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New Algorithms for the Rectilinear Steiner Tree 
Problem 

JAN-MING HO, GOPALAKRISHNAN VIJAYAN, AND C. K. WONG, FELLOW, IEEE 

Abstract-We discuss a new approach to constructing the rectilinear 
Steiner tree (RST) of a given set of points in the plane, starting from 
a minimum spanning tree (MST). The main idea in our approach is to 
find layouts for the edges of the MST, so as to maximize the overlaps 
between the layouts, thus minimizing,the cost (i.e., wire length) of the 
resulting rectilinear Steiner tree. We describe two algorithms for con- 
structing rectilinear Steiner trees from MST’s, that are optimal under 
the conditions that the layout of each edge of the MST is (1) a L-shape, 
or (2) any staircase, respectively. The first algorithm has linear time 
complexity and the second algorithm has a higher polynomial time 
complexity. Steiner trees produced by the second algorithm have a 
property called stability, which enables the rerouting of any segment 
of the tree, while maintaining the cost of the tree, and not causing 
overlaps with the rest of the tree. Stability is a desirable property in 
VLSI global routing applications. 

I. INTRODUCTION 

IVEN a set of n points on the plane, the rectilinear G Steiner Tree (RST) problem is to fipd the rectilinear 
tree in the plane, of minimum total wire length, which 
connects the given set of points. The total wire length of 
a RST is referred to as the cost of the RST. RST’s have 
many applications in VLSI physical design. The problem 
of constructing the minimum cost RST has been shown to 
be NP-complete [4]. The RST problem has been studied 
extensively [ 11, [4], [6]-[8], [lo], and many heuristic al- 
gorithms have been proposed. Special cases of the RST 
problem have been shown to have polynomial time algo- 
rithms [ l ] ,  [3]. 

Hwang [7] has shown that the ratio of the cost of a rec- 
tilinear minimum spanning tree (MST) to that of an op- 
timum RST is no greater than 3/2.  Therefore, the recti- 
linear MST is a suitable starting point for deriving low 
cost RST’s. Many heuristic algorithms [8], [lo], [ l  13 take 
this approach. They start with a sequence of the input 
points and edges as given by a rectilinear MST algorithm, 
and insert points and edges from this sequence into a 
growing RST. Local optimization, such as finding the 
shortest path from a newly added point to a growing RST 
is performed when inserting a new edge from the rectilin- 
ear MST sequence. A main drawback of such heuristics 
is that they have no provable performance guarantee other 
than Hwang’s general bound. We introduce a more global 
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approach, in which the rectilinear MST is transformed into 
an RST, which is optimum under the condition of fixing 
the shapes of the routes taken by the edges of the MST. 

Consider a rectilinear MST T of a point set S .  A recti- 
linear shortest path between the end points i a n d j  of a 
MST edge e = ( i ,  j ) is called a staircase layout of the 
edge. Suppose we select staircase layouts for each MST 
edge and merge the overlaps among them (if any), the 
resulting structure will be a RST. To obtain a low cost 
RST the staircase layouts have to selected so as to maxi- 
mize the overlaps among them. Steiner tree heuristics for 
VLSI global routing, such as in [ l l ] ,  [12], use this idea 
of trying to maximize the overlaps among the layouts of 
the MST edges. However, no attempt has been previously 
made to investigate, whether it is possible, in polynomial 
time, to produce Steiner trees, which are optimal, subject 
to the restrictions of the approach, i.e., we start with a 
MST and then lay out the edges of the MST. In this paper, 
we formalize this approach, and describe two algorithms 
that produce optimal RST’s under differing conditions on 
the layouts of the MST edges. 

The first algorithm restricts the staircase layout of the 
rectilinear MST edges to L-shapes, and produces the op- 
timal RST under this condition. Given an MST as input, 
the algorithm produces such a RST in linear time. The 
second algorithm produces optimal RST’s, under the very 
relaxed condition that arbitrary staircase shapes can be 
used to layout the MST edges. In fact, we prove that it is 
sufficient to consider only Z-shaped layouts in order to 
construct the optimal RST over all arbitrary staircase lay- 
outs of the MST edges. This second algorithm has a higher 
order polynomial time complexity. 

We give below some simple definitions that will enable 
us to discuss the model and algorithms more formally. 

Dejinition 1 (Underlying Grid): The underlying grid 
G ( S )  of point set S (on an oriented plane) is the grid 
obtained by drawing horizontal and vertical lines through 
each point of S (see Fig. 1). 

The grid io Fig. l(a) is the underlying grid of the points 
PI9 P2,  - . , p 6 .  The optimal RST of a point set S is 
known to be a subgraph of its underlying grid G ( S )  [ 5 ] .  
The nodes of a RST that are not in S and have degree at 
least 3 are called Steiner points. The nodes of S are called 
original points. The length of a vertical or horizontal edge 
of G ( S )  is defined to be the distance between its end- 
points. The rectilinear distance dist ( i ,  j )  on the oriented 
plane between two points i and j  on the grid G (  S ) is equal 
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(a) (b) 
Fig. 1 .  Underlying grid, MST, and edge layouts. 

to the length of any shortest path between the points on 
the grid G ( S ). The cost o f a  RST is the sum of the lengths 
of the edges of G (  S ) that are used in the RST. 

