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Abstract.

Several quantities related to the Zernike circle polynomials admit an expression, via the

basic identity in the diffraction theory of Nijboer and Zernike, as an infinite integral

involving the product of two or three Bessel functions. In this paper these integrals

are identified and evaluated explicitly for the cases of (a) the expansion coefficients of

scaled-and-shifted circle polynomials, (b) the expansion coefficients of the correlation of

two circle polynomials, (c) the Fourier coefficients occurring in the cosine representation

of the circle polynomials.

1 Introduction

Zernike circle polynomials are extensively used in the characterization of circular optical

imaging systems with non-uniform pupil functions [1]– [8], and, more recently, for the

computation of acoustical quantities arising from harmonically excited, baffled-piston ra-

diators with non-uniform velocity profiles [9]– [11]. The circle polynomials were introduced

by Zernike [12] in connection with the knife-edge test and his phase-contrast method and

they play a fundamental role in Nijboer’s thesis [13] (also see Ch. 9 in [1]), on the diffrac-

tion theory of aberrations where they were investigated in detail. Nowadays, the circle

polynomials find wide-spread application in optical lithography, astronomy, ophthalmol-

ogy and other fields dealing with diffraction phenomena involving non-uniformities in a

circular, finite setting.
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The circle polynomials are given for integer m, n with n− |m| even and non-negative by

Zm
n (ρ, ϑ) = R|m|n (ρ) eimϑ , 0 ≤ ρ ≤ 1 , 0 ≤ ϑ < 2π , (1)

where the radial polynomials R
|m|
n are given by

R|m|n (ρ) = ρ|m| P
(0,|m|)
n−|m|

2

(2ρ2 − 1) , (2)

with P
(α,β)
k the general Jacobi polynomial as in [18], Ch. 22. The circle polynomials are

complete and orthogonal on the unit disk {(ρ cos θ, ρ sin θ) = (ν, µ) | 0 ≤ ρ2 = ν2 +µ2 ≤ 1,

0 ≤ θ < 2π}, and can therefore be used to expand any pupil function P (ρ, θ) that is defined

on and square integrable over the unit disk. Besides being complete and orthogonal, the

circle polynomials possess a particular convenient form, in terms of Jinc functions (see

Eq.(5) below), for their Fourier transforms. This result, which we shall call the basic

identity of the Nijboer-Zernike theory of optical aberrations (basic NZ-result, for short)

was given by Zernike in [12] and applied by Nijboer in [13] to compute the optical point-

spread function in and near the best-focus plane for mildly aberrated, circular optical

systems with low-to-medium numerical aperture (NA). The Nijboer-Zernike approach to

point-spread computation has been extended in recent years to cover the whole focal region

for systems with arbitrarily high NA including the state of polarization and birefringence,

see [14]– [17] and a survey is given in [4].

The basic NZ-result has yielded several useful analytic results in a variety of optical

applications. In [5], this result is applied to derive expressions for the derivatives of the

radial polynomials, with application to atmospheric turbulence. In [19]- [20], a formula

for the Zernike expansion coefficients of a scaled pupil in terms of the coefficients of

the unscaled pupil is derived. This formula is based on a concise expression for scaled

radial polynomials in terms of unscaled radial polynomials, see Eq.(8) below, the proof

of which is of similar nature as the one given in [5] and heavily depends on the basic NZ-

result. Results on pupil scaling find applications in optical lithography, where the NA of

the optical system may be decreased deliberately for imaging enhancement of particular

structures, and in ophthalmology, where pupil scaling is studied as a natural attribute of

the human eye pupil, see [7] and [21].

The basic NZ-result can also be used to express the Radon transform (the integral along

a line of arbitrary distance p to the origin and arbitrary angle φ of the normal with the

ν-axis) of the circle polynomials, see Eq.(9) below. This result is used in [22] to obtain

a computation scheme of the DFT-type, with the inherent efficiency and accuracy that

come with DFT-algorithms, for the circle polynomials of arbitrarily large degree n and

order m, see Eq.(10) below. Equation (10) was derived by a different method in [23],

while Eq.(9) was presented already in [24] by Cormack in a medical imaging context.

In [25]- [26], the problem of computing the Zernike expansion coefficients of the optical

transfer function (OTF) from the coefficients of the pupil function is tackled using the
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basic NZ-result. This gives rise to integrals involving the product of three Bessel functions

for which there are presented recursion relations in [26].

In the present paper, we give analytic solutions to three problems in optics using the

basic NZ-result. All these problems have as a common feature that they give rise, via the

basic NZ-result, to integrals involving the product of three Bessel functions that can be

evaluated in analytic form. These problems / solutions concern

• determining the Zernike expansion of an arbitrary scaled-and-shifted circle polyno-

mial, extending the pure scaling results in [19]- [20],

• finding the Zernike expansion of the OTF in terms of the expansion coefficients of

the pupil function, thereby solving the problem in [25]- [26] completely analytically,

• finding the Fourier expansion coefficients of the radial polynomials in which the

radial variable ρ, 0 ≤ ρ ≤ 1, is replaced by the numerically more convenient variable

cosx, 0 ≤ x ≤ π/2.

In the next section these three problems are described and motivated in more detail. A

fourth problem that gives rise, via the basic NZ-result, to integrals of the product of three

Bessel functions, is the computation of the spatial impulse responses that occur in baffled-

piston acoustic radiation using Zernike expansion of flexible membranes. This problem is

discussed in [27] and [28], Sec. 6.

2 Basic formulas and overview

The circle polynomials are given for integer m, n with n− |m| even and non-negative by

Eq.(1) and (2). It is customary to refer to n as the degree and to m as the azimuthal

order of Zm
n . The circle polynomials form a complete orthogonal system of functions on

the disk 0 ≤ ρ ≤ 1, with Zm
n (1, ϑ) = eimϑ, which implies that

R|m|n (1) = 1 , (3)

and the orthogonality property reads explicitly

1∫
0

2π∫
0

Zm
n (ρ, ϑ)((Zm′

n′ (ρ, ϑ))∗ ρ dρ dϑ =
π

n+ 1
δmm′ δnn′ (4)

with δ Kronecker’s delta. In the sequel it will be convenient to set R
|m|
n = Zm

n ≡ 0 for

integer values of m, n such that n− |m| is odd or negative.

A crucial property of the circle polynomials for diffraction theory is that their Fourier
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transform has the particular simple form∫ ∫
ν2+µ2≤1

e2πiνx+2πiµy Zm
n (ρ, ϑ) dν dµ =

=

1∫
0

2π∫
0

e2πiρr cos(ϑ−ϕ)R|m|n (ρ) eimϑ ρ dρ dϑ = 2πin
Jn+1(2πr)

2πr
eimϕ , (5)

where we have written ν + iµ = ρ eiϑ and x+ iy = r eiϕ. Equivalently, in terms of Hankel

transforms (of order m), we have (using Jm(z) = im−|m|J|m|(z))

1∫
0

R|m|n (ρ) Jm(2πrρ) ρ dρ = (−1)
n−m

2
Jn+1(2πr)

2πr
. (6)

This is the basic NZ-result as given in [12], Eq. (23) and [13], Eq. (2.20).

