denote by S the set containing all of those
schedules.

8. S2 = ∅.
9. For each partial schedule Si ∈ S

(a) Create the list Li which is the list L with all tasks belonging to schedule Si

removed.
(b) Create all possible segments S2

j which contain no less than 1 and no more
than 5 tasks taken from the beginning of the list Li and such that no
segment is longer than 24 units of time.

(c) For each segment S1
j create all possible schedules S2

i,j by concatenat-
ing Si and S2

j and then setting the starting time of the first task
of S2

j to 0,−1,−2, . . . ,−24 relative to the end of the schedule Si

and then setting starting times of all other tasks in S2
j appropriately.
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(d) For each schedule S2
i,j compute and store the following values:

i. The length of the schedule C
S2

i,j

max.
ii. The number IDLE−24(S

2
i,j) of units of idle time appears in the schedule

S2
i,j earlier than C

S2

i,j

max − 24 (i.e. such units of idle time that cannot be
filled in further steps of the algorithm).

(e) For each schedule S2
i,j add this schedule to the set S2 if and only if all the

following conditions are fulfilled:
i. The schedule S2

i,j is feasible.

ii. C
S2

i,j

max − 24 ≤ CFALE
max .

iii. IDLE−24(S
2
i,j) ≤ IDLE(SFALE).

If any of the above condition is not fulfilled drop the schedule S2
i,j .

10. For each pair of schedules
(

S2
i,j , S

2
p,q

)

∈ S2 × S2 such that the last 24 units of
time of both schedules are identical (the order in which are processed on the
same machine in the corresponding parallel schedule, is not taken into account),
remove the longer schedule from the set S2.

11. If all schedules in S2 contain exactly n tasks choose the shortest one and stop
the algorithm.

12. S = S2, go to 7.

The complexity of the FEL4 algorithm can be computed in the following way:

1. Sorting in the Step 1 has complexity O(n log n).
2. Conversion in the Step 2 has complexity O(n) due to the obvious fact that

h ≤ n.
3. Computation of the formula in the Step 3 has the complexity O(n) again

because h ≤ n.
4. The McNaughton algorithm in the Step 4 has the complexity O(n) again be-

cause h ≤ n.
5. Sorting in the Step 5 has complexity O(n log n).
6. The FALE algorithm in the Step 6 has complexity O(n log n) (see Sect. 4.3).
7. The number of segments created in the Step 7 does not depend on n and thus

complexity of this step is O(1).
8. The cardinality of the set S and so the maximum number of repetitions of the

loop beginning in Step 9 does not depend on n and thus is O(1).
9. Creation of the list in the Step 9a has complexity O(n) because no schedule

can contain more than n tasks.
10. Complexity of the Step 9b is the same as complexity of the Step 7 and thus

O(1).
11. The number of partial schedules in the Step 9d does not depend on n. Each

subsequent computations has complexity O(n) because any partial schedule
may be longer than 6n units of time.

12. The number of partial schedules in the Step 9e does not depend on n. The
feasibility check has complexity O(1) because, for the chains precedence graph,
each task may have no more than one precedessor.
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13. The maximum number of pairs in the Step 10 does not depend on n because
cardinality of none of the sets depends on n.

14. The maximum number of partial schedules in the Step 11 does not depend on
n and thus complexity of this step is O(1).

Therefore, the final complexity of the FEL4 algorithm is O(n log n). The more
detailed complexity analysis and the proof of optimality of the general (i.e. for
arbitrary L) version of the FEL4 algorithm is presented in [15]. The optimization
done for L = 4 does not change the theoretical complexity of algorithm FEL4,
but due to significant reduction of complexity constants makes the practical im-
plementation of the algorithm possible.

4.3. The FALE algorithm

The third algorithm is called FALE (cf. [33]), which is an approximation algo-
rithm, that works for any L = 2k. This algorithm consists of the following steps:

1. Sort all chains in not ascending order of their lengths.
2. Convert the instance I of the problem 1|(1, L, 1), strict chains|Cmax to the

instance I2 of the problem P (L + 1)|pmtn|Cmax as follows:
• The number of tasks in I2 is equal to the number of chains in I

• Processing time of a task in I2 is equal to the length of the chain corre-
sponding to this task in I.

• Preemptions are allowed only in integer points of time.
3. Compute the value of

D = max

{⌈

L
L
2

+ 1
·

c
∑

i=1

ci

⌉

, max
1≤j≤c

cj

}

.

4. Create a schedule S2 for the instance I2 using the McNaughton’s algorithm in
time-window 〈0, D〉.

5. Sort the coupled tasks in not ascending order of starting times of their cor-
responding tasks in the schedule S2. If for two tasks their starting times are
equal, the task with the lower number processed on the machine, goes first.
Create the list L containing all the coupled tasks in that order.

6. For each coupled tasks Ti assign its starting time si:

si = 2(mi − 1) + s
pmtn
i + (L + 2).

This algorithm is capable of finding a near optimal solution, at the worst case L

units of time longer than the optimal one(as there may be 1
2
L unnecessary units

of idle time at the beginning of the schedule and additional 1
2
L unnecessary units

of idle time at the end of the schedule). Since this value does not depend on the
number of tasks, the FALE makespan goes to the optimality if the size of the
instance goes to infinity.

The complexity of the FALE algorithm may be computed in a similar way as
the one presented for the FEL4 algorithm (see Sect. 4.2). It is O(n log n).
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Figure 4. An example of schedules generated by FEL4 and
FALE, respectively for the same instance of the problem. At the
same time the example illustrates the worst case of the FALE
algorithm, where the FALE schedule is L units of time longer
than the optimal one.

