
New Algorithms
for the

Simple Temporal Problem

Master’s Thesis

x0 x1 x2 x3

x4x5x6x7

a

b

c

d

e

f

0 0 0

0

000

0
5

4
3

2
1

1
2

3
4

5

L.R. Planken

New Algorithms
for the

Simple Temporal Problem

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

L.R. Planken
born in Alkmaar, the Netherlands

Algorithmics Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
�����������	�
��������������������

c© 2008 L.R. Planken

Cover picture:
A pathological STP instance for the 4STP algorithm; see Section 5.2.1.

New Algorithms
for the

Simple Temporal Problem

Author: L.R. Planken
Student id: 9654215
Email: � ��� ��� ��� ����� �	� ���� ��� ����� � �

Abstract

This thesis focuses on algorithms for solving the Simple Temporal Problem (STP).
It includes a theoretical analysis of the STP’s complexity; discussion and com-

parisons of known methods for solving the STP, including the current state-of-the-art
algorithm 4STP and incremental methods; an exploration into the chordal graph
theory underlying 4STP; and an extension of this theory to the directed case.

Its main contribution is the proposal of new algorithms for solving the STP by
enforcing partial path consistency. The new algorithms are shown to outperform
the best existing algorithms; this is done by a theoretical analysis and by empirical
research on a variety of test cases, in which an improvement over the older algorithms
by up to an order of magnitude is demonstrated.

Thesis Committee:

Chair: prof. dr. C. Witteveen, Faculty EEMCS, TU Delft
Supervisor: dr. M.M de Weerdt, Faculty EEMCS, TU Delft
Member: ir. M.J.H. Heule, Faculty EEMCS, TU Delft
Member: dr. ir. D. de Ridder, Faculty EEMCS, TU Delft

Contents

Contents iii

List of Figures v

1 Introduction 1

2 Definition and complexity 3
2.1 Example . 3
2.2 Definition . 4
2.3 Complexity . 7
2.4 Summary and conclusions . 13

3 Known approaches 15
3.1 Determining consistency . 16
3.2 Calculating the minimal network 18
3.3 Partial path consistency . 19
3.4 Incremental methods . 22
3.5 Summary . 25

4 Graph triangulation 27
4.1 The undirected case . 27
4.2 The directed case . 30
4.3 Discussion . 34

5 New solution methods 37
5.1 Directed path consistency . 37
5.2 Improved PPC . 39
5.3 Incremental PPC . 43
5.4 Summary . 44

6 Evaluation of new techniques 47
6.1 Test cases . 47
6.2 Consistency checking . 51

iii

CONTENTS

6.3 Enforcing partial path consistency 54
6.4 Incremental solving . 58
6.5 Summary . 60

7 Discussion 67
7.1 Summary and conclusions . 67
7.2 Future work . 70

Bibliography 73

iv

List of Figures

2.1 An example STP instance . 3
2.2 An STN and its corresponding minimal network 5
2.3 The minimal network of the example STP 6
2.4 Nondeterministic algorithm for stp-inconsistency 9
2.5 Nondeterministic algorithm for stp-minimality 10
2.6 Parallel algorithm for stp-minimality 12

3.1 The example STN from Chapter 2 15
3.2 Bellman’s and Ford’s algorithm . 16
3.3 Directed path consistency algorithm (DPC) 17
3.4 The example STN after running DPC 17
3.5 Floyd’s and Warshall’s APSP algorithm 18
3.6 The minimal network after APSP . 19
3.7 The 4STP algorithm . 21
3.8 The result of applying 4STP . 21
3.9 Incremental directed path consistency algorithm (IDPC) 23
3.10 Incremental full path consistency algorithm (IFPC) 24

4.1 Maximum cardinality search algorithm 28
4.2 A graph with a transitive elimination ordering (a, b, c) 31
4.3 Biconnected vs. strongly connected components 33
4.4 Decomposition by directed triangulation 33

5.1 Pathological test case for 4STP . 40
5.2 The P3C algorithm . 41
5.3 The DPC property . 42
5.4 Incremental partial path consistency algorithm (IPPC) 44

6.1 The general shape of diamond benchmark instances 48
6.2 Location of test cases (vertices vs. edges) 50
6.3 Location of test cases (vertices vs. graph degree) 50
6.4 Consistency checking for scale-free graphs, n = 100 51

v

List of Figures List of Figures

6.5 Consistency checking for DTP (n = 35) 52
6.6 Consistency checking for job shop (small instances) 53
6.7 Consistency checking for job shop (large instances) 53
6.8 Consistency checking for diamonds benchmark 54
6.9 Enforcing PPC on scale-free graphs 55
6.10 Enforcing PPC for DTP (n = 35) . 56
6.11 Enforcing PPC for job shop with n < 100 (log scale) 56
6.12 Enforcing PPC for job shop (small instances) 57
6.13 Enforcing PPC for job shop (large instances) 57
6.14 Enforcing PPC for diamonds benchmark 58
6.15 Pathological behaviour of 4STP . 59
6.16 Incremental methods on scale-free graphs with m = 2 61
6.17 Incremental methods on scale-free graphs with m = 3 62
6.18 Incremental methods on scale-free graphs with m = 4 63
6.19 Incremental methods on the job shop problem with n < 180 64
6.20 Incremental methods on the diamonds problem 64
6.21 Incremental methods on the DTP (n = 35) 65

vi

Chapter 1

Introduction

In this thesis, we concern ourselves with a formalism that can be used to rea-
son about temporal information, called the Simple Temporal Problem (STP). It
was first proposed in 1991 by Dechter et al. [DMP91]. Though the scope of
problems that can be addressed with the STP is not very wide, it still suffices
in many cases. The STP has received rather widespread attention that still
lasts today, with applications in such areas as medical informatics [ATMB06],
spacecraft control and operations [FRCY97] and air traffic control [BW04].
Moreover, the STP appears as a pivotal subproblem in more expressive for-
malisms for temporal reasoning, such as the Temporal Constraint Satisfaction
Problem—proposed by Dechter et al. in conjunction with the STP—and Ster-
giou’s and Koubarakis’s Disjunctive Temporal Problem [SK00].

From the word “simple”, the reader may presume that solving the STP is
a trivial matter. However, considering the fact that over fifteen years after its
inception, it is still possible to make significant progress in the performance of
solution algorithms, we feel that the opposite is true. Instead, the word “sim-
ple” should primarily be taken to refer to the great clarity, indeed simplicity,
with which the STP allows temporal information to be represented.

Overview and contributions

Having briefly introduced the Simple Temporal Problem, the remainder of
this introduction presents a brief overview of its treatment in this thesis; also,
we globally describe our most important contributions.

In Chapter 2, we formally define the Simple Temporal Problem after first
having described a motivating example. We also discuss what a solution to
the STP may look like; as the reader shall see, several definitions are possi-
ble. Finally, we analyse the complexity of solving the STP, for each of the
definitions of “solving” we give; by formally establishing the complexity of a
problem, one may get an idea as to which approaches are suitable for tack-
ling it. Such complexity analysis was not performed before; it is one of the
contributions of this thesis.

1

Introduction

Chapter 3 provides an inventory of available algorithms from the litera-
ture that deal with the STP. These range from general graph algorithms via
constraint satisfaction algorithms to an algorithm tailored to the STP; unsur-
prisingly, the latter, called 4STP, represents the current state of the art. For
each method presented, a brief analysis of its time complexity is given.

Then, in Chapter 4, we explore some graph theory that underlies the
4STP algorithm; we require this theoretical background when seeking im-
provements. In the same chapter, we propose an extension of the concept
of chordality—previously only defined for undirected graphs—to the directed
case, and explore some implications of this extension.

At this point, the stage is set for the central chapter of this thesis, in which
we propose several new methods for solving the STP: Chapter 5. For each
type of algorithm that was presented in Chapter 3, we propose an enhance-
ment; further, we formally prove the soundness of these enhancements and
theoretically analyse their time complexity. This chapter provides the main
contributions of this thesis.

Having presented our enhancements, we evaluate their performance in
comparison to that of their precursors in Chapter 6. For both our new al-
gorithms and some previously existing ones, we test multiple heuristics; to
the best of our knowledge, though some of the heuristics existed before, they
have never been evaluated in this setting before. The evaluation is performed
using currently available benchmark tests, randomly generated problem in-
stances and specifically crafted problem instances of our own design. We then
compare the practical performance of our algorithms against the theoretical
analysis given in Chapter 5.

Finally, in Chapter 7, we present a summary, discuss our results, and
indicate promising and interesting directions for future research into the in-
teresting domain of temporal planning.

2

Chapter 2

Definition and complexity

In this chapter, we introduce the formalism that is the subject matter of this
thesis: the Simple Temporal Problem (STP). To be able to make any formal
theoretical statements when describing algorithms or discussing theoretical
complexity, we must provide a rigorous definition; however, in the interest of
a smooth introduction, we first include a small example and its translation
into an STP instance.

In the latter half of this chapter, we formally establish the complexity of the
STP; to the best of our knowledge, this has not been done before. A theoretical
complexity analysis of a problem is often a powerful tool when deciding how
to approach it. Even if we make no immediate use of its results, it may help
give directions for future research.

2.1 Example
Before formally defining the STP, we first present an example that is based on
the one that provided in the original publication by Dechter, Meiri and Pearl
that proposed the STP [DMP91]. We also use this example in the next chapter
to illustrate the operation of the algorithms we describe there.

John goes to work by car, which takes 30–40 minutes; Fred goes

x0

x1 x2

x3 x4

[10, 20]
[30, 40]

[0, 20]

[40, 50]

[50, 70]

Figure 2.1: An example STP instance

3

2.2 Definition Definition and complexity

to work in a carpool, which takes 40–50 minutes. Today, John left
home between 7:10 and 7:20, and Fred arrived at work between
7:50 and 8:10. We also know that John arrived at work after Fred
left home, but not more than 20 minutes later than he left.

We can associate a variable with each event in this short story. Let us say
that x1 and x2 represent John leaving home and arriving at work, respectively;
x3 and x4 denote the same events for Fred. We also need a temporal reference
point to be able to refer to absolute time points; this is denoted by x0 and
stands for seven o’clock this morning. If we represent all time intervals in
minutes, the network representation of the STP for this example is given in
Figure 2.1.

Now, we can assign values to the time points; if all constraints are satisfied,
such an assignment is called a solution. For example, the reader can verify
both from the network and from the original story that 〈x0 = 0, x1 = 20, x2 =

40, x3 = 20, x4 = 70〉 is a solution of our example STP. Since the story is
consistent, we can say the same of the STP instance.

Having given a small taste of what the STP can be used for, we now
continue with a more formal definition.

2.2 Definition
In this section, we formally define the Simple Temporal Problem (STP). We
start by defining which form an STP instance takes and giving an interpre-
tation of this definition, and defining what constitutes a solution to an STP
instance. Then, we define additional properties of the STP on which the algo-
rithms described in Chapter 3 are based.

2.2.1 Problem representation and solutions
An instance of the Simple Temporal Problem (STP) consists of a set of time-
point variables X = {x1, . . . , xn} representing events, and a set of binary con-
straints over the time points, C = {c1, . . . , cm}, bounding the time difference
between two events. Every constraint ci→j has a weight wi→j ∈ Z corre-
sponding to an upper bound on the time difference, and thus represents an
inequality xj − xi ≤ wi→j.∗ Two constraints ci→j and cj→i can then be com-
bined into a single constraint ci→j : −wj→i ≤ xj − xi ≤ wi→j or, equivalently,
xj − xi ∈ [−wj→i, wi→j], giving both upper and lower bounds. If ci→j exists
and cj→i does not, this is equivalent to x j − xi ∈ [−∞, wi→j]. In this text, we
sometimes use ci→j to stand for the upper bound only, and sometimes to rep-
resent both upper and lower bounds; our intention will always be clear from
context.

∗Rational weights can easily be recast as integer weights by multiplying each with the
least common denominator. Real-valued weights are outside the scope of this discussion; as
Schwalb and Dechter note [SD97], rational weights always suffice in practice.

4

Definition and complexity 2.2 Definition

x0

x1

x2

[0,2]

[5,10]

[0,5]

x0

x1

x2

[0,2]

[5,7]

[3,5]

Figure 2.2: An STN and its corresponding minimal network

Using the concepts defined so far, time differences between two events
can easily be expressed, but we have as yet no way to denote absolute time
constraints such as “event x42 must occur between 1 September 2007 and
1 February 2008”. These could be represented by unary constraints like x42 ∈
[t1, t2], where t1 and t2 are suitable integer representations of 1 September
2007 and 1 February 2008, respectively; however, this has the disadvantage of
having two types of constraints, unary and binary. The usual way to represent
constraints of this type is to introduce a temporal reference point, denoted by
x0 or z, that represents some agreed-upon epoch. This way, the problem
representation is nicely uniform, consisting only of time points and binary
constraints between them. In the remainder of this text, we seldom treat the
temporal reference point specially, except where required for examples.

An additional advantage of having only binary constraints is that an STP
instance can then easily be depicted as a graph, in which vertices represent
time points and weighted arcs represent constraints. When represented this
way, an STP instance is also referred to as a Simple Temporal Network (STN);
we have already seen an STN representation in Figure 2.1 in the previous
section. Because the STP and its network representation are so closely related,
we sometimes use the terms STP and STN interchangeably.

A solution to an STP instance schedules the events such that all constraints
are satisfied. Formally, it is represented by a tuple τ = 〈x1 = b1, . . . , xn = bn〉
of value assignments to all time points. An instance is called consistent if at
least one solution exists. Note that since the weights are integers, a consistent
instance always has an integer-valued solution. An important property of the
STP is that it is consistent if and only if it contains no cycles with negative
total weight. It is easy to see why a negative cycle yields inconsistency: the
transitive closure (summation) of the constraints making up the cycle then
requires that an event occur before itself. For example, the two inequalities
x2 − x1 ≤ −2 and x1 − x2 ≤ 0 form a negative cycle; their summation yields
x2 − x2 ≤ −2 which is clearly inconsistent. In the remainder of this text,
we refer to the problem of deciding whether an STP instance is consistent as
stp-consistency.

5

2.2 Definition Definition and complexity

x0

x1 x2

x3 x4

[10, 20]

[30, 40]

[10, 20]

[40, 50]

[60, 70]

[20, 30]
[10, 20] [20, 30]

[50, 60]

[40, 50]

Figure 2.3: The minimal network of the example STP

2.2.2 Minimal network

The constraints given in an STP instance may not represent the actually al-
lowed time difference between two events. We illustrate this with an example.
See the network on the left-hand side of Figure 2.2; in this STN, c0→2 allows
event x2 to occur up to 10 minutes after x0. However, the transitive closure of
c0→1 and c1→2 yields an actual upper bound of 7 minutes; a similar argument
holds for c1→0 and c0→2. This method of tightening is called path consistency
in general constraint satisfaction literature (e.g. [Dec03]), and we also occa-
sionally refer to it by that name. The right-hand side of Figure 2.2 depicts a
network for which every constraint has been tightened as much as possible
without invalidating any solutions; this is called the minimal network.