By Fourier inversion in Eq.(5), using Hankel transforms of order m, it is seen that

R|m|n (ρ) = (−1)
n−|m|

2

∞∫
0

Jn+1(u) J|m|(ρu) du , 0 ≤ ρ < 1 . (7)

This result, often attributed to Noll [5], is shown in [12] to follow from the discontinuous

Weber-Schafheitlin integral, see [18], 15.4.6 on p. 561. The integral on the right-hand side

of Eq. (7) converges uniformly in any closed set of ρ ≥ 0 not containing 1, see Appendix A,

and its value for ρ > 1 is 0. Thus the equality in (7) holds pointwise and not just in an

L2-sense. Also see [19], Appendix, Sec. A.1.1 for a discussion of the result in Eq. (7).

The results in Eqs. (6)–(7) are basic to the proof of a number of results of the circle poly-

nomials and their radial parts. In [5], the result in Eq. (7) was used to derive expressions

for the derivative of Rm
n in terms of R-polynomials of azimuthal orders m± 1 by employ-

ing recurrence relations for Bessel functions and their derivatives. In [19]– [20], the two

results in Eqs. (6)–(7) were combined with recursion properties of the Bessel functions to

produce the scaling formula

Rm
n′(ερ) =

∑
n

(Rn
n′(ε)−Rn+2

n′ (ε))Rm
n (ρ) =

=
1

ε

∑
n

n+ 1

n′ + 1
(Rn+1

n′+1(ε)−R
n+1
n′−1(ε))R

m
n (ρ) . (8)

Here m = 0, 1, ... , n′ = m,m + 2, ... , and the summation is over n = m,m + 2, . . . , n′

in which we recall the convention that Rn′+2
n′ = Rn′+1

n′−1 ≡ 0 for the last term in either

series. Although Eq. (8) is normally used for ε, ρ ∈ [0, 1], it should be emphasized that

they are valid for all complex values of ε and ρ by analyticity. The result in Eq. (8)
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is of interest to both the lithographic community and the ophthalmological community,

see [7], [8], [19], [20], [21].

In [22], the formula

Rm
n (p, ϕ) =

2

n+ 1
(1− p2)1/2 Un(p) eimϕ , 0 ≤ p ≤ 1, 0 ≤ ϕ < 2π , (9)

for the Radon transform of Zm
n (ρ, ϑ) is used to show that

Rm
n (ρ) =

1

N

N−1∑
k=0

Un

(
ρ cos

2πk

N

)
cos

2πmk

N
, 0 ≤ ρ ≤ 1 . (10)

Here m = 0, 1, ... and N is any integer > n + m, and Un is the Chebyshev polynomial

of degree n and second kind. This formula is interesting since it gives the Rm
n (ρ) for

m+ n < N in the form of a discrete cosine transform, also see [23]. The result in Eq. (9)

was discovered by Cormack in [24], but a proof can also be based on the result in Eqs. (6)-

(7) and the connection between Bessel functions and Chebyshev polynomials through the

Fourier transform, see [18], 11.4.24–25 on p. 486.

In the present paper a number of new applications of the results in Eqs. (6)–(7) are

presented. A common feature of the problems we consider is that they all give rise to

infinite integrals involving the product of three Bessel functions. In Section 3 we consider

the problem of finding the Zernike expansion of scaled-and-shifted circle polynomials.

That is, given a ≥ 0, b ≥ 0 with a + b ≤ 1, we give explicit expressions, involving Jacobi

polynomials, for the coefficients Kmm′

nn′ (a, b) in the expansion

Zm
n (a+ bρ′eiϑ

′
) =

∑
n′,m′

Kmm′

nn′ (a, b)Zm′

n′ (ρ′eiϑ
′
) , 0 ≤ ρ′ ≤ 1 , 0 ≤ ϑ′ < 2π , (11)

see Fig. 1 for the relation between the radial and angular variables of the full, centralized

pupil and the reduced, shifted pupil.

This result generalizes the scaling formulas in Eq. (8) which is the case with a = 0 in

Eq. (11). Furthermore, it gives the analytic solution of the transformation problem for

the aberration coefficients of an eye pupil when the pupil is scaled and displaced. This

problem has a long history in the ophthalmological community, see [7] and [21] for recent

work and survey material, but no closed-form solution seems to have been found thus

far. Moreover, by expressing the scaled-and-shifted polynomials as linear combinations

of the orthogonal terms Zm′

n′ one has a handle, via the transformation matrix elements

Kmm′

nn′ (a, b), to tackle the important problem of assessing the condition of a finite set of

circle polynomials when they are restricted to subdisks of the unit disk.

In Section 4 we consider the problem of computing the Zernike expansion coefficients of the

correlation of two circle polynomials. Having these expansion coefficients available is of

great interest when calculating transfer functions in optical imaging, see [29], [30] for early
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Figure 1: Centralized, full pupil ρ eiϑ, 0 ≤ ρ ≤ 1, 0 ≤ ϑ < 2π, and shifted and reduced

pupil a+ b ρ′ eiϑ
′
, 0 ≤ ρ′ ≤ 1, 0 ≤ ϑ′ < 2π, where a ≥ 0, b ≥ 0, a+ b ≤ 1.

work and motivation concerning this problem in computational optics. The complex pupil

function of the lens is expanded as a series involving the circle polynomials. The resulting

series with the appropriate Zernike coefficients represent the amplitude and phase of the

complex pupil function, including wavelength shift and defocusing. Through the analytic

expression for the expansion coefficients of the correlation of two circle polynomials, one

has direct access to the optical transfer function over the full bandwidth of the imaging

system. This mathematical device is very attractive when calculating, for instance, the

pattern transfer in high-resolution optical lithography. Hence, when m, n, m′, n′ are

integers such that n− |m| and n′ − |m′| are even and non-negative, and when we denote

for two functions Z,Z ′ ∈ L2(R2) the correlation

(Z ∗ ∗corr Z
′)(ν, µ) =

∫ ∫
Z(ν + ν1, µ+ µ1)Z

∗(ν1, µ1) dν1 dµ1 , (12)

we are interested in finding the numbers Γmm
′m′′

nn′n′′ such that

(n+ 1)(n′ + 1)

π2
(Zm

n ∗ ∗corr Z
m′

n′ )(ρ, ϑ) =
∑
n′′,m′′

n′′ + 1

4π
Γmm

′m′′

nn′n′′ Zm′′

n′′ (1
2
ρ, ϑ) . (13)

Note that Zm
n ∗ ∗corr Z

m′

n′ is supported by the disk around 0 of radius 2 and this requires

Zm′′

n′′ (1
2
ρ, ϑ) at the right-hand side of Eq. (13). This problem has been considered in the

optical context by Kintner and Sillitto in [25], [26] in the interest of computing the optical

transfer function (OTF) from the Zernike expansion of the pupil function. In [25], [26] a

number of results is obtained for the quantities Γ, but no closed-form solution is given as
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we obtain here. Moreover, the values of the left-hand side of Eq. (13) are expressed here

as integrals involving the product of three Bessel functions.

