
UC Irvine
ICS Technical Reports

Title
New algorithms for minimum area k-gons

Permalink
https://escholarship.org/uc/item/9sp9g8sg

Author
Eppstein, David

Publication Date
1991-07-15

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9sp9g8sg
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title i 7 U.S.C.)

New Algorithms for

Minimum Area k-gon~

David Eppstein

Department of Information and Computer Science
University of California, Irvine, CA 92717

Tech. Report 91-59

July 15, 1991

Abstract

Given a set P of n points in the plane, we wish to find a set Q C P
of k points for which the convex hull conv(Q) has the minimum area.
We solve this, and the related problem of finding a minimum area con­
vex k-gon, in time O(n 2 log n) and space O(n log n) for fixed k, almost
matching known bounds for the minimum area triangle problem. Our
algorithm is based on finding a certain number of nearest vertical neigh­
bors to each line segment determined by two input points. We use a
classical result of Ramsey theory to prove that these nearest neighbors
suffice to determine the minimum convex k-gon.

1 Introduction

One of the initial results of Ramsey theory [12] was the discovery that for
every k there is some n = f(k) = 20(k), so that if n points are given in
general position, a subset of k points can be found forming the vertices of
a convex k-gon. This does not work for empty convex polygons: arbitrarily
large point sets are known that do not contain an empty 7-gon [13, 14].

This naturally raises the question whether such a k-gon can be computed
efficiently; several papers study this problem [3, 6, 14). Because of Ramsey
theory, finding a convex k-gon takes time depending on k but not on n;
therefore it can be solved in constant time for fixed k. The best known
algorithm for empty convex k-gons takes time O(T(n)) where T(n) is the
number of empty triangles in the set, which varies between 0(n2) and O(n3).

Here we study the related geometric optimization problems of finding a
k-gon minimizing or maximizing a certain objective function. A celebrated
result in this area is that a minimum area triangle can be found in time 0(n2

)

by using geometric duality to transform the problem into one of searching
a line arrangement [7, 8]. Algorithms are also known for optimizing other
functions including minimum perimeter [1, 5, 9] and maximum perimeter
and area [2, 4 J.

For some time it remained open whether the minimum area triangle
result could be generalized to finding minimum area k-gons. There are
actually four reasonable ways of generalizing this: one could search for (1)
a minimum area k-gon, (2) a minimum area convex k-gon, (3) a minimum
area empty convex k-gon, or (4) a minimum area polygon that is the convex
hull of k points. All of these problems can be solved trivially in O(knk)
time, but this is not very satisfactory. Problem 1 remains open (except for
k = 4, for which it can be solved in 0(n2) time using the same methods as in
the minimum triangle problem), but in a recent breakthrough by Eppstein
et al. [9), O(kn3) time algorithms were developed for problems 2, 3, and 4.
However these algorithms are a factor of 0(n) away from the time for the
triangle pro bl em.

In this paper we solve the minimum area convex k-gon problem in time
0(n 2 log n + 26kn2), which for fixed k is an improvement by almost a factor
of n over the previous algorithm and is only a factor of 0 (log n) away from
the minimum triangle algorithm. We use Ramsey theory to prove that the
minimum k-gon can be found in a small set of points, the nearest vertical
neighbors of a segment determined by two of the input points. The k-gon
can then be found by applying the algorithm of Eppstein et al. to these small

1

sets. This is similar to the approach of Aggarwal et al. [l], who find small
sets for minimum perimeter problems using high-order Voronoi diagrams.

We also solve the related problem of finding a set of k points with min­
imum area convex hull, in time 0(n 2 log n + k3 n 2). We again use nearest
vertical neighbors, but fewer of them, and the proof no longer needs Ram­
sey theory. It is a curious fact that, for the algorithms presented here, the
minimum k-point set problem is easier than the minimum k-gon, whereas in
the algorithms of Eppstein et al. the difficulty of the problems was reversed
(the minimum k-point set used an extra O(k) factor in space).

Unfortunately our methods do not suffice to solve the third problem
treated by Eppstein et al., finding a minimum area empty convex k-gon,
except for the special cases k = 4 and k = 5. This happens because of
the lack of an appropriate Ramsey theorem, due to the counterexamples
described by Horton [13).

2 Nearest vertical neighbors

We begin with the problem of nearest vertical neighbors for points and line
segments; we use this as a subroutine in our minimum k-gon algorithm.

Given a point x and a non-vertical line l, the vertical distance d(x, l) is
simply the length of a vertical line segment connecting x and l. The nearest
vertical neighbor to l from a point set P is the point x E P minimizing the
vertical distance to l.