Dejinition 2 (Rectilinear MST): A rectilinear MST of a 
point set S on an oriented plane is a MST of the complete 
graph G, ( S  ) of the point set, in which the weight of each 
edge ( i ,  j ), i E S ,  j E S is the rectilinear distance dist ( i ,  
j ) .  

Dejinition 3 (Edge Layouts): A staircase layout of an 
edge ( i ,  j ) of a rectilinear MST T of a point set S is a 
shortest path between the points i and j on the underlying 
grid G ( S ) .  A staircase layout having at most two turns 
on the grid G (  S ) is defined to be a Z-shaped layout. A 
staircase layout having at most one turn is defined to be a 
L-shaped layout. 

The tree Tof Fig. l(a) is a rectilinear MST of the points 
PI? P2,  ’ ’ - , p6. The layouts of the edges of the MST T 
shown (as dashed paths) in Fig. l(b) are all staircase lay- 
outs. In particular the layout of the edge ( p 1  , p 2 )  is a Z- 
shaped layout, and that of ( p l ,  p6 )  is a L-shaped layout. 

Dejinition 4 (Degenerate Edge): An edge between two 
points i and j of a rectilinear MST of a point set is said to 
be degenerate if i a n d j  lie on the same horizontal line or 
on the same vertical line. A degenerate edge has a unique 
staircase layout. 

The number of staircase layouts of an edge is an expo- 
nential function of the number of points on the subgrid 
within the bounding rectangle of the two endpoints of the 
edge. Choosing different staircase layouts of the edges of 
the MST will result in different amounts of overlaps 
among these edge layouts. If we merge these overlapping 
portions, and introduce appropriate Steiner points, the re- 
sulting structure is a RST of the given point set. Depend- 
ing on the types of layouts we allow for the MST edges, 
we define the following different types of such RST’s. 

Dejinition 5 (S-RST, Z-RST, L-RST): An RST that is 
obtained from a MST T of a point set S ,  by using staircase 
layouts on G ( S )  for the edges of the MST is referred to 
as an S-RST of T. An S-RST of T,  in which the layout of 
each MST edge is a Z-shaped layout is called a Z-RST of 
T. A S-RST of T,  in which the layout of each MST edge 
is a L-shaped layout is called a L-RST of T. An optimal 

S-RST (Z-RST, L-RST) is an S-RST (Z-RST, L-RST) of 
the least cost among all S-RST’s (Z-RST’s, L-RST’s). 

Fig. 2 shows a rectilinear MST of a set of 8 points and 
two different S-RST’s of the MST. The points pl ,  p2, 

, p8 are the points in the given set. The points s1 , s2,  
s3, s4 are Steiner points. The S-RST \kl has a lower cost 
than \k2. 

Optimal S-RST’s have an interesting and useful prop- 
erty called stability under rerouting. We describe this be- 
low. A staircase segment of an S-RST is a path between 
two points (original or Steiner) such that this path does 
not contain any other original or Steiner points. The op- 
eration of replacing a staircase segment by another stair- 
case segment between the same endpoints is called stair- 
case rerouting. Staircase rerouting may cause overlaps. 
Merging the overlaps results in a new S-RST of strictly 
lower cost. For example, consider the two S-RST’s ‘PI 
and \k2 of Fig. 2. Rerouting any staircase in the S-RST 
\kl does not cause overlaps. In the S-RST \k2, the stair- 
case segment (actually L-shaped) between s1 and p 3  can 
be rerouted to cause overlaps with the staircase between 
p 3  and p 4 .  In fact when this overlap is merged, the result- 
ing lower cost S-RST has the same cost as \k l .  An S-RST 
is said to be stable under rerouting if the staircase re- 
routing of any subset of its staircase segments does not 
cause any overlaps. In Fig. 2, the S-RST \kl  is stable, 
while the S-RST \k2 is not. Stability under rerouting is a 
desirable property for Steiner trees of nets in VLSI global 
routing [ l l ] ,  because it would enable a segment of the 
Steiner tree of a net to be rerouted without causing any 
overlaps with other segments of the same Steiner tree. 
Such reroutings may be necessary, in order to alleviate 
congestions in the underlying global routing grid. Also, 
note that a stable S-RST corresponds to a local optimum 
under the operation of staircase rerouting. An optimal S- 
RST must be stable, otherwise a lower cost S-RST may 
be derived by rerouting some of the staircase segments 
and merging the resulting overlaps, which is a contradic- 
tion. From the Z-shape sufficiency result in Section V, an 
optimal Z-RST is also a optimal S-RST. Therefore, op- 
timal Z-RST’s are also stable. However, note that rerout- 
ing some staircase segments in a Z-RST may result in S- 
RST in which one or more of the original MST edges, no 
longer have Z-shaped layouts. The stability property does 
not hold for optimal L-RST’s. Flipping an L-shaped seg- 
ment of an optimal L-RST can cause overlaps with other 
portions of the L-RST. 

Our approach uses rectilinear MST’s that have a special 
property, that for any pair of nonadjacent edges in the 
rectilinear MST, any staircase layouts of the two edges 
will not intersect or overlap. This property is called the 
separability, and a rectilinear MST which has this prop- 
erty is called a separable MST (or SMST for short). When 
we delete an edge from a SMST, the two resulting sub- 
trees cannot intersect or overlap each other. Overlaps can 
occur only between edges that are incident on a common 
point. This property enables the use of dynamic program- 
ming techniques. Separability is an interesting property 

. . .  
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Fig. 2. A rectilinear MST and two S-RST’s. 

by itself, and may have other interesting applications. In 
Section I1 we present an algorithm for constructing a sep- 
arable MST of any set of n points. 