The minimal network has the desirable property that solutions can be
extracted from it in a backtrack-free manner. For the first time point, any
value at all can be picked, yielding the first partial solution; an example is
setting the value of the temporal reference point to 0. Any partial solution can
be extended by picking a new time point and instantiating it to a value that
satisfies all constraints from already instantiated time points; the minimality
of the network guarantees that such a value can always be found. For this
reason, calculating the minimal network is often equated with solving the
STP. In the remainder of this text, we refer to the problem of calculating the
minimal network as stp-minimality.

If an STP instance is inconsistent, i.e. it contains a negative cycle, the min-
imal network is also undefined; calculating it would require that constraints
along that cycle be tightened over and over again. In contrast, the absence
of a negative cycle means that the shortest path between each two vertices in
the STN is well-defined and that a minimal network can be calculated. As
we have seen, a solution can then easily be extracted, which means that the
absence of negative cycles implies consistency.

6

Definition and complexity 2.3 Complexity

In Figure 2.3, we show the minimal network result of our example prob-
lem from Section 2.1. The constraints c0→4 and c3→2 have been tightened,
which means that we now know that our original information can be refined:
Fred must have arrived at work at 8:00 at the earliest, and John arrived at
work at least 10 minutes after Fred left home. We also note that the graph is
now complete, which gives us additional information. For example, we know
from constraint c0→2 that John arrived at work between 7:40 and 7:50, and
from constraint c0→3 that Fred left his home between 7:20 and 7:30.

Having defined the terminology relevant to the STP, we now proceed to
describe its complexity.

2.3 Complexity
Perhaps surprisingly, none of the relevant literature gives a formal complexity
class for the STP; the respective authors only establish membership in P by
giving polynomial algorithms for solving the problem. In this section, we
state several theorems to delimit the complexity of the STP more rigidly. For
more background on complexity classes and reductions, see e.g. [Sip96].

We should start by noting that there are three possible definitions for solv-
ing the STP:

1. deciding consistency;

2. finding a valid instantiation of time-point variables; or

3. calculating the minimal network

These are listed in order of increasing difficulty; the first is implied by the
second, which in turn is implied by the third. We are therefore interested
in giving lower bounds on the complexity of stp-consistency and upper
bounds on that of stp-minimality.

We focus our attention on the following two complexity classes:

• NC is a subclass of P and contains those problems that can be solved by
a parallel algorithm in logarithmic time using a polynomial amount of
processors; these problems can therefore be said to be efficiently paral-
lelisable.∗

• NL is a subclass of NC and contains those problems that can be solved
by a non-deterministic algorithm in logarithmic space; it is equivalent
to the class of problems solvable in logarithmic space (with no time
bounds) by probabilistic algorithms.

In the following sections, we use these classes to more rigidly delimit the
complexity of the STP.

∗The abbreviation NC was coined by Stephen Cook to stand for “Nick’s class”. It honours
Nick Pippenger, who did extensive research on problems of this type.

7

2.3 Complexity Definition and complexity

2.3.1 NL-hardness
In this section, we show that deciding consistency of the STP is NL-hard.

Theorem 2.1. stp-consistency is NL-hard.

Proof. A known NL-complete problem is st-connectivity. This problem can
be stated as follows:

Given a directed graph G = (V, A) and two vertices s, t ∈ V, does
G contain a path from s to t?

We reduce this problem to stp-inconsistency; the desired result then follows
from the fact that NL = coNL.∗ Note that for this reduction to be valid, it must
use logarithmic memory space.†

We transform every vertex into a time-point variable, and we associate
every arc (u, v) ∈ A with a constraint cu→v having weight wu→v = 0. This
leads to a trivially consistent STP instance, which at least has the solution
τ = 〈x1 = 0, . . . , xn = 0〉. We then add the constraint ct→s, with weight
wt→s = −1; if a constraint between t and s already existed, it is replaced. This
reduction requires but a single pointer into the original problem instance and
thus clearly satisfies the memory constraints.

Now, it holds that the STP instance is inconsistent if and only if there
exists a directed path from s to t in G:

(⇐) If there is a path from s to t in G, its total weight in the STP is trivially
equal to 0. The constraint between t and s then yields a cycle with negative
total weight and thus leads to inconsistency.

(⇒) Conversely, if the STN that results from the transformation is incon-
sistent, it must have a negative cycle. This cycle must incorporate the arc
between t and s, because this is the only arc with negative weight; but then
there must also be a path from s to t.

We conclude that stp-inconsistency is NL-hard, and since NL = coNL,
also that stp-consistency is NL-hard.

Since just checking consistency is already NL-hard, we know that both other
problem variants listed in Section 2.3 also have this lower bound on complex-
ity.

2.3.2 NL-completeness for bounded weights
In this section, we first show that consistency of STPs with bounded weights
can be decided in logarithmic space by a nondeterministic algorithm; together
with the NL-hardness result from the previous section, this means that the

∗This was proven independently by Neil Immerman [Imm88] and Róbert Szelepcsényi
[Sze87] in 1987, for which they shared the 1995 Gödel prize.

†Consider a classM of Turing machines with three tapes: read-only, write-only and read-
write; the latter is logarithmically bounded, the others are unbounded. The reduction is valid
only if it can be carried out by a Turing machine fromM.

8

Definition and complexity 2.3 Complexity

Input: A weighted directed graph G = 〈V, A〉 representing an STP
instance.

Output: accept or reject

choose s ∈ V1
u← s2
sum← 03
repeat4

if u is a sink of G then return reject5
choose v : (u, v) ∈ A6
sum← sum + wu→v7
u← v8

until u = s9
if sum < 0 then return accept else return reject10

Figure 2.4: Nondeterministic algorithm for stp-inconsistency

problem is NL-complete. Then, we extend this result to the calculation of the
minimal network.

Theorem 2.2. For constraint weights polynomially bounded by the number of time
points, stp-consistency is a member of NL.

Proof. A nondeterministic algorithm can find any cycle by choosing a start-
ing vertex s, repeatedly choosing an edge to walk from the current vertex,
and verifying that the last vertex is equal to the first one. Thus, for solving
stp-inconsistency, it can in this fashion nondeterministically select a cycle
to walk, keeping a running total weight, and check negativity when the orig-
inal vertex is reached again. See Figure 2.4 for the pseudocode of such an
algorithm; note that the ‘choose’ operations in lines 1 and 6 are the only non-
deterministic steps.

The space allotted to the algorithm for determining whether the cycle has
negative total weight is limited: O(log |I|), where |I| is the size of the problem
instance. The size of an STP instance S = 〈X, C〉 depends on its encoding;
if we let wmax be the maximum absolute constraint weight, we may have
|I| = O(m log n log wmax) when the instance is encoded as a list of constraints
with weights, or |I| = O(n2 log wmax) for a matrix representation. In either
case, the algorithm must have space complexity O(log n + log log wmax).

Calculating the total weight by summing at most n terms of order wmax
uses up O(log n + log wmax) bits of memory space. To fit this in logarithmic
space, we require log wmax ∈ O(log n)∗, which is attained for wmax ∈ O(nk)
with constant k, i.e. if the maximum weight is polynomially bounded by the
number of time points. Additionally, walking the cycle requires three pointers

∗The alternative, log wmax ∈ O(log log wmax), is clearly useless.

9

2.3 Complexity Definition and complexity

Input: An STP instance S = 〈X, C〉
Output: The minimal network S ′ = 〈X, C′〉
if � ����� ��� ������� ����� S = 〈X, C〉 	 then return reject1
C′ ← ∅2
foreach x, y ∈ X, x 6= y do3

c′x→y ← � ��
����� ��� cx→y 	4

C′′ ← C ∪ {y− x > w′x→y}5

if ��� ��� ������� ����� S ′′ = 〈X, C′′〉 	 then return reject6
C′′ ← C ∪ {y− x = w′x→y}7

if � ����� ��� ��� � � ����� S ′′ = 〈X, C′′〉 	 then return reject8
C′ ← C′ ∪ {c′x→y}9

end10
return S ′ = 〈X, C′〉11

Figure 2.5: Nondeterministic algorithm for stp-minimality

s, u, v to vertices, as can be seen in Figure 2.4. Since each of these is also
logarithmic in size, we can conclude that the space requirements are met.

Hence, if the weights are limited in this fashion, stp-inconsistency is
a member of NL. Again, this result then transfers to stp-consistency since
NL = coNL.

We now extend this result to the calculation of the minimal network.

Theorem 2.3. For constraint weights polynomially bounded by the number of time
points, stp-minimality is in FNL.

This is not a decision problem, as above, but a function problem. We show
that this problem is in FNL.∗ The method we describe here makes use of the
result from Theorem 2.2 that deciding consistency is in NL.

Proof. We include a nondeterministic algorithm for stp-minimality in Fig-
ure 2.5. Since stp-consistency is in NL, deciding consistency can be done as
often as desired during the solving process.

The very first step of the algorithm is to verify that the original network
is consistent. If it is not, the algorithm rejects; the concept of a minimal
network is nonsensical for an inconsistent network. The algorithm then iter-
ates over all pairs of time points (x, y) and nondeterministically tightens the
weight of the constraint cx→y. This tightening operation selects a new weight
w′x→y ∈ [−nwmax, min(wx→y, nwmax)]. In this way, every new constraint c′x→y

∗A function is FNL-computable if it can be calculated by a non-deterministic algorithm
using a logarithmically bounded amount of memory space.

10

Definition and complexity 2.3 Complexity

is at least as tight as the original constraint, and there are no universal con-
straints having w′x→y = ∞; both are requirements for the minimal network.∗
The lower bound follows from a path with lowest possible total weight; the
upper bounds follow from an already minimal constraint or a path with high-
est possible total weight, respectively. The space required for w ′x→y is then
O(log n) for polynomially bounded weights.

For c′x→y to be minimal, it must satisfy two further properties:

• Its inverse, when added to the original STP instance, must yield incon-
sistency; if this is not the case, this means that c ′x→y has been made too
tight and invalidated some solutions.

• Setting the distance between x and y to exactly w ′x→y must yield consis-
tency; otherwise, c′x→y is too lax.

These properties are checked in lines 6 and 8 of Figure 2.5, respectively.
If these properties are satisfied, c′x→y is indeed minimal and the algorithm
moves on to the next constraint.

During operation, at all times only a single constraint and the pointers to
x and y have to be kept in memory; therefore, with bounded weights, the
space requirement is satisfied. We conclude that stp-minimality ∈ FNL.

2.3.3 Membership in NC
2

The discussion in the previous section shows that it is highly unlikely that
solution of the STP with unbounded weights is a member of NL, since it
requires the summation of those weights. We now turn our attention to the
next complexity class higher up the ladder, which is NC

2.
The complexity class NC contains those decision problems that can be

solved in O(logc n) time by a parallel random access machine (PRAM) hav-
ing O(nk) parallel processors, where c and k are constants; NC

c contains
the decision problems that can be solved in O(logc n) time. It holds that
NC

1 ⊆ L ⊆ NL ⊆ NC
2.†

In this section we show that there exists a parallel algorithm that calculates
the minimal network on a PRAM in O(log2 n) time, which means that stp-
minimality is in NC

2; this result then transfers to stp-consistency. For more
background on parallel algorithms and the PRAM model, see e.g. [JáJ92].

Theorem 2.4. stp-minimality ∈ NC
2.

∗An exception to the latter requirement applies if the STN is not connected; in this case,
we must have w′x→y = ∞ for x and y in different components of the constraint graph. Because
st-connectivity is in NL, the algorithm can check this as a subroutine; if it finds that the
vertices are unconnected, it leaves the constraint universal and moves on to process the next
constraint.

†L is the class of problems solvable by deterministic algorithms in logarithmic space.

11

2.3 Complexity Definition and complexity

Input: An STP instance S = 〈X, C〉
Output: The minimal network S ′ = 〈X, C′〉 or inconsistent

foreach 1 ≤ i, j ≤ n, i 6= j pardo1
w′i→j ← wi→j2

end3
for l ← 1 to 2log n do4

foreach 1 ≤ i, j, k ≤ n, i 6= j 6= k 6= i pardo5
Dik[j] ← w′i→j + w′j→k6

end7
for m← 2log n to 1 do8

foreach 1 ≤ i, j ≤ n, i 6= j and 1 ≤ k ≤ 2m−1 pardo9
Dij[k] ← min(Dij[k], Dij[2m−1 + k])10

end11

end12
foreach 1 ≤ i, j ≤ n, i 6= j pardo13

w′i→j ← min(w′i→j, Dij[1])14

end15

end16
consistent← true17
foreach 1 ≤ i, j ≤ n, i 6= j pardo18

if w′i→j + w′j→i < 0 then consistent← false19

end20
if consistent then return S ′ (defined by the new weights w′)21
else return inconsistent22

Figure 2.6: Parallel algorithm for stp-minimality

Proof. We assume a concurrent-read concurrent-write∗ parallel random access
machine (CRCW PRAM). The algorithm operates on the complete graph; if
wi→j is undefined in the problem instance, an infinite weight is assumed. For
the sake of clarity in presentation of the algorithm, we further assume that
the number of time-point variables is a power of two; if it is not, dummy time
points can be added that have an infinite-weight constraint with all other time
points. Our approach is included as in Figure 2.6.

The algorithm maintains the current shortest known path from x i to xj as
w′i→j. This measure is updated by performing the following operations:

1. for every triple (i, j, k), the algorithm determines (in parallel) the length
of the path from i to k via j and stores it in Dik[j] (lines 5–7);

∗The only place where concurrent write operations can occur is line 19; since the written
value is always inconsistent, we can safely assume the Common CRCW model.

12

Definition and complexity 2.4 Summary and conclusions

2. then, for each pair (i, j), it collapses the list Dij by repeatedly taking
pairwise minima until the minimum entry is contained in Dij[1] (lines
8–12), requiring 2log n sequential iterations;

3. finally, the variables w′i→j are updated in parallel to reflect the new short-
est paths (lines 13–15).

The reader can verify that after the first iteration of the main loop, the vari-
ables w′i→j contain the shortest paths from xi to xj via at most two constraint
edges, and after the second iteration, this length has doubled to four con-
straint edges; in general, after the lth iteration, all paths of length 2 l have
been considered. This means that 2log n iterations of the main loop suffice to
take all possible paths into account. The entire algorithm therefore requires
time Θ(log2 n).

Now, it remains to be shown that the algorithm needs at most a polyno-
mial number of processors. Clearly, the parallel loops as presented in Fig-
ure 2.6 require n3 processors; this amount suffices if we assume that taking
the minimum and calculating the sum of up to n terms of size O(wmax) are
unit operations. If this simplification is unjustified, multiplying the amount
of processors by a factor of 2log(nwmax) (which is the bit length of the largest
possible absolute weight encountered) ensures that summation can be per-
formed in logarithmic time O(log log(nwmax)) and taking the minimum re-
quires but constant time.

2.4 Summary and conclusions
In this chapter, we gave a formal definition of the STP and formulated a
motivating example. We listed three possible definitions of solving an STP
instance S , in order of increasing difficulty: (i) determining whether S is
consistent; (ii) finding a single instantiation to all time-point variables; and
(iii) calculating all minimal constraints. In this chapter and the remainder
of this thesis, we concern ourself only with (i) and (iii), referring to them as
stp-consistency and stp-minimality, respectively.

