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The paper features exact algorithms for reduction of technical risk by (i) optimal allocation of 
resources in the case where the total potential loss from several sources of risk is a sum of the 
potential losses from the individual sources; (ii) optimal allocation of resources to achieve a 
maximum reduction of system failure and (iii) making an optimal choice among competing 
risky prospects. The paper  demonstrated that the number of activities in a risky prospect is a 
key consideration in selecting a risky prospect. In this respect, the maximum expected profit 
criterion, widely used for making risk decisions is fundamentally flawed, because it does not 
consider the impact of the number of risk-reward activities in the risky prospects. A popular 
view, that if a single risk-reward bet is unacceptable then a sequence of independent risk-
reward bets is also unacceptable has been analysed and proved incorrect. 
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1. Introduction 
 

In this work, the problem related to achieving a maximum reduction of technical risk has 
been investigated in two broad aspects: (i) a maximum risk reduction achieved as a result of 
optimal allocation of risk reduction resources and (ii) a maximum risk reduction achieved as a 
result of making an optimal choice among risky prospects.  

In turn, the optimal allocation of risk-reduction resources has been discussed in two major 
directions: a) in the case where the total potential loss from several sources of risk is a sum of 
the potential losses from the individual sources; b) in the common case of several units 
logically arranged in series and c) in the case where a complex system is built within a fixed 
budget. 

The problem of optimal allocation of limited resources to attain a maximum risk 
reduction, is an important problem which appears frequently in the budget planning of 
companies and enterprises and during the design of complex safety-critical systems. Huge 
amounts of invested resources are often wasted because the resource allocations are usually 
far from optimal and do not guarantee the maximum possible total risk reduction. 

Despite the importance of this problem, few attempts have been made to solve it. Sherali 
et al. (2008) for example, solved the risk optimization problem on event trees, by using linear 
programming and assuming that the consequences are a linear function of the level of 
investment. This assumption however is too restrictive, and often not confirmed by the real-
life observations. Often, with increasing the level of investment, the magnitude of the 



 

 

 

1 

consequences decreases in a non-linear fashion and reaches a saturation region, beyond 
which, an increase of the level of investment leads to a small decrease in the magnitude of the 
consequences. A typical example is increasing the level of investment in protecting against 
the harmful effect from disintegrating rotating parts. After attaining a particular level of 
protection, a further investment towards strengthening protection has a negligible effect on 
the magnitude of the consequences. 

Richter et al. (1999), solved an optimal resource allocation problem to achieve a 
maximum prevention from infection. The objective function of the formulated model 
however was rather simple, involving only two additive terms, corresponding to two 
independent populations. Furthermore, no details were given about the optimization 
algorithm. 

Mehr and Tumer (2006) solved the optimal budget allocation problem as a portfolio 
optimization problem, similar to the problem commonly solved in managing investment 
portfolios. This model however has a narrow application and cannot be used in the important 
case of individual risk reduction options, where, for each risk-reduction option, the amount of 
removed risk is well defined by a function or a table. 

The optimal risk reduction problem is very important for safety- critical systems, which 
are widely used in industry, hospitals, construction engineering, and public buildings. 

The loss from failure of a safety-critical system can be very high. This circumstance 
significantly affects their design, which has needs to be a risk-based design. Safety-critical 
systems must be highly reliable, to guarantee a small risk of failure yet they must be designed 
at affordable cost, often within a limited budget. During a design of a safety-critical system, at 
least two options are usually present for each component – to improve the reliability of the 
component or to introduce redundancy. Both options increase the reliability of the system. 
The problem is how to allocate the limited risk-reduction resources among the available 
options so that the risk of system failure is minimized. This problem is considerably 
complicated if the exact architecture (topology) of the system to be designed is unknown. 
Unfortunately, the traditional reliability optimization design concentrates on optimal 
allocation of redundancy or on reliability allocation among the components in a system (Kuo 
and Prasad, 2000; Kuo et al., 2001). The traditional reliability optimization design operates 
on a system with fixed architecture. As a result, existing design tools do not perform a 
repeated modification of the system topology and do not search in a large space of 
alternatives in order to determine the system design which combines a maximum possible 
reliability attained within a specified budget. This is the reason why the existing 
computational tools are not capable of supporting the optimal design of safety-critical 
systems. 

In the complex, safety-critical systems used today, there is a very large number of 
possibilities for selecting components with different reliabilities and costs, design 
configurations, cross-bridges and redundancies (e.g. active, standby, k-out-of-n, etc.). 

In this huge space of alternatives, identifying the optimum set of alternatives for the 
components, the optimum system architecture and the necessary redundancies is not a trivial 
task. Without the right models and tools, design alternatives far from optimal will be selected 
- either associated with a significant risk of failure or with a significant cost for building the 
system. 

Consequently, one of the objectives of this work, is developing an algorithm and a 
software tool for minimizing the risk of failure of a safety-critical system, within a specified 
budget for building the system, in the case where the exact architecture of the system is 
unknown. 

Very often, the optimal allocation of risk-reduction resources faces another problem. For a 
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company or an enterprise for example, it is important to determine how to allocate its budget 
among a set of sources of risk: accidents, theft, warranty claims, equipment failures, etc., so 
that a maximum total risk is removed. The potential losses can be reduced by purchasing new, 
more reliable and safer equipment, investing in personnel training, investing in improved 
security and control, investing in improved reliability of the components and systems, etc. For 
each specified risk-reduction option, it is usually known from statistical data, how much risk-
reduction effect is achieved for a particular level of investment. 

There have been attempts to solve an optimal resource allocation problem, related to 
maximising the gain in production with a nonlinear-additive objective function and a single 
linear constraint. This work has been comprehensively reviewed in (Zipkin, 1980). 
Unfortunately, the presented solutions require severe constraints on the functions describing 
the gain – a requirement for linear or monotonically increasing and concave functions. 

Unfortunately, these methods are not suitable for solving the optimal risk reduction 
problem. Typically, the functions describing the risk removal are non-linear because, in 
general, with increasing the level of investment, the amount of removed risk per unit 
investment decreases. In other words, the amount of removed risk enters a saturation region. 

A typical example is removing bugs from a large piece of software and removing faults 
from a large system. After a certain level of investment towards bugs/faults removal, further 
investment yields very little. If a number of software subroutines in a large programme or a 
number of electronic blocks composing a large system need to be tested for faults, the optimal 
distribution of testing resources aimed at achieving a maximum bugs/fault reduction is not a 
trivial problem. Clearly, concentrating all of the available resources on a single subroutine or 
on a single electronic block is a poor strategy which yields insufficient overall reduction of 
the risk of system failure. Similarly, concentrating all of the available resources on a single 
component (e.g. the least reliable component x), among several components arranged in series 
is also a poor strategy for reducing the risk of system failure. This is because the reliability of 
a system composed of components logically arranged in series is limited by the reliability of 
the least reliable component x. Once its reliability level is brought up to the reliability level of 
the next least reliable component y, a further improvement of the reliability of component x 
no longer improves the reliability of the system, which is now limited by the reliability of 
component y. 

Furthermore, the functions describing the amount of removed risk are not even 
continuous, because they are usually presented in tabular form. Finally, the functions 
describing the risk removal are not monotonically increasing or concave in general. Indeed, a 
resource contribution towards a particular risk-reduction option, often does not automatically 
translate into a risk reduction. Often, the contribution of the allocated resource needs to reach 
a particular threshold level before a risk reduction follows. Meanwhile, the risk level could 
remain the same or even increase. Consider for example the case where the risk source is 
‘erroneous transaction’. Introducing a new computer system in order to reduce the risk of 
erroneous transactions, could initially be associated with increased potential losses until the 
staff becomes familiar with the new system. After an initial increase, the losses from 
erroneous transactions start to decrease. The investment into a new production equipment to 
reduce the risk of lost production also follows a similar trend. Despite the heavy investment, 
failures at the start of operation are frequent (early-life failures), until the staff learns to avoid 
costly operational mistakes. 

In this respect, it is important to present an exact solution of the optimal risk reduction 
problem, without imposing constraints on the risk reduction functions. This is another 
objective of this paper. 

The next direction in the optimal risk reduction is the optimal choice from a number of 



 

 

 

3 

risky prospects, each containing a set of risk-reward activities. This problem is part of an 
important class of risk decisions made in business, economics, technology, medicine, etc. 
Currently, the maximum expected profit criterion is used for making an optimal choice among 
risky prospects (Moore 1983; Denardo, 2002). According to this criterion, a rational decision 
maker compares the expected profits from a number of risky prospects and selects the 
prospect with the largest expected profit. An expected profit from a risky prospect is obtained 
by adding the monetary outcomes characterising the prospect multiplied by their probabilities. 
As it has been demonstrated in this work, a choice based on maximizing the expected profit is 
deeply flawed if a small number of risk-reward bets are present in the risky prospects. 