In Section I11 we prove that the degree of any point in 
a rectilinear MST is at most 8, and that at most 6 edges 
incident on a common point can be nondegenerate. We 
also show that the neighbors of a point in a rectilinear 
MST are restricted to lie in specific areas. The degree 
boundedness of a rectilinear MST is used to bound the 
worst-case time complexities of our two algorithms. 

In Section IV we present a linear time algorithm for 
constructing an optimal L-RST from a given SMST. In 
Section V we show that Z-shaped layouts of the edges are 
sufficient for the case of general staircase layouts. In Sec- 
tion VI we describe a polynomial time algorithm for con- 
structing an optimal Z-RST from a SMST, which by the 
sufficiency theorem is also an optimal S-RST. As much 
as is possible, we have tried to describe the two algo- 
rithms in a manner so that they can be read and under- 
stood without having to read the proofs of the various 
lemmas and theorems of the paper. Experimental results 
of the two algorithms are presented in Section VII. 

In comparing the two algorithms, the first for optimal 
L-RST and the second for optimal S-RST, we note that 
the first algorithm has a much lower running time than the 
second. However, staircase layouts are much more gen- 
eral than L-shaped layouts, therefore the second algo- 
rithm produces lower cost RST’s. In addition, the RST’s 
trees produced by the second algorithm have the property 
of being stable under rerouting. 

11. SEPARABLE MST 
The input to the two RST algorithms described in this 

paper is a separable rectilinear MST (SMST) of a given 
point set S. 

Dejinition 6 (Separable MST (SMST)): A rectilinear 
MST of a point set is said to be separable if arbitrary stair- 
case layouts of any two nonadjacent edges of the tree do 
not intersect or overlap. 

Consider a nondegenerate edge e of a rectilinear MST be- 
tween the points i and j of the given point set. Any stair- 
case layout of the edge e will be contained within the 
smallest rectangle enclosing the two points i and j .  We 
call this smallest rectangle the enclosing box of the edge 
e. Fig. 3(a) shows the enclosing boxes of two edges el 

(a) (b) 
Fig. 3 .  A nonseparable MST and a separable MST. 

and e2. It is obvious that a rectilinear MST is separable if 
and only if the intersection of the enclosing boxes of any 
pair of nonadjacent edges is empty. The property that the 
layouts of two nonadjacent edges of a SMST cannot in- 
teract with each other makes it possible to design poly- 
nomial time dynamic programming algorithms for both 
the L-RST and Z-RST problems. Not all rectilinear MST’s 
are separable. In Fig. 3 we show a nonseparable and a 
separable MST of the same set of points. The first MST 
shown in the figure is nonseparable because the enclosing 
boxes of the edges el and e2 overlap. 

We now present an U (  n 2 )  algorithm for constructing a 
seprable MST of any given point set. Its correctness, 
proved in Theorem 1 ,  implies that any point set always 
has a MST which is separable. It is possible to derive an 
0 (n log n )  algorithm using the notion of Voronoi dia- 
grams [9]. We wish to describe the O(n2)  algorithm in 
this paper, because it is easy to implement being a minor 
modification of the well-known MST algorithm of Prim 
[2]. We use x ( i ) and y ( i  ) to denote the x- and y-coor- 
dinates of a point i. 

Algorithm SMST 

1) Construct the complete graph G, ( S ) of the point set 

2) For each edge e = (i ,  j ) of G, ( S  ), construct the 
S .  

three-tuple 

3tuple( i , j )  = (d i s t ( i , j ) ,  - ( y ( i )  
- Y ( j  )I 7 -max(x(iL - 4 j  ))) 

and assign it to be the weight of the edge. 
3) Run Prim’s MST algorithm [2] on G,( S ) using the 

three-tuples as the weights, to generate a MST 
T, ( S  ). Output T, ( S  ) as the separable MST of the 
point set S .  

Note that in comparing two 3-tuples, we have ( a l  , bl , c1 ) 
< (a2,  b2, c 2 ) ,  if and only if ( a l ,  b l ,  c , )  precedes (a2,  
bZ, c 2 )  in nondecreasing lexicographic order. The first 
element of each three-tuple is the rectilinear length of the 
corresponding edge, and therefore Prim’s algorithm will 
indeed produce a MST of the graph G, ( S ). The remain- 
ing two elements of the three-tuple are used only to break 
ties among edges of the same rectilinear length. The time 
complexity is dominated by the execution of Prim’s al- 
gorithm, which takes U(n2) time. Hence, we have the 
following lemma: 
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Lemma I :  The tree T , ( S )  constructed by Algorithm 
SMST is a rectilinear MST of the point set S. The time 
complexity of Algorithm SMST is 0 ( n2 ). 

It remains to show the tree T,( S ) has the separability 
Property. 

Theorem I (Separability Theorem): The rectilinear 
MST T , ( S )  generated by Algorithm SMST is separable. 

