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Abstract—Unimodular (i.e., constant modulus) sequences with
good autocorrelation properties are useful in several areas,
including communications and radar. The integrated sidelobe
level (ISL) of the correlation function is often used to express
the goodness of the correlation properties of a given sequence.
In this paper, we present several cyclic algorithms for the local
minimization of ISL-related metrics. These cyclic algorithms can
be initialized with a good existing sequence such as a Golomb
sequence, a Frank sequence or even a (pseudo)random sequence.
To illustrate the performance of the proposed algorithms, we
present a number of examples including the design of sequences
that have virtually zero autocorrelation sidelobes in a specified lag
interval, and of long sequences that could hardly be handledby
means of other algorithms previously suggested in the literature.

Index Terms—Waveform design, unimodular sequences, the
integrated sidelobe level, the merit factor, autocorrelation, cyclic
algorithms.

I. I NTRODUCTION AND PROBLEM FORMULATION

Let {xn}Nn=1 denote the unimodular sequence to be de-
signed. Without introducing any restriction, we can assume
that

|xn| = 1, n = 1, . . . , N. (1)

To keep this paper as concise as possible, we will limit
the discussion to general unimodular sequences, but we note
here that finite-alphabet unimodular sequences, such as MPSK
sequences, can also be dealt with in our framework — see,
however, theRemarkfollowing Eq. (10).

Let

rk =

N
∑

n=k+1

xnx
∗
n−k = r∗−k, k = 0, . . . , N − 1 (2)
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be the correlation function of{xn}Nn=1, where (·)∗ denotes
the complex conjugate for scalars and the conjugate transpose
for vectors and matrices, and let

ISL =

N−1
∑

k=1

|rk|2 (3)

be the integrated sidelobe level (ISL) metric. The main focus
of this paper is on algorithms for minimizing the ISL metric
or ISL-related metrics, over the set of unimodular sequences.
Note that the minimization of the ISL metric is equivalent to
the maximization of the merit factor (MF) defined as follows:

MF =
|r0|2

N−1
∑

k=−(N−1)
k 6=0

|rk|2
=

N2

2 ISL
. (4)

Unimodular sequences with large MF values are desired
in many applications, including wireless communications and
range compression radar and sonar. In these applications, an
emitted (probing or training) sequence with a large MF reduces
the risk that the received sequence of interest is drawn in
correlated multipath or clutter interferences. Additionally, the
limitations of the sequence generation hardware (including the
A/D conversion parts) lead to the requirement that the emitted
sequence be unimodular.

Owing to the significant theoretical and practical interest
in the design of unimodular sequences with good correlation
properties (in particular, with large MF values), it shouldcome
as no surprise that the literature on this topic is extensive, see
[1] –[21] and the many references therein.

Because the ISL metric may be highly multimodal (i.e,
it may have multiple local minima), stochastic optimization
algorithms have been suggested for its minimization. How-
ever, the computational burden of these algorithms becomes
prohibitive asN increases: such algorithms are hardly effective
on the currently available computing machines forN ∼ 103

or larger. Optimization algorithms for locally minimizingthe
ISL metric have also been proposed. These algorithms can be
used to provide quick solutions to the problem of reducing
the ISL value of a given reasonably good sequence. They
can also be used as local minimization blocks of a stochastic
global optimization algorithm. However, most of the existing
local minimization algorithms for the ISL metric are descent
gradient methods whose convergence problems as well as
computational burdens increase significantly asN increases.

In this paper, we introduce several cyclic algorithms (CA)
for the local minimization of ISL-related metrics. The first
algorithm is an extension of the CA in [21] (see also [19]
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and [20]), which we call CA-pruned (CAP). CAP deals with
a weighted ISL (WISL) metric of the form

WISL =

N−1
∑

k=1

wk|rk|2, (5)

wk ≥0, k = 1, . . . , N − 1,

corresponding to a particular set of weights{wk}N−1
k=1 (see

Section II for details). Such weighted ISL metrics are im-
portant in applications where we want to reduce, as much as
possible, the interference due to a known multipath or a known
clutter discrete. CAP requires the singular value decomposition
(SVD) of a matrix of dimension on the order ofN , so it might
be difficult to run on a PC for values ofN much larger than
N ∼ 103. With this problem of CAP in mind, we introduce
a new CA called CAN (CA-new) that can be used for the
local minimization of the unweighted ISL metric (i.e., Eq. (5)
with wk ≡ 1). CAN is based on FFT operations and can
be used virtually for any practically relevant values ofN up
to N ∼ 106 or even larger. We also modify CAN so that
it can tackle arbitrary weights, i.e.,{wk}N−1

k=1 in Eq. (5) can
be chosen as any non-negative real numbers. The resulting
algorithm, which is called WeCAN (weighted CAN), requires
N times more computations than CAN and it can be run on
a PC forN up toN ∼ 104.

II. CAP

Let

X =

















x1 0
...

. . .
xN x1

. . .
...

0 xN

















(2N−1)×N

(6)

and observe that

X∗X =













r0 r∗1 · · · r∗N−1

r1 r0
. . .

...
...