In the past, the expected profit from an infinite number of statistically independent 
repeated bets has led to the Petersburg paradox. Its avoidance was one of the reason for 
proposing the expected utility theory by D.Bernouli (1738), later developed by von Neumann 
and O.Morgenstern (1944). The effort towards understanding statistically independent, 
repeated bets did not stop with the work of D.Bernouli. Statistically independent repeated bets 
for example, have been at the focus of a paper from Samuelson (1963). In this paper the 
author brings the following argument, through a story in which he offered to his colleague a 
good bet (with a positive expected value): 50-50 chance of winning 200 or losing 100. The 
colleague refused by saying that he would feel the 100 loss more than the 200 gain. He said 
that he would agree to participate if he was offered to make 100 such bets. Samuelson 
criticised the reasoning of his colleague and went on to propose and prove a “theorem” which 
stated that if a single good bet is unacceptable then any finite sequence of such bets is 
unacceptable too. Samuelson claimed that increasing the number of unacceptable bets does 
not reduce the risk of a net loss and termed accepting a sequence of individually unacceptable 
bets ‘a fallacy of large numbers’. Samuelson’s “theorem” have been reproduced in several 
related papers (Ross, 1999). This “theorem” sprawned several related papers where 
researchers have extended Samuelson’s condition to assure that they would not allow the 
‘fallacy of large numbers’. Ross (1999) pointed out that the Samuelson criterion, despite that 
it does not have a universal application, is strictly valid only for linear, risk-neutral utility 
functions. 

In this paper, it is shown that contrary to the Samuelson’s theory, there exist cases where 
increasing the number of unacceptable bets does reduce the risk of a net loss and this is 
demonstrated by using Samuelson’s own example. 

A frequently pointed out weakness of the expected profit criterion is that it assumes too 
much knowledge necessary to make a decision. The information regarding the likelihood of 
an event and the consequences associated with the event is rarely available. Here, it is shown 
that for a limited number of risk-reward activities in the risky prospects, the maximum 
expected profit criterion could lead to accepting a decision associated with a large risk of a 
net loss. It will be shown that this is true even with a full knowledge related to the likelihood 
of an event and its consequences, and without the existence of a subjective bias while making 
a decision. 

The case considered in the developments to follow, is where the results from the different 
outcomes can be adequately measured in monetary terms and the analysis is confined to linear 
utility functions. For the sake of simplicity, the inadequacy of the maximum expected profit 
criterion is demonstrated for the simplest case, involving statistically independent risk-
reward bets in the risky prospects. 

It will be demonstrated that the maximum expected profit criterion does not account for 
the significant impact of the actual number of risk-reward events/bets in a risky prospect. The 
choice under risk is made as if each compared risky prospect contains a very large number of 
risk-reward events/bets. Because the maximum expected profit criterion as a decision-making 
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tool is incompatible with the risk of a net loss, the critical dependence of the choice on the 
number of risk-reward bets in the risky prospects has not been discussed in studies related to 
ranking risky alternatives (Tobin, 1958; Hansch and Leuy, 1969; Hador and Russel, 1969). 
This is also true for more recent models related to ranking risky alternatives (Richardson and 
Outlaw, 2008, Nielsen and Jaffray, 2006; Starmer, 2000). Even in a recent, probably the most 
comprehensive treatise of the theory of betting (Epstein 2009), no discussion has been 
provided on the impact of the limited number of risk-reward bets on the choice of a risky 
prospect. Consequently, another objective of this paper is to show that the number of risk-
reward events/bets in a risky prospect has a critical impact on the choice of the risky prospect 
and cannot be ignored. 

 
2. Optimal risk reduction if the potential loss is a sum of the potential losses from 
several risk sources 

 
The concept potential loss and its properties have been discussed extensively in (Todinov, 

2006). This concept incorporates uncertainly associated with the occurrence of a loss-
generating event and uncertainty associated with the extent of the consequences, given that 
the loss-generating event has occurred. The absolute value of the potential loss X from a loss-
generating event/risk source will not be greater than a particular value x≥0, in the following 
two ways: (i) the loss-generating event will not occur, which means that the loss will be zero 
and therefore smaller than x, and (ii) the loss-generating event will occur and the loss is 
smaller than x (the loss is taken with a positive sign here). Consequently, according the total 
probability theorem, for a particular loss-generating event/bet, the distribution )(xC  of the 
potential loss is given by (Todinov, 2006) 

)|()()1()()( fxCpxHpxCxXP ff                                      (1) 
where )|( fxC  is the conditional distribution of the loss given the event occurrence, fp  is 
the probability of occurrence of the loss-generating event and )(xH  is the Heaviside step 
function ( 1)( xH  for 0x  and 0)( xH  for 0x ). Taking expected values from both 
sides of equation (1), results in an expression regarding the expected value of the potential 
loss: 

ff CpxCE )]([                                                               (2) 

where )]|([ fxCEC f   is the expected value of the potential loss given event occurrence. 
From equation (3), it follows that the expected value of the potential loss is numerically equal 
to the risk of the loss. This is because the expected value of the Heaviside step function is 
zero, 0)]([ xHE . Equation (2) is in fact the classical risk equation (Henley & Kumamoto, 
1981) CpK f , where the risk K is measured by the product of the probability of failure fp  
and the cost C given failure. 

Often, an additive relationship exists for the potential loss from several risk sources. 
Consider for example the following three sources of risk: (i) erroneous transactions associated 
with potential loss 1X , (ii) theft, associated with a potential loss 2X  and (iii) damage to 
equipment associated with a potential loss 3X . Clearly, in this common case, for the total 
potential loss X  from the three risk sources, the relationship  

321 XXXX                                                                (3) 
holds. 

Accordingly, the problem considered in this section is related to optimal allocation of risk-
reduction resources among risk sources, the total potential loss from which is a sum of the 
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potential losses from the individual risk sources. 
Consider now a general case where m risk sources exist, (not necessarily statistically 

independent), each of which is a source of potential loss. The potential losses from the 
separate risk sources are modelled by the random variables 1X , 2X ,..., mX . These random 
variables are not necessarily statistically independent because the sources of risks are not 
necessarily statistically independent. Consider the important case where the potential loss X 
from all sources of risk is a sum of the potential losses from the individual risk sources. 

mXXXX  ...21                                                          (4) 
According to a well-known theorem in statistics (DeGroot, 1989), the expected value of a 

sum of random variables is always equal to the sum of the expected values of the random 
variables, irrespective of whether the random variables are statistically independent or not: 

)(...)()()( 21 mXEXEXEXE                                          (5) 
According to equation (2) however, the expected value of the potential loss iX  from risk 

source i is equal to the risk associated with the ith source. Therefore, the total risk K, which is 
equal to the expected value )(XE  of the total potential loss from all sources of risk is equal 
to the sum of the individual risks associated with the separate risk sources, irrespective of 
whether they are statistically independent or not: 

fmfmffff CpCpCpK  ...2211                                             (6) 
Suppose that for the ith risk reduction option/activity, )(xi  determines the amount of 

removed risk (risk reduction) resulting from investing resources of amount x ( Bx 0 ) 
towards the reduction of the ith risk. For all ‘i’ 0)0( i . The problem is now expressed in 
terms of total removed risk )(x . Again, the amount of the total removed risk )(x  is equal 
to the sum of the amounts of risk )(xi  (i=1,2,...,m) removed from each source, irrespective 
of whether the sources of risk are statistically independent or not. 

The problem now consists of determining a vector of values x* = ( *
1x , *

2x ,..., *
nx ), which 

corresponds to the global maximum 




m

i
ii x

1

)(max                                                              (7) 

defined in the domain Bxi 0 , (i=1,2,...,m), with a budget constraint  

Bx
m

i
i 

1

                                                                    (8) 

and additional constraints 
Bxi 0 , (i=1,2,...,m)                                                       (9) 

Solving the optimal risk-reduction problem (7-9) requires specifying the amount of 
removed risk )(xi  associated with any level of investment x, for each risk source.  

Here, a solution of the optimal risk-reduction problem is presented, by not putting any 
constraints on the risk reduction functions )(xi  and not requiring these functions to be linear 
or monotonically increasing or concave. 