To our best knowledge, none of the existing literature included a formal
complexity analysis of these problems beyond implicitly establishing mem-
bership in P by providing polynomial-time algorithms. Therefore, as our
main contribution in this chapter, we undertook this analysis ourselves. We
proved NL-hardness and membership in NC

2 as lower and upper bounds to
the complexity of both stp-consistency and stp-minimality; furthermore,
we proved that for weights polynomially bounded in the number of time
points, both problems are NL-complete.

From these results, we conclude the following:

• even though stp-minimality implies stp-consistency and is thus more
difficult, the formal complexity of the two problems is identical;

13

2.4 Summary and conclusions Definition and complexity

• from the membership in NC
2, it follows that the solving of these prob-

lems is efficiently parallelisable;

• since it is known that NL is equivalent to RL (see e.g. [MR95], who give
an algorithm for st-connectivity), the result for the bounded case im-
plies that there exists a randomised approach to the STP that runs in
logarithmic memory and unbounded time.

We also state some questions that may be addressed by future research:

• How can the inherent parallelism of the STP best be exploited by solvers?
From the membership of the STP in NC

2, it follows that a parallel ap-
proach is viable; we demonstrated this for the abstract PRAM model.
Further research may be conducted into a concrete implementation on
a parallel computer with a finite amount of processors.

• What effect does a polynomial bound on edge weights have on practical appli-
cations of the STP?
Our expectation is that the bounded STP is sufficient for representation
of many practical cases; however, future research is required to confirm
or refute this expectation.

• Does there exist some subclass C of the bounded STP such that C ∈ RLP?
A positive answer to this question would imply that problems in C are
amenable to a randomised approach requiring polynomial time and log-
arithmic space. Defining characteristics of C could regard the structure
of the constraint graph, since it is known that the undirected variant of
st-connectivity is a member of RLP.

In the next chapter, we move from the purely theoretical to a more practical
perspective, by discussing known algorithms for dealing with the STP and
their comparative merits.

14

Chapter 3

Known approaches

Having defined the STP and established the complexity of solving it, we now
move on to describing a small selection of available algorithms for solving it.
The algorithms we include can be classified in three groups:

• algorithms for determining consistency (Section 3.1);

• algorithms that calculate the minimal network (Section 3.2); and

• algorithms that calculate only a relevant subset of the minimal network
(Section 3.3).

For the first two of these, incremental algorithms are also available in the
literature; we include these in Section 3.4.

In Figure 3.1, we reproduce the STN of our example from Chapter 2, with
the vertex indices renumbered to run from 1 to n; throughout this chapter, we
show the constraint graphs produced by the respective algorithms when run
on this STN when necessary to illustrate their operation.

By its nature, this chapter contains only few and relatively minor new con-
tributions; however, two contributions that must be mentioned here. Firstly,
to the best of our knowledge, the analysis of the time complexity of incre-
mental directed path consistency was never published before; we present it

x1

x2 x3

x4 x5

[10, 20]
[30, 40]

[0, 20]

[40, 50]

[50, 70]

Figure 3.1: The example STN from Chapter 2

15

3.1 Determining consistency Known approaches

Input: Weighted directed graph G = 〈V, A〉, vertex vorigin ∈ V
Output: List D of distances from vorigin or inconsistent

∀v ∈ V : D[v] ← ∞1
D[vorigin]← 02
repeat n times3

foreach (vi, vj) ∈ A do4
D[vj]← min(D[vj], D[vi] + wi→j)5

end6

end7
foreach (vi, vj) ∈ A do8

if D[vj] > D[vi] + wi→j then return inconsistent9

end10
return D11

Figure 3.2: Bellman’s and Ford’s algorithm

in Section 3.4.1. Also, for the incremental full path consistency algorithm in-
cluded in Section 3.4.2, no applicable pseudocode description was found in
the literature, so we wrote our own.

3.1 Determining consistency
3.1.1 Bellman’s and Ford’s algorithm
This algorithm, presented in Figure 3.2, is based on publications by Bellman
and Ford in 1958 and 1962, respectively [Bel58][FF62]. It calculates the short-
est paths to all vertices from a single source. It is similar to Dijkstra’s algo-
rithm [Dij59], but unlike the latter, it can deal with negative edge weights.

If the graph contains a negative cycle, the algorithm detects this in the
loop that spans lines 8–10. The reason for this is that in a negative cycle,
the distance matrix is updated time and time again, and is never finished,
so to speak; when the algorithm stops updating the distance matrix, there
is always an edge in a negative cycle that fails the condition in line 9. Note
that an efficient implementation of this algorithm does not execute line 5 for
all arcs, but only for those whose source vertex had its distance updated in
the last iteration. However, the worst-case time complexity of this algorithm
remains O(nm).

3.1.2 Directed path consistency
This method for determining consistency of an STP instance was described
in the publication by Dechter et al. that introduced, among other things, the
STP itself [DMP91]. This is a tailored version of the directed path consistency

16

Known approaches 3.1 Determining consistency

for k← 1 to n do1
∀i, j > k : wi→j ← min(wi→j, wi→k + wk→j)2

end3

Figure 3.3: Directed path consistency algorithm (DPC)

x1

x2 x3

x4 x5

[10, 20]

[30, 40]

[30, 60]

[0, 20] [−10, 30]

[40, 50]

[50, 70]

Figure 3.4: The example STN after running DPC

algorithm for general constraint satisfaction problems (see e.g. [Dec03]). In
the remainder of this text, we use the abbreviation DPC to stand for directed
path consistency.

The algorithm assumes that there is a total ordering ≺ over the set of
time points. Throughout this text, without loss of generality, we number the
time points {x1, . . . , xn} such that xi ≺ xj if and only if i < j. Note that the
ordering has no impact on the soundness of the algorithm, but does influence
its performance, as we show below.

See Figure 3.3. The algorithm iterates over k from 1 to n and for all i, j > k
(including i = j) computes the shortest distance from time point x i via xk to
xj. It then updates the weight wi→j if the new value is less than the original
value. The initial value of all wi→i (the weight of the virtual edge from a
time point to itself) is taken to be zero; if it is ever to be changed to a negative
value, a negative cycle has been detected and inconsistency can be concluded.
See Figure 3.4 for the result of applying DPC to the example problem from
Chapter 2.

When running the algorithm, wi→j trivially remains unchanged if either
wi→k or wk→j is infinite, i.e. if there is no constraint between v i and vk or
between vk and vj. This means that these pairs (i, j) can be ignored by the
algorithm, and explains why the ordering of the time points is significant
for performance. In Chapter 5, we show that careful choice of this order-
ing results in high efficiency. In general, the complexity of the algorithm is

17

3.2 Calculating the minimal network Known approaches

for k← 1 to n do1
∀i∀j : wi→j ← min(wi→j, wi→k + wk→j)2

end3

Figure 3.5: Floyd’s and Warshall’s APSP algorithm

O(n(w∗(d))2), where w∗(d) is a measure called the induced width relative to
the ordering d of the time points. For d = (x1, x2, . . . , xn), we have

w∗(d) = max
i

∣

∣{wi→j < ∞ ∨ wj→i < ∞ | j > i}
∣

∣

That is, for each time point xi, we count the number of time points x j that
appear later in the ordering and are adjacent to x i in the constraint graph; the
induced width is then equal to the maximum of these counts.

The induced width w∗ of the graph itself is defined as the smallest induced
width along any ordering d of the time points. Determining w∗ = mind w∗(d)

is an NP-complete problem; however, as we shall see in the next chapter,
fortunately there exist heuristics that yield good results in practice.

3.2 Calculating the minimal network

3.2.1 All-pairs shortest paths

The algorithm presented in Figure 3.5 for calculating all-pairs-shortest-paths
(APSP) on a graph was first published in 1962 [Flo62][War62]. It computes
the shortest distance between all pairs of vertices, or finds any negative cycle
if it exists, in time Θ(n3).

The algorithm runs a loop of n iterations, for 1 ≤ k ≤ n. After n iterations,
all wi→j have been set to their minimal values; inconsistency can again be
concluded as soon as any wi→i drops below zero. The resemblance to directed
path consistency is clear. The sole difference is that undirected PC considers
all pairs (i, j) throughout all iterations, whereas directed PC only considers
those i and j less than k. Indeed, for the STP, this algorithm is equivalent to
the (full) path consistency algorithm from constraint satisfaction literature.

In Figure 3.6, we show the result of applying the APSP algorithm to our
example problem from Section 2.1. This is, of course, exactly the minimal
network that we already included in Chapter 2.

3.2.2 Johnson’s algorithm

Published in 1977 [Joh77], this algorithm yields improved performance over
Floyd’s and Warshall’s algorithm for sparse graphs.

18

Known approaches 3.3 Partial path consistency

x1

x2 x3

x4 x5

[10, 20]

[30, 40]

[10, 20]

[40, 50]

[60, 70]

[20, 30]
[10, 20] [20, 30]

[50, 60]

[40, 50]

Figure 3.6: The minimal network after APSP

The algorithm adds a new vertex v0 6∈ V with zero-weight edges to all
other vertices vi ∈ V and then runs Bellman’s and Ford’s algorithm to com-
pute the shortest paths from v0 to all others, finding any negative cycles in
the process. The algorithm now associates a value h(v i) with each original
vertex vi ∈ V. This value is equal to the shortest path from v0 to vi; from the
addition of the new zero-weight edges, it follows that it is never positive.

These values h(v) are used to reweight the edges: w ′i→j = wi→j + h(vi)−
h(vj). This reweighting scheme has two important properties: (i) all weights
are now positive, and (ii) except for their total weight, the shortest paths are
invariant.

Since the graph now no longer has negative edge weights, Dijkstra’s algo-
rithm [Dij59] can be used repeatedly to determine the shortest path from each
vertex to all other vertices. These are then corrected again with the weights
h(v) to yield the shortest paths with the original edge weights. Note that in
the absence of any negative edge weights, h(v) = 0 for all v ∈ V; i.e., no edge
reweighting takes place.

The time complexity of Johnson’s algorithm is O(nm + n2 log n), which
follows directly from the combination of a single run of Bellman’s and Ford’s
algorithm combined with n runs of Dijkstra’s algorithm.

3.3 Partial path consistency
In 2003, Xu and Choueiry [XC03] proposed a new algorithm for solving
the STP. They based their algorithm on a publication by Bliek and Sam-
Haroud [BSH99], which introduces a new type of path consistency, called
partial path consistency (PPC).

Standard path consistency (PC) is defined on complete graphs: to make
a constraint graph PC, edges between all pairs of time points are considered
and updated, even those that do not correspond to constraints that are ex-

19

3.3 Partial path consistency Known approaches

plicitly defined by the problem and thus are initially universal constraints.
Enforcing PC on an STP instance corresponds to calculating the minimal net-
work, as we have noted in Section 2.2. The property of partial path consis-
tency is instead defined for chordal graphs, and considers no other edges
than those in the graph. Note that a graph is chordal if each cycle of size
greater than 3 contains a chord, i.e. an edge connecting two nonadjacent ver-
tices in the cycle. If a constraint graph is not chordal, it can be made so by
the process of triangulation, which adds some fill edges (representing uni-
versal constraints). In Chapter 4, we explore these concepts in more depth.
However, we can state here that the triangulated graph generally contains far
less edges than the complete graph, especially so for sparse constraint graphs;
hence, enforcing PPC is often far cheaper than enforcing PC.

Bliek and Sam-Haroud have proven that for problems with convex con-
straints, PPC is equivalent to PC if we are concerned only with the constraints
that were originally present in the problem. A constraint c is convex if the fol-
lowing proposition holds:

∀x∀y∀z : x ≤ y ≤ z ∧ satisfies(x, c) ∧ satisfies(z, c)→ satisfies(y, c)

Informally, this means that for a constraint to be convex, if any single variable
satisfies it for any two values x and z, it must also satisfy it for any value y in
between. Since STP constraints take the form of a single interval, it is easy to
see that they are indeed convex.

Xu and Choueiry [XC03] first realised that PPC can be used for solving
the Simple Temporal Problem and implemented an efficient version of the
algorithm, called 4STP. Their algorithm considers the graph as being com-
posed of triangles rather than edges, which saves some constraint checks in
comparison to the original algorithm published by Bliek and Sam-Haroud.

We include4STP in Figure 3.7. Note that if line 7 is executed, it enqueues
T itself as well as its neighbours; line 10 makes sure that T is removed from
the queue after it has been processed. In Figure 3.8, we show the result of
applying the PPC algorithm to our example problem. It can be seen that the
constraints c0→4 and c3→2 are indeed minimal, but only two new constraints
have been added to the original problem to triangulate it, as opposed to the
five extra constraints in the complete graph that resulted from the APSP al-
gorithm. Instead of the triangulation used here, in which edges representing
c0→2 and c0→3 were added, we could have chosen to add any pair of edges
that were not already present and have a vertex in common.

Xu and Choueiry did not give a theoretical upper bound for the runtime of
their algorithm, but an empirical study showed that it outperformed Floyd’s
and Warshall’s all-pairs shortest paths algorithm except for very dense con-
straint graphs, and outperformed DPC for graphs of low to moderate density.
To the best of our knowledge,4STP still represents the state of the art for en-
forcing PPC.

20

Known approaches 3.3 Partial path consistency

Input: A chordal STN S = 〈V, A〉
Output: The PPC network of S or inconsistent

Q← all triangles in S1
while Q 6= ∅ do2

choose T ∈ Q3
foreach permutation (vi , vj, vk) of the time points in T do4

wi→k ← min(wi→k, wi→j + wj→k)5
if wi→k has changed then6

if wi→k + wk→i < 0 then return inconsistent7
Q← Q ∪ {all triangles in S containing vi and vk}8

end9

end10
Q← Q \ T11

end12

Figure 3.7: The 4STP algorithm

x0

x1 x2

x3 x4

[10, 20]

[40, 50]

[20, 30]

[60, 70]

[30, 40]

[10, 20]

[40, 50]

Figure 3.8: The result of applying 4STP

21

3.4 Incremental methods Known approaches

3.4 Incremental methods
The STP appears as a pivotal subproblem of more complex temporal prob-
lems, such as the Disjunctive Temporal Problem introduced by Stergiou and
Koubarakis [SK00]. The usual approach for solving these problems is to grad-
ually build up an STP instance (called a component STP) and backtrack when-
ever an inconsistency is encountered. Beside the consistency check, maintain-
ing minimal relations is often also very relevant as this information can be
used in heuristics that guide the search process.

More concretely, at each step in the backtracking search, a single constraint
is to be added to a component that is already known to be consistent (or
minimal). In these cases, it is not practical to solve the entire component STP
again; instead, one wants to build upon the consistency (or minimality) result
that has been achieved earlier and recalculate only those constraints which
have to be changed. In this section, we describe some algorithms available
from literature that achieve this task.

3.4.1 Incremental directed path consistency
This method for incrementally enforcing directed path consistency (IDPC)
was published by Chleq [Chl95]. We include IDPC in Figure 3.9; for consis-
tency of presentation in this text, its form differs slightly from Chleq’s original
publication. In particular, the first two lines that handle trivial situations were
not present in the previous version:
• either the constraint to be added immediately yields a negative cycle,

and thus inconsistency is concluded (line 1); or

• the constraint to be added is no tighter than the one that was already
present in the STP instance, explicit or implied, and thus no further
calculations have to be performed (line 2).