Proofi The proof is by contradiction. Suppose there 
exists nonadjacent edges e l  = ( i l ,  jl ) and e2 = ( i2, j 2  ) 
in T, (S ), whose enclosing boxes Bl and B2, respectively, 
have a nonempty intersection. Without loss of generality, 
assume that il and i2 both belong to the same connected 
component of T,( S)  - { e , ,  e 2 } .  

First, we claim that the points i2 andj2 do not lie either 
on the boundary or in the interior of B , .  Suppose not, then 
let i2 be on the boundary or interior of B I .  In this case, 
replacing the edge el by the edge ( i2 ,  j ,  ), results in a rec- 
tilinear spanning tree whose cost is strictly less than that 
of T, (S ). This is a contradiction to Lemma 1 that T, (S ) 
is a MST. A similar argument holds when J, is on the 
boundary or interior of B,  . Similarly the two points i l  and 
j ,  do not lie on the boundary or interior of B2. 

We may assume x ( il ) 2 x ( i 2 )  else exchange the point 
labels il , i2 and point labels j , ,  j 2 .  Since the elements of 
the three-tuple weights are invariant under reflection 
across the x-axis, we may also assume that y (  i l )  2 y (  i 2 ) .  
Since the endpoints el ( e 2 )  cannot lie on B2 ( B,  ), x (  j ,  ) 
# x (  iz). If we assume x(  j , )  > x(  i 2 ) ,  there remain six 
possible intersection patterns between the enclosing boxes 
B,  and B2 as depicted in Fig. 4. If x(  j l )  < x ( i 2 ) ,  then 
we have six similar patterns obtained by rotating the pat- 
terns of Fig. 4 by 180" and exchanging labels i,, i2 and 
labels j , ,  j2.  A similar argument as in the following will 
hold for these patterns. 

Symbols a , ,  b l ,  a2, b2, (Y, P are used to denote the 
lengths marked in the figure. Since T, (S ) is a MST and 
il and i2 are in the same component of T, (S ) - { el, e2 } , 
the inequalities dist ( i l ,  j 2 )  L dist ( i2, j ,) and dist ( i2 ,  j ,  ) 
1 dist(i,, j , )  must hold. In cases (a) and (f) they are 
equivalent to al  + b2 1 a2 + a + P + b2 and a, + b, 
I al + (Y + P + bl implying that a1 = a,, and ar = 
= 0. In cases (b) and (c) we can deduce that a ,  = a2 and 
P = 0. In cases (d) and (e) we can only deduce that al = 
a2. The six cases thus reduce to corresponding six cases 
of Fig. 5 .  

In cases (a)-(e) of Fig. 5 we have dist(il,  j 2 )  = dist( i2, 
j 2 >  and - J Y ( ~ I )  - y ( j 2 ) l  < -1yfi2) - y ( j 2 ) l  which 
implies that 3 tuple ( i l  , j 2  ) < 3 tuple ( i2 ,  j 2  ). Replacing 
the edge ( i 2 ,  j 2 )  by a new edge ( i 1 , j 2 )  in the tree T , ( S )  
results in a spanning tree of strictly lesser 3-tuple weight 
than T, (S ) which is a contradiction. In case (f) we have 
dist(i,, j 2 )  = dist(i2, j 2 )  and - ( y ( i l )  - y ( j 2 ) 1  = 
-Iy(i2) - y(j2)l .  However, -max(x(il) ,  x ( j 2 ) )  < 
-max(x(i2),  x ( j 2 ) .  Therefore, 3tuple( i , ,  j ,) < 
3tuple( i 2 , j 2 )  is still true and a contradiction follows. This 
completes the proof of the theorem. U.  

i2 # J 2  a2 P b 2  

Fig. 4. Intersection patterns between two enclosing boxes-I. 

ijr.2 
i2+j2 (b) 

i20+oil 

Fig. 5. Intersection patterns between two enclosing boxes-11. 

111. DEGREE BOUNDEDNESS OF RECTILINEAR MST's 
We now show that there are restrictions on the location 

and number of the neighbors of any point in a rectilinear 
MST of a point set. 
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Fig. 6 .  Location lemma 

Lemma 2 (Location Lemma): Let T be a rectilinear 
MST of the point set S, and let i E S. There is at most one 
neighbor in T,  of i ,  in the interior of each of the 4 regions 
formed by the two f45"  lines passing through the point 
1 .  

Proof: Let j and k be two neighbors of a point i in T.  
Since T is a rectilinear MST, the inequalities dist (k, j ) 
L dist(i, j ) and dist(k, j ) L dist(i, k) must be true. 
Suppose j is located in the upper quadrant formed by the 
two *45"-lines passing through the point i ,  as shown in 
Fig. 6.  The horizontal jagged line in the figure separating 
i and j is the rectilinear bisector of i and j .  Any point on 
this line is equidistant from i andj .  If k is a point above 
this bisector, then dist ( i ,  k )  > dist (k, j ). Therefore, no 
neighbor of i other thanj can be located above this bisec- 
tor. The square shown in the figure is centered at the point 
j with rectilinear radius dist( i, j ). Any point on the 
boundary of this square is at a rectilinear distance of 
dist( i ,  j ) from j .  If k is a point in the interior of this 
square then, dist ( i, j ) > dist (k, j ). Therefore, no neigh- 
bor of i other t han j  can be located in the interior of this 
square. Thus, the shaded region shown in Fig. 6 is a for- 
bidden region for any other neighbor of i .  Since this 
shaded region includes the upper quadrant formed by the 
two +45" lines through i, there can be at most one neigh- 
bor of i in this quadrant. The proof of the lemma follows 
by symmetry. 0 

Lemma 3 (Degree Boundedness): Let T be a rectilinear 
MST of the point set S, and let i E S. Then the point i has 
at most 8 neighbors in T,  and at most 6 of these neighbors 
form nondegenerate edges with the point i .  

