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Abstract  

We present algorithms for the k-Matroid Intersection Problem and for the Matroid k-Pafity 
Problem when the matroids are represented over the field of rational numbers and k > 2. The 
computational complexity of the algorithms is linear in the cardinality and singly exponential in 
the rank of the matroids. As an application, we describe new polynomially solvable cases of the 
k-Dimensional Assignment Problem and of the k-Dimensional Matching Problem. The algorithms 
use some new identities in mulülinear algebra including the generalized Binet-Cauchy formula 
and its analogue for the Pfaffian. These techniques extend known methods developed earlier for 
k = 2 .  
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1. I n t r o d u c t i o n  

In this paper, we present new algorithms for the k-Matroid Intersection Problem and 

for the Matroid k-Parity Problem when k > 2 and the given matroids are represented 

over the field o f  rational numbers. These problems are known to be NP-hard, and so 

far no algorithms with better worst-case complexity than that of  exhaustive search are 

known for them. On the other hand, many problems of  combinatorial  optimization can 

be posed as special cases of  these problems on matroids and therefore it would be 

useful to find somewhat faster algorithms (see, for example, [ 9 ] ) .  Such a question 

was asked, for example, in [16] .  In [9] it was conjectured that the methods of  partial  

enumeration might  be the best ones. The complexity of  our algorithms is linear in 
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the cardinality of the matroids and singly exponential in their rank (for a fixed k). 

Thus if the cardinality grows faster than a linear function of the rank (this is the case 

for most combinatorial applications), then out algorithms are asymptotically faster than 

exhaustive search. Moreover, it follows that if the rank grows no faster than the logarithm 

of the cardinality, then our algorithms have polynomial-time complexity. This result is 

also new. Finally, if  we fix both k, the number of matroids, and r, the rank of matroids, 

the algorithms summarized in Section 4 solve the problem in time that grows linearly 

with the cardinality of the ground set. 

Although there are matroids that cannot be represented over the field of rationals, 

many combinatorially and algorithmically interesting matroids do have this property. 

Thus our algorithms lead to new results for some old algorithmic problems in combina- 

torics. In particular, we describe new polynomially solvable cases of the k-Dimensional 

Assignment Problem and of the k-Dimensional Matching Problem for k > 2 (see, for 

example, [7,9] ). We prove that for any fixed k one can determine in polynomial time 

whether there exist O( logn)  pairwise disjoint edges in a given uniform k-hypergraph 

on n vertices. We describe combinatorial applications in Section 5. 

Our approach is based on multilinear algebra. This approach proved to be fruitful 

in the case of k = 2. The Binet-Cauchy formula for the determinant of the product of 

two matrices had been used for the Matroid Intersection Problem and a formula for 

the Pfaffian of a special matrix had been used for the Matroid Matching Problem (see, 

for example, [3,10,12,14] ). In Section 2 we briefly sketch these connections. In this 

paper we develop this algebraic approach further for k > 2, finding underlying identities 

from multilinear algebra. To obtain these generalizations, we invoke some classical 

notions due to Cayley [4,5] including tensors and hyperdeterminants, and introduce the 

hyperpfaffian of a tensor. These new identities appear to be interesting in their own 

right. This technique is presented in Section 3. Finally, we reduce our problems to 

the computation of the hyperdeterminant or the hyperpfaffian of a tensor and then use 

dynamic programming (Section 4). 

Let us formulate the problems that we will address. We consider linear matroids 

represented over the rationals (see [ 16] for the definition of a general matroid). Such 

a matroid is represented by an integral rectangular r × n matrix A = (A ( i , j ) :  1 «, 

i ~< r, 1 ~< j ~< n). (We write indices in parentheses rather than using subscripts.) We 

assume that r ~< n and that rank A = r. The numbers n and r a r e  referred to as the 

cardinality and the rank respectively of the matroid represented by A. For a subset 

I C { 1 . . . . .  n} of cardinality r we denote by AI the r x r submatrix of  A consisting of 

the columns indexed by the elements of I. A subset I for which det AI ~ 0 is called a 

base of the matroid represented by A. The matroid represented by A is the set (1 . . . . .  n} 

together with the family of all bases. Note that different matrices can represent the same 

matroid. Let us state the first problem that we consider. 

(1.1) k-Matroid Intersection Problem. Let us fix k C N. Given r, n C N, and k integral 

rectangular r×n matrices A 1 . . . . .  A k, decide whether there exists a subset I C {1 . . . . .  n} 

of  cardinality r such that all the r x r submatrices A~ . . . . .  A~ are nonsingular, that is, 



A.I. Barvinok/Mathematical Programming 69 (1995) 449-470 

detA} ~ 0  . . . . .  detA/k ~0 .  
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In other words, we are interested in whether the matroids represented by A 1 . . . . .  A k 

have a common base. In the Matroid k-Parity Problem we restrict ourselves to matroids 

whose rank and cardinality are divisible by k and look for a base of  a special form. 

(1.2) Mat ro id  k-Par i ty  Problem. Let us fix k C N. Suppose that natural numbers r, 

N and an r x N rectangular integral matrix A are given. We assume further that r and 

N are divisible by k, so r = k m  and N = k n  for some m, n C N. Let Po = { 1 . . . . .  k}, 

/°1 = {k + 1 . . . . .  2k} . . . . .  P n - 1  = ( N -  k + 1 . . . . .  N)  be a partition of  the set { 1 . . . . .  N)  

into disjoint k-sets. Decide, whether there exists a subset I C { 1 . . . . .  N} of  the form 

I = Pil U .  • • U Più, for some 0 ~< il < • • • < im <~ n - 1, such that the corresponding r x r 

submatrix AI is nonsingular, i.e., det At 5 / 0. 

For k = 2, Problems 1.1 and 1.2 admit polynomial time algorithms (see [11] ) .  As 

we mentioned earlier, both of  them are NP-hard for k > 2. 

We present an algorithm for Problem 1.1 whose complexity is O(r2k(4 rk + n))  and 

an algorithm for Problem 1.2 whose complexity is O (r 2k+l ( 4 r +  n)) .  The computational 

model is the RAM with the uniform cost criterion (see [ 1 ] ). We take care that the bit 

size of  numbers encountered in the course of  our algorithms is bounded by a polynomial 

in the total bit size of  the input data. 

We pose ( I .1 )  and (1.2) as decision problems. One can reduce the problem of  

finding a base I to a sequence of  decision problems using the standard divide-and- 

conquer approach. Let us consider the k-Matroid Intersection Problem (the Matroid 

k-Parity Problem can be treated in a similar way).  Suppose we know that a base I 

in Problem 1.1 indeed exists. Let us check if n E I. Let Äi, i = 1 . . . . .  k, be the 

r × n - 1 submatrix of  A i consisting of  the first n - 1 columns. We apply an algorithm 

for testing the decision problem (1.1) with these submatrices. If  the answer is "no", 

then necessarily n C I and we try the next element, say, n - 1. I f  the answer is "yes", 

then there exists a base I such that n ~ I and we try the next element n - 1 with the 

submatrices Äi. This construction adds an extra factor n to the complexity bound for the 

corresponding decision problem. 