Although, one of the first applications of the dynamic programming created by Bellman 
(1957) was for optimal resource allocation, to the best of our knowledge, dynamic 
programming algorithms have not yet been used for optimal reduction of the risk from 
multiple sources. Here, an exact dynamic programming algorithm for solving this risk 
optimization problem is proposed, which does not impose any constraints on the risk-
reduction functions )(xi . 
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First, a discrete step is selected – a quantum q of allocated resources ( nqB  ). As a result, 
the resources allocated to the separate risk sources are a multiple of the quantum of resources. 
The algorithm starts from the last step, assuming that the resource has already been allocated 
among the m-1 sources of risk and only a single risk source remains (the mth risk source). 
Suppose that the last step has been reached with amount of resources t ( )0 Bt  . Then, the 
only possibility at the last step is to allocate all of the remaining resources on the last risk 
source and get a risk reduction )(tm . By specifying the whole possible spectrum of resources 

nqqqt ,...,2,,0  Bt 0 , the optimum values )0()0( mmopt  , )()( qqopt mm  , 
)2()2( qqopt mm  ,..., )()( nqnqopt mm   are obtained. For each t, Bt 0 , the values of 

)(txm  and )(toptm  characterising the last source ( nqqqt ,...,2,,0 ) are recorded. The quantity 
)(txm  is the optimum resource allocation to source m if the amount of remaining resources is 

t. For the last risk source m, 0)0( mx , qqxm )( ,..., nqnqxm )( . The quantity )(toptm  is 
the maximum amount of removed risk for remaining resources t. 
The last step has therefore been accomplished. Now suppose that the resource has already 
been allocated among the m-2 risk sources and the amount of remaining resources to be 
allocated is t. If the amount of allocated resources on the m-1st risk source is x, the amount of 
allocated resources on the mth risk source will be t-x. A value x ( tx  , Bt 0 ) needs to be 
found, which maximizes the next expression: 

)}()({max)( 11 xtoptxtopt mmtxm  


                                            (10) 

The amount of allocated resource x on the m-1st risk source varies between 0 and t. The 
remaining resource t with which the m-1st risk source has been reached varies between 0 and 
the size of the budget B. The value *x , which corresponds to the maximum and the 
maximum are recorded against the current value of the remaining resource t. As a result, 

*)(1 xtxm   is obtained for each possible value of the remaining resource t. In this way, the 
next two columns )(1 txm  and )(1 toptm  of the dynamic table are obtained. 

If the i-th source has been reached with remaining resources t, an amount x  ( tx  , 
Bt 0 ) must be found, which maximizes 

)}()(max)( 1 xtoptxtopt iitxi  

                                             (11) 

where )(xi  is the risk reduction obtained from allocating x amount of resources on the ith 
source and )(1 xtopti   is the maximum amount of removed risk from all sources with 
indices greater than i, for the amount of remaining resources t-x. 

The values of the )(1 xtopti   however are already known, because the i+1st step has 
already been optimized. For each t, Bt 0 , the amount of x varies between 0 and t, and the 
value *x ,  corresponding to the maximum and the maximum are recorded against the current 
value of the resource t. As a result, *)( xtxi   is obtained for each possible value of the 
remaining resource. In this way, the columns )(txi , )(topti  of the dynamic table are obtained. 
Continuing in this fashion, the first risk source is reached. For the first risk source, there is no 
need to vary the value t because t is equal to the initial budget B (t=B). As a result, a value *

1x  
( Bx *

1 ) needs to be found, such that it maximizes 
)}()({max 21 xBoptx

Bx




                                                  (12) 

After allocating *
1x  risk-reduction resources on the first risk source, the remaining resources 

for the second source of risk are *
1xBt  . The maximum *

2x  corresponding to resources 
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*
1xBt   can be found in the dynamic table; it is )( *

12
*
2 xBxx  . Continuing in this fashion, 

the optimal allocations of risk reduction resources on all sources of risk will be made. 
The proposed method will be illustrated by the following numerical example. Suppose that 

five sources of risk are present, characterised by risk reduction functions 37.0
1 2.1)( xx  , 

))5.0exp(1(40)(2 xx  , ))6.0exp(1(25)(3 xx  , 22.0
4 4.2)( xx   and 

))7.0exp(1(20)(5 xx   approximating the reduction of risk from investing amount of x 
in reducing the risk from the separate risk sources. Suppose that the initial budget is 50 units. 
A C++ programme implementing the proposed algorithm yields the following allocation: 
13,11,9,10,7 for the separate sources which reduces the total risk by 91.6 units. 

In order to verify the proposed algorithm, a ‘brute-force’ Monte Carlo simulation 
algorithm has also been developed for optimal budget allocation. The simulation algorithm 
consists of the following. 

Four random, uniformly distributed ‘splitting points’ were generated within the specified 
budget of B=50. They were ordered in ascending order p1,p2,p3 and p4 (0≤pi≤50). The parts 
of the budget allocated to the 5 sources of risk were p1-0 for the first risk source, p2-p1 for 
the second risk source, p3-p2 for the third risk source, p4-p3 for the fourth risk source and 
finally 50-p4 for the fifth risk source. Then, the total risk reduction characterising this budget 
allocation was calculated. This process was repeated hundreds of thousands of times and the 
maximum risk reduction was determined for all simulation trials. The budget allocation 
corresponding to the maximum risk reduction served as an approximation of the optimal 
budget allocation. The results from 1000000 simulation trials confirmed the optimal 
allocation 13,11,9,10,7 obtained from the dynamic programming algorithm. 
 
3. Optimal allocation of risk-reduction resources to achieve a maximum reduction of the 
risk of failure of safety-critical systems 

 
3.1 Optimal allocation of risk-reduction resources to systems with reliability networks in 
series 

 
A very important special case in optimal allocation of risk-reduction resources is the case 

where the successful operation depends on the failure-free operation of each of several (n) 
units (e.g. components, pieces of equipment, pieces of software, etc.). In this case, the n units 
are logically arranged in series. Failure of any unit causes a system failure with expected cost 
C . Each unit i is characterised by a reliability iR . The risk-reduction resources can be 
distributed for increasing the reliabilities of the separate units. Increasing the amount of 
resources allocated for the reliability improvement of a particular unit does not necessarily 
translate into optimal improvement of the reliability of the system.  Let m1 be the index of the 
unit characterised by the smallest reliability and let 1mR  be the reliability of this unit. The 
system reliability can be presented as  

nmsys RRRRR  ...... 121                                            (13) 
and because 10  iR  holds for all ni ,...,2,1 , the relationship 1msys RR   holds too. In 
words, the reliability of the system is always limited by the unit with the smallest reliability. 
The only way to increase the reliability of the system sysR  is to increase the reliability 1mR  of 
the unit with index m1. The optimal allocation of resources then follows the following 
algorithm. Risk reduction resources are allocated on improving the reliability of unit m1, until 
its reliability becomes equal to the reliability 2mR  of unit m2, characterised by the next 
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smallest reliability in the system. Now, improving the reliability of unit m1 is no longer 
beneficial because the system reliability sysR  will be limited by the reliability 2mR  of unit m2, 
which will be now the unit with the smallest reliability. The system reliability sysR  will 
increase beyond 2mR  only if resources are allocated to simultaneously increasing the 
reliabilities of units m1 and m2, to the same level for both units. This process continues until 
the reliability level 3mR  of unit m3 characterised by the third smallest reliability is reached 
and so on. 

Suppose that the only risk reduction option associated with an unit arranged in series is 
‘testing the unit for critical faults’. Each inspection costs a fixed amount u. Failure of an unit 
is caused by a critical fault and let ip  denote the probability that a critical fault will be 
present in unit i. The critical fault will certainly cause failure of the unit (and a system failure) 
if it goes unnoticed during testing/inspection of the unit. Because of imperfections, each 
inspection of unit i is associated with a probability iq  that the critical fault will be detected. 
Consequently, given that a critical fault is present in unit i, the probability of missing it after n 
independent inspections is n

iq )1(  . The probability that a critical fault will be present in the 
ith unit after n inspections is n

ii qp )1(  , which is the product of the probability that the fault 
will be present and the probability that it will be missed by all inspections. The probability of 
failure of unit i after n inspections is then n

ii qp )1(  . Allocation of resources for inspections 
should be done initially on the unit characterised by the largest probability of failure until its 
probability of failure is reduced to the next largest probability of failure. The allocation of 
resources then continues on simultaneously reducing the probability of failure of the two units 
and so on. 