. . .
. . . r∗1

rN−1 · · · r1 r0













N×N

. (7)

BecauseX∗X ≈ NI for a sequence with good autocorrelation
properties, we can think of designing{xn}Nn=1 by minimizing
the following criterion:

‖X∗X−NI‖2 , (8)

over the set of unimodular sequences; hereafter,‖ · ‖ denotes
the Frobenius matrix norm. However, the above criterion is a
quartic function of{xn} that is relatively difficult to tackle.
With this fact in mind, the paper [21] (see also [19] and [20])
has suggested replacing Eq. (8) with the following simpler
criterion (which is a quadratic function of the unknowns):

∥

∥

∥
X−

√
NQ

∥

∥

∥

2

, (9)

whereQ is a (2N−1)×N semi-unitary matrix (i.e.,Q∗Q =
I). The design problem associated with Eq. (9) can be stated
as follows:

min
{xn}N

n=1;Q

∥

∥

∥
X−

√
NQ

∥

∥

∥

2

(10)

s.t. Q∗Q = I

|xn| = 1, n = 1, . . . , N.

Note that the problems of minimizing Eq. (8) and, respectively,
Eq. (9) are not equivalent (these two problems may well have
different solutions{xn}), yet they are “almost equivalent” in
the sense that if the criterion in Eq. (9) takes on a small value,
then so does Eq. (8), and vice versa. More specifically, it is
clear that Eq. (8) is equal to zero if and only if Eq. (9) is
equal to zero. Consequently, by continuity arguments, if the
global minimum value of Eq. (8) is “sufficiently small”, then
the sequences minimizing Eq. (8) and, respectively, Eq. (9)can
be expected to be close to one another. Put differently, in such
a case the sequence minimizing Eq. (8) leads to a small value
of Eq. (9), and vice versa. However, as already mentioned, the
two sequences that minimize Eq. (8) and, respectively, Eq. (9)
will in general be different from one another. Furthermore,the
local minima of the two criteria will in general be different;
in particular they can occur at sequences that are not the same
for Eq. (8) and for Eq. (9). A more quantitative mathematical
analysis of the global and local minima of the two criteria, as
well as of the way in which they relate to each other, appears
to be a difficult task that falls beyond the scope of this paper.

Remark:As already pointed out in Section I, the case of
finite-alphabet sequences can also be dealt with in our frame-
work. However, the performance of the resulting algorithms
might not be as satisfactory as that corresponding to the
general unimodular case. One possible explanation of this fact
is related to the above discussion on Eq. (8) and (9): when
we add more constraints on{xn}, such as a finite alphabet
requirement, the minimum value of the criterion in Eq. (8)
may increase quite a bit and therefore the “almost equivalence”
between Eq. (8) and (9) may cease to hold true. Another
explanation might be that the number of local minima of the
ISL (or WISL) metric tends to increase as more constraints
are imposed on{xn} (with the binary case being the most
constrained one). Consequently, it becomes more difficult to
find a sequence{xn} such that the criterion in Eq. (8) or
(9) takes on a small value when a finite-alphabet constraint is
enforced. �

In contrast to Eq. (8), the derivation of a CA for Eq. (10)
is relatively straightforward ([19]–[21]). However, thisis not
to say that the derivation of a CA for the criterion in Eq. (8)
is infeasible. In fact such a CA can be derived, as we show
in the forthcoming paper [22] that deals withvectorsequence
design. The problem with such an algorithm for Eq. (8) is that,
due to the more complicated form of the criterion, it is often
much slower than a CA for the “almost equivalent” criterion
in Eq. (10).

We will not discuss explicitly a CA for Eq. (10) because
it considers all correlation lags{rk}N−1

k=0 , which is somewhat
infrequently required in applications and therefore results in an
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unnecessary increase of the computational burden. Indeed,in
many cases the maximum difference between the arrival times
of the sequence of interest and of the interferences is (much)
smaller than the duration of the emitted sequence (see, e.g.,
[16][17][21][23]). Consequently, in such cases the interest lies
in making{|rk|}P−1

k=1 small, for someP < N , instead of trying
to make all correlation sidelobes{|rk|}N−1

k=1 small; here the
value ofP is selected based on a priori knowledge about the
application at hand (for instance, in wireless communications
it is usually known that significant channel tap coefficients
can occur up to a certain maximum delay, and so we can
chooseP as the said delay). More generally, we may have
a priori information that not even all{|rk|}P−1

k=1 , but only
some of them, need to be made small. In such a case, instead
of considering the “all-lag”X in Eq. (6), we consider the
following “pruned” matrix:

X̃ = X̄T (11)

of dimension(N +P − 1)×Q, whereQ ≤ P ≤ N andX̄ is
a truncated version of theX in Eq. (6)

X̄ =

























x1 0
...

. . .
... x1

xN
...

. . .
...

0 xN

























(N+P−1)×P

, (12)

and where theP × Q matrix T is made fromQ selected
columns of theP × P identity matrix, for example,

T =



























1 0 0
. . .