Notation.  We denote by [1 : r] the set of  natural numbers {1,2 . . . . .  r}. We denote 

by III the cardinality of  a finite set I .  We denote by Sr the symmetric group, i.e., the 

group of  all permutations of  the set [ 1 : r ] .  For a number i E [ 1 : r] and a permutation 

o" C Sr we denote by o-(i) the image of  i under permutation tr. Thus o-(i) C [ 1 : r ] .  Let 

I = ( i l  . . . . .  ir)  be a string of  distinct natural numbers. A pair is, it such that s < t and 

is > it is called an i n v e r s i o n  in I. We denote by inv( l )  the number of  inversions in I .  I f  

o- E Sr i S a permutation, then by inv ( o- ) we denote inv (o- ( 1 ), o- (2) . . . . .  o- ( r )  ). Finally, 

let sgn tr = ( - 1 )inv(o-). We write the indices of  matrices and tensors in parentheses. Thus 

the determinant of  an r x r square matrix A can be written as follows: 
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r 

d e t A =  ~ s g n o ' I I  A( i ,o ' ( i )  ). 
o'C Sr i= 1 

2. Preliminaries. The case k = 2 

In this section we recall some known connections between our problems for k = 2 and 

identities involving determinants and Pfaffians (see [3,10,12,14] ). Our main goal is to 

provide a certain intuition on interactions between multilinear algebra and problems on 

matroids which will be applicable for k > 2 as weil. However, this is neither a survey 

of  [3,10,12,14] and related papers, nor is it intended to be. 

(2.1) The Matroid Intersection Problem and the Binet-Cauchy formula. Let A 1 and 

A 2 be r x n integral matrices. Let us define an r x r square matrix C by the formula 

n 

C (i, j )  = ~ A 1 (i, s) • AZ(j,  s ) ,  

s=l 

for all 1 <~ i, j ~< r. In other words, C is the product of  A l and the transpose of  A 2. 

Then the Binet-Cauchy formula (see, for example, [ 13, Theorem 9, p. 78] ) asserts that 

Z detA~,  detA 2 = detC. (2.1.1) 

I C [  l :n]:  II[=r 

As is known, the determinant of  the r x r matrix C can be computed using O ( r  3) 

arithmetic operations so that the bit size of  all the numbers involved in the computation 

is bounded by a polynomial in the input size. If  det C 5/0, then there exists a common 

base of  the matroids represented by A 1 and A 2. However, if det C = 0, then we cannot 

immediately tell whether there is a common base since nonzero summands on the 

left-hand side of  (2.1.1) might annihilate one another. To overcome this difficulty, 

several approaches can be used. First, in some lucky instances it might happen that 

all the summands in the left-hand side of  (2.1.1) are nonnegative. Then the equality 

det C = 0 implies that no common base of  the matroids represented by A 1 and A Œ exists. 

This is the case, for example, if A 1 = A 2. Second, we can "perturb" the matrix A 1 

multiplying its columns by randomly chosen nonzero integers tl . . . . .  tn (this perturbed 

matrix represents the same matroid). Then for "almost any" choice of  the parameters 

tl . . . . .  tn the equality det C = 0 implies that no common base exists. This approach is 

used, for example, in [3,14],  where some efficient probabilistic algorithms for solving 

Problem 1.1 and its weighted versions are described. 

(2.2) The Matroid Parity Problem and the Pfaffian. We can treat Problem 1.2 in a 

similar way. Instead of  the determinant, we use another object, namely the Pfaffian. Let 

r be an even number, r = 2m. The Pfaffian of  an r x r square matrix C is defined by 

the formula 
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P f C  - - -  
m - I  

1 
m!.  2 m Z sgn o- 1-I  C (o-(2i + 1), o-(2i + 2) )  

o'ESr i=0 
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(see, for example, [13] ) .  The Pfaffian of  an r x r integral matrix can be computed 

using O ( r  3) arithmetic operations [6] (again, the bit size of  all the involved numbers 

is bounded by a polynomial  in the input size). Let us consider a possible application of  

the Pfaffian to Problem 1.2. For a given r x N rectangular matrix A, where r = 2m and 

N = 2n, let us compute an r x r matrix C as follows: 

n - 1  

C(i , j )  = Z A(i, 2s + 1 ) . A ( j , 2 s + 2 ) ,  
s=O 

for all 1 ~< i, j ~< r, Then, 

Z det At = 2 m • Pf  C, (2.2.1) 
1 

where the sum is taken over all subsets I C [ 1 : N] of  cardinality r that can be 

represented as a disjoint union of  m pairs Pil = {2il + 1,2il + 2} . . . . .  Pi,ù = {2im + 

1,2 im+2} for some 0 ~< il < - "  < im ~< n -  1 (see [3] ). Again, if  the right-hand side of  

(2.2.1) is nonzero, then the answer in Problem 1.2 is "yes". It might happen that all the 

summands in (2.2.1) have the same sign and thus the converse is also true. This is the 

case, for example, when A(i, 2 j -  1) = A(i+m, 2j )  and A(i+m, 2 j -  1) = A(i, 2j )  = 0 

for i = 1 . . . . .  m and j = 1 . . . . .  n (such a matrix appears when we pose the problem of  

finding a base in a single linear matroid as an instance of  the Matroid Parity Problem).  

Otherwise, we can perturb A, multiplying its columns by randomly chosen nonzero 

integers tl . . . . .  tN so that the converse is true with high probability. Such an approach 

is used in [ 10] where an efficient probabilistic algorithm for Problem 1.2 is described. 

In [3] a version of  identity (2.2.1) is used to design a pseudopolynomial random 

algorithm for a weighted version of  the problem. 

For applications of  determinants and Pfaffians to problems on graphs, see also [ 12]. 

In order to tackle Problems 1.l and 1.2 when k > 2, we generalize (2.2.1) and 

(2.2.2).  Namely, we want expressions for 

d e t A ~ . A  2.--detA/k and Z d e t A "  

I C [  l :n ] :  ] l ]=r  1 

where the last sum is taken over subsets I of  the type required by Problem 1.2. The 

expressions that we obtain will require the evaluation of  "hyperdeterminants" and "hyper- 

pfaffians". These evaluations are much more time-consuming than those of  determinants 

and Pfaffians, nonetheless we achieve computational savings over enumeration. 
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3. Tensors, their hyperdeterminants and hyperpfaffians 

In this section we present some technique of  multilinear algebra that we make use of  in 

our algorithms. It turns out that, passing from k = 2 to k > 2, we should replace matrices 

by tensors, determinants by hyperdeterminants, and Pfaffians by hyperpfaffians. The 

notion of  hyperdeterminant was introduced by Cayley [4,5], whereas the definition of  

hyperpfaffian is new. All the corresponding identities are quite simple and straightforward 

although formulas sometimes might seem cumbersome. We consider a tensor as a k- 

dimensional array of  real numbers. 

(3.1) Definition. Let us choose natural numbers k and r. We denote by [ 1 : r] k the 

product [1 : r] x -- .  × [1 : r] (k times), i.e., the set of  all ordered k-tuples (il . . . . .  ik) 

where 1 ~< il . . . . .  ik ~< r. By a (real) k-dimensional tensor of  order r we understand a 

map 

C :  [ l : r ]  k - - - ~ R .  

We also write 

C = { C ( i l  . . . . .  ik): 1 ~<il . . . . .  ik~<r},  

thus considering the tensor C as a k-dimensional r x . . .  x r array of  the numbers 

C ( i l  . . . . .  i k ) .  We say that C ( i l  . . . . .  ik) are entr ies  of C. 

To generalize the determinant of  a matrix, we introduce the hyperdeterminant of  a 

tensor. 