Example 4.2. To visualize a difference between FEL4 and FALE algorithms let
us consider a simple instance which contains 10 tasks in 5 chains. The schedules
generated by FEL4 and FALE algorithms for such instance are presented in the
Figure 4.

5. Computational experiment

5.1. Testbed

In this section, the computational results are presented. The analysis focused
on two aspects - the computational time needed to construct a schedule, and a
schedule quality measured as the deviation of achieved solution makespan and
the optimal one. All algorithms were tested using sets of tasks with varied sizes
(from 2 up to 838 tasks). For each instance size (thus the number of coupled tasks
it contains), randomly generated instances were prepared:

• for instances of sizes between 2 and 20 tasks, the number of generated instances
were equal to the size of instance,

• for instances larger than 20 tasks, 20 instances were generated.

In total, 16 569 testing sets were prepared. The instances were generated randomly,
with the limit on the maximum number of tasks in chains. This approach was
undertaken to generate various instance shapes; from containing a small number
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Figure 5. Average computation times for different numbers of tasks.

of long chains up to a large number of short chains. For each instance the maximum
chain length was computed; this value varies from 1 (each chain contains only one
task) up to the instance size (one chain contains all of the tasks).

Additionally, each instance containing less than 100 tasks was scheduled
10 000 times, while the larger instances were scheduled 1 000 times. The algo-
rithm computation time was computed as the average of computing times for each
instance. This approach increases the accuracy of scheduling times measurement.

The experiments were conducted on Intel IA-32 PC, equipped with 2.53GHz
Core2Duo processor, but just a single core was used in our experiment. The oper-
ating system was Ubuntu Linux 10.04. All scheduling algorithms were implemented
in C + +.

5.2. Computation time results

The first considered parameter was the computation time needed to construct
a schedule. Since all examined algorithms are polynomial time algorithms, the au-
thors were able to construct solution for all generated instances and all algorithms.
In Figure 5, the average scheduling times for each instance size, are presented.
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Figure 6. Ratio of the FALE and FEL4, the computation time
of the greedy algorithm.

As expected, the greedy algorithm was proved to be the fastest for each instance.
Moreover, the number of chains and their lengths had negligible impacts on its
computation times. The FALE algorithm provided similar results - computation
times are also proportional to the number of coupled tasks with also negligible
impact of the number of chains and their lengths. On the other hand, in overall
performance this algorithm is approximately two times slower than the greedy
algorithm, except for very small instances.

The third analyzed algorithm – the FEL4 – has also execution time proportional
to the number of tasks, but the number of chains and tasks in each chain has more
significant impact on the computation time. This is clearly noticeable in Figure 6.
Figure 6 shows the ratio of the computation time of FALE and FEL4 algorithms
to that of the greedy algorithm, respectively.

It was interesting to observe that the computation time of the exact algorithm
FEL4 tends to be 9 times longer than the fastest greedy algorithm if the size of
the instance goes to infinity. This result indicates that FEL4 is fast enough to be
implemented in practical systems in the situations where the optimal solution is
required.
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Figure 7. Average schedule lengths for different methods.

5.3. Quality of the schedules

The second analyzed parameter was the makespan (thus the quality) of solutions
provided by the analyzed algorithms. It is obvious that the greedy schedule will
not always be the optimal one; this case is illustrated in Figure 2.

The average results achieved are presented in Figure 7.

In Figure 7, the difference between the greedy algorithm and other algorithms
can be clearly seen. The FEL4 was proved to provide optimal solutions (see [15]),
and the length of the FALE’s solution was proved to be not longer than L units
of time in comparison with the optimal solution. We see that the difference in
length between the achieved and optimal solutions of the FALE algorithm does
not depend on the number of tasks and thus relatively goes to zero if the size of
the instance goes to infinity.

During the tests, the FEL4 and the FALE algorithms constructed schedules
similar in terms of the makespan. For L = 4 the largest overhead of solutions
generated by the FALE algorithm was 6 units of time, thus, the theoretical limit
of 8 units of time was never attained in the test set. This largest overhead was
observed in 227 from 16 569 instances, which is 1,4% of the test cases. On the other
hand, the optimal solutions were found by FALE 11 989 times, which represents
72,4% of instances. The mean overhead of FALE is 0,77 units of time, which
represents 0,21% of the makespan. The greedy algorithm, as expected, provided
solutions usually longer than optimal; the deviations were from 0% up to 33% with
the mean of 13,2%. In terms of time units, the solutions differ from optimal up
to 554, with the average of 147,5 time units. The optimal results were found only
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Figure 8. Average relative differences of schedule lengths ob-
tained by FALE and greedy, respectively, as compared with the
optimum.

Figure 9. FALE and greedy percentage quality difference ratios.

in 3 505 out of 16 569 instances, that is in 21% of instances presented in Figure 8.
Figure 9 shows the percentage quality ratio of these algorithms.

6. Conclusion

In the paper, the state of the art of the scheduling of the coupled tasks was
presented. We have gathered the results of the research conducted in the last
decade on that subject. The best known algorithms and the complexity results for
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several types of the problems were presented. The recent literature was reviewed
and main research development directions were emphasized.

What is more, the new experimental results for the lately constructed algorithms
were presented. The experimental analysis presented in this paper shows that
both algorithms FALE and FEL4 have a potential to be implemented in practical
applications. The FALE approximation provides almost optimal solutions for most
cases, with the cost of only two times greater computation time in comparison with
the fastest but primitive greedy algorithm. What is more, the FALE algorithm
provides significant improvement over the simple heuristics.

As far as the future research in this area is concerned, an interesting topic
could be so called high multiplicity couple tasks scheduling, having applications
in real-time systems.
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