0 1 0
...
1 0

. . .
0 0 1



























P×Q

. (13)

The aboveQ columns correspond to theQ correlations of
interest chosen fromr0, r1, . . . , rP−1. With the above nota-
tion, the design problem of interest is obtained by modifying
Eq. (10) as follows:

min
{xn}N

n=1;U

∥

∥

∥
X̃−

√
NU

∥

∥

∥

2

(14)

s.t. U∗U = I

|xn| = 1, n = 1, . . . , N,

whereU is an (N + P − 1)×Q semi-unitary matrix.
Remark: Eq. (14) is “almost equivalent” to minimizing

‖X̃∗X̃−NI‖2. WhenQ = P , we have

X̃∗X̃ =













r0 r∗1 · · · r∗P−1

r1 r0
. . .

...
...

. . .
. . . r∗1

rP−1 · · · r1 r0













P×P

, (15)

which shows that in this case CAP implicitly assumes the
weight of wk = 2(P − k) for rk (k = 1, . . . , P − 1) in
the WISL metric in Eq. (5), and0 weights for the other
correlation lags. WhenQ < P , X̃∗X̃ is no longer a Toeplitz
matrix and a general expression forwk does not exist anymore.
Roughly speaking, the number of times thatrk (together with
r∗k) appears in the matrix̃X∗X̃ determines the corresponding
weightwk. �

Regarding the minimization problem in Eq. (14), we note
the following facts. For giveñX, let

X̃∗ = U1ΣU∗
2 (16)

denote the SVD of̃X∗ (hereU1 is aQ ×Q unitary matrix,
U2 is a (N + P − 1) × Q semi-unitary matrix, andΣ is a
Q×Q diagonal matrix). Then the solutionU of Eq. (14), for
fixed X̃, is given by (see [19] or the references there and in
[20]):

U = U2U
∗
1. (17)

Next note that, for givenU, the minimization of Eq. (14) with
respect to{xn}Nn=1 also has a simple closed-form solution.
To see this, letx denote an arbitrary element of the sequence
{xn}Nn=1. Then it follows from Eq. (14) that the generic form
of the minimization problem with respect to the elements of
{xn}Nn=1 is:

min
x

Q
∑

k=1

|x− µk|2 , (18)

where{µk}Qk=1 are the elements of the matrix
√
NU whose

positions are the same as the positions ofx in X̃. (As an
example, let us assume thatQ = P and therefore that̃X =
X̄. Then, forx = xn, the corresponding sequence{µk}Pk=1

is given by the(n − 1 + i, i)th-elements of
√
NU, for i =

1, . . . , P .) Because|x| = 1, the criterion in Eq. (18) can be
rewritten as:

Q
∑

k=1

|x− µk|2 = const− 2Re

[

x

Q
∑

k=1

µ∗
k

]

= const− 2

∣

∣

∣

∣

∣

Q
∑

k=1

µk

∣

∣

∣

∣

∣

· cos

[

arg(x) − arg(

Q
∑

k=1

µk)

]

. (19)

Hence the minimizerx of the criterion in Eq. (18) is given by

x = ejφ, φ = arg(

Q
∑

k=1

µk). (20)

The CAP for the cyclic minimization of the criterion in
Eq. (14) follows from the above discussion as a natural
corollary:

CAP
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• Step 0
Set the matrixX̃ to an initial value (e.g.,{xn}Nn=1 can
be set to{ej2πθn}Nn=1 where{θn}Nn=1 are independent
random variables uniformly distributed in[0, 2π], or
{xn}Nn=1 can be initialized by a good existing sequence
such as a Golomb sequence [12]).

• Step 1
Compute the semi-unitary matrixU that minimizes
Eq. (14) for{xn}Nn=1 fixed at its most recent value (see
Eqs. (16) and (17)).

• Step 2
Compute the sequence{xn}Nn=1 that minimizes Eq. (14),
under the constraint|xn| = 1, for U fixed at its most
recent value (see Eq. (20)).

• Iteration
Repeat Steps 1 and 2 until some stop criterion is satisfied
e.g.‖x(i) − x(i+1)‖ < ǫ, wherex(i) is the sequence ob-
tained at theith iteration, andǫ is a predefined threshold
(see theRemark in Section V-C for a brief discussion
about how to choose the value ofǫ).

The SVD of theQ× (N + P − 1) matrix X̃∗ in Eq. (16)
is relatively computationally intensive for large values of N
andQ. As a rough rule of thumb, on a regular PC the use
of CAP may be limited to values ofN ∼ 103 depending
on how many correlation lags are considered. In the next
section, we introduce a new CA (CAN = CA-new) for the
local minimization of the unweighted ISL metric that does not
have such a limitation: indeed CAN can be used with values
of N ∼ 106 or even larger if so desired.