If these situations do not occur, the new information must be propagated
through the constraint graph. During operation, the set D contains all those
edges whose weights have been adjusted, and is used to determine which
edges to consider next. The set Q is in effect a priority queue which allows
the algorithm to iterate over the vertices participating in the edges in D in
order of the precedence relation. Chleq’s original algorithm made explicit
provisions for adding edges; in our presentation, we assume for brevity that
nonexistent edges are represented by infinite weights. Lowering a weight
from an infinite to a finite value then implicitly means that a constraint edge
is added to the STP instance.

Even when updating just a single constraint in an otherwise already di-
rectionally path-consistent STP instance, the worst-case complexity of the in-
cremental algorithm is no better than that of the “single-shot” algorithm:
Proposition 3.1. The worst-case performance of IDPC is O(n(w∗)2); for a (nearly)
complete graph, where w∗ = n, this yields O(n3).

22

Known approaches 3.4 Incremental methods

Input: A directionally path-consistent STP S = 〈X, C〉 and a new
constraint c′a→b.

Output: consistent if c′a→b has been added to S , which is again
directionally path-consistent; inconsistent otherwise.

if w′a→b + wb→a < 0 then return inconsistent1
if w′a→b ≥ wa→b then return consistent2
wa→b ← w′a→b3
D← {(a, b)}4
Q← {min(a, b)}5
while Q 6= ∅ do6

k← min(Q)7
Q← Q \ {k}8
forall i, j > k, i 6= j such that (i, k) ∈ D ∨ (k, j) ∈ D do9

if wi→j > wi→k + wk→j then10
if wi→k + wk→j + wj→i < 0 then return inconsistent11
wi→j ← wi→k + wk→j12
D← D ∪ {(i, j)}13
Q← Q ∪ {min(i, j)}14

end15

end16

end17
return consistent18

Figure 3.9: Incremental directed path consistency algorithm (IDPC)

Recall that w∗, introduced in Section 3.1.2 is the induced width of a graph.
Tsamardinos and Pollack briefly mention IDPC on page 7 of [TP03] and

incorrectly state that its complexity is O(n2) in the worst case.

3.4.2 Incremental full path consistency

Instead of maintaining directed path consistency, it is also possible to incre-
mentally maintain full path consistency (IFPC), i.e. all-pairs shortest paths.
To our best knowledge, this algorithm has not been presented explicitly for
STPs in the available literature. Tsamardinos and Pollack [TP03] mention this
approach and cite a publication by Mohr and Henderson [MH86]; however,
instead of an incremental approach, this publication only presented a new
“single-shot” path consistency algorithm for general constraint satisfaction
problems. Instead of trying to distill an incremental algorithm for the STP
from the algorithm presented by Mohr and Henderson, we present our own
approach in Figure 3.10.

Two differences with the IDPC algorithm meet the eye: the algorithm

23

3.4 Incremental methods Known approaches

Input: A minimal STP S = 〈X, C〉 and a new constraint c′a→b.
Output: consistent if c′a→b has been added to S , which is again

minimal; inconsistent otherwise.
if w′a→b + wb→a < 0 then return inconsistent1
if w′a→b ≥ wa→b then return consistent2
wa→b ← w′a→b3
I ← ∅; J ← ∅4
forall xk ∈ X, xk 6= xa, xb do5

if wk→b > wk→a + wa→b then6
wk→b ← wk→a + wa→b7
I ← I ∪ {k}8

end9
if wa→k > wa→b + wb→k then10

wa→k ← wa→b + wb→k11
J ← J ∪ {k}12

end13

end14
forall i ∈ I, j ∈ J, i 6= j do15

if wi→j > wi→a + wa→j then16
wi→j ← wi→a + wa→j17

end18

end19
return consistent20

Figure 3.10: Incremental full path consistency algorithm (IFPC)

has a worst-case time complexity of O(n2), and deciding whether the new
constraint incurs inconsistency requires but constant time. The former prop-
erty follows from the maximum number of iterations of the loop spanning
lines 15–19. The latter property is especially desirable for application to e.g.
the Disjunctive Temporal Problem, as already pointed out by Tsamardinos
and Pollack; it means that forward checking can be done very efficiently.

For improved efficiency, we maintain sets I and J of time points; every
combination of two time points, one from each of these sets, must be checked.
This does not improve on the algorithm’s worst-case time complexity, which
remains O(n2) if I = J = X \ {a, b}, but may help in many practical cases.

To see that this approach is sound, consider two time points x i and xj and
assume that after addition of ca→b, the new shortest path between these time
points is xi → xa → xb → xj. But then, the shortest path between xa and xj
must also follow the route xa → xb → xj. In the first loop, wa→j is updated to
reflect this, and xj is added J; the same holds for wi→b. Then, in the second
loop, wi→j will be set correctly. Our choice for wi→a + wa→j is arbitrary; we

24

Known approaches 3.5 Summary

could also have chosen the path via xb.
Finally, note that if the shortest path from x i to xj includes the updated

constraint ca→b, it must always be of the form xi → xa → xb → xj; since the
network was already minimal before the new constraint was added, we have
for any xk that wi→a ≤ wi→k + wk→a and wb→j ≤ wb→k + wk→j.

3.5 Summary
In this chapter, we explored a variety of algorithms that may be used to solve
the STP. For determining consistency, we included a graph algorithm by Bell-
man and Ford and the directed path consistency algorithm from constraint
satisfaction literature. For calculating the minimal network, two graph algo-
rithms were included: Floyd’s and Warshall’s algorithm, which is equivalent
to (full) path consistency from constraint satisfaction literature, and Johnson’s
algorithm. The latter exhibits better performance when run on sparse graphs.
It is also possible to calculate only a subset of the minimal network by enforc-
ing partial path consistency (PPC). This method considers a triangulation of
the constraint graph instead of its completion, which generally contains far
less edges. This explains why 4STP, an efficient implementation of PPC, is
currently the state-of-the-art algorithm for calculating minimal constraints.

Finally, we discussed two incremental methods: incremental directed path
consistency (IDPC) and incremental full path consistency (IFPC). Each of this
methods takes as input an STP instance that already satisfies the respective
path consistency property and a new constraint to be added to it, and then en-
forces that property anew. Somewhat surprisingly, since it enforces a stronger
property, IFPC has the better worst-case complexity analysis.

Before we can propose new algorithms of our own, we take a step back in
the next chapter to explore some graph theory. In this chapter, we mentioned
that 4STP considers a triangulation of the constraint graph; if we hope to
design a more efficient algorithm, it is necessary that we first discuss the
theory behind these triangulations.

25

Chapter 4

Graph triangulation

In this chapter, we discuss some graph theory that underlies the current state-
of-the-art STP solver4STP. By exploring graph theory on triangulation, both
existing and new, we hope to find footholds for developing an improvement
to this algorithm. In this chapter, we only consider the graphs themselves
and abstract away from the temporal interpretation that the STP attaches to
them. In the next chapter, we shift our focus back to the STP and apply the
new insights gained in this chapter.

The main text of this chapter can be split into two parts. In the first
part, we describe existing theory concerning undirected triangulations; in the
second part, we propose an extension to the directed case. We conclude this
chapter with a brief discussion of the theory and its implication to the STP.

4.1 The undirected case

In this section, we briefly state some established concepts and results for undi-
rected graph triangulation that are readily available from the literature; we
specifically mention publications by Rose [Ros72] and Kjærulff [Kjæ90]. Gen-
eral graph theory concepts that we make use of can be found in e.g. [Wes96].

4.1.1 Chordality

Definition 4.1. Let G = 〈V, E〉 be an undirected graph. We can define the following
concepts:

• If (v1, v2, . . . , vk, vk+1 = v1) with k > 3 is a cycle, then any edge on two
nonadjacent vertices {vi , vj} with 1 < j− i < k− 1 is a chord of this cycle.

• G is chordal (also ambiguously called “triangulated”∗) if every cycle of length
greater than 3 has a chord.

∗The term “triangulation” is sometimes also used for maximal planar graphs, which do
not interest us here.

27

4.1 The undirected case Graph triangulation

Input: Undirected graph G = 〈V, E〉
Output: An ordering # : V → N

L← ∅1
i ← 12
repeat3

choose v ∈ V \ L for which |{{v, w} ∈ E | w ∈ L}| is maximal4
#(v)← i5
i ← i + 16
L← L ∪ {v}7

until L = V8
return #9

Figure 4.1: Maximum cardinality search algorithm

• A vertex v ∈ V is simplicial if the set of its neighbours N(v) = {w | {v, w} ∈
E} induces a clique, i.e. if ∀{s, t} ⊆ N(v) : {s, t} ∈ E.

• Let d = (vn, . . . , v1) be an ordering of V. Also, let Gi denote the subgraph
of G induced by Vi = {v1, . . . , vi}; note that Gn = G. The ordering d is a
simplicial elimination ordering of G if every vertex v i is a simplicial vertex
of the graph Gi.

We then have the following result:

Theorem 4.1. An undirected graph G = 〈V, E〉 is chordal if and only if it has a
simplicial elimination ordering.

Rose uses the concept “monotone transitive ordering”:

Definition 4.2. An ordering (vn, . . . , v1) is monotone transitive if it satisfies the
following condition:

{vi , vj}, {vi , vk} ∈ E ∧ i > j, k ∧ j 6= k ⇒ {vj , vk} ∈ E

It is not hard to see that this condition is satisfied exactly by the simplicial
elimination orderings.

Finally, chordality checking can be done efficiently in O(n + m) time by
the maximum cardinality search algorithm (Figure 4.1), which also produces
a simplicial elimination ordering for chordal graphs (in reverse order). It
labels vertices one by one, starting from an arbitrary vertex and maintaining
the already labelled vertices in L; at each iteration, it labels the vertex that has
the most neighbours in L.

4.1.2 Triangulation
If a graph is not chordal, it can be made so by the addition of a set of fill
edges. These are found by eliminating the vertices one by one and connecting

28

Graph triangulation 4.1 The undirected case

all vertices in the neighbourhood of each eliminated vertex, thereby making
it simplicial. If the graph was already chordal, following its simplicial elimi-
nation ordering means that no fill edges are added. In general, it is desirable
to achieve chordality with as few fill edges as possible.

Definition 4.3. Let G = 〈V, E〉 be an undirected graph that is not chordal. A set
of edges T with T ∩ E = ∅ is called a triangulation if G ′ = 〈V, E ∪ T〉 is chordal.
T is minimal if there exists no subset T ′ ⊂ T such that T′ is a triangulation. T is
minimum if there exists no triangulation T ′ with |T′| < |T|.

Determining a globally minimal triangulation is an NP-complete prob-
lem; in contrast, a locally minimal triangulation can be found in O(nm)
time [Kjæ90]. Since finding the smallest triangulations is so hard, several
heuristics have been proposed for this problem. Kjærulff has found that both
the minimum fill and minimum degree heuristics produces good results.

The minimum fill heuristic always selects a vertex whose elimination re-
sults in the addition of the fewest fill edges; it has worst-case time complex-
ity O(n2). The minimum degree heuristic is even simpler, and at each step
selects the vertex with the smallest number of neighbours; its complexity is
only O(n), but its effectiveness is somewhat inferior to that of the minimum
fill heuristic.

Either of these heuristics can be helped by decomposing the graph before
triangulation (see Section 4.1.3 below), and by the following fact:

Theorem 4.2. If there is a vertex v ∈ V with degree d(v) = n− 1 (henceforth called
a hub vertex), then G is chordal if and only if its subgraph induced by the removal of
v is.

This means that if hub vertices exist, they can be eliminated during trian-
gulation without the need for addition of any fill edges. Hence, the min-fill
heuristic always chooses to eliminate such vertices whenever they are avail-
able. With respect to the simplicial elimination ordering, we have the follow-
ing result:

Theorem 4.3. If a chordal graph G = 〈V, E〉 contains a hub vertex v, there exists a
simplicial elimination ordering for G in which v comes last.

Proof. We have from Theorem 4.2 that the graph G ′ induced by V \ {v} is
chordal; therefore, G′ has a simplicial vertex w. Now, it holds that w is also a
simplicial vertex of G. This result is immediate from the fact that v is a hub.
Therefore, we can select w for elimination before we select v. This process can
be repeated until only v remains.

4.1.3 Decomposition
To further aid the process of triangulation, a graph can be decomposed into
its biconnected components.

29

4.2 The directed case Graph triangulation

Definition 4.4. Let G = 〈V, E〉 be a connected graph; then, a set of components C =

{C1, . . . , Ck} with each Ci ⊆ V is a decomposition into biconnected components
if all of the following conditions are met:

• for all Ci ∈ C and all {v, w} ⊆ Ci, there exist at least two vertex-disjoint paths
between v and w; further,

• for all Ci ∈ C, v ∈ Ci and w 6∈ Ci, no more than one vertex-disjoint path exists
between v and w; and finally,

• all edges are contained within a single component; that is, there exist no C i ∈ C
and {v, w} ∈ E such that v ∈ Ci and w 6∈ Ci.

Proposition 4.4. For i 6= j, we have that |Ci ∩ Cj| ≤ 1. If the intersection is not
empty, the vertex it contains is called a separation vertex, because deleting it from
G would disconnect (or separate) G.

We then have the following:

Theorem 4.5. A graph is chordal if and only if all subgraphs induced by its bicon-
nected components are.

Proof. By Definition 4.4, a cycle cannot span more than a single biconnected
component. From this, the result follows.

Decomposition into biconnected components can be done in O(m) time by a
depth-first search algorithm [Eve79].

4.2 The directed case
In this section, we propose an extension of the concepts discussed so far to
directed graphs. To the best of our knowledge, such an extension has not
been published before.

4.2.1 Chordality
Our extension of Definition 4.1 of chordality to directed graphs is quite straight-
forward; we follow the idea of Definition 4.2:

Definition 4.5. Let G = 〈V, A〉 be a directed graph (digraph). We can define the
following concepts:

• If (v1, v2, . . . , vk , vk+1 = v1) with k > 3 is a directed cycle (dicycle), then any
arc on two nonadjacent vertices (vi, vj) with 1 < |j− i| < k− 1 is a chord of
this cycle.

• G is chordal if every dicycle of length greater than 3 has a chord, the direction
of which is unimportant.

30

Graph triangulation 4.2 The directed case

b c

a

Figure 4.2: A graph with a transitive elimination ordering (a, b, c)

• A vertex v ∈ V is transitive if there is an arc from all its incoming neighbours
to all its outgoing neighbours, i.e. ∀u, w ∈ V : (u, v) ∈ A ∧ (v, w) ∈ A ⇒
(u, w) ∈ A.

• Let Gi be the subgraph of G induced by Vi = {v1, . . . , vi}; note that Gn = G.
A transitive elimination ordering of G is an order (vn, . . . , v1) in which
vertices can be deleted from G, such that every vertex v i is a transitive vertex
of the graph Gi.

We then have the following result:

Theorem 4.6. A directed graph G = 〈V, A〉 is chordal if it has a transitive elimina-
tion ordering (vn, . . . , v1).

