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Abstract 

Given a set P of n points in the plane, we wish to find a set Q C P 
of k points for which the convex hull conv(Q) has the minimum area. 
We solve this, and the related problem of finding a minimum area con­
vex k-gon, in time O(n 2 log n) and space O(n log n) for fixed k, almost 
matching known bounds for the minimum area triangle problem. Our 
algorithm is based on finding a certain number of nearest vertical neigh­
bors to each line segment determined by two input points. We use a 
classical result of Ramsey theory to prove that these nearest neighbors 
suffice to determine the minimum convex k-gon. 





1 Introduction 

One of the initial results of Ramsey theory [12] was the discovery that for 
every k there is some n = f(k) = 20(k), so that if n points are given in 
general position, a subset of k points can be found forming the vertices of 
a convex k-gon. This does not work for empty convex polygons: arbitrarily 
large point sets are known that do not contain an empty 7-gon [13, 14]. 

This naturally raises the question whether such a k-gon can be computed 
efficiently; several papers study this problem [3, 6, 14). Because of Ramsey 
theory, finding a convex k-gon takes time depending on k but not on n; 
therefore it can be solved in constant time for fixed k. The best known 
algorithm for empty convex k-gons takes time O(T(n)) where T(n) is the 
number of empty triangles in the set, which varies between 0( n2 ) and O(n3). 

Here we study the related geometric optimization problems of finding a 
k-gon minimizing or maximizing a certain objective function. A celebrated 
result in this area is that a minimum area triangle can be found in time 0( n2

) 

by using geometric duality to transform the problem into one of searching 
a line arrangement [7, 8]. Algorithms are also known for optimizing other 
functions including minimum perimeter [1, 5, 9] and maximum perimeter 
and area [2, 4 J. 

For some time it remained open whether the minimum area triangle 
result could be generalized to finding minimum area k-gons. There are 
actually four reasonable ways of generalizing this: one could search for (1) 
a minimum area k-gon, (2) a minimum area convex k-gon, (3) a minimum 
area empty convex k-gon, or ( 4) a minimum area polygon that is the convex 
hull of k points. All of these problems can be solved trivially in O(knk) 
time, but this is not very satisfactory. Problem 1 remains open (except for 
k = 4, for which it can be solved in 0( n2 ) time using the same methods as in 
the minimum triangle problem), but in a recent breakthrough by Eppstein 
et al. [9), O(kn3 ) time algorithms were developed for problems 2, 3, and 4. 
However these algorithms are a factor of 0( n) away from the time for the 
triangle pro bl em. 

In this paper we solve the minimum area convex k-gon problem in time 
0( n 2 log n + 26kn2), which for fixed k is an improvement by almost a factor 
of n over the previous algorithm and is only a factor of 0 (log n) away from 
the minimum triangle algorithm. We use Ramsey theory to prove that the 
minimum k-gon can be found in a small set of points, the nearest vertical 
neighbors of a segment determined by two of the input points. The k-gon 
can then be found by applying the algorithm of Eppstein et al. to these small 
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sets. This is similar to the approach of Aggarwal et al. [l], who find small 
sets for minimum perimeter problems using high-order Voronoi diagrams. 

We also solve the related problem of finding a set of k points with min­
imum area convex hull, in time 0( n 2 log n + k3 n 2). We again use nearest 
vertical neighbors, but fewer of them, and the proof no longer needs Ram­
sey theory. It is a curious fact that, for the algorithms presented here, the 
minimum k-point set problem is easier than the minimum k-gon, whereas in 
the algorithms of Eppstein et al. the difficulty of the problems was reversed 
(the minimum k-point set used an extra O(k) factor in space). 

Unfortunately our methods do not suffice to solve the third problem 
treated by Eppstein et al., finding a minimum area empty convex k-gon, 
except for the special cases k = 4 and k = 5. This happens because of 
the lack of an appropriate Ramsey theorem, due to the counterexamples 
described by Horton [13). 

2 Nearest vertical neighbors 

We begin with the problem of nearest vertical neighbors for points and line 
segments; we use this as a subroutine in our minimum k-gon algorithm. 

Given a point x and a non-vertical line l, the vertical distance d( x, l) is 
simply the length of a vertical line segment connecting x and l. The nearest 
vertical neighbor to l from a point set P is the point x E P minimizing the 
vertical distance to l. 

The connection between this concept and minimum area polygons is as 
follows. If a triangle is formed by connecting point x to the endpoints of 
a line segment s, where s is contained in line l, the area of the triangle 
is c · d(x, l), where c is half the length of the horizontal projection of s. 
Therefore the point in P forming the minimum area triangle with s is the 
nearest vertical neighbor of l. This observation was used to develop O(n2) 

algorithms for the minimum triangle problem [7, 8). 
We can tighten this characterization as follows. Let xyz be the minimum 

area triangle, and assume that the horizontal projection of y is between 
those of x and z. Then as before y is the nearest neighbor of line xz, but the 
vertical segment connecting y and line xz actually touches segment xz. In 
other words, y is within the slab defined by vertical lines through x and z. 
In general we say x is a neighbor of segment s if it appears vertically above 
or below s, as in this case y appears above or below segment xz. Then 
the triangle problem can be solved by finding, for each segment xz, the 
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slab of the points; for each such structure there are two smaller structures 
corresponding to slabs containing half as many points. 

Then for each query segment s, we can find a set of O(log n) slabs that 
contain exactly those points above and below s. We can solve the k nearest 
vertical neighbors problem by performing ray-shooting queries within each 
slab, and selecting the best k points found. 