(3.2) Definition (Cayley [4,5] ). Suppose that k is even. For a k-dimensional tensor 

C = { C ( i l  . . . . .  ik):  1<~ il . . . . .  ik «, r }  

of order r, the expression 

1 
= - -  D E T C  r! sgnoh • sgno-2 . . ,  sgno'k 

Œ1 ,o-2, ù ,O'kESr 

r 

× I - I  C (o°1 ( i) ,  002(i) . . . . .  o-k ( i))  (3.2.1) 
i=1 

is called the h y p e r d e t e r m i n a n t  of  C. Since for any given set of  k - 1 permutations 

r2 . . . . .  ~'k C Sr all the r! summands of  (3.2.1) corresponding to the permutations 

{001 = 00,002 = T2 . 00 . . . . .  00k = 7"k . 00 : o- E Sr}  are equal, we get yet another expression 

for the hyperdeterminant: 

r 

D E T C =  ~ s g n o - 2 . . . s g n o - k l - I c ( i ,  cr2(i ) . . . . .  00k( i ) ) .  (3.2.2) 
o'2, . . , t r~ESr i=1 
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If  k = 2, we get the usual determinant of  a matrix. I f  k is odd, then the expression 

(3.2.1) is identically zero. 

The fol lowing result provides the key tool for our consideration of  the k-Matroid 

Intersection Problem. It can be considered as a natural generalization of  the Bine t -  

Cauchy formula. Al though very simple, this result is new. 

(3.3) L e m m a .  Let k be eren and let A 1 . . . . .  A k be rectangular real r × n matrices; 

r «. n. Thus A s = {AS( i , j ) :  1 <~ i <~ r, 1 <~ j <~ n}, s = 1 . . . . .  k. For a subset 

I C [ I : n] o f  cardinality r we denote by ASl the r × r submatrix o f  the matrix A s 

consisting o f  the columns o f  A s indexed by the elements o f  the set I. Let us define a 

k-dimensional tensor C o f  order r by the formula 

n 

C( i l ,  i2 . . . . .  ik) = E A1 ( i l , j )  • A2( i2 , j )  " "  A k ( i k , j ) ,  

j = l  

(3.3.1) 

f o r  all 1 ~ il . . . . .  ik <~ r. Then, 

E det A}.  det A ~ . . .  det A~ = DET C, 
1 

where the sum is taken over all subsets I C [ 1 : n] o f  cardinality r. 

Proof,  We substitute (3.3.1) into (3 .2 . l ) .  Thus we have 

1 
DET C = --r! 2-- '  sgn trl • sgn 0"2. • • sgn irk 

tr 1 ,o-2, . . ,O 'kES  r 

~fI± A l ( o ' l ( i ) , j )  A2(o '2 ( i ) , j )  • "Ak( t rk ( i ) , j )  

i=1 j = l  

1 = -  ~ rt sgn trl • sgn 0-2. • • sgn trk 
O" 1,0" 2 , . . , 0 "  k ~ S  r 

r 

× E I I A l ( ° - l ( i ) ' j i ) ' A 2 ( Œ 2 ( i ) ' j i ) ' " A k ( ° ' k ( i ) ' j i )  

l « . j l , . . . , j r ~ n  i=1 

1 
=r-{ E E sgnt r l  " "sgntrk 

1 <~jl , . . . , jr<~n ô'l  , . . , t r k G S r  

F 

× I I A l ( o ' l ( i ) , j i ) . . . A k ( o ' k ( i ) , j i ) .  

i=1 

For a given sequence J = ( i l  . . . . .  j r ) ,  1 ~< j l  . . . . .  jr <~ n, and s = 1 . . . . .  k let us denote 

by Ä~ the r × r real matrix w h o s e / t h  column is the jith column of  the matrix A s for 

i = 1 . . . . .  r. Then for all J = ( j l  . . . . .  j r )  we have 
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~ sgn o'1 • sgn o'2. • • sgn ort 
{T l ,o'2, ..,O'kES r 

F 

X I-[ A l ( ° ' l ( i ) ' j i )  " A2(°'2(i) ' j i)  "'" Ak(°rk(i) ' j i)  
i=1 

r r 

= det Ä}.  det Ä~-- .  det Ä~. 

Therefore we get 

1 
DET C = r~ 

J=( h ,...,J, ) 

det Ä1. det Ä~ . - -de t  Äk, 

where the sum is taken over all sequences 1 ~< jl  . . . . .  jr <~ n. If  a sequence J = 

( j l  . . . . .  jr) contains a pair of  equal numbers, then the corresponding summand is equal 

to zero, since the matrix Ä~, say, contains a pair of  identical columns. If  we transpose 

two elements of  a given sequence J, then all the numbers detÄ~ . . . . .  det Ä~ reverse 

their signs. Since k is even, then all the summands corresponding to the r! different 

orderings of  a given set {jl . . . . .  jr} C [1 : n] are equal. Therefore we get 

D E T C  = ~ det Ä1 • detÄ~ • • • det Ä~ 

J=(j l<j2<'"<jr)  

= ~ detA},  detA2- • .detA k, 

I C l  l :n ] ,  Ill=r 

and the proof follows. [] 

Next, we generalize the Pfaffian to tensors. 

(3.4) Definit ion.  Let k be an even number and let 

C = {C(i l  . . . . .  ik): 1 ~< il . . . . .  i k ~ r} 

be a k-dimensional tensor of  order r. Assume that r = km for some m E N. The 

expression 

m--1 
1 

P F C = - ~ . ~ s g n t r I - [ C ( t r ( k i + l ) , o - ( k i + 2  ) . . . . .  o - ( k i+k ) )  (3.4.1) 
~ C Sr i=O 

will be called the hyperpfaffian of  C. 

Note that for any given permutation r E Sr all the m! summands of  (3.4.1) corre- 

sponding to the permutations {o- = ~-./z: /z permutes the ordered k-tuples (1 . . . . .  k), 

(k + 1 . . . . .  2k) . . . . .  ( r  - k + 1 . . . . .  r )}  are equal. In particular, if all entries of  C are 
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integers, then PF C is also an integer. I f  k = 2, then C is an r x r square matrix and 

P F C  = 2 m • Pf  C, where Pf  is the usual Pfaffian of  a matrix. One can observe that i f  k 

is odd, then the expression (3.4.1) is identically zero. Applications of  the hyperpfaffian 

to the Matroid k-Parity Problem are based on the following result. 

(3.5) L e m m a .  Let k, N and r be natural numbers. Assume that k is even and that 

r = km and N = kn where m ,n  E N. Let A = { A ( i , j ) :  1 <~ i <~ r, 1 <~ j <~ N}  be a 

rectangular r × N real matrix. For a subset I C [ 1 : N] o f  cardinality r we denote by 

AI the submatrix o f  A consisting o f  the columns indexed by the elements o f  I. Suppose 

that the set { 1 . . . . .  N}  is represented as a disjoint union o f  the sets Po = { 1 . . . . .  k }, 

P1 = {k + 1 . . . . .  2k} . . . . .  Pn-1 = { N  - k + 1 . . . . .  N}, each of  cardinality k. Let us 

define a k-dimensional tensor C of  order r by the formula: 

n--I 

C(i l , i2  . . . . .  ik) = Z A ( i l , k j  + l )  . A(i2, k j  + 2 ) . . . A ( i k ,  k j  + k) ,  (3.5.1) 
j---0 

for  all 1 «. il . . . . .  ik <~ r. Then, 

~--~ det AI = PFC,  

where the sum is taken over all subsets I C [ 1 : N] o f  cardinality r that can be 

represented as a union Pil t o " "  tO Più, for  some 0 <~ il < . . .  < im <~ n - 1. 