Proof. Let (vn, . . . , v1) be a transitive elimination ordering of G. To arrive at
a contradiction, assume there exists an unchorded dicycle (v i1 , . . . , vik , vik+1 =

vi1) with k > 3 in G such that (vij , vij+1) ∈ A for 1 ≤ j ≤ k. Let m =
argmax{i1, . . . , ik}; since vim appears in the transitive elimination ordering be-
fore any of the other vertices in the cycle, there must exist an arc (v im−1 , vim+1) ∈
A. This is a chord of the cycle, which contradicts our premise.

In contrast to the undirected case, the converse of this theorem does not hold.
To see this, consider G = 〈{a, b, c}, {(a, b), (b, c), (c, a)}〉, i.e. a simple directed
cycle of size 3. G is trivially chordal, but it has no transitive elimination
ordering.

The following proposition can be verified by the reader and relates the
concepts of chordality for undirected and directed graphs:

Proposition 4.7. A digraph G = 〈V, A〉 is chordal only if the corresponding undi-
rected graph G′ = 〈V, E〉 (in which {v, w} ∈ E ⇔ (v, w) ∈ A ∨ (w, v) ∈ A) is
also chordal. The converse does not hold in general.

The maximum cardinality search algorithm cannot be easily adapted to
determine directed chordality. A reason for this is that maximum cardinality
search can start in any vertex, from which the algorithm constructs an elim-
ination ordering backwards. This works for undirected chordal graphs, for
which simplicial elimination orderings can be constructed with any vertex
appearing last; however, the same does not hold for directed chordal graphs.
In the simple graph in Figure 4.2, vertex a is the only transitive vertex. If the

31

4.2 The directed case Graph triangulation

maximum cardinality search were to start in this vertex, it would fail. How-
ever, the minimum-fill heuristic can be readily adapted to the directed case
and still identifies a transitive elimination ordering for chordal digraphs, if it
exists.

4.2.2 Triangulation
As in the undirected case, if a directed graphs is not chordal, this property can
be enforced by adding a set of fill edges. The directed case is analogous to the
process described in Section 4.1.2, with the difference that instead of connect-
ing all vertices, elimination of a vertex only connects its inbound neighbours
to its outbound neighbours.

Definition 4.6. Let G = 〈V, A〉 be a directed graph that is not chordal. A set of arcs
T with T ∩ A = ∅ is called a triangulation if G ′ = 〈V, A ∪ T〉 is chordal.

In addition, the definitions of minimality are analogous to those in Definition
4.3.

The heuristics for the undirected case can of course be applied unchanged
to the directed case; preferably, however, they should take the directional-
ity of edges into account. For the minimum fill heuristic, this adaptation is
straightforward: for each vertex v, consider two sets of neighbours Iv and
Ov, on incoming and outgoing edges respectively, and count how many arcs
between all pairs (vi ∈ Iv, vo ∈ Ov) are not yet present. For the minimum
degree heuristic, our suggestion is to use as heuristic value for a vertex the
multiplication of its in-degree with its out-degree. This way, sources and sinks
(having respectively in-degree and out-degree zero) will be eliminated first,
which is desirable because their elimination results in the addition of no fill
edges.

We now state the directed counterpart of Theorem 4.2:

Theorem 4.8. If G = 〈V, A〉 contains a vertex v that has all other vertices in its
neighbourhood, disregarding directionality, i.e. |{w | (v, w) ∈ A ∨ (w, v) ∈ A}| =
n− 1, then G is chordal if and only if its subgraph G ′ induced by the removal of v is.
We will again say that v is a hub vertex.

Proof. We prove the negative statement of this theorem: G contains an un-
chorded directed cycle of length greater than 3 if and only if G ′ does.

(⇒) Assume that G contains an unchorded dicycle of length greater than 3.
If such a cycle does not involve v, the same unchorded cycle exists in G ′;
we show that the other case cannot occur. If it contains v, it has the form
(v, w1, . . . , wk, v) with k ≥ 3. However, we know that arcs exist between v and
all other vertices, so the cycle has a chord, which contradicts our assumption.

(⇐) If G′ contains an unchorded cycle of length greater than 3, this same
unchorded cycle must already have been present in G, because deletion of v
only removed edges involving v, which cannot be a chord in this cycle.

32

Graph triangulation 4.2 The directed case

a1 a2

b

c1 c2

d1 d2

e

f1 f2

Figure 4.3: Biconnected vs. strongly connected components

a

b1

b2

b3

c

Figure 4.4: Decomposition by directed triangulation

4.2.3 Decomposition
Another property of directed graphs is that they can be decomposed into
strongly connected components.

Definition 4.7. Let G = 〈V, A〉 be a directed graph; then, a set of components
C = {C1, . . . , Ck} with each Ci ⊆ V is a decomposition into strongly connected
components if for each Ci and each pair of vertices {v, w} ⊆ Ci, there exists a
directed path from v to w and a directed path from w to v.

Proposition 4.9. Let C = {C1, . . . , Ck} be a decomposition into strongly connected
components of a directed graph G = 〈V, A〉. Then, the following properties hold:

• C forms a partition of V; that is, the components are pairwise disjoint, and their
union is exactly equal to V.

• Any cycle in G lies within a single strongly connected component.

We now have two criteria for decomposition: biconnectivity and strong
connectivity. Interestingly, interleaving these operations in an iterative fash-
ion may result in progressively smaller subproblems which can then be solved
independently.

As an example, consider Figure 4.3. Disregarding directionality of the
arcs, this graph is biconnected. However, it can be decomposed into two

33

4.3 Discussion Graph triangulation

hourglass-shaped strongly connected components, which in turn can each be
decomposed into two biconnected triangles.

Strong connectivity also has implications for the directed triangulation
operation. By Theorem 4.5, it is known that in standard (undirected) trian-
gulation, a graph is chordal if and only if all its biconnected components are
chordal. For directed triangulation, we now have the following:

Corollary 4.10. A graph is chordal if and only if all its components that are both
biconnected and strongly connected are chordal.

Proof. By Proposition 4.9, a cycle cannot span more than a single strongly
connected component. From this and Theorem 4.5, the result follows.

However, a difference is that whereas the standard triangulation operation
preserves both strong connectivity and biconnectivity, the directed triangula-
tion operation may precipitate a decomposition into biconnected components.

To see this, consider Figure 4.4. This graph is strongly connected, bicon-
nected and chordal, and its transitive elimination ordering starts with ver-
tex a. Elimination of a results in a graph with three biconnected and strongly
connected components. This means that graphs can be further decomposed
during directed triangulation, while this cannot occur in standard triangu-
lation. When one imagines the vertices bi to represent subgraphs instead of
separate vertices, this small example extends to a much more general case and
the importance of checking for strong connectivity and biconnectivity during
the triangulation operation becomes clear.

4.3 Discussion
In this section, we recapitulate the matter discussed in the preceding sections
and ponder some of its implications to the STP.

We have seen that a natural way to order the vertices in a chordal graph ex-
ists in the simplicial elimination ordering. In existing literature (e.g. [Dec03]),
it was already known that running a directed path consistency algorithm
(DPC, discussed in Chapter 3) along this ordering results in optimal effi-
ciency; indeed, the simplicial ordering has minimal induced width w∗ (ibid.).
This means that finding a minimal triangulation, as discussed in this chap-
ter, can be equated to finding a vertex ordering with minimal induced width,
which was mentioned in the previous chapter; as stated, both problems are
NP-complete.

Implications for the DPC algorithm can also be derived from our exten-
sion of the concept of chordality to the directed case. Because chordality on
directed graphs is more specific than the same concept on undirected graphs,
less fill edges may have to be added to instill chordality. In theory, this in
turn leads to a smaller induced width of the transitive elimination ordering
when compared to the simplicial elimination ordering, and therefore implies
improved performance of the DPC algorithm.

34

Graph triangulation 4.3 Discussion

For partial path consistency (PPC), the most important insight gained in
this chapter is that there is a natural way to order the triangles in a chordal
graph, which stems again from the simplicial elimination ordering. Also, for
both PPC and DPC, the triangulation heuristics we described in this chapter
become useful when dealing with constraint graphs that are not yet chordal.

Finally, the simplicial elimination ordering and the maximum cardinality
search algorithm finds application in a new incremental method; this is pre-
sented in the next chapter along with the other implications we described,
using the matter discussed here as a foundation for the new algorithms we
propose.

35

Chapter 5

New solution methods

In this central chapter of our thesis, we propose several new approaches to the
STP. Recalling the discussion in Chapter 3, the tasks performed by STP algo-
rithms can be divided into three classes: (i) determining consistency; (ii) cal-
culating minimal constraints; or (iii) performing either of the preceding tasks
incrementally. For each of these classes, we propose a new algorithm, based
on the theory presented in the previous chapter. We make theoretical claims
on their performance that will be empirically evaluated in the next chapter.

5.1 Directed path consistency
The DPC algorithm was already described in Chapter 3; we now briefly reca-
pitulate some its most important properties. Enforcing DPC can be used to
determine consistency of an STP instance. This is a faster method for deter-
mining consistency than many other methods we described; however, DPC
cannot be used to calculate the minimal network.

Xu and Choueiry compared their new4STP approach to DPC and found
the former outperformed the latter in most cases. However, in this section
we show that using a suitable ordering of the time points, DPC in fact never
performs worse than 4STP and remains an algorithm of choice when only
consistency checking is required.

We show this in two steps: first, in Section 5.1.1, we take a conventional
approach that was already available in literature; then, in Section 5.1.2, we
improve on this approach using our new results on directed triangulation
from the previous chapter.

5.1.1 Undirected chordal graphs
From general constraint satisfaction literature (e.g. [Dec03]), it is known that
for chordal graphs, a simplicial elimination ordering of the vertices has mini-
mal induced width w∗. Recalling from Chapter 3 that the time complexity of
the DPC algorithm is O(n · (w∗)2), it follows that DPC is most efficient when
run along this ordering.

37

5.1 Directed path consistency New solution methods

In this section, we show that this ordering considers every triangle in the
graph exactly once, and updates at most a single constraint in the triangle.
In contrast, the 4STP algorithm may update all three constraints in each
triangle processed, and more importantly, it processes every triangle at least
once, with equality only if the network was already minimal. Finally, recalling
from Chapter 4 that the maximum cardinality search algorithm can be used
to identify a simplicial elimination ordering in time linear in the amount of
edges, and noting that the amount of triangles is superlinear in the amount
of edges for nontrivial graphs, we can conclude that DPC outperforms4STP
for chordal graphs.

This result can be extended to the general case by performing triangula-
tion, which was already required for 4STP. Since this step is identical for
both algorithms, it follows that DPC consistently outperforms 4STP in all
cases. We note that the simplicial elimination ordering is a useful byproduct
of the triangulation step, which means that running a maximum cardinality
search is no longer necessary.

We now state the main results of this section.

Lemma 5.1. STP consistency can be determined by running a directed path consis-
tency (DPC) algorithm along a simplicial elimination ordering (x1, x2, . . . , xn) of its
graph representation without introducing any new constraint edges.

Proof. In iteration k, the DPC algorithm considers the constraints between
time point xk and all its neighbours x j with j > k. Because of the simplicial
elimination ordering, these time points x j induce a clique. Therefore, any
constraint edge that could be added is already present.

Theorem 5.2. When run along a simplicial elimination ordering as in Lemma 5.1,
the DPC algorithm considers every triangle in the graph representation of an STP
instance exactly once.

Proof. From Lemma 5.1, we know that no edges are added to the constraint
graph; therefore, it suffices to show that all existing triangles are considered
exactly once. Let T = {xi, xj, xk} be a triangle in the graph representation of
an STP, and without loss of generality assume i > j > k. Then, T is considered
exactly once, in the kth iteration of the DPC algorithm.

5.1.2 Directed chordal graphs
We can further improve upon the result from the previous section by showing
that for directed path consistency, it suffices to enforce directed chordality,
which we defined in Chapter 4. The DPC algorithm can then be run along a
transitive elimination ordering of the directed graph representation.

Theorem 5.3. Let S be an STP instance with a directed graph representation. Then,
running the directed path consistency (DPC) algorithm along a transitive elimination
ordering (x1, x2, . . . , xn) does not introduce any new constraint edges.

38

New solution methods 5.2 Improved PPC

Proof. In iteration k, the DPC algorithm considers xk and all pairs of its neigh-
bours {xi, xj} with i, j > k. If there is a path xi → xk → xj (or xj → xk → xi),
it follows from the monotonic transitivity of xk that there exists a constraint
edge (xi, xj) (or (xj, xi), respectively), so the theorem holds in this case. Now
consider a pair of neighbours {xi, xj} for which such a path does not exist.
Then, either wi→k = wj→k = ∞ or wk→i = wk→j = ∞, and the weight of the
constraints ci→j and cj→i is left unchanged by the algorithm; in particular, this
means that if there was no edge (i, j) or (j, i), it is not introduced.

As we stated in Proposition 4.4, directed chordality is a weaker property
than undirected chordality. It follows that less fill edges may be required for
directed triangulation, resulting in a smaller induced width w∗. This means
that DPC when run along a transitive elimination ordering will consistently
outperform the same algorithm run along a simplicial elimination ordering.

5.2 Improved implementation of partial path
consistency

In this section, we propose a new algorithm that yields major improvement
in the efficiency of the partial path consistency algorithm for the STP. In the
4STP algorithm, a queue of triangles is maintained; triangles are added to
the queue if one of their edges’ weights is updated and they are not already
present in it. This means that in practice, a triangle may be processed many
times. In this section, we show that there exist STP instances for which the
4STP exhibits pathological behaviour; then, we propose a new algorithm that
always remains well-behaved.

5.2.1 Pathological behaviour of 4STP
We designed a class P of STPs with very simple structure for which the total
amount of triangles visited by 4STP may be quadratic in the amount of tri-
angles itself. These STP instances are defined on a constraint graph consisting
of a single directed cycle with all zero weight edges; this cycle is filled in with
edges having carefully selected weights.

In Figure 5.1, we depict an instance of this class. This example consists
of six triangles, labelled a through f for ease of reference; by repeating the
pattern, the graph can be extended to an arbitrary amount of triangles. None
of the constraints are initially minimal, except for the ones represented by the
arcs in the zero-weight cycle; because there exists a zero-weight path between
every pair of vertices, each constraint is minimal if and only if its weight is
zero. Further, it is the case that every triangle, considered separately, contains
three edges whose weight can be adjusted; the reader can verify this.

Theorem 5.4. When solving STP instances from P consisting of t triangles, the
4STP algorithm may require processing Ω(t2) triangles.

39

5.2 Improved PPC New solution methods

x0 x1 x2 x3

x4x5x6x7

a

b

c

d

e

f

0 0 0

0

000

0
5

4
3

2
1

1
2

3
4

5

Figure 5.1: Pathological test case for 4STP

Proof. We show how the STP instance from Figure 5.1 is handled by 4STP;
the result readily transfers to the general case. Assume that the initial queue
of triangles is Q = (a, b, c, d, e, f). First, triangle a is processed, and three con-
straints∗ have their weight adjusted: w0→7 ← 5, w7→1 ← 0 and w1→0 ← 5.
Triangle b would be added to Q, but is already contained therein. Now, trian-
gle b is processed; again, three edges are adjusted, and triangle a is appended
to the queue. This process is repeated until triangle f has been processed; at
this point, all edges making up f have minimal weights, and we have that
Q = (a, b, c, d, e). The algorithm starts again at triangle a and proceeds to
triangle e, after which Q = (a, b, c, d). By now, the pattern is clear: the total
number of triangles processed is 6 + 5 + · · ·+ 1 = 21. In general, for a graph
on t triangles of this type, the number of triangles processed is t(t + 1)/2,
which is indeed quadratic in t.