In optical simulations and/or experiments, a judicious choice of sampling points is im-

portant. It now turns out that replacing the radial variable ρ, 0 ≤ ρ ≤ 1, by cos x,

0 ≤ x ≤ π/2, has the effect that the variation of the radial polynomials R
|m|
n is spread

out uniformly over the x-range (see Fig. 5 in Section 7). This suggests an adequate pupil

sampling strategy. In [31], Subsec. 2.4, a matching procedure, using a separable set of

sampling points (ρk, ϑl) on the disk, for estimating the Zernike expansion coefficients of

a pupil from its values at the sampling points is proposed. It turns out that choosing the

radial sampling points as cosx, with uniformly spaced x between 0 and π/2, produces

near-optimal results, in the sense that the resulting method competes with Gaussian

quadrature for all relevant azimuthal orders m simultaneously. The fact that the vari-

ation of R
|m|
n is spread uniformly over the x-range suggests, furthermore, to apply this

substitution when integrals, involving the product of a radial polynomial and a function

obtained from the pupil function after azimuthal integration, have to be computed. All

this motivates consideration in Section 5 of the third problem: Finding the Fourier co-

efficients of the radial polynomials R
|m|
n in their cosine-representation. Here we aim at

finding the Fourier coefficients amnk in the representation

R|m|n (cosx) =

bn/2c∑
j=0

amn,n−2j cos(n− 2j)x . (14)

The amnk will be found explicitly, and from this result it is seen that they are all non-

negative. It then follows from Eq. (3) that

|R|m|n (ρ)| ≤
bn/2c∑
j=0

amn,n−2j = R|m|n (1) = 1 , 0 ≤ ρ ≤ 1 . (15)

That |R|m|n (ρ)| ≤ 1, 0 ≤ ρ ≤ 1, was proved by Szegö, see [32], 7.2.1 on p. 164 and

the references given there, and the non-negativity of the amnk was established earlier by

Koornwinder [33], Corollary 6.2 on p. 113, as was communicated to the author by Erik

Koelink [34]. The explicit form of the amnk does not seem to have been noted before. With

the explicit result for the amnk available, the computation of the above mentioned integrals

can be done directly and very explicitly by choosing the appropriate sampling points, of

the form cosx with equidistant x, and using, for instance, DCT-techniques. The fact that

the amnk, being all non-negative with sum over k equal to 1, are all small, renders this

approach intrinsic stability.

A word about the notation. We identify complex numbers z with their polar represen-

tation ρ eiϑ or their Cartesian representation ν + iµ, whatever is most convenient in a

particular setting. Thus we write things like

Zm
n (a+ ρ′ b eiϑ

′
) , Zm

n (ν, µ) (16)
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to denote Zm
n (ρ, ϑ) = R

|m|
n (ρ) eimϑ in which

a+ ρ′ b eiϑ
′
= ν + iµ = z = ρ eiϑ (17)

with a, b ≥ 0, a + b ≤ 1; 0 ≤ ρ′ ≤ 1, 0 ≤ ϑ′ < 2π; ν, µ ∈ R, ν2 + µ2 ≤ 1; 0 ≤ ρ ≤ 1,

0 ≤ ϑ < 2π.

3 Scaled-and-shifted Zernike circle polynomials

We shall prove the following result.

Theorem 3.1. Let a ≥ 0, b ≥ 0 with a + b ≤ 1, and let n, m be integers with

n− |m| even and non-negative. Then

Zm
n (a+ b ρ′ eiϑ

′
) =

∑
n′,m′

Kmm′

nn′ (a, b)Zm′

n′ (ρ′eiϑ
′
) , 0 ≤ ρ′ ≤ 1 , 0 ≤ ϑ′ ≤ 2π , (18)

where for n = |m|, |m|+ 2, ... , n′ = |m′|, |m′|+ 2, ...

Kmm′

nn′ (a, b) = Tmm
′

nn′ (a, b)− Tmm′n,n′+2(a, b) . (19)

Here

Tmm
′′

nn′′ = (−1)p−p
′′

∞∫
0

Jm−m′′(au) Jn′′(bu) Jn+1(u) du =

=



(q+p′′)! (p−p′′)!
(q−q′′)! (p+q′′)!

am−m
′′
bn
′′
P

(m−m′′,n′′)
p−p′′ (1−2A2)P

(m−m′′,n′′)
p−p′′ (2B2−1)

when n− n′′ ≥ m−m′′ ≥ 0 ,

(p+q′′)! (q−q′′)!
(p−p′′)! (q+p′′)!

am
′′−mbn

′′
P

(m′′−m,n′′)
q−q′′ (1−2A2)P

(m′′−m,n′′)
q−q′′ (2B2−1)

when n− n′′ ≥ m′′ −m ≥ 0 ,

0 otherwise .

(20)

In Eq. (20) we have written

p =
n−m

2
q =

n+m

2
, p′′ =

n′′ −m′′

2
, q′′ =

n′′ +m′′

2
. (21)

Furthermore, P
(γ,δ)
k (x) is the general Jacobi polynomial as in [18], Ch. 22 of degree k =

0, 1, ... corresponding to the weight function (1−x)γ(1+x)δ on the interval [−1, 1]. Finally,

1− 2A2 =
[
(1− (a+ b)2)(1− (a− b)2)

]1/2
− (a+ b)(a− b) , (22)
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2B2 − 1 = −
[
(1− (a+ b)2)(1− (a− b)2)

]1/2
− (a+ b)(a− b) . (23)

Alternatively, we have

A = sinα , B = sin β (24)

with α ≥ 0, β ≥ 0 such that α + β ≤ π/2 and

a = sinα cos β , b = cosα sin β . (25)

That is, A and B can be obtained from the geometrical picture in Fig. 2 where γ ∈ [π
2
, π]

is such that sin γ = a+ b.

a
βα

γ

b

AB

Figure 2: Geometric definition of angles α, β, γ and side lengths A, B from a ≥ 0, b ≥ 0,

a+ b ≤ 1 in accordance with Eqs. (24)–(25) and the rule of sines sinα
A

= sinβ
B

= sin γ
a+b

= 1 .