 
3.2 Optimal allocation of risk-reduction resources to systems with complex reliability 
networks 

A number (n) of possible options/activities are available, and each of the n non-negative 
variables 1x , 2x ,..., nx , ( ii ax 0 ) corresponds to the levels of the separate investments. If 

0ix , the i-th option has not been not implemented; a value 0 txi  means that an 
investment at a level t has been made in the ith option. The maximum investment levels 
which can be assigned to the separate options are given by ia . A function ),...,,( 21 nxxxK  
regarding the risk of system failure is also defined, expressing the total risk as a function of 
the levels of investment in the possible options. Let the level of investment in the ith option 
be 0ix  if the option has been implemented and 0ix , if the option has not been 
implemented. The problem consists of determining a vector of values x*=( *

1x , *
2x ,..., *

nx ), 
which  corresponds to the global minimum 

),...,,(min 21 nxxxK                                                (14) 
of the risk of failure ),...,,( 21 nxxxK , defined in the domain ii ax 0 , (i=1,2,...,n), with a 
budget constraint  

Bx
n

i
i 

1

                                                            (15) 

and option investment constraints 
ii ax 0 , (i=1,2,...,n)                                              (16) 

For the sake of simplicity, the risk of failure will be measured by the probability of system 
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failure. Essentially, this assumes ( 1C ) for the consequences of failure, irrespective of what 
combination of component failures has caused the system failure. Consequently, the total risk 
function ),...,,( 21 nxxxK  in equation (14) can be replaced by the probability of system failure 

),...,,( 21 nf xxxp . 
The goal is to minimize the probability of system failure within a fixed budget B. The 

system is modelled by its reliability network, representing the logical arrangement of the 
components. The system reliability is equal to the probability of existence of a path through 
working components in the reliability network, from the start node to a set of end nodes, after 
a specified period of operation of the system. 

The idea behind the algorithm will be illustrated by an example. 
Consider a basic safety critical block (Fig.1a) consisting of two components ‘A’ and ‘B’, 

logically arranged in series (for example, component A could be an electronic circuit and 
component B could be an electro-mechanical device controlled by the electronic circuit. 
Suppose, that the possible ways for reducing the risk of failure of the safety-critical block are: 
introducing up to three safety-critical blocks working in parallel, introducing bridges ‘p’ and 
including active redundancy for each component. The full-complexity reliability network is 
shown in Fig.1b, where the slots marked by numbers 1,2,...,8, are in fact the available options 

1x , 2x ,..., 8x . For each option, three possible levels exist: ‘1’- a single component in the slot, 
‘2’- two components working in parallel and ‘0’- no component in the slot. The option levels 
constrains are therefore  

20  ix , (i=1,2,...,8) 
where ix  can take only one of the discrete values ‘0’, ‘1’ or ‘2’. 
By varying the levels of the options, all possible reliability networks, locked in the full-
complexity network, can be obtained. Thus, the size of the space of all possible combinations 
of option levels for the full network in Fig.1b is 83 . For larger networks, the size of the space 
of alternatives increases exponentially. Despite that not all of these alternatives correspond to 
feasible networks, the number of feasible networks within the total space of possible options 
is still a very large number. 

For the sake of simplicity, suppose that the separate components in the slots of the full-
complexity reliability network are characterized by negative exponential time to failure 
distributions )/exp(1)( ii ttF  , where the mean times to failure are  3A  years, 

7B  years and 2p  years. The reliabilities characterising the separate components, for a 
specified time interval (0,t) are therefore given by )/exp()( ii ttR  . 
The specified time of operation for the safety critical block is 2t  years. The costs of the 
single components are as follows: 130$Ac , 390$Bc  and 5$pc . 

If a particular slot ‘i’ contains a single component, the reliability of the slot is 
)/exp()( ii ttR   and the associated cost of the option )1(ic  is equal to the cost of the 

component compi cc )1( . If slot ‘i’ contains two  components working in parallel, the 

reliability of the slot is 2)]/exp(1[1 it   and the cost of the option becomes 

compi cc 2)2(  . If no components are present in a particular slot, the reliability of the slot 
becomes zero and the cost of the option is also zero 0)0( ic . The available budget for 
implementing different risk reduction options is B= 1000$ . 

In order to optimize the topology of the safety-critical system, the central idea is to start 
with the reliability network with full complexity, including all possible bridges and 
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redundancies. Different combinations of components (edges) from the full-complexity 
reliability network are then pruned by a branch and bound algorithm. This process permits 
prospective reliability networks embedded in the full-complexity reliability network to be 
explored. After pruning an edge, from the tree of the edges to be pruned, the risk of system 
failure of the network within 2t  years is calculated by using a system reliability algorithm. 

Here, we must point out that the reliability network (the structure function) of the optimal 
system is not known in advance. Only the reliability network (the structure function) of the 
full-complexity safety-critical system is known. The algorithm eliminates the unnecessary 
components from the full-complexity reliability network of the safety-critical system to reach 
the optimal reliability network (system architecture) locked in the full-complexity reliability 
network. 

The topology optimization of the reliability network can also be done by an exact, full 
exhaustive search recursive algorithm. This solution however is suitable only for networks 
with a relatively small size. The topology optimization algorithm, based on the branch and 
bound search, is superior because it does not require all possible reliability networks locked in 
the full-complexity reliability network to be explored. 

If the calculated probability of system failure is greater than the achieved so far minimum 
probability of system failure (corresponding to a reliability network which satisfies the budget 
constraint), further pruning of components is not performed. Here again, in order to stop 
further branching and unnecessary exploration of the space of alternative reliability networks, 
we use the following fact (not proved here). By removing a component, from any slot of the 
full-complexity network, the probability of system failure cannot be reduced. This is true 
because the function giving the probability of system failure is monotonically decreasing in 
the reliabilities of the components in the  slots. We use this fact to construct an algorithm 
whose running time is superior to the running time of an algorithm based on a full exhaustive 
search. 

If, for several pruned components, the probability of system failure is larger than the 
achieved so far minimum, there is no need for pruning other components from the reliability 
network in order to satisfy the budget constraint. Further pruning will only result in even 
larger probability of system failure. This permits the search to be continued, without having to 
descend on the sub-tree of pruned edges where the absolute minimum of the probability of 
system failure cannot possibly be found. The tree of alternatives that follows the removal of a 
component leads to reliability networks with a larger probability of system failure than the 
achieved so far minimum. 
Suppose that, as a result of the pruning, the resultant reliability network satisfies the budget 
constraint and the probability of system failure is smaller than the achieved so far global 
minimum (record). In this case, the current record is replaced by the calculated probability of 
system failure characterizing the current system.  

 
Take in Figure 1. 

 
Take in Figure 2 

 
Applying the topology optimization procedure to the network in Fig.1b, yields an optimum 

vector (1,2,1,2,2,0,1,0) for the levels of the available options. 
This means that in the optimal network topology, there are single components in slot 1, slot 3 
and slot 7, two components logically arranged in parallel in slot 2, slot 4 and slot 5 and no 
components in slots 6 and 8. The optimal reliability network is shown in Fig.2 with a 
probability of system failure within t=2 years equal to 0.34. The cost of the system is within 
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the specified budget of B=$1000. From the optimal reliability network, we can then 
reconstruct the optimal system architecture. 

The results from the branch and bound algorithm have been verified with a result obtained 
from an independent recursive exhaustive search algorithm. The optimum vector 
(1,2,1,2,2,0,1,0) for the levels of the available options has also been obtained by the 
alternative method. This essentially verifies the proposed algorithm. 

The presented method creates the attractive opportunity for increasing the reliability of 
common safety critical systems without increasing the cost of current designs. 

Alternatively, the method can also be used for exploring whether a particular level of 
reliability can be achieved at a reduced cost for building the system. This creates the attractive 
opportunity for increasing the competitiveness of companies designing and manufacturing 
safety-critical systems. 
 
4.  Reducing technical risk by an optimal choice of a risky prospect 
 

Companies and entrepreneurs often make decisions under risk. Investing in an activity 
whose outcome is uncertain is a commonly made decision. Such is for example the drilling 
for oil, the advertising campaigns for particular products on particular markets. The 
commonly used method for selection among risky prospects is the maximum expected profit 
criterion. According to the maximum expected profit criterion, the activity characterised by 
the largest expected profit is selected. Such a decision however, can be justified if the choice 
is associated with a large number of risk-reward bets, with high expected profit. Often, the 
opportunities for sequential bets are limited. A common cause for the bankruptcy of small 
companies is their inability to sustain financially the losses from several unsuccessful 
investments, despite that each investment may be characterised by a positive expected gain. 
Drilling for oil for example, or running a large advertising campaign may be associated with a 
large expected profit/payoff and a large probability of success, but if unsuccessful, they can 
also eat up all of the resources and bankrupt a small company. In contrast, large companies 
can sustain losses from a number of unsuccessful oil drillings or advertising campaigns and 
still be profitable in the long run. In short, small companies, because of their limited 
resources, are more likely to face the large risk associated with a small number of sequential 
bets. This is an example where the blind adherence to the maximum expected profit criterion 
has been and has remained a source of heavy losses. 