5.2.2 P3C: our new PPC algorithm

In this section, we propose a new algorithm that enforces partial path con-
sistency (PPC) by processing every triangle exactly twice. This means that
to within a constant factor, its performance equals that of directed path con-
sistency on an undirected chordal graph. To achieve this result, we need to
know the simplicial elimination ordering, which as we stated in the previous
chapter is a byproduct of triangulation.

Our new algorithm is called P3C and is presented in Figure 5.2.† We can
now state our main result for this section.

Theorem 5.5. Algorithm P3C achieves partial path consistency on consistent chordal
STNs by processing every triangle in the graph exactly twice, i.e., with time com-
plexity Θ(n · (w∗)2). If the instance is inconsistent, this is discovered in time
O(n · (w∗)2).

∗Note that two of these constraints were not depicted in Figure 5.1; as usual, these are
assumed to have infinite weight.

†P3C (i.e. PPPC in full) could stand for Planken’s PPC or Power-PPC; the author is open
to any other suggestions.

40

New solution methods 5.2 Improved PPC

Input: An STP instance S = 〈X, C〉 with a simplicial elimination
ordering (x1, x2, . . . , xn)

Output: The PPC network of S or inconsistent

for k← 1 to n do1
forall i > j > k such that {i, k}, {j, k} ∈ E do2

wi→j ← min(wi→j, wi→k + wk→j)3
wj→i ← min(wj→i, wj→k + wk→i)4
if wi→j + wj→i < 0 then return inconsistent5

end6

end7
for k← n to 1 do8

forall i > j > k such that {i, k}, {j, k} ∈ E do9
wi→k ← min(wi→k, wi→j + wj→k)10
wk→i ← min(wk→i, wk→j + wj→i)11
wj→k ← min(wj→k, wj→i + wi→k)12
wk→j ← min(wk→j, wk→i + wi→j)13

end14

end15
return consistent16

Figure 5.2: The P3C algorithm

Proof. We first prove the time complexity, which is the easier part of our claim.
The first main loop (lines 1–7) of the algorithm is just the directed path con-
sistency algorithm; if the problem is inconsistent, this is discovered at some
point during this loop. After this first leg, every triangle has been visited
exactly once. The second main loop (lines 8–15) then follows the same or-
dering backwards and again visits every triangle exactly once. From these
observations, our claims on time complexity easily follow.

To show that the algorithm is sound, we first note that after the first main
loop, as a property of directed path consistency, every constraint c i→j that is
represented by an edge {xi, xj} has been updated to the length of the shortest
path from xi to xj in the graph induced by {xk ∈ X | k < min(i, j)} ∪ {xi, xj};
this implies in particular that the constraints between xn−1 and xn (in both
directions) are minimal.

We illustrate this property of directed path consistency in Figure 5.3. In
this figure, we depict a path consisting of 10 vertices. Each vertex is labelled
with its position in the simplicial elimination ordering, which is also reflected
in its vertical position. As a result of the simplicial elimination ordering, the
edges represented by dashed lines are guaranteed to be present in the con-
straint graph. Assuming that the path depicted by solid lines is the shortest
path (with least total weight) from x7 to x8, the reader can now verify that

41

5.2 Improved PPC New solution methods

1

2

5

4

6

7

9

10

8

3

Figure 5.3: The DPC property

after the first main loop, each dashed edge has had its weight updated and
can serve as a shortcut; in particular, (x7 → x8 → x10 → x9 → x3) is now also
a shortest path from x7 to x3. This is exactly the DPC property mentioned
above.

It can now be shown by induction that after iteration k of the second main
loop, all constraints in the graph induced by {x i ∈ X | i ≥ k} are minimal.
The base case for k ≥ n − 1 has already been proven; assuming that the
proposition holds for k + 1, we now show that the proposition holds for k.
Consider any constraint ck→i with i > k, and to arrive at a contradiction,
assume that this constraint is not minimal after the kth iteration; i.e. after the
iteration completes, there still exists some path π = (xk → xj1 → · · · → xjl →
xi) with total weight wπ < wk→i. We now show that this cannot occur.

By the DPC property stated above, if there appears any x j in π with j <

k < i, there must exist another shortest path π where each x j has j > k.
Therefore, we can safely assume that π satisfies this condition, and except for
its first edge π lies entirely within the graph induced by {x j ∈ X | j > k}.
Now, by the induction hypothesis, c j1→i is minimal; therefore, the shortest
path can be further reduced to π = (xk → xj1 → xi). Note that because
xk appears in the simplicial elimination ordering before both x j1 and xi, the
edge {xk, xi} must exists. But then, we have that wk→i ≤ wπ = wk→j1 +

wj1→i by the operations performed in the kth iteration, which contradicts our
assumption.

Having shown that the efficiency of enforcing PPC can be improved to
be proportional to that of DPC, one may wonder whether the results from
the previous section are also applicable to PPC. That is, the STP instance
is represented as a directed graph and directed chordality is enforced on
it, after which a PPC algorithm is run; our algorithm would then follow a

42

New solution methods 5.3 Incremental PPC

transitive elimination ordering instead of a simplicial elimination ordering.
If the transitive elimination ordering happens to also be simplicial, which
can only be the case for undirected chordal graphs, the result is, of course,
identical. Otherwise, in the proof of Theorem 5.5, only the DPC property
changes, because directionality of the edges becomes important. We now
state a sufficient condition for minimality of constraints.

Theorem 5.6. Let G = 〈V, A〉 be a directed chordal graph representation of an STP
instance with a transitive elimination ordering (x1, x2, . . . , xn). If π = (xi → xj1 →
· · · → xjl → xk) is the shortest path from x1 to xk with weight wπ, P3C, when run
along this ordering, updates the weight wi→k of (xi, xk) to wπ if (xk, x1) ∈ A.

Proof. There is a directed cycle which consists of π joined with the edge
(xk, xi). With regard to this cycle, directed chordality is equivalent to undi-
rected chordality, and the result follows from Theorem 5.5.

5.3 Incremental partial path consistency
Our final contribution in this chapter is a new incremental algorithm in the
vein of IDPC and IFPC, which were presented in Chapter 3. The IPPC al-
gorithm that is presented in this section incrementally enforces partial path-
consistency on an STP instance, processing a single constraint at a time. In
our approach, we assume that the new constraint added preserves chordality
of the constraint graph; in practice, this may be guaranteed in several ways.
If it is known on beforehand which constraints may appear and which con-
straints will not, the graph representing all time points and all conceivable
constraint edges can be triangulated once. Alternatively, it is conceivable that
chordality itself be enforced incrementally before running the incremental
PPC algorithm. This matter is subject to further research and as such outside
the scope of this text.

Our new incremental method is presented in Figure 5.4. Like IFPC, this
algorithm has the desirable property that any inconsistency caused by the
new constraint is detected in constant time; this follows from the fact that
every constraint in a partially path-consistent STP instance is minimal.

The main loop is in effect similar to the second main loop from the P3C
algorithm in Figure 5.2; it enforces PPC in the reverse order of a simplicial
elimination ordering. The algorithm maintains the set D of constraints that
have been updated; in this way, during the main loop only the necessary
checks are performed. Fixing a simplicial elimination ordering (line 4) in
which the newly added constraint appears last can be easily done in linear
time by maximum cardinality search, as discussed in Chapter 4.

The worst-case performance of this algorithm is no better than the “single-
shot” PPC algorithm and remains O(n · (w∗)2). This suggests that IFPC re-
mains the incremental method of choice for dense graphs, though the actual
performance of IPPC may be better in practical cases. For sparse graphs, i.e.

43

5.4 Summary New solution methods

Input: A partially path-consistent STP S = 〈X, C〉 and a new
constraint c′a→b.

Output: consistent if c′a→b has been added to S , which is again
partially path-consistent; inconsistent otherwise.

if w′a→b + wb→a < 0 then return inconsistent1
if w′a→b ≥ wa→b then return consistent2
wa→b ← w′a→b3
Fix a simplicial elimination ordering (x1, x2, . . . , xn) of S4
such that xa = xn−1 ∧ xb = xn
D← {(n− 1, n)}5
for k← n to 1 do6

forall i, j > k, i 6= j such that {i, k}, {j, k} ∈ E ∧ (i, j) ∈ D do7
if wi→k > wi→j + wj→k then8

wi→k ← wi→j + wj→k9
D← D ∪ {(i, k)}10

end11
if wk→j > wk→i + wi→j then12

wk→j ← wk→i + wi→j13
D← D ∪ {(k, j)}14

end15

end16

end17
return consistent18

Figure 5.4: Incremental partial path consistency algorithm (IPPC)

if w∗ ∈ o(
√

n), the worst-case analysis tips in favour of IPPC. In the next
chapter, we empirically evaluate the actual performance of IPPC against IFPC
for graphs of different densities.

5.4 Summary
In this chapter, we presented several new approaches for tackling the STP,
based on the graph theory discussed in Chapter 4. For determining consis-
tency, we showed that running the directed path consistency (DPC) algorithm
along a simplicial elimination ordering (discussed in the previous chapter) re-
sults in the best theoretical performance, with lowest induced width w∗ (see
Section 3.1.2).

We indicated that for the state-of-the-art 4STP algorithm, pathological
problem instances can be designed, and proposed a new algorithm, P3C, that
does not have this disadvantage. Indeed, from the fact that P3C considers
each triangle in the constraint graph at most twice, whereas 4STP offers no

44

New solution methods 5.4 Summary

such guarantee, we expect our new algorithm to show better performance
even in general cases.

Finally, in a logical continuation of earlier incremental methods, we pro-
posed a new algorithm that incrementally enforces the partial path consis-
tency property. However, the worst-case complexity analysis of this algorithm
is worse than that of its main competitor, incremental full path consistency.

In the next chapter, we will put our new algorithms to the test against their
precursors and empirically determine their actual performance, thus enabling
us to verify the theoretical claims made in this chapter.

45

Chapter 6

Evaluation of new techniques

In the previous chapter, we proposed several new algorithms and gave a the-
oretical worst-case analysis of their performance. In this chapter, we sup-
plement this theoretical analysis with a practical evaluation. We compared
each of our new methods to all precursors in the same category that were
described in Chapter 3. All algorithms were implemented in Java and were
run on many different test cases of different structures and sizes.

The structure of this chapter is as follows. First, we describe the test
cases we considered and explain our rationale behind our selection; then, we
present and analyse the empirical results we recorded, grouped by algorithm
category.

6.1 Test cases
In this section, we describe the test cases we considered for our algorithms.
They can be split into three classes:

1. STP instances taken from a benchmark set;

2. randomly generated STP instances with a power law degree distribu-
tion; and

3. a specifically designed pathological test case for 4STP.

The latter of these was already discussed in the previous chapter and requires
no further introduction; we discuss the others below.

6.1.1 Benchmark sets
We included three benchmark sets for SMT∗ solvers from SMT-LIB [RT03].
This is a collection of benchmark instances with the goal to facilitate the eval-
uation and comparison of these solvers and to advance the state of the art

∗The acronym SMT stands for “satisfiability modulo theories”; SMT problems take the
general shape of a Boolean satisfiability (SAT) problem, with each propositional literal replaced
by some predicate.

47

6.1 Test cases Evaluation of new techniques

· · ·

· · ·

· · ·

· · ·
· · ·

Figure 6.1: The general shape of diamond benchmark instances

in these fields. Each problem instance in these sets consists of a conjunction
of clauses; in turn, each clause represents a disjunction of linear inequalities
(“literals”). To solve a problem instance, an SMT solver must select for each
clause a literal that must be satisfied. Such a selection is called an “instan-
tiation”; for the benchmark sets we selected, each instantiation corresponds
exactly to an STP instance. To solve an SMT problem instance, a common
approach is to use a backtracking search, solving an STP instance at every
step.

Our approach was to build up the constraint graph edgewise by randomly
selecting a single inequality from each clause; then, we set the edge weights
in such a way that the resulting STP instance was guaranteed to be consistent.
We tested the following types of benchmarks:

• DTP benchmarks, randomly generated and used for testing solvers of
the Disjunctive Temporal Problem (a special type of SMT instance);

• Job shop benchmarks, which represent practical scheduling problems
and are well known in the planning literature (e.g. [CP89]); and

• Diamonds benchmarks, which are defined on very sparse graphs, the
general shape of which is shown in Figure 6.1.

6.1.2 Scale-free random graphs
Scale-free graphs can be used to accurately model many real-world networks,
in which many vertices have relatively small degree (number of neighbours)
and a few vertices have very high degree. For example, in the Internet, many
routers have relatively few connections while a few routers in the Internet
backbone have very many connections. More formally, the degrees of the
vertices in a scale-free graph satisfy a power law; that is, for some constant
exponent γ, the probability P(k) of a vertex having degree k is proportional
to k−γ.

The Barabási–Albert method [AB02] can be used to randomly generate
scale-free graphs. This method starts with some relatively small seed graph
on n0 vertices, which is then evolved to a graph on n vertices by iteratively
adding the remaining n− n0 new vertices; each new vertex vnew is connected
to m ≤ n0 already existing ones in such a way that the probability of con-
necting vnew to a vertex vi is directly proportional to the latter’s degree. This
way, the evolution follows the “rich get richer” scheme: vertices that have a

48

Evaluation of new techniques 6.1 Test cases

type #cases n m d
DTP 60 35 156–230 12–20
diamonds 36 51–379 53–379 4
job shop 120 5–241 9–3960 4–240
scale-free 539 10–150 18–3857 4–97
pathological 40 3–350 3–1044 4

Table 6.1: Test data statistics

high degree are likely to get even more neighbours, whereas those with low
degree have high probability to remain “poor”.

Using this method, we generated test cases of this type for a broad sample
of values for both n and m, with n varying from 10 to 150 and m varying from
2 to b0.9n/2c; we always set n0 = 2m and ensured that the seed graph was
connected.

6.1.3 General form of test cases

For each test case, we made sure that the STP instance was consistent, to
guarantee the mutual comparability of our test results. If we had considered
inconsistent instances, the point during search at which a negative cycle was
discovered would almost certainly have varied greatly between test cases and
algorithms. We submit that it would be interesting to evaluate the behaviour
of the algorithms on inconsistent test cases; however, for now we leave this
issue as a subject for future research.

The properties of the test cases are summarised in Table 6.1, and repre-
sented pictorially in Figures 6.2 and 6.3. The table lists the amount of test
cases for each type included, and the range of the number of vertices n,
edges m and the graph degree d (i.e. the maximum vertex degree). Figure 6.2
displays the location of each test case in the vertices/edges plane; the line la-
belled “complete graph” demarcates the maximum possible amount of edges.
Figure 6.3 displays the graph degree of three test cases plotted against the
amount of vertices. A graph on n vertices can have at most degree n − 1,
which is exactly the case for the job shop instances. Both the diamonds and
pathological test cases have a constant graph degree of 4, and are therefore
not included in this figure.