The connection between this concept and minimum area polygons is as
follows. If a triangle is formed by connecting point x to the endpoints of
a line segment s, where s is contained in line l, the area of the triangle
is c · d(x, l), where c is half the length of the horizontal projection of s.
Therefore the point in P forming the minimum area triangle with s is the
nearest vertical neighbor of l. This observation was used to develop O(n2)

algorithms for the minimum triangle problem [7, 8).
We can tighten this characterization as follows. Let xyz be the minimum

area triangle, and assume that the horizontal projection of y is between
those of x and z. Then as before y is the nearest neighbor of line xz, but the
vertical segment connecting y and line xz actually touches segment xz. In
other words, y is within the slab defined by vertical lines through x and z.
In general we say x is a neighbor of segment s if it appears vertically above
or below s, as in this case y appears above or below segment xz. Then
the triangle problem can be solved by finding, for each segment xz, the

2

slab of the points; for each such structure there are two smaller structures
corresponding to slabs containing half as many points.

Then for each query segment s, we can find a set of O(log n) slabs that
contain exactly those points above and below s. We can solve the k nearest
vertical neighbors problem by performing ray-shooting queries within each
slab, and selecting the best k points found.

We now describe the data structures which allow us to perform these
ray-shooting operations and therefore find the nearest vertical neighbors.
Rather than build a data structure that allows line segments to be tested in
arbitrary order, we test the segments in left-to-right order of the points dual
to the lines containing them. This allows us to perform our algorithm as a
plane sweep of the dual line arrangement; i.e. we sweep a vertical line from
left to right across the dual plane, and perform line segment neighbor finding
queries and data structure updates as the vertical line crosses appropriate
features in the arrangement. Such a plane sweep could be transformed into
a static data structure using persistence techniques; however we do not need
these techniques for our algorithms.

At any point in the algorithm, the sweep line will cross all of the n dual
lines. Our data structure for a single slab (corresponding to a single dual line
arrangement) simply consists of an array of n elements, listing those lines in
the vertical order of their points of intersection with the sweep line. Then
a vertical ray shooting query along the sweep line could be performed by a
binary search in the array, to locate the starting point among the dual lines.
Successive queries would then take 0(1) time by simply moving up to the
next element in the array. The order of the dual lines changes exactly when
the sweep line crosses an intersection between two dual lines. The change
consists simply of swapping two adjacent elements in the array. The rays at
which we wish to shoot correspond to segments xy, which are also found as
the intersection of two lines dual to x and y. Each successive intersection
can be found in O(log n) time, by keeping a priority queue of the n - 1
possible intersections between adjacent elements in the array.

Now let us consider putting several slabs together again. Starting each
ray shooting query by binary searching in each slab separately would take
O(log2 n) time per segment. We can reduce this time, by using another data
structure to relate locations in different slabs to each other. Recall that for
~ach slab, corresponding to an arrangement of some m dual lines, there are
two smaller slabs with m/2 dual lines each. The sweep line in the large slab
is divided into m + 1 regions by the m lines crossing it. Each region in the

4

large slab corresponds to part of a region in each of the smaller slabs. We
keep another array, of m + 1 elements, listing the correspondence between
regions of the large and small slabs. This correspondence only changes when
an intersection occurs in the large slab; other intersections will rearrange the
correspondence of lines to regions but will not change the numbering of the
regions. For each intersection of two lines, we only need to update the
correspondence for the region between the lines. Thus again each update
takes 0(1) time per slab.

Now we can use these arrays to locate the point dual to each segment
in the 0 (log n) slabs we wish to search. The point is an intersection in the
outer slab containing all n points, and its location will already be known
when the sweep line crosses that intersection. Then, while we have a location
within a slab that contains points not above or below the queried segment,
we need to move to locations in the two child slabs. This can be done simply
by looking in the appropriate arrays, in constant time per move. In this way
it takes O(log n) time to find the initial locations for ray shooting in each of
the O(log n) appropriate slabs.

Once we have found the initial locations for vertical ray shooting, we can
find each successive vertical neighbor of the segment simply by moving from
element to adjacent element in the appropriate array. But we must somehow
combine the neighbors found in different slabs. To do this, we use a final
array, which tells us for each line the position of that line as it crosses the
sweep line in the root slab of all n points. This array is updated as before
by swapping two elements per intersection encountered. Using this array,
we can compare neighbors from different slabs, by examining their positions
in the sweep line. Each vertical neighbor for the line segment must be
found by selecting among O(log n) candidates, one from each slab, each of
which can be thought of as an integer having O(log n) bits, representing
the position in the sweep line. This selection can be performed in constant
time per operation, using the atomic heap data structure of Fredman and
Willard [11].