Proof.  We substitute (3.5.1) into (3.4.1). We have 

m--1 n-1 

1 t r i - [ Z A ( o . ( k i + l ) , k j + l )  PF C = m--~ ~ sgn 
ŒESr i----O j----O 

x A( t r (k i  + 2),  k j  + 2 ) . . .  A(tr (k i  + k) ,  k j  + k) 

m-1 
1 

= m---~. Z sgncr Z 1-[ A ( t r ( k . i +  1 ) , k . j i +  1) 
ŒESr  O<~jo,...,j,,-l «.n-1 i=O 

ù A ( t r ( k . i +  k ) , k . j i +  k) 

1 

O~jo,...,jm-I <~n--1 o'ESr 

m-1 

× 1-[ A ( o ' ( k . i +  1 ) , k ' j i  + 1 ) . - . A ( c r ( k .  i + k ) , k ' j i  + k ) .  

i=O 

For a given sequence J = (0 ~< J0 . . . . .  jm-1 <~ n - 1) let us construct a real r × r 

matrix Äj  in the following way: we consecutively place first the columns of A indexed 

by the members of  Pjo, then the columns of  A indexed by the members of  Pj~, and so 
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on, finally we place the columns of  A indexed by the members of  Pjm-~. Then for any 

sequence J = (j0 . . . . .  jm-1 ) we have 

m - 1  

Z s g n o - H  A ( o ' ( k .  i +  1 ) , k .  ji + 1 ) . . . A ( o ' ( k .  i +  k ) , k .  ji + k) 

~rESr i--O 

r 

= ~ s g n ° ' l - - [ Ä « ( ° ' ( / ) ,  i) = det Ä«" 

ŒGSr i=1 

Therefore we have 

1 
PF C = m~ " Z det Ä«, 

J=(jo,...,jn,-1 ) 

where the sum is taken over all sequences 0 <~ jo . . . . .  jm- l  <~ n - 1. I f  a sequence 

J = ( j o  . . . . .  jm-1  ) contains a pair of  equal numbers, then the corresponding summand 

is equal to zero, since the matrix Äj  contains a pair of  identical columns. A transposition 

of  any two terms of  a given sequence J results in k transpositions of  the columns of  

the matrix Äs. Since k is even, all the summands corresponding to the m! different 

orderings of  a given set (j0 . . . . .  jm-1} C [ 0 :  n - 1] are equal. Therefore we get 

P F C =  Z detÄj  = Z d e t  At '  
j=(jo<h<...<jù,_l) 1 

and the proof follows. [] 

We describe some recurrences for hyperdeterminants and hyperpfaffians which we 

will use later. 

(3.6) Definition. Let 

C = {C(i l  . . . . .  ik): 1 <~ il . . . . .  ik <~ r} 

be a k-dimensional tensor of  order r. Let Il ,  12 . . . . .  Ig C [ 1 : r] be subsets of  the set 

[ 1 • r] of  cardinality t ~< r. Let us define a subtensor A of C in the following natural 

mflnner. 
Let ~b.i, j = 1 . . . . .  k, be the unique order-preserving bijection ~bj : [ 1 : t] > Ij. 

Thus ~bj(s) is the sth element of  the set Ij in increasing order. Let 

A(  il . . . . .  ik) = C (t~l (il)  . . . . .  q~k( ik) ) ,  

for all 1 <~ il . . . . .  ik <~ t. Thus A is a k-dimensional tensor of  order t. We write 

A = C(I1 . . . . . .  Ig), 

referring to the chosen subsets I1 . . . . .  Ig. If  t = 1 and 11 = {il} . . . . .  Ik = {ik}, then we 

identify the subtensor A with the number C(i l  . . . . .  ig). 
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(3.7) L e m m a .  Let  C be a k -d imens ional  tensor  o f  order r. 

(3.7.1) Suppose  that k is even. Then, 

4 5 9  

DET C = Z (--1)l+i2+'"+ikC(l'i2 . . . . .  ik) 

l~i2,..,ik~r 

x D E T C ( [ 1  : r] \ {1}, [1 :  r] \ {i2} . . . . .  [ 1 :  r] \ {ik}). 

(3.7.2) Suppose  that k is even and  that r = k m  f o r  some rn E N. Then, 

PFC = I. Z (-l)(i'-1)+(i2-2)+'"+(ik-k)PFC(l'l ..... I )  
m 

l={ i l  ,i2, . . , ik} 

× P F C ( [ 1  : r ]  \ { I }  . . . . .  [1 : r ]  \ { I}) ,  

where the sum is taken over  all k-subsets  I = {il . . . . .  ik} o f  the set  [ 1 : r]. 

Proof.  Formula (3.7.1) is not new (see, for example, [15] ) ,  but for the sake of  

completeness we give its proof  here. Using (3.2.2), we get 

r 

D E T C =  Z s g n t r 2 " " s g n t r k I I c ( i ' t r 2 ( i )  . . . . .  ~rk(i))  

002 , ..,00k ~ Sr i=l 

= Z sgn o-2 • • • sgn o-k • C (1, ~r2(1) . . . . .  o 'k(1))  
Œ2, ..,00kGSr 

r 

x 1 - I c ( i , o - 2 ( i )  . . . . .  o ' k ( i ) )  

/--2 

= ~ C ( 1 , i 2  . . . . .  ig) Z sgn t r2 . . . sgno-k  
i2 , . . , ik  0-2: 0°2 ( 1 ) = i2 , . . ,o 'k :  00/, ( 1 ) =ik 

F 

× ] - [ C ( i , o ' 2 ( i )  ..... o 'k ( i ) ) ,  

/--2 

where the outer sum is taken over all sequences 1 ~< i2 . . . . .  ik ~< r, whereas the inner 

sum is taken over the set of  all permutations o-e . . . . .  ort such that o-j maps 1 to ij for 

j = 2  . . . . .  k. 

Let us choose t = ij E [1 : r] and let ~b : [1 : r -  1] ~ [1 : r]  \ {t} be the order- 

preserving bijection. Then each permutation o- E Sr such that o ' (1)  = t corresponds 

to the permutation 7- C Sr- l  defined by the formula 7"(s) = ~b - l  (o-(s + 1)) for all 

s C [ 1 : r - 1 ]. I f  o- ranges over the set of  permutations which map 1 to t, then 7- ranges 

over the group Sr-1. Moreover, since ~b -z is order-preserving, the number of  inversions 

in the string (7-(1) . . . . .  7-(r - 1)) is equal to the number of  inversions in the string 

(o-(2) . . . . .  o-(r)  ) which is equal to inv(o-) - t - 1 (since tr( 1 ) = t) .  Therefore for any 

sequence iŒ . . . . .  ik and A = C ( [ 1  : r] \ {1}, [1 : r]  \ {i2} . . . . .  [1 : r]  \ {ik}) we get 

(we recall that k is even) 
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r 

sgncr2 " " sgncrk H C (i,°'2( i) . . . . .  irk(i)) 
0"2: 0"2( 1 ) =i2,..,o-~: o'k( 1 )=ik i=2 

r - - I  

= ( -  1 )l+i2+'"+ik ~--~~ sgnr2""sgn'rkHA(i,~'2(i) . . . . .  ~'k(i)) 
r2, . . ,~ 'kE&-i  i=1 

= ( - 1 ) ~ +i2+.--+ik DET A, 

and the p roof  o f  (3.7.1) follows. 