When including results of our tests, we generally set out the number of
vertices on the horizontal axis; exceptions apply for the DTP test case and
the scale-free graphs. For the former, all test cases have the same number of
vertices, n = 35; therefore, we depict the number of edges on the horizontal
axis instead. In the latter case, we found it in most cases more enlightening to
consider a constant number of vertices and instead depict the value of the m
parameter for the Barabási–Albert method (described above, in Section 6.1.2)
on the horizontal axis.

49

6.1 Test cases Evaluation of new techniques

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250 300 350 400

ed
ge

s

vertices

DTP

DTP
diamonds
job shop

scale-free
pathological

complete graph

Figure 6.2: Location of test cases (vertices vs. edges)

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

de
gr

ee

vertices

DTP

DTP
job shop

scale-free

Figure 6.3: Location of test cases (vertices vs. graph degree)

50

Evaluation of new techniques 6.2 Consistency checking

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35 40 45

tim
e

(s
)

m - value

Bellman-Ford
random DPC

undirected min-fill DPC
undirected min-degree DPC

directed min-fill DPC
directed min-degree DPC

Figure 6.4: Consistency checking for scale-free graphs, n = 100

6.2 Consistency checking
We now discuss the result of applying consistency checking algorithms to our
test cases. The tested algorithms include Bellman’s and Ford’s algorithm and
several varieties of directed path consistency (DPC).

The first test results we describe are those on the scale-free graphs on 100
vertices, included in Figure 6.4. One of the first properties of this figure that
meets the eye is the conspicuous bulge around m = 18 in all curves for the
DPC algorithms. A likely explanation for this behaviour is that for low values
of m, many vertices have so low degree that only few fill edges are added
by the DPC algorithms, which means that the heuristic values need to be
updated relatively infrequently. For high values of m, the graphs are dense
enough that many neighbours of vertices are already connected, resulting
again in the addition of few extra edges and infrequent updates of heuristic
values. For the values in between, however, many vertices have a moderate
amount of neighbours; but between these, fill edges must often still be added.

All these considerations do not apply to Bellman’s and Ford’s algorithm,
which consistently outperforms the others. Among the DPC algorithms, we
can note that the random ordering performs worst. Of the heuristics, the min-
imum fill heuristic, though theoretically producing orderings with smaller in-
duced width w∗ (see Section 3.1.2) than the minimum degree heuristic, does
not yield large enough differences to justify its higher time complexity. The
differences between the directed and undirected heuristics are smaller; for
the minimum fill heuristic the directed version seems to have a clear edge,
whereas for the minimum degree heuristic, we cannot really draw a con-

51

6.2 Consistency checking Evaluation of new techniques

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 150 160 170 180 190 200 210 220 230

tim
e

(s
)

edges

Bellman-Ford
undirected min-degree DPC

directed min-degree DPC

Figure 6.5: Consistency checking for DTP (n = 35)

clusion yet. From the results on scale-free graphs, in the interest of clarity
of presentation, we only considered Bellman’s and Ford’s algorithm and the
two minimum degree heuristics in the remainder of our tests.

The results of the benchmark tests are depicted in Figures 6.5 through 6.8.∗
In all cases, Bellman’s and Ford’s algorithm remains superior, though the re-
sults are much closer in the diamonds benchmark (Figure 6.8) than in the
other cases. We venture to suggest that this is due to the very low and
evenly-spread density of the diamonds benchmark; however, we relegate
deeper analysis to future research. The “jumpiness” of the results for the
diamonds test case may be partially explained by the relative simplicity of
these problems, and their resulting sensitivity to perturbations in the testing
environment; note that the time scale of the diamonds plot is two orders of
magnitude smaller than that of Figure 6.7.

In Figure 6.5, a clustering of test results is visible. Recalling that the DTP
test cases always contain 35 vertices, we may conclude that the number of
edges in an STP instance is of far less influence on the performance of the
algorithms than the amount of vertices.

The job-shop instances (Figures 6.6 and 6.7) were the hardest to solve;
for these test cases, the difference between the performance of Bellman’s and
Ford’s algorithm grew to almost an order of magnitude.

Concluding, we can safely state that Bellman’s and Ford’s algorithm re-
mains the method of choice for determining consistency of STP instances.

∗Note that we split the job shop results into small and large instances; between these two
charts, the scale of the vertical axis multiplies by a factor of nearly 60.

52

Evaluation of new techniques 6.2 Consistency checking

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 20 40 60 80 100 120

tim
e

(s
)

vertices

Bellman-Ford
undirected min-degree DPC

directed min-degree DPC

Figure 6.6: Consistency checking for job shop (small instances)

 0

 5

 10

 15

 20

 25

 30

 120 140 160 180 200 220 240

tim
e

(s
)

vertices

Bellman-Ford
undirected min-degree DPC

directed min-degree DPC

Figure 6.7: Consistency checking for job shop (large instances)

53

6.3 Enforcing partial path consistency Evaluation of new techniques

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 50 100 150 200 250 300 350 400

tim
e

(s
)

vertices

Bellman-Ford
undirected min-degree DPC

directed min-degree DPC

Figure 6.8: Consistency checking for diamonds benchmark

The directed and undirected graphs perform almost identically; from these
results, we can discern no clear winner.

6.3 Enforcing partial path consistency

In this section, we turn to the analysis of algorithms that enforce partial path
consistency (PPC), viz.4STP and our improvement P3C. Solving the all-pairs
shortest paths problem is equivalent to enforcing full path consistency on the
STP and can thus be considered a special case of enforcing PPC; therefore,
Floyd’s and Warshall’s algorithm and Johnson’s algorithm were also included
in our tests.

As in the previous section, we start with an analysis of the algorithms’ be-
haviour on scale-free random graphs, depicted in Figure 6.9. The “bulge” that
was noted in the previous section reappears, at about the same relative loca-
tion; the explanation we gave for it above still applies. This time, the all-pairs
shortest paths algorithms seem relatively impervious to it, though in contrast
to Bellman’s and Ford’s algorithm, they perform worse than the other tech-
niques. From these results, it also becomes clear that P3C outperforms4STP
nearly everywhere, and that the minimum-degree heuristic yields better per-
formance than minimum-fill.

Turning to the results for the DTP instances (Figure 6.10), we again note
the clustering of results, indicating that also for enforcing PPC, the number of
edges in the graph is not the primary factor that influences performance. Oth-
erwise, the same general conclusions can be derived that we stated above for

54

Evaluation of new techniques 6.3 Enforcing partial path consistency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 2 4 6 8 10 12

tim
e

(s
)

m - value

Floyd-Warshall
Johnson

min-fill ∆STP
min-degree ∆STP

min-fill P3C
min-degree P3C

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30 35 40 45

tim
e

(s
)

m - value

Floyd-Warshall
Johnson

min-fill ∆STP
min-degree ∆STP

min-fill P3C
min-degree P3C

Figure 6.9: Enforcing PPC on scale-free graphs
n = 30 (top) vs. n = 100 (bottom)

55

6.3 Enforcing partial path consistency Evaluation of new techniques

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 150 160 170 180 190 200 210 220 230

tim
e

(s
)

edges

Floyd-Warshall
Johnson

min-fill ∆STP
min-degree ∆STP

min-fill P3C
min-degree P3C

Figure 6.10: Enforcing PPC for DTP (n = 35)

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

vertices

Floyd-Warshall
Johnson

min-fill ∆STP
min-degree ∆STP

min-fill P3C
min-degree P3C

Figure 6.11: Enforcing PPC for job shop with n < 100 (log scale)

56

Evaluation of new techniques 6.3 Enforcing partial path consistency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 20 40 60 80 100 120

tim
e

(s
)

vertices

min-fill ∆STP
min-degree ∆STP

min-fill P3C
min-degree P3C

Figure 6.12: Enforcing PPC for job shop (small instances)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 120 140 160 180 200 220 240

tim
e

(s
)

vertices

min-fill ∆STP
min-degree ∆STP

min-fill P3C
min-degree P3C

Figure 6.13: Enforcing PPC for job shop (large instances)

57

6.4 Incremental solving Evaluation of new techniques

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100 150 200 250 300 350 400

tim
e

(s
)

vertices

min-fill ∆STP
min-degree ∆STP

min-fill P3C
min-degree P3C

Figure 6.14: Enforcing PPC for diamonds benchmark

the scale-free graphs; the same goes for the job shop problems (Figures 6.11
through 6.13), where we omitted the all-pairs shortest paths algorithms for
large instances.

With regard to the results for the diamonds instance (Figure 6.14), it may
be noted that 4STP and P3C exhibit comparable performance, while the dif-
ference between heuristics persists. The explanation for this again lies with
the extreme sparseness of the graphs.

Finally, we discuss the behaviour of 4STP and P3C on the pathological
instance proposed in Section 5.2.1; for comparison, we also included Floyd’s
and Warshall’s algorithm in the tests. The results are included in Figure 6.15.
Since the constraint graphs of these STP instances are already triangulated, we
omit the analysis of the triangulation heuristic. As expected, the difference in
performance between P3C and4STP grows linearly with the size of the input;
the difference between P3C and Floyd’s and Warshall’s algorithm grows even
faster. This is consistent with the theoretical worst-case time complexities,
which for this input are linear, quadratic and cubic, respectively. The actual
time spent for the instance with 350 vertices is 1.36 seconds for 4STP versus
0.15 seconds for P3C; this differs by almost an order of magnitude.

6.4 Incremental solving

The third new algorithm we proposed in the previous chapter was incremen-
tal partial path consistency (IPPC). We mentioned in Section 3.4 that this
method requires the constraint graph to be chordal, and that this could be en-

58

Evaluation of new techniques 6.4 Incremental solving

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 50 100 150 200 250 300 350

tim
e

(s
)

vertices

∆STP
P3C

Floyd-Warshall

 1e-04

 0.001

 0.01

 0.1

 1

 10

 10 100

tim
e

(s
)

vertices

∆STP
P3C

Floyd-Warshall

Figure 6.15: Pathological behaviour of 4STP
linear scale (top) and double-log scale (bottom)

59

6.5 Summary Evaluation of new techniques

sured in several ways. Here, we consider two methods: (i) incrementally run
the minimum-degree triangulation procedure after the addition of each new
constraint edge; and (ii) construct the graph consisting of all constraint edges
that will be added and triangulate it once with the minimum-fill triangula-
tion procedure. Clearly, (ii) is only feasible if the structure of the constraint
graph is known beforehand. As we mentioned in Section 3.4, incremental tri-
angulation is subject to future research; for now, we opted to naively perform
regular (non-incremental) triangulation after addition of each new constraint,
using the fast minimum degree heuristic. For the “single-shot” approach, we
valued the improved quality of triangulations produced by minimum fill over
the better performance of minimum degree.

This resulted in a test of, in total, four incremental algorithms. As input
to these algorithms we used the benchmarks discussed before, and scale-free
constraint graphs with low values for the m parameter; order in which the
constraints were fed to the algorithms was random, but identical across all al-
gorithms to ensure a fair comparison. The results are included in Figures 6.16
through 6.21. The IFPC algorithm, being clearly uncompetitive with regard
to the others for large instances, was only run on the DTP and on scale-free
graphs consisting of up to 100 vertices.

From the results, it turns out that despite the worst-case analyses given in
the previous chapter, both IDPC and IPPC generally perform far better than
IFPC; for large enough instances, IPPC also outperforms IDPC. The reader
should take note that IDPC does not calculate minimal constraints, which
the other algorithms do; for this reason, the comparison of IPPC to IDPC
is not entirely fair. An exception can be noted in Figure 6.21, where IFPC
performs better than IPPC variant; note, however, that the number of vertices
in these instances is fixed at a rather modest value of n = 35. A topic for
future research is to investigate the induced width w∗ of the various problem
instances, and to determine its relation with the performance of IDPC and
IPPC.

As was to be expected, the single-shot triangulation approach to IPPC
performed best; more surprising, however, is the fact that even our naive ap-
proach to incremental triangulation outperforms IDPC for large enough in-
stances. In our opinion, this gives great hope for further gains to be achieved
by future research on some more intelligent approach to incremental triangu-
lation.

6.5 Summary

In this chapter, we empirically compared the performance of the algorithms
proposed in Chapter 5 against that of their precursors from Chapter 3.

For determining consistency of the STP, we concluded that Bellman’s and
Ford’s algorithm remains sovereign. Of the approaches for achieving directed
path consistency methods described in this text, the minimum degree heuris-

60

Evaluation of new techniques 6.5 Summary

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140 160

tim
e

(s
)

vertices

IFPC
IDPC

(incremental) IPPC
(once) IPPC

 0.001

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140 160

tim
e

(s
)

vertices

IFPC
IDPC

(incremental) IPPC
(once) IPPC

Figure 6.16: Incremental methods on scale-free graphs with m = 2
linear scale (top) and log scale (bottom)

61

6.5 Summary Evaluation of new techniques

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140 160

tim
e

(s
)

vertices

IFPC
IDPC

(incremental) IPPC
(once) IPPC

 0.001

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140 160

tim
e

(s
)

vertices

IFPC
IDPC

(incremental) IPPC
(once) IPPC

Figure 6.17: Incremental methods on scale-free graphs with m = 3
linear scale (top) and log scale (bottom)

62

Evaluation of new techniques 6.5 Summary

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160

tim
e

(s
)

vertices

IFPC
IDPC

(incremental) IPPC
(once) IPPC

 0.001

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140 160

tim
e

(s
)

vertices

IFPC
IDPC

(incremental) IPPC
(once) IPPC

Figure 6.18: Incremental methods on scale-free graphs with m = 4
linear scale (top) and log scale (bottom)

63

6.5 Summary Evaluation of new techniques

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180

tim
e

(s
)

vertices

IDPC
(incremental) IPPC

(once) IPPC

Figure 6.19: Incremental methods on the job shop problem with n < 180
linear scale (top) and log scale (bottom)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50 100 150 200 250 300 350 400

tim
e

(s
)

vertices

IDPC
(incremental) IPPC

(once) IPPC

Figure 6.20: Incremental methods on the diamonds problem

64

Evaluation of new techniques 6.5 Summary

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 150 160 170 180 190 200 210 220 230

tim
e

(s
)

edges

IFPC
IDPC

(incremental) IPPC
(once) IPPC

Figure 6.21: Incremental methods on the DTP (n = 35)

tic performed best, with little difference between the directed and undirected
variants. For the minimum fill heuristic, these differences were more pro-
nounced, with the directed variant performing slightly better than the undi-
rected one.

For problem instances of at least moderate size, our P3C algorithm con-
sistently outperformed the previous state-of-the-art algorithm 4STP. Again,
the minimum degree heuristic performed much better than the minimum fill
heuristic. We also tested the pathological problem instance for 4STP, de-
signed in the previous chapter, and confirmed the theoretical result that the
difference in performance with P3C increases linearly with the size of the
instances.

Finally, we evaluated the performance of the incremental partial path con-
sistency algorithm (IPPC). This yielded the most unexpectedly positive result
of this chapter: it turned out that in practice, despite the worst-case com-
plexity analysis from the previous chapter, the performance of our new in-
cremental algorithm far surpasses that of its competitor, incremental full path
consistency (IFPC).

65

Chapter 7

Discussion

In this final chapter, we first draw conclusions from the matter discussed
in preceding chapters, summarising the most important results. Then, we
indicate interesting and promising directions for future research.