The inadequacy of the expected profit criterion as a basis for making a choice between 
risky prospects containing a limited number of risk-reward events/bets activities will be 
demonstrated in the simplest possible case, where the risk-reward bets in the risky prospects 
are statistically independent. 

Risk-reward events/bets can materialise as benefit or loss. An investment in a particular 
enterprise is a typical example of a risk-reward bet. A successful investment is associated 
with returns (benefits) while an unsuccessful investment is associated with losses. Usually, 
for risk-reward bets, the larger the magnitude of the potential loss, the larger is the magnitude 
of the potential benefit. 

The importance of considering benefit in parallel with the loss has already been stressed in 
the literature (e.g. Hillson, 2002, Chapman, 2003). Hillson (2002) for example, proposed an 
integrated qualitative risk management approach for responding to identified threads and 
opportunities. An example of existing framework for dealing with opportunity and failure 
events is the double probability-impact matrix for opportunities and threats proposed by 
Hillson (2002). Accordingly, expected potential reward R can be defined, as a product of the 
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probability sp  that a risk-reward event will materialise as ‘success’ and the benefit B  given 
success: 

BpR s                                                               (17) 
In our opinion, it is not beneficial to treat the potential losses and the potential benefits as 

risk. Reserving the term risk for the potential loss only, provides a better analysis structure for 
risk reduction and profit increase. Separating potential benefit from potential loss focuses 
attention on eliminating hazards and creating opportunity events as a way of increasing the 
potential profit. 

Suppose that 10  sp  is the probability that the risk-reward event/bet will be a ‘success’ 
and will bring benefits characterised by the conditional cumulative distribution )|( sxBs  
(given that the risk-reward event has materialised as success). Correspondingly, 

sf pp  10  is the probability that the risk-reward event/bet will generate a loss, 
associated with a conditional cumulative distribution function )|( fxC f  (given that the risk-
reward event has materialised as a loss). 

The expected values of the benefit and the loss given that the risk-reward event has 
materialised are denoted by sB  and fC , respectively. 

The expected profit G  from a risk-reward event/bet is given by: 
ffss CpBpG                                                     (18) 

where sp  is the probability of a beneficial outcome with magnitude sB  of the expected 
benefits and sf pp 1  is the probability of a loss with expected magnitude fC  (the loss fC  
is taken with a negative sign). 

An example of such a risk-reward event/bet has already been given with drilling for oil on 
a particular spot. Suppose that the geological analysis suggests that the probability of 
recovering oil by drilling on a particular spot is sp . If oil is recovered, the benefit (after 
covering the cost of drilling) will be sB . With probability sf pp 1  however, oil will not 
be recovered and a loss of magnitude fC  (the cost of drilling) will be incurred. Drilling an oil 
well is essentially a risk-reward bet. 

A risky prospect may contain a number of risk-reward bets. The expected profit AG  from 
a risky prospect A, containing M risk-reward bets is given by: 





M

i
iA GG

1
                                                        (19) 

where iG  is the expected profit characterising the ith risk-reward bet in the risky prospect. 
Risk-reward bets with a positive expected potential profit ( 0G ) will be referred to as risk-
reward opportunities or opportunity bets, while risk-reward bets with a negative potential 
expected profit ( 0G ) will be referred to as risk-reward gambles. Note that the concept 
‘opportunity bet’ is the same as the concept ‘good bet’ used in Samuelson (1963). 

Consider initially risk-reward opportunities only. The decision to be made is whether to 
invest in a risk-reward opportunity or not and which risk-reward opportunity should be 
preferred. The potential profit G from an investment is a random variable following a 
Bernoulli distribution with parameter sp . For constant values of the benefit given success sB  
and the loss given failure fC , the probability distribution of the potential profit G is given by 

ss pBGP  )(  and ff pCGP  )( . The expected value of the potential profit is given by 
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equation (18). Since 222)( ffss CpBpGE  , for the variance of the potential profit we 
get 

222 )()]([)()( fsfs CBppGEGEGVar                               (20) 
For a large number of risk reward bets, the expected profit is approximated well by 

equation (18). In short, for risky prospects all containing a large number of statistically 
independent risk-reward bets, choosing the prospect characterised by the maximum expected 
profit is a sound decision making criterion. For a risky prospect containing a limited number 
of risk-reward bets however, despite the existence of a large expected profit, the risk of a net 
loss can be significant. 

As a simple illustrating example, consider two risky prospects A and B, containing single 
risk-reward bets. The risky prospect A contains a single risk reward bet with probability of 
success 01.0sAp , benefit, given success 200000sAB  , probability of failure 99.0fAp  

and loss given failure 1000fAC . The expected profit from risky prospect A is  

1010100099.020000001.0 AG ; the probability of a loss is 99% and the risk of a 
net loss is 990 fAfAA CpK . 

The risky prospect B contains a single bet with a probability of success 99.0sBp , 
benefit given success 1000sBB , probability of failure 01.0fBp  and loss given failure 

1000fBC . The expected profit from risky prospect B is 

980100001.0100099.0 BG , the probability of a loss is 1% and the risk of a loss is 
10 fBfBB CpK . 

Because the expected profit characterising risky prospect A is larger, according to the 
maximum expected profit criterion, risky prospect A should be selected, despite the 99 times 
larger risk of a net loss. In other words, the maximum expected profit criterion does not 
reflect the risk of a net loss while selecting among one-time opportunities. 

Consider now two risky prospects, containing again single risk-reward bets. Risky 
prospect A contains a single risk-reward bet with a probability of success 2.0sAp , benefit 
given success 2000sAB , probability of failure 8.0fAp  and loss given failure 

125fAC . The expected profit from risky prospect A is 

3001258.020002.0 AG , the probability of a loss is 80%, the magnitude of the 
loss is -125. 

Risky prospect B contains a single risk-reward bet with probability of success 2.0sBp , 
benefit given success 20000sBB , probability of failure 8.0fBp  and loss given failure 

4625fBC . The expected profit from risky prospect B is  

30046258.020002.0 AG , the probability of a loss is again 0.8, the magnitude of the 
loss is -4625. 
In this example, the maximum expected profit criterion does not distinguish between risky 
prospects with the same expected profit, probability of success and probability of a loss but 
with different magnitudes of the loss. 

In both examples, the risk of a net loss from the risky prospects has not been revealed 
because in the expected profit (see equation (18)), the expected potential loss (the risk) ff Cp  
has been aggregated with the expected potential reward ssBp . 
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The next example involves two risky prospects containing a different number of risk-
reward bets. The first risky prospect contains a single risk-reward bet with parameters: 

3.0sp , 300sB , 7.0fp , fC = -90 and its expected profit is 
27907.03003.0)( GE . The probability of a net loss from this risky prospect is 

70%. The risk of a net loss is 63907.0  . 
The second risky prospect contains three risk-reward bets with the same probability of 

success and failure but with three times smaller magnitudes for the benefit given success and 
the loss given failure: 3.0sp , 1003/300 sB , 7.0fp , 303/90 fC . The 
expected profit from the risky prospect containing the three split bets is 

27)307.01003.0(3)( 123 GE . Because a net loss from the second risky prospect 
can be generated only if a loss is generated from every single bet, the probability of a net loss 
from the second risky prospect is 34.07.0 3

123, fp . The risk of a net loss is 
6.309034.0  . 

The maximum expected profit criterion does not distinguish between these two risky 
prospects, characterized by the same expected profit. This is despite that the probability of a 
net loss and the risk of a net loss from the second risky prospect are clearly much smaller 
compared to the probability of a net loss and the risk of a net loss from the first risky 
prospect. Clearly, the second risky prospect is to be preferred to the first risky prospect. The 
real problem from applying the maximum expected profit criterion becomes apparent if the 
three opportunity bets from the second risky prospect are characterised by a slightly smaller 
benefit given success 9913/300 sB . In this case, the expected profit characterising the 
second risky prospect will be slightly smaller  

1.26)307.0993.0(3)( 123 GE  
than the expected profit from the first risky prospect. The probability of a net loss 

34.07.0 3
123, fp  for the second risky prospect remains the same. Adherence to the 

maximum expected profit criterion only, will favour the selection of the first risky prospect, 
characterised by a marginally larger expected profit of 27, the significantly larger probability 
of a net loss of 70% and more than twice magnitude -63 of the risk! 