Let us prove (3.7.2).  We observe that by (3.4.1) ,  

m--1 
1 

P F C  = m.l ~ sgno- H C(o'(ki+ 1) ,o - (k i  + 2) . . . . .  o-(ki+ k)) 
«ESr i--0 

1 
= m--[ ~ sgno- .  C (o - (1 )  . . . . .  o - (k) )  

o-CSr 

m - I  

x H C(o'(ki4- 1 ) , o ' ( k i 4 -  2) . . . . .  o'(ki4-k)) 
i=1 

1 
=ra--i. ~ C ( i l  . . . . .  ik) ~ s g n o -  

1= ( il ,...,ik ) 0": 0"( 1 ) =il,...,o'( k ) =ik 

m--I 

× H c ( « ( k i +  l~,o-(~i+ 2) . . . . .  « (k i+  ~)), 
i=1 

(*) 

where the outer sum is taken over all sequences of  pairwise different numbers I = ( 1 ~< 

il . . . . .  ik ~< r )  whereas the inner sum is taken over the set of  all permutations o- E Sr 

such that o-(1) = il . . . . .  o-(k) = i~. Let us choose a sequence I = (il . . . . .  ik). Let 

~b : [ 1 : r - k] ~ [ 1 : r ]  \ { /}  be the order-preserving bijection. To each permutation 

o- E Sr which maps 1 to il, 2 to i2 . . . . .  k to ik we let correspond a permutation ~- C Sr-k 

defined by the formula  r(s) = ~b -1 (o-(s 4- k))  for all s E [1 : r - k] .  Since ~b -1 is 

order-preserving, the number  of  inversions in the string 0- (1)  . . . . .  r ( r -  k) )  is equal to 

the number  o f  inversions in the string (o-(k + 1),  o-(k + 2) . . . . .  o - ( r ) ) .  Let us compute  

the last number. For s = 1 . . . . .  k let us denote t e ( s )  = I{ij: j < s and ij < i~}1. Then, 

k 

i nv (o ' (k  + 1) . . . . .  o ' ( r ) )  = i n v ( o - ) -  ~-~~(is- 1 - l e ( s ) ) .  
s=l 

On the other hand, we have that 

k 

inv(il  . . . . .  ik):~-~~(s-- l -- l«(s)) ,  
s=l 

and therefore 
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k 

i nv ( r )  = inv(o-) - inv( i l  . . . . .  ik) -- ~--~~(is -- s). 

s=l 

461 

Therefore, letting A = C ( [ 1  : r]  \ {I}  . . . . .  [ 1 :  r]  \ { I} ) ,  we get 

m - l  

sgntr l-[  C(o ' (k i  + l ) . . . . .  cr(ki + k))  

o-: o'( 1 ) =il  , . . . ,o'( k ) =ik i= 1 

= ( - - l )  (il--1)+..'+(ik--k) (__l)inv(ih...,ik) ~ s g n  r 

';'ESr_ k 

m--2 

× H A(~' (k i+ 1) . . . . .  ~'(ki+ k))  

i=O 

= (m - 1) !. ( - 1) fil--1)+'"+(ik--k)+inv(ib...,ik) PF A. 

Now we observe that for any given subset I C [ 1 : r]  of  cardinality k the sum 

~ (--1) inv( il"'"'ik) C ( i l . . . . .  ik ) 

taken over all k! permutations of  the set I = {il . . . . .  ik} is equal to P F C ( I  . . . . .  I ) .  

F rom (*)  we deduce the desired formula. [] 

4. The  a lgo r i t hms  

In this section we describe our algorithms for the k-Matroid Intersection Problem 

and for the Matroid k-Parity Problem. We begin with the algorithms that compute 

hyperdeterminants and hyperpfaffians. 

(4.1.1) Computing the hyperdeterminant. 

Let us fix an even k E N. 

Input: A natural number r and a k-dimensional tensor C of  order r: 

C = {C( i l  . . . . .  ik): 1 <~ il . . . . .  ik «. r},  

where all the numbers C(i l  . . . . .  ik) are integral. 

Output: The integral number DET C. 

A l g o r i t h m :  We use dynamic programming based on the recurrence (3.7.1).  For any 

k-tuple of  nonempty subsets I1 . . . . .  Ig of the set [ 1 : r]  such that Il l l  . . . . .  Ilkl let  us 

define a variable x(I1 . . . . .  Ig). The common cardinality of  the sets I 1  . . . . .  lk we call 

the level of x. I f  the level of  x is 1, and therefore I1 = {il} . . . . .  Ig = {ik}, for some 

il . . . . .  ik E [ 1 : r ] ,  we let 

x(I i  . . . . .  Ik) = C(i l  . . . . .  ik). 



462 A.L Barvinok/Mathematical Programming 69 (1995) 449-470 

For s = 2 . . . . .  r we consecutively compute the values of  variables o f  level s using 

previously computed values of  variables whose level is s -  1. Let ~bt(i), t = 1 . . . . .  k, 

i = 1 . . . . .  s, denote the / th  element of  the set It in increasing order. Let 

x(Ii  . . . . .  Ik) = Z (--1)l+iz+"'+ikc(~bl(1)'~b2(iz) . . . . .  qbk(ik)) 

I ~i2,..,ik~S 

x x(I1 \ {~bl (1 )} , I2  \ {~b2(i2)} . . . . .  Ik \ {~bk(ik)}). 

Finally let 

D E T C  = x ( [ 1  : r] . . . . .  [1 : r ] ) .  

(4.1.2) Proposit ion.  The algorithm of (4.1,1) computes the hyperdeterminant of a given 

k-dimensional tensor C of order r using (for a fixed k) 0 (2 rk. r k) arithmetic operations. 

The sizes of the numbers involved in the algorithm are bounded by a polynomial in the 

input size. 

Proof. By recurrence (3.7.1) it follows that x(Ii  . . . . .  Ik) = D E T C ( h  . . . . .  Ik) for all 

subsets Il . . . . .  Ik C [1 : r] such that [Ill . . . . .  I/kl. Therefore the algorithm indeed 

computes the desired value of  DETC.  The number of  various variables x(I1 . . . . .  Ik) 

does not exceed 2 rk. In order to compute the value of  a variable we have to sum up at 

most r k-I summands. To compute the index of  a variable, that is, to delete an element 

with a given number from a subset I C [ 1 : r ] ,  it suffices to perform O( r )  operations. 

Thus the algorithm has the desired complexity. 

Let us denote by L the maximal absolute value of  C (it . . . . .  ig) for 1 ~< il . . . . .  ik ~< r. 

By (3.2.2) it follows that all the absolute values of  DETC(I~  . . . . .  lg) are bounded by 

(r!)  k- 1. L r. Therefore the sizes of  all the numbers involved in the algorithm are bounded 

by a polynomial in the input size (we note that the input size is at least rk+size L).  []  

(4.2.1) Computing the hyperpfaffian. 

Let us fix an even k E N. 

Input: A natural nurnber r, r = km for some rn c N and a k-dimensional tensor C of  

order r: 

C = {C(i l  . . . . .  ik): 1 ~< il . . . . .  ik ~< r}, 

where all the numbers C(il . . . . .  ik) are integral. 

Output: The integral number PF C. 