Proof. By completeness and orthogonality of the circle polynomials, see Eq. (4), we have

that

Kmm′

nn′ (a, b) =
n′ + 1

π

1∫
0

2π∫
0

Zm
n (a+ b ρ′ eiϑ

′
)(Zm′

n′ (ρ′eiϑ
′
))∗ ρ′ dρ′ dϑ′ . (26)

We write ρ eiϑ = a + ρ′ b eiϑ
′

in which ρ and ϑ are depending on ρ′, ϑ′ with 0 ≤ ρ′ ≤ 1,

0 ≤ ϑ′ ≤ 2π. Then we get

Kmm′

nn′ (a, b) =
n′ + 1

π

1∫
0

2π∫
0

R|m|n (ρ(ρ′, ϑ′)) eimϑ(ρ′,ϑ′)R
|m′|
n′ (ρ′) e−im

′ϑ′ ρ′ dρ′ dϑ′ . (27)

We now use Eq. (7) to rewrite R
|m|
n (ρ(ρ′, ϑ′)) in integral form and change the order of

integration; this is allowed on account of Appendix A where we show that the integral

on the right-hand side of Eq. (7) converges boundedly for all ρ ≥ 0 and uniformly, to
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(−1)
n−|m|

2 R
|m|
n (ρ), on any set [0, 1− ε] with ε > 0. Therefore,

Kmm′

nn′′ (a, b) =
n′ + 1

π
(−1)

n−|m|
2

∞∫
0

Jn+1(u) ·

·

 1∫
0


2π∫
0

J|m|(uρ(ρ′, ϑ′)) eimϑ(ρ′,ϑ′) e−im
′ϑ′ dϑ′

 ·R|m′|m (ρ′) ρ′ dρ′

 du .

(28)

U

V

W

γ

χ

Figure 3: Geometric relation between angles χ, γ and side lengths U , V , W for Eq. (29).

We use the addition theorem of Graf, see [18], 9.1.79 on p. 363,

Cl(W ) eilχ =
∞∑

k=−∞

Cl+k(U) Jk(V ) eikγ (29)

for integer l and C = J , where W , U , V , χ and γ are related as in the picture in Fig. 3.

With the variables ρ′, ϑ′, ρ, ϑ as in the integral in Eq. (28) and displayed in Fig. 1, we

use Eq. (29) with

W = u ρ(ρ′, ϑ′) , U = ua , V = u ρ′ b , χ = ϑ(ρ′, ϑ′) , γ = π − ϑ′, (30)

where we note by the comments in [18] after 9.1.79 and 9.1.80 on p. 363 that Eq. (29)

can be used without any further restriction on U , V , W . Then we get

Jm(uρ(ρ′, ϑ′)) eimϑ(ρ′,ϑ′) =
∞∑

k=−∞

Jm+k(ua) Jk(u ρ
′ b) eik(π−ϑ

′) . (31)
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Hence, in the case that m ≥ 0,

2π∫
0

Jm(uρ(ρ′, ϑ′)) eimϑ(ρ′,ϑ′) e−im
′ϑ′ dϑ′ =

= 2π(−1)m
′
Jm−m′(ua) J−m′(u ρ

′ b) = 2π Jm−m′(ua) Jm′(u ρ b) ,

(32)

and so

Kmm′

nn′ (a, b) = 2(n′ + 1)(−1)
n−m

2

∞∫
0

Jn+1(u) Jm−m′(ua) ·

·

 1∫
0

Jm′(u ρ
′ b)R

|m′|
n′ (ρ′) ρ′ dρ′

 du. (33)

Using Eq. (31) for m < 0 and noting that J|m|(z) = (−1)m Jm(z) while

(−1)
n−|m|

2 (−1)m = (−1)
n−m

2 (34)

for m < 0, it is seen that Eq. (33) holds for all integer m.

Next we use Eq. (6) with m′, n′, ub instead of m, n, 2πr to rewrite the integral in [ ] in

Eq. (33), and we obtain

Kmm′

nn′ (a, b) = 2(n′ + 1)(−1)
n+n′−m−m′

2

∞∫
0

Jn+1(u) Jm−m′(ua) Jn′+1(ub)

ub
du . (35)

Using [18], first item in 9.1.27 on p. 361,

Jn′+1(z)

z
=

1

2(n′ + 1)
(Jn′(z) + Jn′+2(z)) , (36)

it then follows that

Kmm′

nn′ (a, b) = (−1)
n+n′−m−m′

2

 ∞∫
0

Jn+1(u) Jm−m′(ua) Jn′(ub) du +

+

∞∫
0

Jn+1(u) Jm−m′(ua) Jn′+2(ub) du

 , (37)

and this establishes the equality in Eq. (19) with T ’s given in integral form by the first

identity in Eq. (20). The second identity in Eq. (20) follows from an application of a

result of Bailey, the administrative details of which are deferred to Section 6.
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We now list some special cases of Theorem 3.1.

— a = 0. This gives the result of the scaling theory as developed in [19], [20], also see

Eq. (8). To see this, note that in Eqs. (24)–(25) we have

A = a = α = 0 , B = b = sin β , (38)

and in Eq. (20) only the cases with m = m′ give non-zero results. Furthermore,

P
(0,n′)
k (1) = 1 , bn

′
P

(0,n′)
k (2b2 − 1) = Rn′

n′+2k(b) , (39)

and, see Eq. (21),

p+ q′ = p′ + q , p− p′ = q − q′ (40)

since m = m′. Plugging all this in into Eq. (20) yields Eq. (8).

— b = 0. Only n′ = 0 gives non-zero results in Eq. (20) and then also m′ = 0

(since |m′| ≤ n′). Now we have in Eqs. (24)–(25)

A = a = sinα , B = b = β = 0 , (41)

and, see Eq. (21),

q + p′ = q − q′ , p− p′ = p+ q′ (42)

since p′ = q′ = m′ = n′ = 0. Thus, when m ≥ 0, the first case in Eq. (20) yields

am P (m,0)
p (1− 2a2)P (m,0)

p (−1) = am P (0,m)
p (2a2 − 1) = Rm

m+2p(a) = Rm
n (a) , (43)

where we have used that

P
(γ,δ)
k (−x) = (−1)k P

(δ,γ)
k (x) , P (0,m)

p (1) = 1 . (44)

Therefore, we have in Eq. (18) with b = 0 the trivial representation

Zm
n (a) = Rm

n (a)Z0
0(ρ′) , 0 ≤ ρ′ ≤ 1 , 0 ≤ ϑ′ ≤ 2π , (45)

with a similar result in the case that m ≤ 0.

— a+ b = 1. We have in Eq. (24)–(25) in this limit case

α + β = π/2 , A = sinα , B = cosα , 1− 2A2 = 2B2 − 1 = cos 2α . (46)

As a consequence, all T ’s are non-negative.

A further interesting observation is that

Kmm′

nn′ (a, b) 6= 0⇒ |m′| ≤ n′ ≤ n− |m−m′| . (47)

12



Hence, a Zernike circle polynomials Zm
n can be identified from the set of integer pairs

(m′, n′) corresponding to non-zero coefficients when Zm
n is scaled and shifted. In Subsec-

tion 7.1, a detailed computation based on Theorem 3.1 of the Zernike expansion of the

scaled-and-shifted circle polynomial Z0
4 is presented.