Again, the significant risk of a net loss associated with one of the risky prospects has not 
been revealed by the maximum expected profit criterion. 

The last example shows how the risk associated with a risk reward bet can be reduced 
significantly if the risk reward bet is split into several risk reward bets characterised by the 
same probability of success and failure as the original bet but with proportionally smaller 
benefit and loss. Indeed, consider a risky prospect containing a single risk-reward bet, 
characterised by a probability of success sp , benefit given success sB , probability of failure 

fp  and loss given failure fC . This risk reward bet can be split into m risk-reward sub-bets, 
each characterised with the same probability of success and failure sp  and fp  and with m 

times smaller expected benefit and loss mBs /  and mC f / . The expected  
profit from the m risk-reward bets: 

)()//()( ,...,1 GEmCpmBpmGE ffssm                          (21) 
is equal to the expected profit from the original bet. Considering equation (20), the variance 

22

1 1
,...,1 )(1)//()( fsfs

m

i

m

i
fsfsim CBpp

m
mCmBppVGV  

 

          (22) 

of the profit from the risky prospect with m risk-reward bets is m times smaller than the 
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variance 2)( fsfs CBpp   of the profit characterising the initial risk-reward bet. 
Consider another example, of two competing risky prospects each containing a single loss-

generating event. The probability of a loss is the same for both risk events while the loss 
distributions are different. The expected losses associated with the events are 21   . The 
variance of the losses 1V  characterising the first event is large, whereas the variance of the 
losses 2V  characterising the second event is small. Contrary to the maximum expected value 
criterion, often the second bet, with the larger expected value 2  of the loss, will be the 
preferable bet. This is because of the small variance of the losses and the high likelihood that 
the magnitude of the losses will be close to the mean 2 . For the first bet, because of the 
large variance, the amount of the losses may significantly exceed the mean 1 . 
In other words, in the case of a single risk-reward bet in a risky prospect, the loss distribution 
is sampled only once and there is no guarantee that the loss will be close to its mean. 

The variance of the loss however, still does not provide a good measure of the risk of 
exceeding a particular critical value for skewed distributions. Take as an example two very 
different skewed distributions, characterized by the same mean   and variance 2  (Fig.3). 
One of the distributions (distribution a) has a large upper tail of the loss, while the other 
distribution (distribution b) has a large lower tail. Distribution a in Fig.3 is less desirable 
compared to distribution b in Fig.3, because distribution a is associated with a larger risk that 
the loss will exceed a particular large quantity. 
 

Take in Figure 3 
In summary, the maximum expected profit criterion is fundamentally flawed, because it 

does not reflect the impact of the number of risk-reward activities in the risky prospects. The 
number of the risk-reward activities should be a key consideration in selecting a risky 
prospect.  

 
5. Risk of a net loss and expected potential reward associated with a limited-
number of statistically independent risk-reward bets in a risky prospect 

 
Suppose that a finite number n of risk-reward opportunities of the same type are present. A 

series of n statistically independent risk-reward bets, characterised by the same probability of 
success in each trial is a Binomial experiment, where the number of successful outcomes is 
modelled by the binomial distribution. 

The risk of a net loss from n risk-reward bets can be derived by the following probabilistic 
argument. 

Let  x denote the number of bets which materialise as ‘benefit’ among n bets, x=0,1,…n. 
Correspondingly, n-x will be the number of bets which materialise as losses. The probability 
of a net loss equals the probability that the sum of the benefits from x benefit-generating bets 
will be smaller than the sum of the losses from n-x loss-generating bets. 

Let sB  be the expected value of the benefit given a successful bet and fC  be the expected 
value of the loss given a loss-generating bet. The probability that the sum of the benefits from 
x benefit-generating bets will be smaller than the sum of the losses from n-k loss-generating 
bets is equal to the probability that the number of benefit-generating bets x does not exceed 
k , the largest integer satisfying the inequality 

||)( fs CknBk                                                 (23) 
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Condition (23) is equivalent to 1
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integer not exceeding the ratio |]|/[|| fsf CBCn   if |]|/[|| fsf CBCn  . The probability 
that there will be a net loss then becomes 
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The risk of a net loss is equal to the expected value of the potential loss. This can be 
determined by adding the probability of zero benefit generating bets times the losses || fCn  
from n loss-generating bets plus the probability of a single benefit-generating bet and n-1 
loss-generating bets times sf BCn  )1(  and so on,…,plus the probability of k benefit-

generating bets and n-k loss-generating bets times the net loss sf BkCkn  )(  from n-k loss-
generating bets and k benefit-generating bets. As a result, the risk of a net loss K becomes: 
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 ,                          (25) 

The expected potential reward can be determined by adding the probability of k+1 benefit 
generating bets times the benefits  fs CknBk )1()1(   from k+1 benefit-generating bets 
and (n-k-1) loss-generating bets plus, and so on,…,plus the probability of n benefit generating 
bets times the benefit sBn  from them. As a result, the expected potential reward from n risk-
reward bets becomes: 
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 ,                       (26) 

Equations (24, (25) and (26) have been verified by a Monte Carlo simulation. Thus, for 
290sB , 100fC , 3.0sp , 7.0fp  and 12 opportunity bets, equation (24) gives 0.49 

for the probability of a net loss, equation (25) gives 152K  for the risk of a net loss and 
equation (26) gives 356R  for the expected potential reward. These results have been 
confirmed by the empirical values ( 49.0)_( lossnetP , 152K  and 356R ) obtained 
on the basis of 1000000 simulation trials. 

The expected profit from n bets can be obtained by using equation (5) stating that the 
expected value of a sum of random variables  is the sum of the expected values of the random 
variables. Since the expected profit from a single bet is ffss CpBpG  , the expected 
profit from a sequence of n bets is 

fsssn CpnnpXXE )1()...( 1                                      (27) 
In other words, with increasing the number of opportunity bets, the expected profit increases 
proportionally to the number of bets in the sequence. For statistically independent variables, 
the variance of their sum is equal to the sum of the variances of the random variables 
(DeGroot, 1989). 

 
 
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)()(                                                       (28) 

Because the variance of the profit from a single bet is given by equation (20), the variance of 
the profit from n statistically independent bets is given by 
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2))(1()( fsss CBpnpGV                                                (29) 
In other words, the variance of the profit from a sequence of a number of statistically 
independent bets increases proportionally to the number of bets in the sequence. 

In the case of a very large number n of bets, the conditions for the validity of the central 
limit theorem are fulfilled and a Gaussian distribution with mean  

])1([ fsss CpBpn                                                        (30) 
and standard deviation 

)1()( ssfs pnpCB                                                     (31) 
can be used for approximating the distribution of the potential profit. The probability of a net 
loss will be 








 




0)( lossnetP                                                        (32) 

where )(  is the cumulative distribution of the standard normal distribution with mean ‘0’ 
and standard deviation ‘1’. Correspondingly, the probability of a net profit will be given by 








 




01)( profitnetP                                                  (33) 

From the distribution, the probability that the net loss will exceed any specified quantity can 
be determined. We need to point out however, that approximations (32) and (33) are valid 
only for a very large number of bets in the risky prospect and do not hold for a limited 
number of bets. In the case of a limited number of bets in the risky prospect, equations (24) 
and (25) should be used. 
 
5.1. Samuelson’s sequence of good bets revisited 

Following the Samuelson’s paper (Samuelson, 1963), the same proposed ‘good bet’ will 
be used. Probability 5.0sp  of winning 200 ( 200sB ) and probability 5.0fp  of losing 

100 ( 200sB ). Table 1, lists the results from the calculations using equations (24), (25) and 
(31). These calculations have also been confirmed by a Monte Carlo simulation. 