Algor i thm:  We use dynamic programming based on the recurrence (3.7.2). For any 

nonempty subset I of  the set [ 1 : r]  such that [I I is divisible by k, let us define a 

variable x ( I ) .  The number [l[/k we call the level of x. Let ~b(i), i Œ [1 : [I[], denote 

the / th  element of  the set I in increasing order. I f  the level of  x is 1, we let 

x(1) = Z sgno- C(tr(~b(1))  . . . . .  o-(~b(k))). 
o-ESk 



A.L Barvinok/Mathematical Programming 69 (1995) 449-470 463  

For s = 2 . . . . .  m we consecutively compute the values of  variables of  level s in terms 

of variables whose level is s - l: 

x ( i ) = 7  . 1  ~~i (--1)(i '--l)+(i=--2)+'"+(ik--k)«({q~(il) . . . .  • ¢ ( i k ) } )  

J C  [ 1 :ks] ,  J={il,...,ic} 

x x ( l  \ { ¢ ( i l )  . . . . .  ¢ ( i k ) } ) ,  

where the sum is taken over all k-subsets J of  the set [ 1 : ks]. 

Finally let 

PFC = x ( [ l :  r ] ) .  

(4.2.2) Proposl t ion.  The algorithm of (4.2.1) computes the hyperpfaffian of a given k- 

dimensional tensor C of order r using (for a fixed k) 0 (2 r. r k+l) arithmetic operations. 

The sizes of the numbers involved in the algorithm are bounded by a polynomial in the 

input size. 

Proofi  By the recurrence (3.7.2) it follows that x (1)  = PF C ( I  . . . . .  I )  for all nonempty 

subsets I C [ 1 : r]  such that JlI is divisible by k. The number of  various variables x ( l )  

does not exceed 2 r. To compute the value of a variable of  level 1 we have to perform a 

constant number of  arithmetic operations (since k is fixed). I f  the level of  a variable is 

bigger than 1, we have to sum up not more than r k summands. To compute the index 

of  a variable it suffices to perform O ( r )  operations. Thus the algorithm has the desired 

complexity. 

Let us denote by L the maximal absolute value of C(il . . . . .  ik) for 1 ~< il . . . . .  ik ~< 

r. By (3.4.1) it follows that all the absolute values of  P F C ( I  . . . . .  I )  are bounded by 

r! • L m. Therefore the sizes of  all the numbers involved in the algorithm are bounded by 

a polynomial in the input size. [] 

Now we can complete our algorithms for the k-Matroid Intersection Problem and for 

the Matroid k-Parity Problem. 

(4.3.1) A lgor i thm for Prob lem 1.1. 

Let us compute a 2k-dimensional tensor C of order r by the formula 

n k 

C(il , i2 . . . . .  iZk-l,i2t) = ~ H(AS( i2s- ,  j )  • AS(i2s, j ) ) ,  

j = l  s=l  

for all 1 ~ il . . . . .  i2k ~< r. Using (4.1.1), let us compute an integer 

D = DET C. 

I f  D 7~ 0, then there exists a common base of  the matroids represented by A 1 . . . . .  A k, 

and if D = 0, then no such base exists. 
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(4.3.2) Theorem.  Algorithm 4.3.1 solves Problem 1.1 using (for a fixed k) O(r  2~ • 

(4 rk + n))  arithmetic operations. The sizes of the numbers involved in the algorithm are 

bounded by a polynomial in the input size. 

Proof. By Lemma 3.3 we conclude that 

D =  ~-~(detA})2 • • • (det A/k) 2, 

1 

where the sum is taken over all subsets I C [ 1 : n] of  cardinality r. Hence we conclude 

that the algorithm is correct. To compute the values of  C(il ,  i2 . . . . .  i2k-1, i2k) we need 

2nk. r 2~ operations. By Proposition 4.1.2 we conclude that the algorithm has the desired 

complexity. []  

(4.4.1) Algor i thm for  Problem 1.2. 

Let us define a 2r  × 2N matrix B in the following way. For j = 1 . . . . .  N put 

~ A ( i , j ) ,  i f i<~r,  and B(i,  2 j ) = {  O' i f i<~r,  
B ( i ' 2 j - 1 ) = [ O ,  i f i >  r, A ( i - r , j ) ,  i f i >  r. 

Let us compute a 2k-dimensional tensor C of  order 2r  by the formula 

n - I  2k 

C( il, i2 . . . . .  i2k-1, i2k) = Z 1-I B( is, 2kj + s),  
j---O s=l 

for all 1 ~< il . . . . .  i2k ~< 2r. Using (4.2.1) let us compute an integer 

D = P F C .  

If  D 5~ 0, then there exists a base I C [1 : N] represented in the desired form 

I = Pil U . "  • U P i . , ,  and if D = 0, then no such base exists. 

(4.4.2) Theorem.  Algorithm 4.4.1 solves Problem 1.2 using (for a fixed k) O(r  2k+1 • 

(4 r + n))  arithmetic operations. The sizes of the numbers involved in the algorithm are 

bounded by a polynomial in the input size. 

Proof.  Let us consider the partition of  the set [ 1 : 2N] into disjoint 2k subsets Q0 = 

{ 1 . . . . .  2k}, 01 = {2k + 1 . . . . .  4k} . . . . .  a m - I  = {2N - 2k + 1 . . . . .  2N} together with 

the initial partition of  the set [1 : N] into disjoint k-subsets P0 = {1 . . . . .  k}, P1 = 

{k + 1 . . . . .  2k} . . . . .  P,,,_~ = ( N  - k + 1 . . . . .  N}. Applying Lemma 3.5 (with the ai 

here playing the role of  the Pi in the lemma) we conclude that 

D = Z det B j, 
s 

where the sum is taken over subsets J C [ 1 : 2N] of  cardinality 2r  that can be 

represented in the form J = Qfi u . . .  u Qi,,,, where 0 ~< il < i2 < . . .  < in, <<. n - 1. 
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For such J = Qi~ u • • • u Qiù, let us consider the corresponding r-subset I C [ 1 : N] ,  

I = Pil U . . . U P i ù ,  We claim that detB« = e.  (det At) 2 with e E { - 1 ,  1} depending on r 

alone. Indeed, let ~ E S2r be a permutation such that 7 r ( 2 i -  1) = i and ~r(2i) = i + r  for 

i = 1 . . . . .  r. Applying the permutation 7r to the columns of  B« we get a 2r x 2r  matrix 

having AI as diagonal blocks and zeros elsewhere. Thus we can choose e = sgn7r. 

Hence we conclude that 

D = e • ~-'~~(detA,) 2 , 

l 

where the sum is taken over all r-subsets I C [ 1 : N] represented in the form I = 

Pil U . . .  U Più, for some 0 ~< il < i2 < --- < im ~ n - 1. Therefore the algorithm is 

correct. 

To compute the values of  C ( i l  . . . . .  i2k) we r~eed 2 n k ( 2 r )  2k arithmetic operations. By 

Proposition 4.2.2 we conclude that the algorithm has the desired complexity. [] 

The main feature of  our algorithms is that their complexity is linear in the cardinality 

of  the given matroids. I f  both r and k are fixed, then our algorithms solve Problems 1.1 

and 1.2 in O(n )  time. An exhaustive search for Problems 1.1 and 1.2 requires O( r  3. (n)) 

arithmetic operations. I f  n grows faster than any linear function of  r, then Algorithms 

4.3.1 and 4.4.1 are more efficient. This is the case for many combinatorial applications 

(see also Section 5). Moreover, if we restrict ourselves to a class of  problems with 

r = O ( l o g n ) ,  then both Algorithms 4.3.1 and 4.4.1 have polynomial complexity. More 

precisely, the following result holds. 