The validity of the last identity for T in Theorem 3.1 will now be shown to extend to all

complex values of a and b. First assume that a ≥ 0, b ≥ 0, a + b ≤ 1. We have from

Eqs. (1)–(2) that

Zm
n (ρ eiϑ) = (ρ e±iϑ)|m| P

(0,|m|)
n−|m|

2

(2ρ2 − 1) , (48)

where ± = sgn(m). Since

ρ e±iϑ = a+ b ρ′ e±iϑ
′
, (49)

ρ2 = a2 + b2(ρ′)2 + 2ab ρ′ cosϑ′ , (50)

we have that

Zm
n (a+ b ρ′ eiϑ

′
) =

n+|m|
2∑

k=−n−|m|
2

pk(ρ
′ ; a, b) e±ikϑ

′
, (51)

where pk(ρ
′ ; a, b) depends polynomially on ρ′, a and b. On the other hand, from Eqs. (22)–

(23), we have that for any polynomial p

p(1− 2A2) p(2B2 − 1) = p(−x+ y)p(−x− y) (52)

is an even function of y = ((1−(a+b)2)(1−(a−b)2))1/2 for any value of x = (a+b)(a−b).
Consequently, the right-hand side of Eq. (52) contains only even powers of y. We conclude

that any of the T ’s considered in Eq. (20) depends polynomially on a and b. Hence, the

relation in Eq. (18) extends to all a, b ∈ C by analyticity in which Zm
n (a + bρ

′
eiϑ
′
) at the

right-hand side of Eq.(18) is to be replaced by the analytic extension Wm
n (a, b, ρ′, ϑ′) of

the right-hand side of Eq.(51) to all complex values of a, b and ρ′ with 0 ≤ ϑ′ < 2π. Note

that for general complex a, b, ρ′ and ϑ′, 0 ≤ ϑ′ < 2π,

Wm
n (a, b, ρ′, ϑ′) = Zm

n (a+ bρ′eiϑ
′
) (53)

does not need to hold even when |a + bρ′eiϑ
′ | ≤ 1. For instance, when α is real and

0 ≤ ρ′ ≤ 1, 0 ≤ ϑ′ < 2π (a = 0, b = exp(iα) in Eq.(53)), we have

Wm
n (0, eiα, ρ′, ϑ′) = (eiαρ′e±iϑ

′
)|m|R|m|n (eiαρ′) (54)

while

Zm
n (eiαρ′eiϑ

′
) = (ρ′e±i(ϑ

′+α))|m|R|m|n (ρ′) . (55)

We do have equality in Eq.(53) when a and b are real and ρ′ ≥ 0, 0 ≤ ϑ′ < 2π, and the

definition of Zm
n in Eqs.(1)-(2) is used with general ρ ≥ 0. Accordingly, Theorem 3.1 is

valid for all real a and b, with Zm
n defined as in Eqs.(1)-(2) with general ρ ≥ 0.

13



An important consequence of this extension is that now also the transformation matrices

(Kmm′

nn′ (−a/b, 1/b)) corresponding to the inverse transformation z 7→ −a/b + z/b can be

considered. Accordingly, when the degrees n, n′ are restricted to a finite set {0, ..., N}, the

matrices corresponding to z 7→ a+bz and z 7→ −a/b+z/b are each other’s inverse. Having

expanded the shift-and-scaled circle polynomials in terms of the orthogonal functions Zm′

n′ ,

we have now the opportunity to deal with the problem of assessing the condition of the set

of circle polynomials of maximal degree N as a linear system when they are restricted to an

arbitrary disk in the plane. Indeed, the condition number is given as the square-root of the

ratio of the largest and smallest eigenvalue of the Grammian matrix, and this Grammian

matrix and its inverse are expressible in terms of the appropriate transformation matrices

(Kmm′

nn′ (a, b)). Such an effort is already worthwhile for the case of restriction of circle

polynomials to a disk ρ ≤ ε with ε < 1 (pure scaling), and the author has found for this

case useful and simple estimates for the magnitude of these condition numbers. This case

is much simpler than the general case since the transformation matrices decouple per m,

while the issue of analytic extension can be considered on the level of Eq.(8) that extends

to all complex ε and ρ.

We finally note that the approach, via the basic NZ-result and Eq.(31), to prove Theo-

rem 3.1 can be used to derive an addition theorem in which the general scaled-and-shifted

circle polynomial Zm
n (a + bρ

′
eiθ
′
) is expressed as a finite Fourier series in θ

′
where the

Fourier coefficients are (again) in the form of the integral of the product of three Bessel

function. This addition theorem generalizes the familiar one for the Legendre polynomials

(m = 0).

4 Zernike expansion of the optical transfer function

In this section we assume that we have expanded the generalized complex pupil function

P (ρ, ϑ) (vanishing outside ρ ≤ 1) as

P (ρ, ϑ) =
∑
n,m

n+ 1

π
γmn Z

m
n (ρ eiϑ) , 0 ≤ ρ ≤ 1 , 0 ≤ ϑ < 2π , (56)

with coefficients γmn that can be obtained by using orthogonality of the Zm
n . Writing

ν + iµ = ρ eiϑ with ν, µ ∈ R and identifying P (ν, µ) ≡ P (ρ, ϑ), compare end of Section 2,

it is required to find the Zernike expansion of the OTF (optical transfer function)

(P ∗ ∗corr P )(ν, µ) =

∫ ∫
P (ν + ν1, µ+ µ1)P

∗(ν1, µ1) dν1 dµ1 (57)

that vanishes outside the set ν2 + µ2 ≤ 4, see Fig. 4. Thus, considering the expansion

in Eq. (56), it is required to compute (the Zernike expansion of) Zm
n ∗ ∗corr Z

m′

n′ for

integer n, m, n′, m′ with n− |m| and n′ − |m′| even and non-negative. We maintain the

p, q-notation of Eq. (21).
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Theorem 4.1. We have, with ν + iµ = ρ eiϑ and 0 ≤ ρ ≤ 2,

(Zm
n ∗ ∗corr Z

m′

n′ )(ν, µ) =

= 2π(−1)p−p
′
ei(m−m

′)ϑ

∞∫
0

Jn+1(u) Jn′+1(u) Jm−m′(ρu)

u
du , (58)

and

(n+ 1)(n′ + 1)

π2
(Zm

n ∗ ∗corr Z
m′

n′ )(ρ eiϑ) =
∑
n′′,m′′

n′′ + 1

4π
Γmm

′m′′

nn′n′′ Zm′′

n′′ (1
2
ρ eiϑ) , (59)

where Γ is non-vanishing for m′′ = m−m′ only, and in that case

Γmm
′m′′

nn′n′′ = 8(n+ 1)(n′ + 1)(−1)
n−n′−n′′

2

∞∫
0

Jn+1(u) Jn′+1(u) Jn′′+1(2u)
du

u2
. (60)

ρ

θ

O

Figure 4: Schematic representation of the autocorrelation function P ∗ ∗corr P of a non-

uniform pupil function P as an integral over the common region of two disks of unit radius

with centers at 0 and ρ eiϑ, respectively.
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Proof. We have by Parseval’s theorem and Eq. (5) that (F denotes the Fourier transform)

(Zm
n ∗ ∗corr Z

m′

n′ )(ν, µ) =

=

∫ ∫
F [Zm

n (ν + ·, µ+ ·)](x, y) (F Zm′

n′ )∗(x, y) dx dy =

=

∫ ∫
e−2πiνx−2πiµy(F Zm

n )(x, y) (F Zm′

n′ )∗(x, y) dx dy =

= in−n
′

∞∫
0

2π∫
0

Jn+1(2πr) Jn′+1(2πr)

r2
e−2πiρr cos(ϑ−ϕ) ei(m−m

′)ϕ r dr dϕ ,

(61)

where we have written x + iy = r eiϕ and where we use that νx + µy = ρ r cos(ϑ − ϕ).