 
Table 1. Expected profit and risk of a net loss with increasing the number of good bets. 
======================================================== 
Number of      Expected        Standard           Risk of a        Probability 
good bets         profit              deviation           net loss           of a net loss 
======================================================== 
  1                        50                   150                       -50                      0.5       
  10                      500                 474.3                    -37.1                   0.17 
  20                      1000                670.8                   -20                      0.057 
  30                      1500                821.6                   -9.9                     0.049 
  50                      2500                1060.7                 -3.1                     0.0077 
  80                      4000                1341.6                 -0.5                     0.0012 
  90                      4500                1423                    -0.26                   0.0010 
  100                    5000                1500                    -0.15                   0.00044 
  130                    6500                1710.3                 -0.025                 0.00007 
  150                    7500                1837                    -0.007                 0.00003 
======================================================== 
As can be verified from the table, despite that with increasing the number of good bets, the 

variance of the net profit increases, the risk of a net loss has decreased significantly. In other 
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words, despite that selecting an individual bet is not beneficial because of the high probability 
of a loss, selecting repeated bets is beneficial, because a longer sequence of repeated bets is 
characterised by an increased expected profit, a small probability of a net loss and a small risk 
of a net loss. Contrary to the view expressed by Samuelson which has also been adopted in 
several related papers (e.g. Ross, 1999), repeating the unacceptable bet reduced significantly 
the risk of a net loss. 

Despite the circumstance that with increasing the number of opportunity bets, the variance 
of the profit increases significantly (see Table 1), the risk in fact decreases. This seeming 
anomaly has led some researchers to conclude that because of the increased variance of the 
profit, the risk will also increase. The analysis shows that the variance of the profit can 
increase without a simultaneous increase of the risk of a loss. In this case, the commonly 
accepted rule that a larger variance means a larger risk does not hold. In the case of repeated 
bets, a larger variance actually coexists with a smaller risk and the variance of the profit 
cannot serve as a risk measure.  

In summary, the popular view started with the Samuelson’s paper (1963), that if a single 
bet is unacceptable then a sequence of such bets is also unacceptable is incorrect. 

We need to point out that the Parondo-type games discussed in (Epstein 2009 and 
Astumian, 2001) cannot serve as an example contradicting the Samuelson theory. Parondo-
type games deal with risk-reward bets which are unattractive individually because of the 
negative expected profit characterising each bet. When combined in a sequence, the resultant 
sequence of bets can be made with a positive expected profit with a very high probability 
(Astumian, 2001). The problem is in the fact that the Parondo-type games are not 
independent. Commonly, one of the games produces few outcomes which are associated with 
a high payoff if the second game is played next. When played in a sequence, the net profit 
from the composition of games is positive. 

 
 

6. Variation of the risk of a net loss associated with a small number of opportunity 
bets 

 
For a large number n of opportunity bets, the expected value of the net profit is 

approximated well by || ffss CpBpG  . According to the definition of an opportunity bet, 

0||  ffss CpBp  and consequently, with increasing the number of opportunity bets, the 
probability of a negative net profit (net loss) approaches zero. 

It seems that with increasing the number of opportunity bets, the probability of a net loss 
always decreases. There is a common belief that increasing the number of opportunity bets is 
always beneficial because this increases the exposure to successful outcomes. Interestingly, 
this conventional belief is not necessarily correct. Here we show that multiple opportunity 
bets (characterised with a positive expected gain) can in fact be associated with a larger risk 
of a net loss than a single opportunity bet). 

This is shown in Figure 4, where the parameters characterising the risk-reward bets are 
3.0sp , 7.0fp , and 100fC . Different values )(GE  of the expected profit were 

obtained by varying the expected benefit sB . Thus, for 299sB , 7.19)( GE , for 
493sB , 9.77)( GE  and for 247sB , 1.4)( GE . These correspond to the three curves 

in Figure 4. Increasing the number of opportunity bets is associated with a decrease of the 
absolute value of the risk of a net loss. The decrease however, does not occur monotonically 
as indicated by all three graphs. The analysis shows that the third curve, corresponding to 
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1.4)( GE  also tends to zero absolute value of the risk of a net loss but after thousands of 
opportunity bets. 

Take in Figure 4 
 

While for a large value of the expected gain, the absolute value of the risk of a net loss is 
quickly reduced to zero, for small values of the expected gain, the risk of a net loss may 
actually increase with increasing the number of opportunity bets as indicated by the graph 

1.4)( GE  and 7.19)( GE  in Fig.4. As a result, increasing the number of opportunity bets 
characterised by a small expected gain, may have the opposite effect on the risk of a net loss! 

 
7. Distribution of the potential profit from a limited number of risk-reward activities 

 
Calculating solely the probability of a net loss is not a reliable criterion for selecting risky 
alternatives. This is because a high probability of a net loss may co-exist with a low 
magnitude of the loss and a low probability of a net loss may co-exist with a high magnitude 
of the loss. Ranking the risky prospects correctly and making risk decisions requires 
evaluating the risk of a net loss, which incorporates both the probability and the magnitude of 
the net loss. 

The widely adopted in the financial literature VaR reliability measure specifies a threshold 
amount of losses, the probability of exceeding which is a known quantity. This reliability 
measure however, provides no insight on the extent of the losses beyond the specified 
threshold value.  

This was the reason for the CVaR reliability measure (Pflug 2000; Rockafellar and 
Uryasev, 2002). For continuous loss distributions, the CVaR at a given confidence level is the 
expected loss given that the loss is greater than the VaR at that level (Rockafellar and 
Uryasev, 2002). This reliability measure is also insufficient to describe the behaviour of the 
potential losses. The drawbacks of risk measures based on expected values can be readily 
demonstrated by constructing two distributions of the potential loss, characterised by the 
same expected value of the potential loss and different variances of the losses in the tails. 
Because the CVaR reliability measure is based on an expected value, it suffers from the same 
drawback - examples of potential loss distributions can be constructed that have the same 
CVaR value and different potential loss distributions in the tails. As a result, neither VaR nor 
CVaR reliability measure fully captures the risk of large losses significantly deviating from 
the mean. 

The distribution of the potential loss and the distribution of the potential benefit can be 
combined by evaluating the distribution of the potential profit. In the case of a limited 
number of risk-reward bets, ranking the risky prospects and making risk decisions is 
facilitated by evaluating the distribution of the potential profit. 

Consider a single risk-reward event, whose probability of occurring is ocp . Once the risk-
reward event has occurred, it materialises as success with probability sp  and as a loss, with 
probability fp  ( 1 fs pp ). The potential profit X is smaller than a particular value ‘x’ (x 
can be also be negative) in the following mutually exclusive cases: (i) the risk-reward event 
does not occur and the profit is smaller than x, (ii) the risk-reward event materialises as 
‘success’ and the benefit given success is smaller than x and (iii) the risk-reward event 
materialises as a loss and the loss given failure is smaller than x (the loss is with a negative 
sign). Consequently, according the total probability theorem, for a single risk reward event, 
the distribution of the potential profit )(xG  is given by 
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)|()|()()1()()( 000 fxCppsxBppxHpxGxXP fs                               (34) 
where )|( sxB  is the distribution of the benefit given success and )|( fxC  is the distribution 
of the loss given failure and )(xH  is the Heaviside step function ( 1)( xH  for 0x  and 

0)( xH  for 0x ). The potential profit is a mixture of three distributions: the distribution 
of the benefit given success )|( sxB , the distribution of the loss given failure )|( fxC  and 
the Heaviside step function. For the expected value of the potential profit: 

ffss CppBppG 00                                                          (35) 
is valid. 
For a risky prospect containing multiple risk-reward events, if no analytical solution exists, 
building the distribution of the potential profit and evaluating the risk of a net loss and the 
expected potential reward can be made by a Monte Carlo simulation, whose algorithm in 
pseudo-code is described in Appendix A. 

 
Take in Figure 5 

 
In Fig.5, the cumulative distribution of the potential profit has been built for risk-reward 

events following a homogeneous Poisson process with density 0.8 year-1 in the interval (0,2) 
years. The benefit given success follows a uniform distribution in the interval 0,320  

)320,0()|( UsxBs   and the loss given failure follows a uniform distribution in the interval (-
50,0); )0,50()|( UfxC f . The empirical risk of a net loss is -23.9, the expected potential 
reward is 47.9 and the expected potential profit is 19.3. It is interesting to note the jump of the 
net profit dependence at zero. This is caused by all outcomes for which no risk-reward events 
occurred in the specified finite time interval. The expected profit in this case is zero. 

 
Take in Figure 6 

Figure 6 gives the distribution of the potential profit from five opportunity bets with 
parameters 4.0sp , 450sB , 6.0fp , 180fC . The empirical risk of a net loss is -
140; the empirical expected potential reward is 499.6. Figure 7 gives the distribution of the 
potential profit if the number of opportunity bets is increased to 30. The risk of a net loss has 
decreased to -75.3 while the expected potential benefit has increased to 2237.2. 

 
Take in Figure 7 

 
In each particular case, a simulation is required to reveal the risk of a net loss. Simulation is 
also necessary for risk-reward bets characterised by different probabilities of success or by a 
complex distribution of the loss given failure or the benefit given success. 