III. CAN

The derivation of CAN involves several steps, the first of
which consists of expressing the ISL metric in the frequency
domain. It is well known that, for anyω ∈ [0, 2π],

∣

∣

∣

∣

∣

N
∑

n=1

xne
−jωn

∣

∣

∣

∣

∣

2

=

N−1
∑

k=−(N−1)

rke
−jωk , Φ(ω) (21)

(see, e.g., [24]). Furthermore, it can be shown that the ISL
metric in Eq. (3) can be equivalently written as:

ISL =
1

4N

2N
∑

p=1

[Φ(ωp)−N ]
2
, (22)

where{ωp} are the following Fourier frequencies:

ωp =
2π

2N
p, p = 1, . . . , 2N. (23)

(Note that Eq. (22) is a Parseval-type equality.) To prove
Eq. (22), letδk denote the Kronecker delta:

δk =

{

1, for k = 0
0, for k 6= 0,

and use the correlogram-based expression forΦ(ω) in Eq. (21)
to verify that:

2N
∑

p=1

[Φ(ωp)−N ]
2

=

2N
∑

p=1





N−1
∑

k=−(N−1)

(rk −Nδk)e−jωpk





2

=

N−1
∑

k=−(N−1)

N−1
∑

k̃=−(N−1)

(rk −Nδk)(rk̃ −Nδk̃)∗

[

2N
∑

p=1

e−jωp(k−k̃)

]

. (24)

Because, for|k − k̃| ≤ 2N − 2,

2N
∑

p=1

e−jωp(k−k̃) = e−j
2π
2N

(k−k̃) · e
−j2π(k−k̃) − 1

e−j
2π
2N

(k−k̃) − 1

= 2Nδ(k−k̃), (25)

we obtain from Eq. (24) the following equation:

1

4N

2N
∑

p=1

[Φ(ωp)−N ]
2

=
1

2

N−1
∑

k=−(N−1)

|rk −Nδk|2

=

N−1
∑

k=1

|rk|2 = ISL, (26)

which is Eq. (22). Using the periodogram-based expression
for Φ(ω) (see Eq. (21)) in Eq. (22) shows that the problem of
minimizing the ISL is equivalent to the minimization of the
following frequency-domain metric:

2N
∑

p=1





∣

∣

∣

∣

∣

N
∑

n=1

xne
−jωpn

∣

∣

∣

∣

∣

2

−N





2

. (27)

This equivalence result has an obvious intuitive interpretation:
minimizing the ISL makes the sequence behave like white
noise, and consequently its periodogram should be nearly
constant in frequency.

The next point to note is that the criterion in Eq. (27) is
a quartic function of{xn}. However, using the same type of
argument as the one that led from Eq. (8) to Eq. (9), we can
readily verify that the minimization of Eq. (27) with respect to
{xn} is “almost equivalent” to the following simpler problem
(whose criterion is a quadratic function of{xn}):

min
{xn}N

n=1;{ψp}2N
p=1

2N
∑

p=1

∣

∣

∣

∣

∣

N
∑

n=1

xne
−jωpn −

√
Nejψp

∣

∣

∣

∣

∣

2

. (28)

Let

a∗
p =

[

e−jωp · · · e−j2Nωp
]

, (29)

let A∗ be the following unitary2N × 2N FFT matrix:

A∗ =
1√
2N







a∗
1
...

a∗
2N






, (30)
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and letz be the sequence{xn}Nn=1 padded withN zeros:

z =
[

x1 · · · xN 0 · · · 0
]T

2N×1
. (31)

Then the criterion in Eq. (28) can be rewritten in the following
more compact form (to within a multiplicative constant):

‖A∗z− v‖2 , (32)

where

v =
1√
2

[

ejψ1 · · · ejψ2N
]T
. (33)

For given{xn}, the minimization of Eq. (32) with respect to
{ψp} is immediate: let

f = A∗z (34)

denote the FFT ofz; then

ψp = arg(fp), p = 1, . . . , 2N. (35)

Similarly, for givenv, let

g = Av (36)

denote the IFFT ofv. Because‖A∗z− v‖2 = ‖z−Av‖2, it
follows that the minimizing sequence{xn} is given by:

xn = ej arg(gn), n = 1, . . . , N. (37)

The CAN for the cyclic local minimization of the ISL-related
metric in Eq. (28) can now be summarized as follows:

CAN
• Step 0

Set the{xn}Nn=1 to some initial values (e.g.,{xn}Nn=1

can be randomly generated or given by a good existing
sequence, as mentioned in the CAP algorithm in Sec-
tion II).

• Step 1
Compute the{ψp}2Np=1 that minimize the metric for
{xn}Nn=1 fixed at their most recent values (see Eq. (35)).

• Step 2
Compute the sequence{xn}Nn=1 that minimizes the met-
ric, under the constraint|xn| = 1, for {ψp}2Np=1 fixed at
their most recent values (see Eq. (37)).

• Iteration
Repeat Steps 1 and 2 until a pre-specified stop criterion
is satisfied e.g.‖x(i) − x(i+1)‖ < ǫ, where x(i) is
the sequence obtained at theith iteration, andǫ is a
predefined threshold, such as10−3.

Owing to its simple (I)FFT operations, CAN can be used
for very large values ofN , such asN ∼ 106.

In the next section, we present an extended version of CAN
which can deal with the WISL metric (with arbitrarily chosen
weights) as defined in Eq. (5). The extended algorithm is called
WeCAN (weighted CAN). The price paid for WeCAN’s ability
to deal with a general WISL metric is an increased com-
putational burden compared to CAN. Specifically, as will be
shown in the next section, each iteration of WeCAN requires
N computations of2N -point (I)FFT’s; thus the number of
flops required by WeCAN is roughlyN times larger than that
of CAN. Nonetheless, WeCAN can still be used for relatively
large values ofN , such asN ∼ 104.