Now
2π∫
0

e−2πiρr cos(ϑ−ϕ) eikϕ dϕ = 2π(−i)k eikϑ Jk(2πρr) , (62)

and inserting this into Eq. (61) with k = m −m′, noting that in−n
′
(−i)m−m′ = (−1)p−p

′

and substituting u = 2πr, we obtain Eq. (58).

Next to show Eq. (60), we note from orthogonality of the Zm′′

n′′ (1
2
ρ eiϑ), see Eq. (4), that

Γmm
′m′′

nn′n′′ =
(n+ 1)(n′ + 1)

π2

∫ ∫
(Zm

n ∗ ∗corr Z
m′

n′ )(ν, µ)(Zm′′

n′′ (1
2
ν, 1

2
µ))∗ dν dµ . (63)

Again using Parseval’s theorem, together with

F(Z ∗ ∗corr Z
′) = FZ · (FZ ′)∗ , (F Z ′′)(1

2
ν, 1

2
µ))(x, y) = 4(FZ ′′)(2x, 2y) , (64)

we obtain

Γmm
′m′′

nn′n′′ =

=
4(n+ 1)(n′ + 1)

π2

∫ ∫
(F Zm

n )(x, y)(F Zm′

n′ )∗(x, y)(F Zm′′

n′′ )∗(2x, 2y) dx dy .

(65)

Then inserting Eq. (5) and using polar coordinates x+ iy = r eiϕ, we obtain

Γmm
′m′′

nn′n′′ =
2(n+ 1)(n′ + 1)

π2
in−n

′−n′′
∞∫

0

Jn+1(2πr) Jn′+1(2πr) Jn′′+1(4πr)
dr

r2
·

·
2π∫
0

ei(m−m
′−m′′)ϕ dϕ . (66)
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The proof is completed by the substitution u = 2πr. Also note that n − n′ and n′′ have

the same parity when m′′ = m−m′.

Notes.

1. We have by Eq. (36) that

(Zm
n ∗ ∗corr Z

m′

n′ )(ν, µ) =
π

n′ + 1
(−1)p−p

′
ei(m−m

′)ϑ [Qm−m′
n+1,n′ +Qm−m′

n+1,n′+2] (67)

and, for the case that m′′ = m−m′,

Γmm
′m′′

nn′n′′ = 2(−1)
n−n′−n′′

2 [Qn′′+1
nn′ +Qn′′+1

n+2,n′ +Qn′′+1
n,n′+2 +Qn′′+1

n+2,n′+2] , (68)

where

Qk
ij(a, b, c) =

∞∫
0

Ji(au) Jj(bu) Jk(cu) du , (69)

and where the Q’s in Eq. (67) are evaluated at (a = 1, b = 1, c = ρ) and the Q’s in

Eq. (68) are evaluated at (a = 1, b = 1, c = 2).

2. We shall use in Section 6 a result of Bailey [35] to show the following. We

have Qn′′+1
nn′ = 0 when n′′ < n+ n′, and when n′′ ≥ n+ n′, we have

Qn′′+1
nn′ (1, 1, 2) =

=
(1

2
(n′′ + n+ n′))! (1

2
(n′′ − n− n′))!

(1
2
(n′′ + n− n′))! (1

2
(n′′ + n′ − n))!

(
1

2
)n+n′+1 P

(n,n′)
n′′−n−n′

2

(0)P
(n′,n)
n′′−n−n′

2

(0) ,

(70)

also see Note 2 at the end of Section 5.

3. From a result of Bailey [35] it also follows that Qm−m′
n+1,n′ and Qm−m′

n+1,n′+2 vanish

when ρ ≥ 2, but this is already clear from the fact that the Z’s are supported by the

unit disk. The result in Eq. (67) takes a more complicated form when 0 < ρ < 2, see

Section 6 for more details.

4. In Subsection 7.2, a detailed computation, based on Theorem 4.1, for the

OTF corresponding to P = Z0
0 is presented.

5 Cosine representation of the radial polynomials

We shall prove the following result.

Theorem 5.1. Let m, n be integers ≥ 0 with n − m even and non-negative.
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Then

Rm
n (cosx) =

bn/2c∑
j=0

an−2j cos(n− 2j)x , (71)

where for integer k ≥ 0 with n− k even and non-negative

ak = εk
p! q!

s! t!
(1

2
)l (P (γ,δ)

p (0))2 . (72)

Here ε0 = 1, ε1 = ε2 = ... = 2 (Neumann’s symbol), and

p =
n− l

2
, q =

n+ l

2
, s =

n− r
2

, t =
n+ r

2
, γ =

l − r
2

, δ =
l + r

2
, (73)

where

l = max(m, k) , r = min(m, k) . (74)

Proof. We have from Eq. (7)

Rm
n (cosx) = (−1)

n−m
2

∞∫
0

Jn+1(u) Jm(u cosx) du . (75)

Next we note that

Rm
n (cosx) = (cos x)m P

(0,m)
n−m

2

(cos 2x) (76)

has non-vanishing Fourier components bk e
ikx only for integer k of the same parity as m.

For such k we shall show that

1

2π

2π∫
0

Jm(u cosx) eikx dx = Jm−k
2

(1
2
u) Jm+k

2
(1

2
u) . (77)

Indeed, abbreviating “the coefficient of eimy in” by Cm, we have by the generating function

eiz sin y =
∞∑

m=−∞

Jm(z) eimy (78)
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that

1

2π

2π∫
0

Jm(u cosx) eikx dx =
1

2π
Cm

 2π∫
0

eiu cosx sin y eikx dx

 =

=
1

2π
Cm

 2π∫
0

e
1
2
iu sin(x+y) e−

1
2
iu sin(x−y) eikx dx

 =

=
1

2π
Cm

 ∞∑
m1,m2=−∞

Jm1(
1
2
u) Jm2(

1
2
u)

2π∫
0

eim1(x+y)−im2(x−y)+ikx dx

 =

= Cm

 ∞∑
m1, m2 = −∞,

m2 −m1 = k

Jm1(
1
2
u) Jm2(

1
2
u) ei(m1+m2)y

 =

= Jm−k
2

(1
2
u) Jm+k

2

(1
2
u) . (79)

Then we have at once from Eq.(75) that

1

2π

2π∫
0

Rm
n (cosx) eikx dx = (−1)

n−m
2

∞∫
0

Jn+1(u) Jm−k
2

(1
2
u) Jm+k

2
(1

2
u) du . (80)

When k ≥ 0 and m− k ≥ 0, we have then

1

2π

2π∫
0

Rm
n (cosx) eikx dx = 2(−1)

n−m
2 Qn+1

m−k
2

,m+k
2

(1, 1, 2) , (81)

see Eqs. (69) and (70). For this case, the result follows from Eq. (70), the fact that

P
(δ,γ)
p (0) = (−1)p P

(γ,δ)
p (0) and the fact that ak = a−k. When k ≥ 0 and m − k ≤ 0,

the result follows in a similar manner, by using that Jm−k
2

(1
2
u) = (−1)

m−k
2 J k−m

2
(1

2
u) and

Eq. (70) together with some easy administration with signs.