The results from the simulation have been validated by an alternative method for 
calculating the expected value of the total profit based on analytical reasoning. The expected 
value of the total profit can be calculated as a sum of the expected value of the total benefit 
from risk-reward bets which materialise as success and the expected value of the total loss 
from risk-reward bets which materialise as a loss.  

The total benefit BT  from sN  risk reward bets which materialise as success is ssB BNT  . 
Correspondingly, the total loss LT  is ffL CNT  . The total profit PT  is therefore given by 

ffssP CNBNT                                                 (36) 
Taking expected values from both sides of equation (36) results in  

ffssP CNBNT                                                      (37) 
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for the expected value of the total profit. The expected number of the risk reward bets sN  
which materialise as success is  

ss paN                                                      (38) 
where   is the density of the homogeneous Poisson process modelling the occurrence of the 
risk-reward bets; a is the length of the time interval and sp  is the probability that a given 
risk-reward bet will materialize as ‘success’. Similarly, the expected number of the risk 
reward bets which materialise as a loss is  

fs paN                                                    (39) 
Substituting equations (39) and (38) in equation (37) results in  

)( ffssP CpBpaT                                               (40) 
In the first example, )320,0()|( UsxBs   and )0,50()|( UfxC f . Therefore, 160sB  

and 25fC . Substituting these values and the also the values 8.0 , 2a  years, 
2.0sp , 8.0fp , sB  in equation (40), results in 2.19PT  which confirms the empirical 

result of 19.3 obtained by the simulation algorithm. 
 
8. Conclusions 
 

● If the total potential loss from several risk sources is a sum of the potential losses from the 
individual sources, the total risk from the risk sources is a sum of the individual risks from 
the separate sources irrespective of whether the risk sources are statistically independent or 
not. In this case, an exact algorithm has been proposed for optimal allocation of limited risk 
reduction resources to achieve a maximum overall risk reduction. The algorithm is general 
and does not put any constraints on the functions describing the risk reduction. 
 
● An exact algorithm has been proposed for optimal allocation of a fixed budget to achieve a 
maximum reduction of the risk of failure of a safety-critical system whose exact architecture 
is not known in advance. The algorithm eliminates unnecessary components from the full-
complexity safety-critical system to reach the optimal architecture locked in the full-
complexity architecture. 

●  An exact algorithm has been proposed for optimal allocation of limited risk reduction 
resources among units logically arranged in series, in order to attain the smallest possible risk 
of system failure. 

●  The number of activities in a risky prospect should be a key consideration in selecting the 
risky prospect. 

● The maximum expected profit criterion, widely used for making risk decisions, is flawed, 
because it does not consider the impact of the number of risk-reward events/bets in the risky 
prospects. 

●  A quantitative framework has been developed for making an optimal choice among risky 
prospects containing a limited number of statistically independent risk-reward activities. The 
quantitative framework is based on a simple software tool for building the cumulative 
distribution of the potential profit by simulation. 

●  A popular view, that if a single bet is unacceptable then a sequence of such bets is also 
unacceptable has been analysed and proved to be incorrect. 
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●  A decision strategy for making a choice among risky prospects containing a limited 
number of risk-reward activities is fundamentally different from a decision strategy for 
making an optimal choice among risky prospects containing a large number of risk-reward 
activities. 

●  The commonly accepted rule that a larger variance is associated with a larger risk does not 
always hold. In the case of repeated opportunity bets, a larger variance actually coexists with 
a smaller risk. Consequently, the variance of the net profit cannot serve as a risk measure. 

●  The risk of a net loss does not decrease monotonically with increasing the number of 
opportunity bets. For a limited number of opportunity bets in a risky prospect and a small 
expected profit characterising a single opportunity bet, increasing the number of opportunity 
bets may increase the risk of a net loss. 

●  Analytical expressions have been derived for the risk of a net loss associated with a finite 
number of statistically independent identical risk reward activities in a risky prospect. 
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Appendix A. A Monte Carlo simulation algorithm for building the cumulative 

distribution of the potential profit 
  
function Benefit_given_success(k);  //Samples the conditional distribution of the benefits 

given success of the k-th risk-reward bet  and returns a random value  
function Loss_given_failure(k);  //Samples the conditional distribution of the loss given 

failure of the k-th risk-reward bet and returns a random value  
 
ps[Number_of_bets];     //Contains the probabilities of success  
                                       characterising the  
                                       risk-reward bets in the risky prospect; 
Net_revenue = 0;            //where the net revenue will be accumulated 
Sum_net_Benefit = 0;    //where only the net benefit will be accumulated 
Sum_net_Loss = 0;        //where only the net loss will be accumulated 
 
   for i=1 to Number_of_trials do 
{ 
   for j=1 to Number_of_bets do 
    { 
     t = generate_random_number(); // Generates a random number  
                                                 uniformly distributed in the interval (0,1) 
     if (t < ps[j]) then  
               Net_revenue = Net_Revenue + Benefit_given_success(j); 
                          else Net_revenue = Net_Revenue + Loss_given_failure(j); 
    } 
 
    distr_pot_profit[i] = Net_revenue; 
    if (Net_revenue > 0) then  
                Sum_net_Benefit = Sum_net_Benefit+Net_revenue; 
            else Sum_net_Loss = Sum_net_Loss+Net_Revenue; 
 } 
  Risk_of_net_loss = Sum_net_Loss / Number_of_trials; 
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  Potential_expected_reward = Sum_net_Benefit / Number_of_trials; 
 
   Sort the array distr_pot_profit[] in ascending order. 
 

For a number of risk-reward bets ‘Number_of_bets’in a risky prospect, each characterised 
by different probabilities of success and failure, determining the risk of a net loss consists of 
the following steps. A simulation loop with control variable i is entered first, within which a 
nested loop with control variable j is entered, scanning through all risk-reward bets in the 
risky prospect. In the nested loop, a random variable t following Bernoulli distribution is 
simulated, by generating a uniformly distributed random number in the interval (0,1) and 
comparing it with the probability of success ps[j] of the scanned risk-reward bet. This random 
variable simulates success or failure outcome from the separate risk-reward bets. If success is 
simulated (t <= ps[j]), the distribution of the benefits given success is sampled by calling the 
function Benefits_given_success(j); if failure is simulated (t > ps[j]), the distribution of the 
loss given failure is sampled by calling the function Loss_given_failure(j). For all bets/events 
in the risky prospect, the sampled quantity is accumulated in the variable ‘Net_revenue’ 
which contains the net revenue (profit) from the risk-reward bets in the current simulation 
trial. The magnitude of the profit characterising the current simulation trial is also stored in 
the array ‘distr_pot_profit[]’. At the end of the simulation, the elements of the array 
‘distr_pot_profit[]’ are sorted in ascending order by using the Quicksort algorithm [Cormen 
et al. 2001]. The empirical cumulative distribution of the potential profit is built by plotting 
the sorted values of the cumulative array versus the probability rank estimates, 
i=1,2,…Number_of_trials. 

During each simulation trial, after obtaining the net revenue (profit) in the variable 
‘Net_revenue’, its sign is checked. If the sign is negative, the net revenue is accumulated in 
the variable ‘Sum_net_Loss’. Correspondingly, if the sign of the net profit in ‘Net_revenue’ 
is positive, the net benefit is accumulated in the variable ‘Sum_net_Benefit’. The risk of a net 
loss and the potential expected reward are obtained at the end of the simulation trials by 
dividing the variables ‘Sum_net_Loss’ and ‘Sum_net_Benefit’ to the number of simulation 
trials. 
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Figure 1. An example (a) of the reliability network of a basic safety-critical system and 
(b) the full-complexity reliability network. 
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Figure 2. The reliability network after the topology optimisation based on the full-
complexity network in Fig.1b. 
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Figure 3. Two distributions of the loss with the same mean   and variance  . 
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Figure 4. Increasing the number of opportunity bets may not necessarily result in a reduction 
of the risk of a net loss. The dependences are not necessarily monotonic. 
 
 
 
 
 



 

 

 

27 

Potential profit
-200 -100 0 100 200 300 400 500 600

Probability

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 
Figure 5. Distribution of the potential profit from risk-reward events following a 
homogeneous Poisson process in a specified time interval (a=2 years). 
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Figure 6.  Distribution of the potential profit from five opportunity bets. 

 
 



 

 

 

28 

Potential profit, G(x)
-3000 -2000 -1000 0 1000 2000 3000 4000 5000 6000 7000 8000

Probability

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 
Figure 7.  Distribution of the potential profit from thirty opportunity bets. 

 
 