IV. W ECAN

Similarly to the proof of Eq. (22) in Section III, we can
derive the following expression for the WISL metric (γk below
is related to the weightwk in Eq. (5) aswk = γ2

k):

WISL =

N−1
∑

k=1

γ2
k|rk|2 (38)

=
1

4N

2N
∑

p=1

[Φ̃(ωp)− γ0N ]2, (39)

where

Φ̃(ωp)
△
=

N−1
∑

k=−(N−1)

γkrke
−jωpk, (40)

ωp =
2π

2N
p, p = 1, . . . , 2N,

and where{γk}N−1
k=1 are real-valued (withγk = γ−k). Note

that by choosing{γk}N−1
k=1 appropriately, we can weigh the

correlation lags in Eq. (38) in any desired way. Regardingγ0,
which does not enter into Eq. (38), it will be chosen to ensure
that the matrix

Γ =
1

γ0













γ0 γ1 · · · γN−1

γ1 γ0
. . .

...
...

. . .
. . . γ1

γN−1 · · · γ1 γ0













(41)

is positive semi-definite, which we denote byΓ ≥ 0. This
can be done in the following simple way: letΓ̃ be the matrix
γ0Γ with all diagonal elements set to0, and letλmin denote
the minimum eigenvalue of̃Γ; then Γ ≥ 0 if and only if
γ0 + λmin ≥ 0, a condition that can always be satisfied by
selectingγ0.

Next we will derive a criterion that is “almost equivalent”
to Eq. (39) and which depends quadratically on the unknowns
{xn}Nn=1, similarly to what we have done in the previous
sections. To do so, we must apparently obtain a square root of
Φ̃(ωp) in Eq. (40) that is linear in{xn}Nn=1. Note the following
DFT pairs:

{rk} ←→ Φ(ω) = |X(ω)|2

{γkrk} ←→ Φ̃(ω) = Γ(ω) ∗ |X(ω)|2, (42)

where

X(ω) =

N
∑

n=1

xne
−jnω, Γ(ω) =

N−1
∑

k=−(N−1)

γke
−jωk, (43)

and where∗ is the convolution operator. Thus̃Φ(ωp) can be
expressed as

Φ̃(ωp) =
1

2π

∫ π

−π

Γ(ωp − ψ)|X(ψ)|2 dψ (44)

=
1

2π

∫ π

−π

N−1
∑

k=−(N−1)

γke
−jk(ωp−ψ)

N
∑

n=1

xne
−jnψ

N
∑

ñ=1

x∗ñe
jñψdψ

=

N−1
∑

k=−(N−1)

N
∑

n=1

N
∑

ñ=1

γkxnx
∗
ñ

{

1

2π

∫ π

−π

ejψ(k−n+ñ)dψ

}

e−jωpk.
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It is easy to verify that

1

2π

∫ π

−π

ejψ(k−n+ñ) dψ = δk−(n−ñ). (45)

Thus

Φ̃(ωp) =
N
∑

n=1

N
∑

ñ=1

γn−ñxnx
∗
ñe

−jωp(n−ñ)

= x̃∗
p(γ0Γ)x̃p, (46)

where

x̃p =
[

x1e
−jωp x2e

−j2ωp · · · xNe
−jNωp

]T
(47)

and Γ is defined in Eq. (41). Therefore the WISL metric in
Eq. (39) can be written as

WISL =
γ2
0

4N

2N
∑

p=1

[

x̃∗
pΓx̃p −N

]2
. (48)

This expression suggests that the following problem can be
expected to be “almost equivalent” to the minimization of the
WISL metric:

min
{xn}N

n=1,{αp}2N
p=1

2N
∑

p=1

‖Cx̃p −αp‖2 (49)

s.t.‖αp‖2 = N, p = 1, . . . , 2N,

|xn| = 1, n = 1, . . . , N,

where theN × N matrix C is a square root ofΓ, i.e., Γ =
CTC.

A cyclic algorithm for Eq. (49), which we will call WeCAN,
can be derived as follows. For given{xn}Nn=1, Eq. (49)
decouples into2N independent problems each of which has
the following form:

min
αp

‖fp −αp‖2 (50)

s.t.‖αp‖2 = N

where theN × 1 vector fp = Cx̃p is given. Note that under
the constraint‖αp‖2 = N we have

‖fp −αp‖2 = const − 2 Re{f∗pαp}
≥ const − 2‖fp‖‖αp‖ = const − 2N‖fp‖, (51)

where the equality is achieved if and only if

αp =
√
N

fp

‖fp‖
. (52)

This is therefore the solution to the minimization problem in
Eq. (49) for given{xn}Nn=1. Note that the computation of
{fp}2Np=1 can be done by means of the FFT. Indeed, letckn
denote the(k, n)th element ofC and define

zk =
[

ck1x1 · · · ckNxN 0 · · · 0
]T

(2N×1)
(53)

and

F =
√

2NA∗ ·
[

z1 z2 · · · zN
]

2N×N
(54)

where the unitary2N × 2N FFT matrixA∗ has been defined
in Eq. (30). Then it is not difficult to see that the transpose of
the vectorfp is given by thepth row of F.