Theorem 1. Given n points, we can enumerate all point sets found as the
k nearest vertical neighbors of each segment formed by a pair of points, in
total time O(kn2 + n 2 logn) and space O(nlogn). D

Proof: Each intersection of two dual lines, causing a search from the corre­
sponding segment as well as updates to the data structures, can be selected
in time 0 (log n) from a priority queue of possible intersections. Each search

5

Figure 2. Nearest neighbors to xy: (a) five point set with triangle to furthest point;
(b) seven nearest neighbors have five-point subset in one parallelogram.

for k nearest neighbors takes time O(log n) to find the initial positions for
the ray shooting, and 0(1) time per neighbor found. Each update takes
constant time per slab, and involves changes in O(log n) slabs (only those
slabs containing both dual lines that intersect to cause the update). There­
fore the total time for searches and updates is O(n2(1ogn + k)). Each dual
line is involved in O(log n) slabs, and uses constant space per slab, so the
totalspaceisO(nlogn). D

3 Minimum k-point sets

We now describe how to use the data structure of the previous section to
find k-point sets with minimum area convex hulls. This problem is easier
than that of finding minimum area k-gons, and serves as a warm-up to the
k-gon question.

Lemma 1. Let Q be the minimum area k-point set of some n point set
P, and let x and y be the leftmost and rightmost points of Q respectively.
Then each point in Q is one of the 2k - 4 nearest neighbors above or below
line segment xy.

Proof: Let z be the point with largest distance above xy in Q. Then the
area of conv(Q) is at least that of triangle xyz. Figure 2(a) shows a set of
five points, with triangle xyz outlined.

Suppose z is not one of the 2k - 4 nearest neighbors. Then at least
2k - 1 points (including x, y, and z) are contained in the parallelogram with
two vertical sides through x and y, one side equal to segment xy, and the

6

This is an improvement over the previous O(kn3) algorithm [9] when
k < (log2 n)/6. The total space complexity is O(nlogn+ f(k) 2), improving
the previous 0 (n 2) bound.

References

[1] A. Aggarwal, H. Imai, N. Katoh and S. Suri. Finding k points with
minimum diameter and related problems. 5th ACM Symp. Comput.
Geom. (1989) 283-291.

[2] A. Aggarwal, M.M. Klawe, S. Moran, P. Shor and R. Wilber. Geomet­
ric applications of a matrix-searching algorithm. Algorithmica 2 (1987)
195-208.

[3] D. Avis and D. Rappaport. Computing the largest empty convex subset
of a set of points. 1st ACM Symp. Comput. Geom. (1985) 161-167.

[4] J.E. Boyce, D.P. Dobkin, R.L. Drysdale and L.J. Guibas. Finding ex­
tremal polygons. SIAM J. Comput. 14 (1985) 134-147.

[5] D .P. Dobkin, R.L. Drysdale and L.J. Guibas. Finding smallest polygons.
Adv. Computing Research! Vol. 1, JAI Press (1983) 181-214.

[6] D .P. Dobkin, H. Edelsbrunner and M.H. Overmars. Searching for empty
convex polygons. 4th ACM Symp. Comput. Geom. (1988) 224-228.

[7] H. Edelsbrunner and L.J. Guibas. Topologically sweeping in an arrange­
ment. 18th ACM Symp. Theory of Computing (1986) 389-403.

[8] H. Edelsbrunner, J. O'Rourke and R. Seidel. Constructing arrange­
ments of lines and hyperplanes with applications. SIAM J. Comput. 15
(1986) 341-363.

[9] D. Eppstein, M. Overmars, G. Rote, and G. Woeginger. Finding mini­
m.um area k-gons. Discrete Comput. Geom., to appear.

[10] P. Erdos and G. Szekeres. A combinatorial problem in geometry. Com­
positio Math. 2 (1935) 463-470.

[11] M.L. Fredman and D.E. Willard. Trans-dichotomous algorithms for
minimum spanning trees and shortest paths. 31st IEEE Symp. Found.
Computer Science (1990) 719-725.

9

[12) R.L. Graham, B.L. Rothschild, and J.H. Spencer. Ramsey Theory. Wi­
ley, 1980.

[13) J.D. Horton. Sets with no empty convex 7-gons. Canad. Math. Bull. 26
(1983) 482-484.

[14) M.H. Overmars, B. Scholten and I. Vincent. Sets without empty convex
6-gons. Bull. EATCS 37 (1989) 160.

10

111111111111111111111111111111111111111~111111111111111111111
3 1970 00882 5181