Proof: By Lemma 2 there are at most 4 neighbors of 
i which are not located on the two f45"  lines. It is easy 
to see that no two neighbors of i can be located on the 
same side of i on the two +45" lines. Therefore, i can 
have no more than 8 neighbors. We leave it to the reader 
to establish that at most 6 of these neighbors can be pres- 
ent outside the two +90" lines. cl 

TV. ALGORITHM FOR OPTIMAL L-RST 

We now present a linear time algorithm, called Algo- 
rithm Optimal-L-RST, for obtaining an optimal L-RST 
from a given separable MST T of a point set S. The al- 
gorithm has to select for each nondegenerate edge one of 

total amount of overlap, thus minimizing the total cost of 
the resulting L-RST. 

Hang the input separable MST T by any leaf edge r 
resulting in the rooted tree T,. For each edge e in T ,  let 
T, denote the subtree of T, that hangs by the edge e .  Let 
e = ( a ,  b )  with the point b being a child of a in the rooted 
tree T, . The other edges of T, incident on point b are called 
the child edges of the edge e.  For example, in Fig. 2 ,  
suppose the tree is hung by the leaf edge ( p s ,  p 5 )  then the 
edges ( p s ,  p 4 )  and ( p 5 ,  p6 )  are child edges of the edge 

Let L ( e )  and U ( e )  denote the upper and lower L- 
shaped layouts, respectively, of any edge e .  Let 
\ k L ( e ) (  * , ( e ) )  denote the L-RST of the subtree T,, which 
has minimum cost among all L-RST's of T,, in which the 
layout of the edge e is constrained to be the L-shape 

\kL ( e )  can be computed recursively as follows: let e, : 
i = 1 , 2 ,  , d be the d child edges of e in the rooted 
tree T,.. For each child edge e, and for each of the two 
possible L-shaped layouts L ( e , )  and U( e , )  of the edge e , ,  
recursively compute the constrained optimal L-RST's 
\kL ( e, ) and kU ( e, ) of the subtrees T,, . Taking one of these 
L-RST's for each subtree T,, , and merging these subtree 
L-RST's with the layout L ( e )  of the edge e results in a 
L-RST of T,. Since the tree T has the separability prop- 
erty, the only new overlaps that can occur during this 
merging are among the edges e ,  e l ,  . * , e d ,  which are 
all incident on a common point. Therefore, the total 
amount of overlap in the resulting L-RST of T, is the sum 
of the overlaps among the layouts of the edges e ,  e l ,  
* , e d ,  added to the sum of overlaps in the selected L- 
RST's of the subtrees T,, . Enumerate all combinations of 
selecting one of the two L-RST's * , ( e , )  or " , ( e , )  for 
each subtree T,, . For each such combination compute the 
resulting L-RST of T,. The constrained optimal L-RST 
\ k L ( e )  of the subtree T, is simply the one with the least 
cost. \ku( e )  can be computed in a similar fashion. 

To compare the optimal L-RST of the entire rooted tree 
T,, recursively compute (as explained above) the con- 
strained optimal L-RST's q L ( r )  and \ku(r) ,  and select 
the one with the smaller cost. 

The proof of correctness of the above algorithm follows 
the separability of the input tree T. The linear time com- 
plexity of the algorithm can be established as follows: 
From Lemma 3 ,  we know that the degree of any point in 
the SMST T is at most 8, and at most 6 of the incident 
edges are nondegenerate. Therefore, the total number of 
combinations enumerated in the computations of \kL ( e )  
and * , ( e )  for any edge e is at most 26, which is a con- 
stant. The new overlaps occurring in each combination 
can be processed in constant time. Since there are n - 1 
edges in T, the above algorithm has linear time complex- 
ity. Hence we have the following theorem. 

( P 8 ,  P 5 ) .  

L ( e ) ( U ( e ) ) .  

Theorem 2: Algorithm Optimal-L-RST constructs the 
optimal L-RST of the SMST T of a point set S of cardi- 

its two possible L-shaped layouts, s i  as to maximize the nality n in O ( n )  time. 
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V. SUFFICIENCY OF Z-SHAPED LAYOUTS 
We now prove that there exists a Z-RST whose cost is 

equal to the cost of the optimal S-RST. Thus Z-shaped 
layouts are suflcient to consider when constructing a op- 
timal S-RST. As shown in Fig. 7, an optimal L-RST may 
have strictly lower cost than an optimal S-RST thus mak- 
ing Z-shaped layouts necessary. 