Next we show that, for given{αp}2Np=1, the minimization
problem in Eq. (49) with respect to{xn}Nn=1 also has a closed-
form solution. Letαpk denote thekth element ofαp and let
a∗
p be given by Eq. (29). Using this notation, the criterion in

Eq. (49) can be written as

2N
∑

p=1

‖Cx̃p −αp‖2 =

N
∑

k=1

2N
∑

p=1

∣

∣a∗
pzk − αpk

∣

∣

2

=
N
∑

k=1

‖A∗zk − βk‖2 =
N
∑

k=1

‖zk −Aβk‖2 , (55)

where

βk =
1√
2N

[

α1k · · · α2N,k

]T
, k = 1, . . . , N. (56)

For a generic element of{xn}Nn=1, denoted asx, Eq. (55)
becomes

N
∑

k=1

|µkx− νk|2 = const − 2 Re

[(

N
∑

k=1

µ∗
kνk

)

x∗

]

, (57)

whereµk andνk are given by the corresponding elements in
zk and Aβk, respectively. Under the unimodular constraint,
the minimizerx of the criterion in Eq. (57) is given by

x = ejφ, φ = arg

(

N
∑

k=1

µ∗
kνk

)

. (58)

This observation concludes the derivation of the main stepsof
the WeCAN algorithm, whose summary is as follows:

WeCAN
• Step 0

Set the{xn}Nn=1 to some initial values and select the
desired weights{γk}N−1

k=1 ; also chooseγ0 such that the
matrix Γ in Eq. (41) is positive semidefinite.

• Step 1
Compute the{αp}2Np=1 that minimize the criterion in
Eq. (49) for {xn}Nn=1 fixed at their most recent values
(see Eq. (52)).

• Step 2
Compute the sequence{xn}Nn=1 that minimizes the cri-
terion in Eq. (49) for{αp}2Np=1 fixed at their most recent
values (see Eq. (58)).

• Iteration
Repeat Steps 1 and 2 until a pre-specified stop criterion
is satisfied (see the CAP algorithm in Section II).

In the case of non-uniform weighting, we define the modi-
fied merit factor (MMF) using the weighted ISL as follows:

MMF =
|r0|2

2WISL
=

N2

2
∑N−1
k=1 wk|rk|2

. (59)

We have observed empirically that WeCAN increases the
MMF systematically when initialized by CAP, and vice versa.
This motivates us to use CAP to initialize WeCAN, then
use WeCAN to initialize CAP, and so on. The so-obtained
combined iterative method is called WeCAN+CAP. As will
be shown in Section V, when the maximum lag considered
is smaller than half of the sequence length, WeCAN, CAP
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and their combination WeCAN+CAP can generate sequences
that have virtually an “infinite” MMF; the same is true even
when the number of lags considered is smaller than half
of the sequence length, provided the maximum lag under
consideration is not too close toN (see the next section for
more details on this aspect).

V. NUMERICAL EXAMPLES

A. ISL Design

We compare the merit factors of the Golomb sequence
([12]), of the Frank sequence ([15]), and of the CAN sequence
initialized by one of these two types of sequences (denoted
as CAN(G) and CAN(F), respectively). A Golomb sequence
{g(n)}Nn=1 of lengthN is defined as

g(n) = ejπ(n−1)n/N , n = 1, . . . , N, (60)

whereN can be any positive integer. Frank sequences are only
defined for lengths that are perfect squares. ForN = M2, a
Frank sequence can be written as

f(nM + k + 1) = ej2πnk/M , n, k = 0, 1, . . . ,M − 1. (61)

(Note that the above sequences can be easily computed for any
value ofN of possible practical interest, with the only restric-
tion thatN must be a perfect square in the case of Eq. (61).)
We compute the merit factors of the above four types of
sequences (Golomb, Frank, CAN(G) and CAN(F)) for the fol-
lowing lengths:N = 32, 52, 102, 152, 202, 302, 702 and1002.
The results are shown in Figure 1 using a log-log scale. For
all sequence lengths we consider, the CAN(G) and CAN(F)
sequences give nearly the same merit factors; both are much
larger than the merit factors given by the Golomb or Frank
sequence. WhenN = 104, the CAN(G) sequence provides
the largest merit factor of1839.76, which is more than ten
times larger than that given by the Golomb sequence (which
is 157.10). We also show the correlation levels of the Golomb
and CAN(G) sequences of lengthsN = 102, 103 and104 in
Figure 2. The correlation level is defined as

correlation level= 20 log10

∣

∣

∣

∣

rk
r0

∣

∣

∣

∣

, k = 1, . . . , N − 1. (62)

We note that the correlation sidelobes of the Golomb sequence
are comparatively large fork close to0 andN−1 (the same is
true for the Frank sequence), while the CAN(G) sequence has
relatively more uniform correlation sidelobes ask increases
from 0 to N − 1.