We now describe the data structures which allow us to perform these 
ray-shooting operations and therefore find the nearest vertical neighbors. 
Rather than build a data structure that allows line segments to be tested in 
arbitrary order, we test the segments in left-to-right order of the points dual 
to the lines containing them. This allows us to perform our algorithm as a 
plane sweep of the dual line arrangement; i.e. we sweep a vertical line from 
left to right across the dual plane, and perform line segment neighbor finding 
queries and data structure updates as the vertical line crosses appropriate 
features in the arrangement. Such a plane sweep could be transformed into 
a static data structure using persistence techniques; however we do not need 
these techniques for our algorithms. 

At any point in the algorithm, the sweep line will cross all of the n dual 
lines. Our data structure for a single slab (corresponding to a single dual line 
arrangement) simply consists of an array of n elements, listing those lines in 
the vertical order of their points of intersection with the sweep line. Then 
a vertical ray shooting query along the sweep line could be performed by a 
binary search in the array, to locate the starting point among the dual lines. 
Successive queries would then take 0(1) time by simply moving up to the 
next element in the array. The order of the dual lines changes exactly when 
the sweep line crosses an intersection between two dual lines. The change 
consists simply of swapping two adjacent elements in the array. The rays at 
which we wish to shoot correspond to segments xy, which are also found as 
the intersection of two lines dual to x and y. Each successive intersection 
can be found in O(log n) time, by keeping a priority queue of the n - 1 
possible intersections between adjacent elements in the array. 

Now let us consider putting several slabs together again. Starting each 
ray shooting query by binary searching in each slab separately would take 
O(log2 n) time per segment. We can reduce this time, by using another data 
structure to relate locations in different slabs to each other. Recall that for 
~ach slab, corresponding to an arrangement of some m dual lines, there are 
two smaller slabs with m/2 dual lines each. The sweep line in the large slab 
is divided into m + 1 regions by the m lines crossing it. Each region in the 
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large slab corresponds to part of a region in each of the smaller slabs. We 
keep another array, of m + 1 elements, listing the correspondence between 
regions of the large and small slabs. This correspondence only changes when 
an intersection occurs in the large slab; other intersections will rearrange the 
correspondence of lines to regions but will not change the numbering of the 
regions. For each intersection of two lines, we only need to update the 
correspondence for the region between the lines. Thus again each update 
takes 0(1) time per slab. 

Now we can use these arrays to locate the point dual to each segment 
in the 0 (log n) slabs we wish to search. The point is an intersection in the 
outer slab containing all n points, and its location will already be known 
when the sweep line crosses that intersection. Then, while we have a location 
within a slab that contains points not above or below the queried segment, 
we need to move to locations in the two child slabs. This can be done simply 
by looking in the appropriate arrays, in constant time per move. In this way 
it takes O(log n) time to find the initial locations for ray shooting in each of 
the O(log n) appropriate slabs. 

Once we have found the initial locations for vertical ray shooting, we can 
find each successive vertical neighbor of the segment simply by moving from 
element to adjacent element in the appropriate array. But we must somehow 
combine the neighbors found in different slabs. To do this, we use a final 
array, which tells us for each line the position of that line as it crosses the 
sweep line in the root slab of all n points. This array is updated as before 
by swapping two elements per intersection encountered. Using this array, 
we can compare neighbors from different slabs, by examining their positions 
in the sweep line. Each vertical neighbor for the line segment must be 
found by selecting among O(log n) candidates, one from each slab, each of 
which can be thought of as an integer having O(log n) bits, representing 
the position in the sweep line. This selection can be performed in constant 
time per operation, using the atomic heap data structure of Fredman and 
Willard [11]. 

Theorem 1. Given n points, we can enumerate all point sets found as the 
k nearest vertical neighbors of each segment formed by a pair of points, in 
total time O(kn2 + n 2 logn) and space O(nlogn). D 

Proof: Each intersection of two dual lines, causing a search from the corre­
sponding segment as well as updates to the data structures, can be selected 
in time 0 (log n) from a priority queue of possible intersections. Each search 
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Figure 2. Nearest neighbors to xy: (a) five point set with triangle to furthest point; 
(b) seven nearest neighbors have five-point subset in one parallelogram. 

for k nearest neighbors takes time O(log n) to find the initial positions for 
the ray shooting, and 0(1) time per neighbor found. Each update takes 
constant time per slab, and involves changes in O(log n) slabs (only those 
slabs containing both dual lines that intersect to cause the update). There­
fore the total time for searches and updates is O(n2(1ogn + k)). Each dual 
line is involved in O(log n) slabs, and uses constant space per slab, so the 
totalspaceisO(nlogn). D 

3 Minimum k-point sets 

We now describe how to use the data structure of the previous section to 
find k-point sets with minimum area convex hulls. This problem is easier 
than that of finding minimum area k-gons, and serves as a warm-up to the 
k-gon question. 

Lemma 1. Let Q be the minimum area k-point set of some n point set 
P, and let x and y be the leftmost and rightmost points of Q respectively. 
Then each point in Q is one of the 2k - 4 nearest neighbors above or below 
line segment xy. 

Proof: Let z be the point with largest distance above xy in Q. Then the 
area of conv( Q) is at least that of triangle xyz. Figure 2( a) shows a set of 
five points, with triangle xyz outlined. 

Suppose z is not one of the 2k - 4 nearest neighbors. Then at least 
2k - 1 points (including x, y, and z) are contained in the parallelogram with 
two vertical sides through x and y, one side equal to segment xy, and the 
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This is an improvement over the previous O(kn3 ) algorithm [9] when 
k < (log2 n)/6. The total space complexity is O(nlogn+ f(k) 2 ), improving 
the previous 0 ( n 2 ) bound. 
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