(4.5) Corollary.  Let  us f i x  c > O. Ler us consider a class o f  Problems 1.1 and  1.2 where 

r ~< c .  logn. Then this class o f  problems admits a polynomial  t ime algorithm. 

One can find that the condition r = O( logn)  for polynomial solvability of  Problems 

1.1 and 1.2 is too strong. However, if we choose instead, say, r = O(n «) for some fixed 

e > 0, then the problems remain NP-hard since we can reduce the general problem 

to a problem with r = O(n «) by appending columns of  zeros. Therefore we have little 

hope to solve Problem 1.1 or 1.2 in polynomial time unless n is exponentially bigger 

than r. A natural question in this context is to explore the case r = O (log « n) for some 

e > 1. In general, using the construction of  truncation, we can test in polynomial time 

the existence of  a common independent set (that is, a subset of  a base) of  a reasonably 

small size in matroids. In Section 5 we give some examples where the truncation can 

be computed efficiently. 

5. Combinatorial applications and examples 

In this section we apply our algorithms to some special problems, namely, to the 

k-Dimensional Assignment Problem and to the k-Dimensional Matching Problem. Both 

of  them are polynomially solvable if k = 2 (see [9,12] ) and NP-hard if k > 2 (see 
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[7] ). We also express the number of  Hamiltonian paths in a directed graph as a certain 

hyperdeterminant. First we discuss some particular matroids. 

(5.1) Transversal Matroid and its Truncation. Suppose that the set {1 . . . . .  n} is 

represented as a disjoint union of  nonempty subsets U1 . . . . .  Ut C [ 1 : n].  Let us choose 

r ~< t, r E N. Let us define an r x n integral matrix A by 

A( i , j )  =q', if j E Uq. 

A subset I C [ 1 : n] of  cardinality r is a base of  the matroid represented by A if and 

only if the intersection of  I with each set U1 . . . . .  Ut consists of  at most a single element. 

Indeed, if I contains a pair of  elements from the same set Uq, then the submatrix AI 

contains a pair of  identical columns and therefore is singular. I f  I contains not more 

than one element from each set Uq, then detAl  5 /0  as Vandermonde's determinant 

(see, for example, [13] ). Thus the matroid represented by A is the truncation at r of  

the transversal matroid associated with the partition U1 U " "  U U t = [1 : n] (see, for 

example, [ 16]) .  

I f  r = t, then A represents the transversal matroid associated with the partition 

U 1 U . . . U U t = [ I : n ]  (see [16]) .  

(5.2) C y d e  Matroid .  Let V = [ 1 : r + 1 ] be the set of  vertices and E be the set of  

edges of  a directed connected graph G = (V,E) without loops. Let n = lE I and label the 

e d g e s b y  thenumbers  1 . . . . .  n. Let us def inean r × n m a t r i x A = ( A ( i , j ) :  1 <~ i«.  

r, 1 <~j«.n}: 

{ 1, 

A ( i , j )  = -1 ,  

O, 

if i is the tail of  the edge j, 

if i is the head of  the edge j, 

otherwise. 

The matrix A represents a matroid, called the cycle matroid of the graph G. As is known 

(see, for example, [16] ) ,  I C E is a base if and only if I is the set of  edges of  a 

spanning tree in G. 

Let us consider a particular case of  the k-Matroid Intersection Problem. 

(5.3) k-Dimensional Assignment Problem. Let us fix k E N. Consider the k-dimension- 

al integral cube [ 1 : t] k. A set of  the form Mj (q) = {(il  . . . . .  ik) E [ 1 : t l  k: ij = q }  is 

called a section. We are interested in the following k-Dimensional Assignment Problem: 

For a given t E N, U C [ 1 : t] k, and r E N, decide whether there exist r distinct 

points from U such that no two of  them belong to the same section. 

As is known, this problem can be solved as an instance of  Problem 1.1. We present 

a particular construction here. 
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(5.3.1) Algor i thm.  Let n = IUI and identify the set U with the interval [1 : nj .  For 

j = 1 . . . . .  k, let Qj be the set of  q E [1 : t] such that the intersection U N M j ( q )  is 

nonempty and let 

U= U ( U A M j ( q ) )  

qEQj 

be the corresponding partition of  the set U. If  I Qjl < r for some j ,  then the answer 

is "no". Otherwise, let us construct the r x n matrix AJ that represents the transversal 

matroid truncated at r associated with the partition (see (5 .1)) .  Then apply Algorithm 

4.3.1 with the constructed matrices A 1 . . . . .  A k. 

Theorem 4.3.2 implies the following result. 

(5.3.1) Proposit ion.  Let us foc c > O. I r r  «. c.  log [U I, then Algorithm 5.3.1 solves the 

k-Dimensional Assignment Problem in polynomial time. 

We also note that if we fix both r and k, then the k-Dimensional Assignment Problem 

can be solved in o(IuI + t) time. 

(5.4) k-Dimensional Matching Problem. Let us fix k C N. Let E = {el . . . . .  en} be a 

family of  k-subsets of  the set V = [1 : t]. Such an object H = (V,E) is caUed a uniform 

k-hypergraph. The elements of  the set V are called vertices and the elements of  the set 

E are called edges. We assume that e l  U .  • • U en --- V ,  t h a t  i s ,  every vertex is covered by 

an edge. We are interested in the following k-Dimensional Matching Problem. 

For a given t E N, uniform k-hypergraph H = (V,E) on vertex set V = [ I : t l ,  and 

r ~ N, decide whether there exist r pairwise vertex-disjoint edges from E. 

If  k = 2, then we have the ordinary matching problem in a graph which admits a 

polynomial time algorithm (see [ 12] ). As we mentioned, the corresponding problem is 

NP-complete for k > 2 [7] .  As is known, this problem can be solved as an instance of  

Problem 1.2. We present a particular construction here. 

(5.4.1) Algor l thm.  Let N = kn. Let us construct a string f l  . . . . .  f/v of  numbers f j  E 

[ 1 : t] as follows. Consecutively list first the k vertices of  el in increasing order, then 

the k vertices of  e2 in increasing order, and so on; finally list the k vertices of  en in 

increasing order. For i = 1 . . . . .  t, let us define a subset Ui C [ 1 : N] as follows. Let j be 

an element of  Ui if and only if f j  = i. Let us construct the r x N matrix A representing 

the transversal matroid truncated at r associated with the partition [ 1 : N] = Uief~:t~ ui. 

Then apply Algorithm 4.4.1 with the matrix A. 

Theorem 4.4.2 implies the following result. 

(5.4.1) Proposit ion.  Let us fix c > O. If  r <~ c.  log IEI, then Algorithm 5.4,1 solves the 

k-Dimensional Matching Problem in polynomial time. 
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Again we note that if we fix both k and r, then the k-Dimensional Matching Problem 

can be solved in O([E])  time. 

Since the k-Matroid Intersection Problem can be reduced to the computation of  the 

hyperdeterminant of  a 2k-dimensional tensor (see Section 4),  one can easily derive 

that to decide if  the hyperdeterminant of  a k-dimensional tensor is zero is an NP-hard 

problem for k /> 6. We will show that this problem is NP-hard already for k = 4 in 

contrast to the case k = 2. 

(5.5) Hamiltonian paths in graphs and hyperdeterminants. Let G = (V,E) be a 

directed graph without loops with the set of  vertices V and the set of  edges E. Let 

r = IvI - 1 and identify the set V with the interval [1 : r +  1]. Furthermore, let n = IEI 

and label the edges from E by the numbers 1 . . . . .  n. Let us assume that the following 

conditions hold: 

(i) each vertex except r + 1 is the tail of  an edge; 

(ii) each vertex except I is the head of  an edge. 