B. WISL Design - A First Example

Consider the design of a data sequence of lengthN = 100.
Suppose that we are interested in suppressing the correlations
r1, . . . , r25 andr70, . . . , r79. Three methods are used to design
the sequence. The first method is the original CA for Eq. (10),
in which all correlation levels fromr1 to r99 are taken into
account. The second method is the CAP for Eq. (14) which

focuses onr1, . . . , r25 andr70, . . . , r79 and therefore usesP =
80, Q = 36 and the following matrixT:

T =













I26 0

0
...

... 0
0 I10













80×36

, (63)

whereIK denotes theK×K identity matrix. The third method
is the WeCAN algorithm for Eq. (48) and (49), with the
following weights used in the matrixΓ in Eq. (41):

γk =

{

1, k ∈ [1, 25] ∪ [70, 79]
0, k ∈ [26, 69] ∪ [80, 99]

. (64)

(γ0 is chosen to ensure the positive semi-definiteness ofΓ;
more exactly we chooseγ0 = 12.05 following the discussion
right after Eq. (41).)

In this scenario, the MMF is as defined in Eq. (59) with

wk = γ2
k =

{

1, k ∈ [1, 25] ∪ [70, 79]
0, k ∈ [26, 69] ∪ [80, 99]

. (65)

All three methods mentioned above are initialized by a ran-
domly generated sequence (see Step 0 of the CAP algorithm
in Section II). The correlation levels of the designed sequences
are shown in Figure 3. The WeCAN sequence has correlation
sidelobes that are practically zero at the required lags, and
which are much smaller than the sidelobes of the CA or CAP
sequence and those of the Golomb or CAN(G) sequence in
the last subsection (see Figure 2(a) and 2(b)). Table I presents
the corresponding MMF values. The MMF of the WeCAN
sequence (which is practically infinite) is significantly larger
than the other MMF values in the table.

TABLE I
MMF VALUES FOR THE WEIGHTS INEQ. (65) AND N = 100

Golomb CAN(G) CA CAP WeCAN
MMF 32.55 142.64 68.07 229.02 1.06× 10

21

The matrixX̃∗X̃ employed by CAP in this example (where
X̃ is given by Eq. (11)) is composed ofr1, . . . , r25 and
r70, . . . , r79, but also ofr45, . . . , r69. Therefore, although not
of direct interest to us,r45, . . . , r69 are minimized as well (see
Figure 3(b)), which increases the difficulty of the problem.
If we consider fewer correlation lags (e.g.,r1, . . . , r9 and
r70, . . . , r79 only), CAP is also able to provide practically zero
correlation sidelobes at the required lags. On the other hand, if
more correlation lags are taken into account, then correlation
sidelobes of either CAP or WeCAN become higher; the reason
is that fewer and fewer degrees of freedom of the sequence
{xn}Nn=1 can be used to control|rk| as k increases beyond
N/2 (in particular note that|rN−1| = 1 can not be decreased).

C. WISL Design - A Second Example

Consider, once again, the design of a data sequence of
length N = 100 but now with the aim of suppressing the
correlationsr1, . . . , r39. We compare the CAP sequence and
the WeCAN+CAP sequence, both obtained using random ini-
tialization. The CAP sequence is generated usingP = Q = 40
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Fig. 1. The merit factors of the Golomb, Frank, CAN(G) and CAN(F) sequences of lengths from32 up to 1002 .

and thusX̃ = X̄ in Eq. (11). The WeCAN+CAP sequence is
generated as outlined at the end of Section IV. To construct
the matrixΓ in Eq. (41), we define

γk =

{

1, k ∈ [1, 39]
0, k ∈ [40, 99]

,

wk = γ2
k, k = 1, . . . , 99, (66)

and chooseγ0 such thatΓ ≥ 0.
Figure 4 shows the correlation levels of the so-obtained

CAP and WeCAN+CAP sequences, and Table II presents the
corresponding MMF values (the CAN(G) sequence is included
in the table for the sake of comparison). Both sequences have
practically 0 correlation sidelobes fromr1 to rP−1, and the
corresponding MMF can be considered to be infinity (the
smallest correlation level in Figure 4 is around−320dB, i.e.,
10−16, which is the smallest number that can be properly
handled in MATLAB and can thus be considered as “zero”).

A point worth mentioning here is that the CAP and We-
CAN+CAP algorithms are able to provide an “infinite” MMF
in this example ifP ≤ 50. The reason is that the number of
degrees of freedom in this example isN − 1 = 99 (there are
N − 1 free phases as the initial phase does not matter) and
our goal is to match2(P − 1) real numbers (i.e., the real and
imaginary parts ofr1, . . . , rP−1). Consequently the matching
is possible in principle only when2(P − 1) ≤ N − 1, which
leads toP ≤ (N + 1)/2. In the next subsection,P is fixed to
40 andN is varied from100 to 500, in which case the CAP
or WeCAN+CAP algorithm consistently generates sequences
that have an “infinite” MMF.