Let Z(e) denote the number of edges on the underlying 
grid G( S ) traversed by any staircase layout of an edge e 
of a MST T of a point set S. If the enclosing box of e has 
w( e )  grid edges on its horizontal side and h(  e )  edges on 
its vertical side, then Z(e)  = w ( e )  + h ( e ) .  Note that 
I (  e )  is independent of the actual staircase layout chosen 
for e .  The number of different staircase layouts of a non- 
degenerate edge e ,  in the worst case, could be exponential 
in l (  e ) .  Considering only Z-shaped layouts of e ,  observe 
that starting at one of the endpoints, a Z-shaped layout 
can go either horizontally and make its first turn at any 
one of the w ( e )  points, or go vertically and turn at any 
one of the h ( e )  points. After making a turn the layout 
must go directly to the opposite side and make the second 
turn (if any) towards the other endpoint. Thus there are 
Z( e )  = w( e )  + h ( e )  choices to make the first turn which 
implies that there are 1 (  e )  distinct Z-shaped layouts. This 
observation together with the sufficiency result enables the 
design of a polynomial time algorithm for constructing 
the optimal S-RST. This algorithm is described in Section 
VI. 

We first introduce several notations. Given an edge 
e = (i, j ) of a SMST T, the angle formed by the inter- 
section of the line and a horizontal line is denoted as 
8 (i, j ). Let R ( i ,  j ) denote the enclosing box of the two 
points i and j. Let RI( i, j ) and R, (i, j ) denote the interior 
and the boundary respectively of R (  i, j ). In a SMST T, 
only adjacent edges can overlap and cause Steiner points 
to be generated in a S-RST, and thus a Steiner point s in 
a S-RST must lie on the layouts of at least two edges of 
the SMST, which are incident on a common point, say k. 
We say then that the Steiner point s is adherent to the 
original point k. The layout of the edge e = (i, j ) in a S- 
RST is denoted as P (i, j ). 

Given two points i and j of the input set S, one can 
partition the plane into nine regions, which are labeled as 
illustrated in Fig. 8, formed by the horizontal and vertical 
lines passing through the two points i andj .  We will be 
referring to these regions in the following discussion. 

Lemma 4: Let e = ( i ,  j ) be an edge of a SMST T of a 
pointsetSwith45" I 8 ( i , j )  < 9 0 " a n d x ( i )  > x ( j ) ,  
y (  i )  < y ( j ). For any optimal S-RST of T the set A of 
Steiner points in P (  i, j ) n RI( i, j ) satisfies the follow- 
ing propositions: 

1) Each point of A is either adherent to i or to j .  
2) I f s  E A is on the layout P ( b ,  i )  of the edge (b ,  i )  

of T ( o r P ( b , j ) o f e d g e ( b , j ) )  thenthepoint bof  
S lies in region IV (or region 11). Moreover the por- 
tion of the layout P (b, i ) ( P  ( b ,  j ) ) that lies in RI( i, 
j ) must be horizontal. 

3) 

, _ _ _  - - - - -  - - -  I _ _ _ _ _ - -  - - - -  
L MST 

(a) (b) 
Fig. 7.  Insufficiency of L-shaped layouts. 

OPTIMAL L-RST OPTIMAL S-RST 

Fig. 8. Labeling of the nine regions. 

The Steiner set A has at most two points. If so, one 
(say) si must adhere to i and the other (say) si must 
adhere to j .  Moreover the portion of P (  i ,  j ) be- 
tween si and si is vertical. 

Proof.- 

1) Since T i s  separable, only the layout of an edge in- 
cident to either i o r j  can intersect with the layout of 
e .  Thus any Steiner point on P ( i ,  j ) must be adher- 
ent to either i or j .  

2 )  Suppose a Steiner point s E A also lies on P ( b, i ), 
where b is a neighbor of i ,  then s must be in R ( b ,  
i ), which forces b to in either region IV or region 
VI. However, the Location Lemma (Lemma 2 )  of 
Section I11 requires b to be in region VI. In addition, 
it is easy to see that the optimality of the S-RST 
forces the portion of P (  b, i ) in RI( i ,  j ) to be on a 
horizontal line segment. Similar argument holds 
when b is a neighbor of j .  

3) Since 45 " I 8 ( i ,  j ) < 90°, by the Location Lemma 
(Lemma 2 )  there can be at most one neighbor of i in 
region VI. Similarly there is at most one neighborj 
in region 11. Since each Steiner point in the set A 
must be adherent to either i or j, we have I A 1 I 2. 
It also follows that if 1 A I = 2, A = {si, si } then si 
is adherent to i and sj is adherent t o j .  In addition, 
the optimality of the S-RST forces the segment be- 

U 

Theorem 3 (2-Suficiency Theorem): Given a SMST T 
of a point set S of cardinality n, there exists a Z-RST of 
T whose cost is equal to the cost of an optimal S-RST of 
T. 

Proof: We claim that for any integer k, 0 5 k I n 
- 1, there is a optimal S-RST \ k k  of Tin which all edges 
of a k-edge subtree of T is laid out using only Z-shapes. 
The proof of this claim is by induction. Clearly the basis, 
when k = 0 is obviously true. Assume that there is a op- 
timal S-RST in which a subtree Tk - of T, k > 0, is im- 
plemented using only Z-shaped layouts for its k - 1 
edges. Let e = ( i ,  j ) be an edge in T such that j is in the 
subtree Tk - and i is outside this subtree. We will now 
show that the optimal S-RST \kk-, can be modified into 

. 

tween si and sj to be vertical. 
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another optimal S-RST \ k k  in which the subtree Tk = Tk - 
U e is implemented using only Z-shaped layouts for its k 
edges. Note that in the case of k = 1, the subtree Tk - I is 
simply the isolated pointj, and has zero edges. 