7.1 Summary and conclusions
In Chapter 2, we gave a formal definition of the STP and formulated a mo-
tivating example. We listed three possible definitions of solving an STP in-
stance S , in order of increasing difficulty: (i) determining whether S is consis-
tent; (ii) finding a single instantiation to all time-point variables; and (iii) cal-
culating all minimal constraints. In this thesis, we concerned ourself only
with (i) and (iii), referring to them as stp-consistency and stp-minimality,
respectively.

Our main contribution in Chapter 2 consisted of formally establishing the
complexity of these problems. We proved NL-hardness and membership in
NC

2 for both problems; the latter means that the problem can be solved effi-
ciently (in O(log2 n) time) by a parallel algorithm. For polynomially bounded
weights, both problems become NL-complete, which means that they can be
solved by nondeterministic algorithms (or randomised algorithms) using only
logarithmic space and unbounded time.

Then, in Chapter 3, we turned our attention to known algorithms for deal-
ing with the STP, in three classes:

1. those that decide whether the STP instance is consistent (cf. (i) above);

2. those that calculate minimal constraints (cf. (iii) above); and

3. those that perform either of the preceding tasks in an incremental
fashion.

For the second of these classes, we included not only algorithms that solve the
all-pairs shortest paths (APSP) problem on the complete constraint graph, but
also considered the 4STP algorithm, which enforces partial path consistency

67

7.1 Summary and conclusions Discussion

(PPC). For PPC, the constraint graph is not completed; instead, every con-
straint edge that is present is guaranteed to have minimal weight. Included
in the bargain of calculating minimal constraints are the other two definitions
of “solving”, numbered (i) and (ii) in the first paragraph of this section. Incre-
mental STP solvers—the third class we mentioned—are important whenever
dealing with more complex temporal reasoning problems, such as the Dis-
junctive Temporal Problem, in which the STP appears as a subproblem and is
constructed step by step.

Before proposing a new algorithm for each of these classes, we took a step
back and explored some graph theory in Chapter 4. The theory presented
there concerned the concept of “chordality”, which is pivotal in the state-
of-the-art algorithm 4STP. For undirected graphs, this concept had already
been thoroughly explored in existing literature; however, to the best of our
knowledge, we are the first to have extended this concept to the directed
case. In addition to these concepts, we described two known heuristics for
enforcing chordality—the minimum-fill and minimum-degree heuristics—and
showed how these can be extended to the directed case.

From graph theory, it is known that undirected graphs are chordal if and
only if they have a simplicial elimination ordering. We defined the similar
concept “transitive elimination ordering” for directed graphs and showed that
its existence is sufficient, but not necessary, for chordality.

The main contributions of this thesis were presented in Chapter 5. Here,
we drew on the theory from the previous chapter to present our new algo-
rithms, one for each of the tasks listed above:

1. Directed path consistency (DPC), run on a transitive elimination ordering of
the directed graph
We already described the DPC approach in Chapter 3; our contribution
to this method concerns the order in which the time points are pro-
cessed. We showed that when run along a simplicial or transitive elim-
ination ordering of a chordal graph, the algorithm introduces no new
constraints and considers every triangle at most once, possibly less if in-
consistency is concluded. If a graph is not yet chordal, the minimum-fill
or minimum-degree heuristic can be used to determine the ordering.

2. P3C, a new algorithm for enforcing partial path consistency
This algorithm is an improvement over the 4STP algorithm described
in Chapter 3; it processes each triangle in the constraint graph at most
twice (less if inconsistency is concluded), in contrast to its predecessor,
which may process triangles many times. Indeed, we designed an STP
instance on which 4STP may take longer than P3C to complete by a
factor proportional to the number of vertices n.

3. Incremental partial path consistency (IPPC), a logical successor to incremental
full path consistency and incremental directed path consistency

68

Discussion 7.1 Summary and conclusions

This method takes an already partially path-consistent constraint graph
and a new constraint edge, and processes the triangles in the graph
along a cleverly chosen ordering to once more ensure the PPC prop-
erty. However, the theoretical worst-case performance was unfortu-
nately shown to be worse than that of IFPC, and on par with that of
IDPC, both described in Chapter 3.

Finally, in Chapter 6, we performed an extensive empirical evaluation of all
new algorithms against existing ones; our test cases consisted of benchmark
problems, randomly generated problems and the pathological instance men-
tioned above. We can draw the following conclusions:

1. For determining consistency, Bellman’s and Ford’s algorithm remains
the method of choice. It outperformed the other methods by an ample
margin, except on very sparse graphs such as the diamonds benchmark
(Figure 6.8); here, DPC showed promising behaviour.
With regard to the different orderings for DPC we tested, the random
ordering (using no heuristic) performs worst. There are also clear differ-
ences between the performances of the heuristics. The minimum-degree
heuristic consistently outperforms minimum-fill. The differences be-
tween the directed and undirected heuristics are very small. For the
minimum-fill heuristic, it is safe to state that the directed heuristic per-
forms better; for the minimum-degree heuristic, the results are to close
to designate a winner, though the directed heuristic seems to have a
slight edge over the undirected one.

2. When calculating minimal constraints, our P3C algorithm never performs
significantly worse than 4STP and often performs much better. For
both algorithms, the minimum-degree heuristic is again clearly supe-
rior to the minimum-fill heuristic; even though the latter may produce
smaller triangulations, the heuristic itself is just too costly for this ad-
vantage to pay off.
The all-pairs shortest paths algorithms are never competitive to either
of the PPC algorithms, except for very small problem instances.

3. Our new incremental algorithm IPPC shows promising results, outper-
forming IFPC already for moderate amounts of vertices. These results
hold even when performing a naive incremental triangulation, and are
diametrically opposite to the theoretical worst-case analysis performed
in Chapter 5. Nonetheless, they were to be expected: after all, IFPC has
to maintain a constraint graph with Θ(n2) edges, which must take its
toll.
The comparison with IDPC is less clear-cut, but as the problem in-
stances grow in both amount of vertices and density, IPPC eventually
outperforms IDPC too. It must be noted here, once more, that the task

69

7.2 Future work Discussion

performed by IDPC—enforcing directed path consistency—is signifi-
cantly easier than that performed by IPPC, which calculates minimal
constraints.

Summarising these findings, we can safely state that with both P3C and IPPC,
we make a significant contribution to the STP literature. In the next section,
we give some hints as to what further research can be done on this subject
matter.

7.2 Future work
In this section, we briefly state some promising topics for future research,
roughly ordered according to the subjects addressed in the main text.

• In Chapter 2, we presented an abstract algorithm for the parallel random
access machine (PRAM) model. The value of a parallel approach on a
concrete parallel computer has yet to be demonstrated.

• As mentioned in Chapter 2, the STP is NL-complete when the weights of
its constraints are polynomially bounded in the amount of vertices. One
may wonder to what extent this limits the expressiveness of the STP; as
stated before, our expectation is that for many practical applications, the
bounded variant is easily sufficient.

• We mentioned in the conclusions to Chapter 2 that NL-completeness
implies that a randomised approach requiring logarithmic space and
unbounded time must exist. Future research may be conducted into
the viability of such an approach; further, it may be possible to find
a subclass C of the STP for which a time bound on the randomised
algorithm can also be guaranteed.

• In Chapter 4, we presented some approaches for enforcing chordality
on graphs, i.e. graph triangulation. The IPPC algorithm would greatly
benefit from a method that performs incremental triangulation; to the
best of our knowledge, no such methods are available in current graph
literature.

• Also in Chapter 4, we extended the concept of chordality to directed
graphs and stated that the existence of a transitive elimination ordering
is a sufficient (but not necessary) condition for it; this means that there
is a set of directed graphs that are chordal, but for which as yet no
efficient recognition method is known. Further research may address
what properties characterise the graphs that fill in this “gap”.

• Again in Chapter 4, we mentioned that the directed triangulation oper-
ation may separate a graph into multiple biconnected components (see
Figure 4.4). A heuristic may exploit this phenomenon to produce a
smaller triangulations; as yet, no such heuristic has been described yet.

70

Discussion 7.2 Future work

• In Chapter 5, we mentioned that PPC algorithms (viz. 4STP and P3C)
may also be run on directed chordal graphs, with possibly better effi-
ciency. However, in this case, minimal constraints are not always cal-
culated, though a sufficient condition that guarantees minimality of a
constraint can be stated. Future experiments are required to demon-
strate whether this trade-off is viable.

• At the root of the4STP algorithm lies the partial path consistency (PPC)
property for general constraint satisfaction problems (CSPs), described
by Bliek and Sam-Haroud [BSH99]. For convex CSPs such as the STP,
enforcing PPC is equivalent to enforcing path consistency (PC); however,
for general CSPs, Bliek and Sam-Haroud stated that PPC may still be a
useful approximation of PC.
With minor adjustments, the 4STP algorithm as presented in this text
can also be used for general CSPs. It is our expectation that this also
holds for our P3C algorithm, which would further extend the scope of
its usefulness.

• In nearly all cases, Bellman’s and Ford’s algorithm outperforms any
DPC variant by a large margin; an exception is the diamonds bench-
mark, where Bellman’s and Ford’s algorithm still performs best, but the
results are much closer. Future research is required to determine exactly
which circumstances cause the results to be so close, and if DPC can be
further improved to outperform Bellman’s and Ford’s algorithm in such
cases.

• In practice, the incremental partial path consistency algorithm (IPPC)
outperforms its counterpart, incremental full path consistency (IFPC),
by a larger margin than we expected from the theoretical worst-case
analysis performed in Chapter 5. Further experiments are needed to
analyse the practical relation between the performance of IPPC and the
induced width w∗ (defined in Section 3.1.2) of the constraint graph.

• Finally, the most important topic for future research is the application
of our new algorithms to more expressive temporal reasoning problems,
such as the Temporal Constraint Satisfaction Problem [DMP91] and the
Disjunctive Temporal Problem [SK00]. These problems are NP-complete
and are usually solved with a backtracking approach; since an STP in-
stance must be solved for each node in the backtracking search tree, we
expect that the use of our new P3C and (especially) IPPC algorithms
will yield great benefits.

Our hopes for this last topic are especially high. We expect that our new
methods can find practical application in any domain that requires efficient
solving of temporal problems, such as logistics, planning and scheduling.

71

Bibliography

[AB02] Réka Albert and Albert-László Barabási. Statistical mechanics of
complex networks. Reviews of Modern Physics, 74(1):47–97, Jan
2002.

[ATMB06] Luca Anselma, Paolo Terenziani, Stefania Montani, and Alessio
Bottrighi. Towards a comprehensive treatment of repetitions, pe-
riodicity and temporal constraints in clinical guidelines. Artificial
Intelligence in Medicine, 38(2):171–195, October 2006.

[Bel58] R. Bellman. On a routing problem. Quarterly of Applied Mathemat-
ics, 16:87–90, 1958.

[BSH99] Christian Bliek and Djamila Sam-Haroud. Path consistency on
triangulated constraint graphs. In IJCAI ’99: Proceedings of the Six-
teenth International Joint Conference on Artificial Intelligence, pages
456–461, San Francisco, CA, USA, 1999. Morgan Kaufmann Pub-
lishers Inc.

[BW04] Pieter Buzing and Cees Witteveen. Distributed (re)planning
with preference information. In R. Verbrugge, N. Taatgen, and
L. Schomaker, editors, Proceedings of the 16th Belgium-Netherlands
Conference on Artificial Intelligence (BNAIC 2004), pages 155–162,
2004.

[Chl95] Nicolas Chleq. Efficient algorithms for networks of quantitative
temporal constraints. In Proceedings of CONSTRAINTS-95, First
International Workshop on Constraint Based Reasoning, pages 40–45,
April 1995.

[CP89] J. Carlier and E. Pinson. An algorithm for solving the job-shop
problem. Management Science, 35(2):164–176, 1989.

[Dec03] Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2003.

73

BIBLIOGRAPHY

[Dij59] Edsger W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269–271, 1959.

[DMP91] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint
networks. Artificial Intelligence, 49(1–3):61–95, 1991.

[Eve79] Shimon Even. Graph Algorithms. W. H. Freeman & Co., New York,
NY, USA, 1979.

[FF62] Lester R. Ford, Jr. and Delbert R. Fulkerson. Flows in Networks.
Princeton University Press, 1962.

[Flo62] Robert W. Floyd. Algorithm 97: Shortest path. Communications of
the ACM, 5(6):345, 1962.

[FRCY97] A. Fukunaga, G. Rabideau, S. Chien, and D. Yan. Aspen: A frame-
work for automated planning and scheduling of spacecraft control
and operations. In Proceedings of the International Symposium on AI,
Robotics and Automation in Space, 1997.

[Imm88] Neil Immerman. Nondeterministic space is closed under comple-
mentation. SIAM Journal on Computing, 17(5):935–938, 1988.

[JáJ92] Joseph JáJá. An introduction to parallel algorithms. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA, 1992.

[Joh77] Donald B. Johnson. Efficient algorithms for shortest paths in
sparse networks. Journal of the ACM, 24(1):1–13, 1977.

[Kjæ90] Uffe Kjærulff. Triangulation of graphs - algorithms giving small
total state space. Technical report, Aalborg University, March 1990.

[MH86] Roger Mohr and Thomas C. Henderson. Arc and path consistency
revisited. Artificial Intelligence, 28(2):225–233, 1986.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[Ros72] Donald J. Rose. A graph-theoretic study of the numerical solu-
tion of sparse positive definite systems of linear equations. In
Ronald C. Read, editor, Graph theory and computing, pages 183–217.
Academic Press, N.Y., 1972.

[RT03] Silvio Ranise and Cesare Tinelli. The SMT-LIB format: An initial
proposal. In Proceedings of PDPAR’03, July 2003.

[SD97] Eddie Schwalb and Rina Dechter. Processing disjunctions in tem-
poral constraint networks. Artificial Intelligence, 93(1–2):29–61,
1997.

74

BIBLIOGRAPHY

[Sip96] Michael Sipser. Introduction to the Theory of Computation. Interna-
tional Thomson Publishing, 1996.

[SK00] Kostas Stergiou and Manolis Koubarakis. Backtracking algo-
rithms for disjunctions of temporal constraints. Artificial Intelli-
gence, 120(1):81–117, 2000.

[Sze87] Róbert Szelepcsényi. The method of forcing for nondeterministic
automata. Bulletin of the European Association for Theoretical Com-
puter Science, 33:96–100, October 1987.

[TP03] Ioannis Tsamardinos and Martha E. Pollack. Efficient solution
techniques for disjunctive temporal reasoning problems. Artificial
Intelligence, 151(1–2):43–89, 2003.

[War62] Stephen Warshall. A theorem on boolean matrices. Journal of the
ACM, 9(1):11–12, 1962.

[Wes96] Douglas B. West. Introduction to Graph Theory. Prentice-Hall, 1996.

[XC03] Lin Xu and Berthe Y. Choueiry. A new efficient algorithm for solv-
ing the Simple Temporal Problem. In TIME-ICTL 2003: Proceed-
ings of the 10th International Symposium on Temporal Representation
and Reasoning and Fourth International Conference on Temporal Logic,
pages 210–220, Los Alamitos, CA, USA, 2003. IEEE Computer So-
ciety.

75