TABLE II
MMF VALUES FOR THE WEIGHTS INEQ. (66) AND N = 100

CAN(G) CAP WeCAN+CAP
MMF 126.27 1.08× 1023 2.37× 1026

Remark:The WeCAN algorithm is also able to provide an
“infinite” MMF in this example, although we do not show its
results here for brevity. Another fact worth pointing out isthat
both CAP and WeCAN algorithms require a proper value of
the stop criterion parameterǫ (see Section II) to perform well.
When the number of considered correlation lags is less than
(N + 1)/2 andN is relatively small (such asN ∼ 102), a
sufficiently smallǫ should be used (e.g.,ǫ = 10−13 in the
examples in this and the last subsection) to permit enough
many iterations, which drive the correlation sidelobes to zero,
to be run; in other cases, a “moderate”ǫ (depending on the
application, such as10−5) is preferable to prevent the program
from running indefinitely without suppressing the correlation
sidelobes anymore. In contrast with this, WeCAN+CAP is
quite insensitive to the choice ofǫ (ǫ = 10−5 is appropriate
for WeCAN+CAP in all cases that we have tested) and it
outperforms CAP in terms of MMF, especially for large values
of N . �

D. FIR Channel Estimation

Consider an FIR channel impulse response{hp}P−1
p=0 whose

estimation is our main goal (the number of channel tapsP
is assumed to be known). Suppose we transmit a probing
sequence{xn}Nn=1 and obtain the received signal

yn =

P−1
∑

p=0

hpxn−p + en, n = 1, . . . , N + P − 1, (67)

where{en}N+P−1
n=1 is an i.i.d. complex Gaussian white noise

sequence with zero mean and varianceσ2. Eq. (67) can be
written in the following more compact form:

y = X̄h + e (68)
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Fig. 2. Correlation levels of the Golomb and CAN sequences oflengthsN = 10
2, 103 and10

4, designed under the ISL metric. (a) The Golomb sequence,
N = 102, (b) the CAN(G) sequence,N = 102 , (c) the Golomb sequence,N = 103, (d) the CAN(G) sequence,N = 103, (e) the Golomb sequence,
N = 104, and (f) the CAN(G) sequence,N = 104 .
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Fig. 4. Correlation levels of the CAP and WeCAN+CAP sequences of lengthN = 100, designed under the WISL metric with weights in Eq. (66). (a)The
CAP sequence and (b) the WeCAN+CAP sequence.
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Fig. 3. Correlation levels of the CA, CAP and WeCAN sequencesof length
N = 100. (a) The CA sequence, (b) the CAP sequence and (c) the WeCAN
sequence designed under the WISL metric with weights in Eq. (65).

whereX̄ is as defined in Eq. (12), and

y =
[

y1 · · · yN+P−1

]T
,h =

[

h0 · · · hP−1

]T
,

e =
[

e1 · · · eN+P−1

]T
. (69)

Let x̄p denote thepth column of the matrixX̄. We usex̄p as
a “matched filter” to determinehp from y, which leads to the
following estimate ofhp:

ĥp =
1

N
x̄∗
py. (70)

Let the number of channel taps beP = 40. Figure 5 shows
the magnitude of the simulated channel impulse response
{|hp|}P−1

p=0 . We perform two experiments to compare the
Golomb sequence and the CAP sequence. In one experiment
the noise powerσ2 is fixed at10−4 and the sequence lengthN
is varied from100 to 500; In the other experimentN is fixed

at 200 andσ2 is varied from10−6 to 1. For each pair(N, σ2),
500 Monte-Carlo trials are run (in which the noise sequencee

is varied) and the mean-squared error (MSE) ofĥ is recorded.
Figure 6 shows the MSE of̂h in the two situations. Due to
better autocorrelation properties, the CAP sequence generates
consistently smaller MSE than the Golomb sequence. In
particular, it is interesting to observe from Figure 6(b) that
as σ2 decreases, the MSE of̂h corresponding to the CAP
sequence is decreasing linearly (and it becomes0 asσ2 goes
to 0), while the performance of the Golomb sequence is limited
to a certain level because of its non-zero correlation sidelobes,
which induce an estimation bias.
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Fig. 5. The magnitude of the simulated channel impulse responseh.

VI. CONCLUDING REMARKS

We have presented several cyclic algorithms, namely CAP,
CAN, WeCAN and WeCAN+CAP which can be used to
design unimodular sequences that have good autocorrelation
properties. CAN can be used to design very long sequences
(of lengthN up to 106), a design problem that can hardly
be handled by other algorithms proposed in the previous
literature. CAN deals with the ISL metric, i.e., it considers
all unweighted correlation lags fromr1 up to rN−1, whereas
CAP, WeCAN and WeCAN+CAP aim to minimize weighted-
ISL metrics. We have shown that, in particular, the latter three
algorithms can be used to design sequences that have virtually
zero autocorrelation sidelobes in a specified lag interval.CAP,
WeCAN and WeCAN+CAP can be used to design sequences
of lengthsN ∼ 103 or larger, depending on how many lags
are considered. A number of numerical examples have been
provided to demonstrate the good autocorrelation properties
of the unimodular sequences designed using the proposed
algorithms.
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