If the layout of the edge e in the S-RST \ k k -  I is either 
degenerate, or already a Z-shape, then we are done. So 
let us assume otherwise. Without loss of generality, we 
assumey(i)  < y ( j ) , x ( i )  > x(j), and4.5" 5 O ( i , j )  
< 90". The remaining cases are covered by the fact that 
the cost of an S-RST is invariant under rotation by a mul- 
tiple of 90" or by reflection across any vertical or hori- 
zontal line. 

Let Sj be the Steiner point on RE( i, j ) which is the far- 
thest away fromj among all such Steiner points adherent 
t o j .  If there are no Steiner points adherent t o j  on RE( i, 
j ) we let Sj = j .  Let 3; be similarly defined. Let A denote 
the set of Steiner points in RI(  i, j ). Since by Lemma 4, 
( A I  I 2, we have the following three cases on the car- 
dinality of A .  In each of the cases, we show how to alter 
the layout of the edge e = ( i, j ) into a Z-shaped layout. 
For convenience, we let L ( x ,  y )  denote the lower L-shape 
between the two points x and y ,  and U ( x ,  y )  to be the 
upper L-shape. 

1) J A  I = 0: Use any one of the L-shapes L(Si ,  S,) or 
U (  Si, Si) for laying out the portion of the edge e 
between 3; and S j .  Different cases on the locations 
of Si and Sj are shown in Fig. 9. The layout of the 
edge e = ( i ,  j ) is now a Z-shape. 

2) I A I = 1 :  Without loss of generality assume that si 
E A is adherent to i. Since \ k k -  is optimal Sj and si 
must lie on the same vertical line. There are two 
subcases depending on the location of Si. 

(a) Si is on the bottom side of RE (i, j ): Use the lower 
L-shape L(  Si, S j )  for laying out that portion of the edge 
e ,  between Si and Sj as shown in Fig. 10(a). The layout of 
the edge e = (i, j ) is now a Z-shape. 

(b) Si is on the right side of RE ( i ,  j ), or Si = i: Use 
the upper L-shape U ( s i ,  3;) for laying out the portion of 
the edge e ,  between si and Sj , as shown in Fig. 10(b). As 
seen in the figure, the layout of e = ( i ,  j ) is not yet a Z- 
shape. Denote the edge, of the SMST T that shares the 
Steiner point si with the edge e ,  as e' = ( i ,  ni ) .  According 
to Lemma 4 the portion of the layout of the edge e' be- 
tween si and ni in RI( i, j ) is a horizontal line segment. 
Therefore the vertical segment between si and Sj can be 
slid to the left until it is flush against the left side of RB ( i ,  
j ) without increasing the cost of the S-RST. This is shown 
in Fig. lO(c). The layout of the edge e = ( i ,  j ) is now a 
Z-shape. 

3) ( A  I = 2: Let si E A be adherent to i and sj E A be 
adherent to j .  Let e,! = ( i ,  n i )  be the edge of T which 
shares the Steiner point si with the edge e .  Similarly, 
let e; = (i, n j )  be the edge of T which shares the 
Steiner point sj with the edge e.  According to Lemma 
4, si and si lie on a vertical line segment with si on 
top of si. Also the portion of the layout of the edge 
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Fig. 9. The case of ( A  I = 0. 

(a) (b) (C) 
Fig. 10. The case of I A I = 1. 

el between si and ni in RI( i, j ) is a horizontal line 
segment. Similarly the portion of the layout of the 
edge e; between si and nj in R,(i, j ) is also a hori- 
zontal line segment. There are now 4 subcases de- 
pending on the locations of the points Si and 3, : 

(a) Si and Sj are on horizontal sides of RE ( i ,  j ): Use 
L (  si, 3; )  and U (s j  , S j )  for laying out the corresponding 
portions of the edge e = ( i ,  j ). This is shown in Fig. 
1 l(a). The layout of the edge e = ( i ,  j ) is now a Z-shape. 

(b) (1) Si = i ,  or Si is on the right side of RE (i, j ), 
and (2)  Sj = j ,  or Sj is on the left side of RE ( i ,  j ): Use 
U ( s , ,  Si) and L ( s j ,  3,) as shown in Fig. 1 l(b). The layout 
of the edge e = (i, j ) is not yet a Z-shape. According to 
Lemma 4 the two points si and si are on the same vertical 
line. Therefore this vertical segment between si and si can 
be slid until it is flush against the left side of RE( i ,  j ) 
without increasing the cost of the S-RST. This is shown 
in Fig. 1 l(c). The layout of the edge e = ( i ,  j ) is now a 
Z-shape. 

(c) (1) Si is on the lower side of RE (i, j ), and (2)  Si 
= j ,  or Sj is on the left side of RB ( i ,  j ): Use L (  sj , S j )  and 
L ( s ; ,  S j )  as shown in Fig. l l(d).  The layout of the edge 
e = ( i ,  j ) is not yet a Z-shape. As in the previous sub- 
case, the vertical segment between s; and sj can be slid 
until it is flush against the left side of R,( i ,  j ) without 
increasing the cost of the S-RST. This is shown in Fig. 
1 l(e). The layout of the edge e = ( i ,  j ) is now a Z-shape. 

(d) (i) Si = i, or Si is on the right side of RE (i, j ), 
and (ii) Si is on the upper side of RE( i, j ): Similar to 
subcase (c). 