Notes.

1. It is straightforward to generalize the result of Theorem 5.1 to the representation

of Rm
n (v cosx) with 0 ≤ v ≤ 1. Now Qn+1

m−k
2

,m+k
2

(v, v, 2) appears in Eq. (81) and ak in

Eq. (72) becomes

ak(v) = εk
p! q!

s! t!
(1

2
v)l P (γ,δ)

p (x)P (γ,δ)
p (−x), (82)

where x = (1− v2)1/2. Also, see Section 6 and Eq. (20).

2. In using Theorem 5.1 it is convenient to note that

P (γ,δ)
p (0) =

1

2p

p∑
j=0

( p+ γ

j

)( p+ δ

p− j

)
(−1)p−j , (83)
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see [18], 22.3.1 on p. 775. Alternatively, P
(γ,δ)
p can be evaluated per Eq.(88) in terms of

the hypergeometric function 1F2.

3. In Subsection 7.3, a table is presented in which the radial polynomials Rm
n , in-

teger n,m with 0 ≤ n,m ≤ 8 and n −m ≥ 0 and even, are given in polynomial and in

the cosine representation of Theorem 5.1.

6 Infinite integrals involving the product of three Bessel func-

tions

We consider in this section the integrals

Aλµν(a, b, c) =

∞∫
0

Jλ(ax) Jµ(bx) Jν(cx) dx , (84)

where a, b, c > 0 and λ, µ, ν are non-negative integers. There is quite some literature

on these integrals and more general instances of them, see [36], Sec. 13.46 on pp. 411–

415, [35], [37], Sec. 19.3 on pp. 349–357, [38], Sec. 13.4.5 on pp. 331–335. These general

results can become quite unmanageable; it is the point of this section that, in the special

cases that we consider, often concise and manageable results appear, often in terms of the

radial polynomials themselves.

For the case that a+ b < c (and a > 0, b > 0, c > 0), the integral in Eq. (84) is given by

Bailey, [35], Eq. (8.1) (with a minor correction in which the cµ+ν+1 in the denominator at

the right-hand side should be replaced by c), as

∞∫
0

Jλ(cu sinα cos β) Jµ(cu cosα sin β) Jν(cu) du =

=
Γ(1

2
(1 + λ+ µ+ ν)) sinλ α cosλ β cosµ α sinµ β

cΓ(λ+ 1) Γ(µ+ 1) Γ(1
2
(1− λ− µ+ ν))

·

· 2F1[
1
2
(1 + λ+ µ− ν), 1

2
(1 + λ+ µ+ ν) ; λ+ 1 ; sin2 α] ·

· 2F1[
1
2
(1 + λ+ µ− ν), 1

2
(1 + λ+ µ+ ν) ; µ+ 1 ; sin2 β] , (85)

where α, β ≥ 0 are such that α + β < π/2. In Eq. (20) the choice

c = 1 , a = sinα cos β , b = cosα sin β ; λ = m−m′ , µ = n′ , ν = n+ 1 (86)
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is made. When m−m′ ≥ 0 and A = sinα, B = sin β, we have

∞∫
0

Jm−m′(au) Jn′(bu) Jn+1(u) du =

=
Γ(1

2
(n+ n′ +m−m′) + 1) am−m

′
bn
′

Γ(m−m′ + 1) Γ(n′ + 1) Γ(1
2
(n− n′ −m+m′) + 1)

·

· 1F2(
1
2
(n′ − n+m−m′), 1

2
(n+ n′ +m−m′) + 1 ; m−m′ + 1 ; A2) ·

· 1F2(
1
2
(n′ − n+m−m′), 1

2
(n+ n′ +m−m′) + 1 ; n′ + 1 ; B2) .

(87)

Recall that both n−m and n′ −m′ are even. Hence n− n−m′ +m′ is an even integer,

and when this even integer is negative the whole expression (87) vanishes due to the

Γ(1
2
(n− n′−m+m′) + 1) in the denominator. Using [18], 15.4.6 on p. 561 and 22.4.1 on

p. 777, we have for j = 0, 1, ... and γ, δ ≥ 0

1F2(−j, γ + 1 + δ + j ; γ + 1 ; x) =
j! Γ(γ + 1)

Γ(γ + 1 + j)
P

(γ,δ)
j (1− 2x) . (88)

Therefore,

1F2(
1
2
(n′ − n+m−m′), 1

2
(n+ n′ +m−m′) + 1 ; m−m′ + 1 ; A2) =

= 1F2(
1
2
(n′ − n+m−m′),m−m′ + 1 + n′ +

+ 1
2
(n− n′ −m+m′) ; m−m′ + 1 ; A2) =

=
(1

2
(n′ − n−m+m′))! (m−m′)!

(1
2
(n− n′ +m−m′))!

P
(m−m′,n′)
1
2
(n−n′−m+m′)

(1− 2A2) , (89)

and similarly

1F2(
1
2
(n′ − n+m−m′), 1

2
(n+ n′ +m−m′) + 1 ; n′ + 1 ; B2) =

=
(1

2
(n− n′ −m+m′))! (n′)!

(1
2
(n+ n′ −m+m′))!

P
(n′,m−m′)
1
2
(n−n′−m+m′)

(1− 2B2) . (90)

Using that P
(γ,δ)
j (−x) = (−1)j P

(δ,γ)
j (x) in Eq. (90) and some further administration with

Γ-functions and factorials then yields the first instance in Eq. (20). In the case that

m′ −m ≥ 0, we use that Jm−m′(z) = (−1)m−m
′
Jm′−m(z), and so we can apply the first

instance in Eq. (20) with m and m′ interchanged. This requires a careful administration

with q, p, q′, p′ as well as with the signs (−1)p−p
′

in Eq. (20). Doing so, the second

instance in Eq. (20) follows.

The result in Eq. (20) has been proved now for the case that a+ b < 1. However, the case

that a + b = 1, a > 0, b > 0, follows by taking the limit case in Eq. (20) and observing
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that the integral in Eq. (20) converges uniformly in (a, b) ∈ [ε, 1] × [ε, 1] for any ε > 0

since Jk(z) = O(z−1/2), z →∞ and Jk(z) is bounded in z ≥ 0.