Let us introduce r x n matrices A b and A e as follows: for i = 1 . . . . .  r and j = 1 . . . . .  n 

ler 

{1 ,  if the vertex i E [1 : r] is the tail of  edge j, 

A b ( i' J ) = O, otherwise, 

Ae(i, j )  = [ 1, if the vertex i + 1 is the head of  edge j, 

L 0, otherwise. 

Finally, let A c be the r x n matrix representing the cycle matroid of  the graph G (see 

(5.2)). 
We observe that a set I C [ 1 : n] is a common base of  the matroids represented by 

A b, A e and A c if and only if I is the set of  edges of  a directed path starting at 1, visiting 

each vertex exactly once, and arriving to r + 1. Such a path is called a Hamiltonian 

path from the vertex 1 to the vertex r + 1 (see also [ 16, Chapter 8, Section 5] ). Let us 

define a four-dimensional tensor C of  order r as follows: 

n 

C(i l ,  i2, i3, i4) = ~ Ab( i l , j )  " Ae ( i2 , j )  " Ae( i3 , j )  • Ae ( i4 , j ) ,  

j=l 

for all 1 ~< il, i2, i3, i4 ~< r. 

(5.5.1) Proposit ion.  The value o f D E T  C is equal to the number o f  directed Hamiltonian 

paths in G starting at the vertex 1 and arriving to the vertex r + 1. 

Proof.  We use Lemma 3.3. We have 

= . A 1 )  , D E T C  ~ d e t A / b . d e t A ~  (det c 2  

I 
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where the sum is taken over all subsets I C [ 1 : n] of cardinality r. As we mentioned, 

the corresponding summand is equal to 0 unless I is the set of edges of a directed 

Hamiltonian path starting at 1 and arriving to r + 1. Moreover, since the matrix A c is 

totally unimodular, we conclude that (detA~) ~ = 1 for such / (see, for example, [8] 

for the incidence matrix of a graph). Furthermore, 

det Ab. det A~ = det(Ab. (Al)e T), 

where "T" denotes the transpose. For a given Hamiltonian path I we consider the 

Hamiltonian cycle o- E Sr+l which maps each i E [ 1 : r] to the next vertex i C [ 1 : 

r + l ]  along this path and, additionally, maps r + l  onto 1. L e t / / «  be the (r-k-I) × ( r + l )  

matrix of this permutation, namely 

{ 1, if o-(i) = j, 

/ / « ( i ' J ) =  O, otherwise. 

If  we delete the ( r  + 1)th row and the first column of the matrix H«, then we get the 

matrix A~. (A~) T. Therefore 

det(A b- (A~) T) = ( - 1 )  r- det/7,r = ( - 1 )  r .  invo- = 1, 

and the proof follows. [] 

(5.5.2) Corollary. Let us fix an even number k > 2. The problem of deciding whether 

for  a given k-dimensional tensor C with integral entries the hyperdeterminant DET C 

is equal to 0 is NP-hard. 

6. Remarks 

The results of this paper can be generalized in at least two directions. 

First, we can consider matroids represented over a different field. In case of the field 

of complex numbers one can design algorithms similar to 4.3.1 and 4.4.1. In Algorithm 

4.3.1 we should adjoin the complex conjugate of each matrix A i (but not just a copy 

as in the case of the reals). The matrix B in Algorithm 4.4.1 should be modified in 

a similar way using complex conjugation. In case of an arbitrary field one can use 

the "perturbation" described in Section 2 with nonzero elements tl . . . . .  tn from the 

field or from its algebraic extension. This leads to probabilistic algorithms in the k- 

Matroid Intersection Problem and the Matroid k-Parity Problem; the author does not 

know, however, whether it is possible to design deterministic algorithms with similar 

bounds of complexity in case of an arbitrary field. Our methods are not applicable to 

nonrealizable matroids, given by their oracles. We also note that for general matroids 

already the usual (k = 2) Matroid Parity Problem has exponential complexity [ 11 ]. 

Second, one can consider weighted versions of Problems 1.1 and 1.2. Namely, we 

assign integral weights to the elements of [ 1 : n] and look for a base of a maximal 
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or given weight. Here one can use either of the (essentially equivalent) approaches 

developed in [3,14], or sketched in the preliminary version of this paper [2]. 

We do not develop these topics here since one can immediately transfer the methods 

used in [3,10,14] in the case k = 2 to the case k > 2 replacing identities from (2.1) 

and (2.2) by the identities derived in Lemmas 3.3 and 3.5 respectively. 

References 

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms (Addison- 
Wesley, Reading, MA, 1974). 

[2] A.I. Barvinok, "Optimization problems on matroids and exponential sums," in: E. Balas, G. Cornuéjols 
and R. Kannan, eds., Integer Programming and Combinatorial Optimization, Proceedings of the Second 
IPCO Conference, Carnegie Mellon University (1992) pp. 316-333. 

[3] P.M. Camerini, G. Galbiati and E Maffioli, "Random pseudo-polynomial algorithms for exact matroid 
problems" Journal of Algorithms 13 (1992) 258-273. 

[4] A. Cayley, "On the theory of determinants" in: Collected Papers, Vol. 1 (Cambridge University Press, 
Cambridge, 1889) pp. 63-80. 

[5] A. Cayley, "On the theory of linear transformations," in: Collected Papers, Vol. 1 (Cambridge University 
Press, Cambridge, 1889) pp. 80-94. 

[6] G. Galbiati and E Maffioli, "On the computation of pfaflians" Discrete Applied Mathematics 51 (1994) 
269-275. 

[7] M.R. Garey and D.S. Johnson, Computers and lntractability: A Guide to the Theory of NP-completeness 

(Freeman, San Francisco, CA, 1979). 
[8] E Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969). 
[9] E.L. Lawler, Combinatorial Optimization: Networks and Matroids (Holt, Rinehart and Winston, New 

York, 1976). 
[ 10] L. Loväsz, "On determinants, matchings and random algorithms," in: L. Budach, ed., Fundamentals of 

Computation Theory, Proceedings of the Conference on Algebraic, Arithmetic and Categorial Methods 
in Computation Theory (Akademie-Verlag, Berlin, 1979) pp. 565-574. 

[ 11 ] L. Loväsz, "The matroid matching problem," in: L Loväsz and V.T. Sós, eds., Algebraic Methods in 

Graph Theory (North-Holland, Amsterdam, 1981) pp. 495-517. 
[12] L. Loväsz and M.D. Plummer, Matching Theory (Akadémia Kiadb, Budapest/North-Holland, 

Amsterdam, 1986). 
[ 13] I. Satake, Linear Algebra (Marcel Dekker, New York, 1975). 
[14] Yu.G. Smetanin and L.G. Khachiyan, "Use of pseudopolynomial algorithms for some problems of 

combinatorial optimization with constraints" Izvestiya Akademii Nauk SSSR Tekhnicheskaya Kibernetika 

(6) (1986) 139-144 (in Russian); translated in: Soviet Journal of Computer and Systems Science 25 
(2) (1987) 161-165. 

[ 15] N.P. Sokolov, Spatial Matrices and their Applications (Fizmatgiz, Moscow, 1960, in Russian). 
[16] D.J.A. Welsh, Matroid Theory (Academic Press, London, 1976). 