The alterations of the layout of the edge e = ( i ,  j ) 
described in all these cases mould the layout of e into a 
Z-shape (an L-shape is considered to be a degenerate Z- 
shape) without any increase in the cost. Thus the resulting 
S-RST q k  is optimal and has a subtree Tk = Tk - U e 
which is implemented using only Z-shapes. This con- 
cludes the inductive proof of the claim. Applying the 
claim for k = n - 1, we have that the S-RST \k, - I is 
optimal and uses Z-shaped layouts for all the n - 1 edges 
of the SMST T,  which completes the proof of the 
theorem. 0 
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Fig. 12. Mean ratios of costs. 

VI. ALGORITHM FOR OPTIMAL S-RST 

We now describe Algorithm Optimal-Z-RST for con- 
structing an optimal Z-RST, which by Theorem 3 is also 
an optimal S-RST. The input to the algorithm is a sepa- 
rable MST T of a point set S .  

Hang the input separable MST T by any leaf edge r 
resulting in the rooted tree T, . For each edge e in T, let 
T, denote the subtree of T, that hangs by the edge e .  Given 
a Z-shaped layout z of an edge e ,  we let 9, (e) denote the 
Z-RST of the subtree T,, which has the minimum cost 

Fig. 13. A MST and its optimal L-RST: Example of 2 /3  cost ratio. 

VII. EXPERIMENTAL RESULTS 
among all Z-RST’s of Te, in which the layout of the edge 
e is constrained to be the Z-shape z. q2( e )  can be com- 
puted recursively as follows: Let e, : i = 1 ,  2, e * * , d be 
the d child edges of e in the rooted tree T, . For each child 
edge e, and for each possible Z-shaped layout z,, of the 
edge e , ,  recursively compute the constrained optimal Z- 
RST’s q,,, ( e ,  ) of the subtrees T,, . Note that there are 1 ( e , )  
such constrained Z-RST’s for each subtree T,,. Taking one 
such Z-RST for each subtree T,,, and merging these sub- 
tree Z-RST’s with the layout z of the edge e ,  results in a 
Z-RST of T,. Since the tree T has the separability prop- 
erty, the only new overlaps that can occur during this 
merging are among the edges e ,  e l ,  - - , e d ,  which are 
all incident on a common point. Therefore, the total 
amount of overlap in the resulting Z-RST of T, is the sum 
of the overlaps among the layouts of the edges e ,  e l ,  
. . .  , e d ,  added to the sum of overlaps in the selected Z- 
RST’s of the subtrees T , .  Enumerate all combinations of 
selecting one of the Z-RST’s q,, ( e , )  for each subtree T,,, 
and for each such combination compute the resulting Z- 
RST of T,. The constrained optimal Z-RST !k2 ( e )  of the 
subtree T, is simply the one with the least cost. 

To compute the optimal Z-RST of the entire rooted tree 
T, , recursively compute (as explained above) the con- 
strained optimal Z-RST’s 9, ( r )  for each Z-shaped layout 
z of the root edge r ,  and select that Z-RST of the smallest 
cost. The fact that above algorithm constructs the optimal 
S-RST follows from the separability of the input MST and 
from the Z-sufficiency theorem. Regarding time complex- 
ity, let I,,,,, be the maximum of l ( e )  over all edges e .  It 
follows from Lemma 3 that the number of combinations 
enumerated for each subtree is at most I:,,. Each com- 
bination can be processed in constant time. Summing up 
over all the rz - 1 subtrees, the worst case time complex- 
ity of the algorithm is O( n X Z6,,,). Hence we have the 

The algorithms for optimal L-RST and optimal S-RST 
were implemented using the C language. In both pro- 
grams, we used the O(  n 2 )  Algorithm SMST of Section I1 
to generate the separable MST needed as input to the two 
RST algorithms. The two programs were tested exten- 
sively on a large number of random input point sets with 
cardinalities ranging from 5 to 100. Fig. 12 shows the 
mean ratios of the cost of L-RST or S-RST over the MST. 
It is interesting to observe, that on the average, an optimal 
S-RST has a cost which is only 0.5-percent lower than 
that of an optimal L-RST. However on some test exam- 
ples the optimal S-RST the reduction in the cost was ob- 
served to be as much as 10 percent. 

Hwang [7] has shown that the lowest possible ratio of 
the cost of a RST to that of the MST of the same set of 
points is 2/3. However no such results are available for 
the average ratio for a given number of points. Referring 
to the table in Fig. 12, we observe that for all cardinalities 
of the input point sets, the average ratio of the cost of the 
RST’s produced by our approach to the cost of MST is 
close to 9/10. 

Both the algorithms produce the optimum Steiner trees 
for each member of the class of point sets whose optimal 
RST has a cost which is 2 /3  that of the cost of the MST 
[7]. One such example is illustrated in Fig. 13. 

The algorithm for optimal L-RST is quite fast taking 
less than 0.01 seconds for 10 input points, on an IBM 
3090 processor. Therefore the algorithm is very well 
suited for VLSI global routing applications. The algo- 
rithm for optimal S-RST is only slightly slower in prac- 
tice. This is because the number of combinations to enu- 
merate for any subtree is usually much less than the worst 
case of l:ax. Empirically its average running time was ob- 
served to be between 0 ( r z ’ .5  ) and 0 ( n2 ). 
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