We shall now consider the Q-integrals in Eqs. (69) and Eqs. (80), (81). These can be

treated in very much the same way as the integrals in Eq. (87) that arise from Eq. (85)

by making the choice as in Eq. (86). Note that we have here the limit case a = b = 1
2
c.

As to Eq. (70), we note that Qn′′+1
nn′ (1, 1, 2) = 1

2
Qn′′+1
nn′ (1

2
, 1

2
, 1). We thus need to replace

(m−m′, n′, n+ 1) by (n, n′, n′′ + 1) and take

a = b = 1
2

= A2 = B2 (91)

in Eq. (87). In particular, the Q-integral vanishes when n′ + n − n′′ < 0, and when

n′ + n − n′′ ≥ 0 the 1F2 that arise in Eqs. (89), (90) should be written down with the

replacement just mentioned and the choice in Eq. (91). This then yields Eq. (70). Next,

theQ-integral in Eq. (80) can be handled in a similar fashion by replacing (m−m′, n′, n+1)

by (1
2
(m− k), 1

2
(m+ k), n+ 1) with a, b, A, B as in Eq. (91).

The result for Zm
n ∗ ∗corrZm′

n′ in Eq.(67) involves the integrals Q in Eq.(69) with values of

the numbers a, b, c such that none of them is larger or equal than the sum of the other

two when 0 < ρ < 2. For such integrals, there is a result, see [36], Eq.(7) on p.413, in the

form of an infinite sum involving the product of three hypergeometric functions 2F1. This

formula takes a more tractable form, solely in terms of radial polynomials, when i = 0,

j = m, k = n+ 1 in Eq.(69) with n− |m| even and non-negative, see [28], Sec. 6 for more

details.

7 Examples

In this section we present worked out examples of our main results.

7.1 Example for Section 3

We use Theorem 3.1 for the computation of the Zernike expansion of the scaled-and-shifted

circle polynomial Z0
4 . We have

Z0
4(a+ b ρ′ eiϑ

′
) =

∑
n′,m′

K0m′

4n′ Z
m′

n′ (ρ′ eiϑ
′
) , (92)

where we have K0m′

4n′ Z
m′

n′ 6≡ 0 only if n′ and m′ have the same parity and |m′| ≤ n′ ≤ 4−m′,
see Eq. (47). This leaves us with the cases

|m′| = 0 , n′ = 0, 2, 4 ; |m′| = 1 , n′ = 1, 3 ; |m′| = 2 , n′ = 2 . (93)

Furthermore, K0,−m′
4n′ = K0m′

4n′ and so it is sufficient to do the computations for the cases

m′ = 0, 1, 2 in Eq. (93).
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m′ = 0. a. K00
40 = T 00

40 − T 00
42 by Eq. (19) with T 00

40 and T 00
42 given by Eq. (20),

middle case, as

T 00
40 [p = q = 2 ; p′ = q′ = 0] = P

(0,0)
2 (1− 2A2)P

(0,0)
2 (2B2 − 1) , (94)

T 00
42 [p = q = 2 ; p′ = q′ = 1] = b2 P

(0,2)
1 (1− 2A2)P

(0,2)
1 (2B2 − 1) . (95)

m′ = 0. b. K00
42 = T 00

42 − T 00
44 with T 00

42 given in Eq. (95) and T 00
44 given as

T 00
44 (p = q = 2 ; p′ = q′ = 2] = b4 P

(0,4)
0 (1− 2A2)P

(0,4)
0 (2B2 − 1) . (96)

m′ = 0. c. K00
42 = T 00

44 − T 00
46 with T 00

44 given in Eq. (96) and T 00
46 = 0.

m′ = 1. a. K01
41 = T 01

41 − T 01
43 by Eq. (19) with T 01

41 and T 01
43 given by Eq. (20),

middle case, as

T 01
41 [p = q = 2 ; p′ = 0, q′ = 1] = 3

2
ab P

(1,1)
1 (1− 2A2)P

(1,1)
1 (2B2 − 1) , (97)

T 01
43 [p = q = 2 ; p′ = 1, q′ = 2] = 4ab3 P

(1,3)
0 (1− 2A2)P

(1,3)
0 (2B2 − 1) . (98)

m′ = 1. b. K01
43 = T 01

43 − T 01
45 with T 01

43 given by Eq. (98) and T 01
45 = 0.

m′ = 2. a. K02
42 = T 02

42 − T 02
44 by Eq. (19) with T 02

42 given by Eq. (20), middle case,

as

T 02
42 = [p = q = 2 ; p′ = 0, q′ = 2] = 6a2b2 P

(2,2)
0 (1− 2A2)P

(2,2)
0 (2B2 − 1) , (99)

and T 02
44 = 0 since n− n′′ = 0 < 2 = |m−m′′|, see Eq. (20).

There remains to be calculated the right-hand side of Eqs. (94)–(99) with P
(γ,δ)
k the Jacobi

polynomials and 1 − 2A2 and 2B2 − 1 given in terms of a and b by Eqs. (22)–(23). In

general, one can use that

P
(γ,δ)
k (x) =

(k + γ)!

k! (k + γ + δ)!

k∑
l=0

(
k
l

) (k + l + γ + δ)!

2l(l + γ)!
(x− 1)l , (100)

together with P
(γ,δ)
k (−x) = (−1)k P

(δ,γ)
k (x). For the present purposes it is sufficient to

know that

P
(0,0)
2 (x) = 3

2
x2 − 1

2
; P

(0,δ)
1 (x) = (1 + 1

2
δ)x− 1

2
δ ; P

(γ,δ)
0 (x) = 1 . (101)
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Using Eqs. (101) and (22), (23) in Eqs. (94)–(99) yields

T 00
40 = 6a4 + 6b4 + 24a2b2 − 6a2 − 6b2 + 1 ,

T 00
42 = b2(12a2 + 4b2 − 3) , T 00

44 = b4 , (102)

T 01
41 = 3

2
ab(8a2 + 8b4 − 4) , T 01

43 = 4ab3 , (103)

T 02
42 = 6a2b2 . (104)

This then gives

K00
40 = 6a4 + 2b4 + 12a2b2 − 6a2 − 3b2 + 1 ,

K00
42 = 3b4 + 12a2b2 − 3b2 , K00

44 = b4 , (105)

K01
41 = 12a3b+ 8ab3 − 6ab , K01

43 = 4ab3 , (106)

K02
42 = 6a2b2 . (107)

Hence

Z0
4(a+ b ρ′ eiϑ

′
) = [(6a4 + 2b4 + 12a2b2 − 6a2 − 3b2 + 1)Z0

0 +

+ (3b4 + 12a2b2 − 3b2)Z0
2 + b4Z0

4 ] + [(12a3 + 8ab3 − 6ab)Z1
1 +

+ (12a3b+ 8ab3 − 6ab)Z−1
1 + 4ab3 Z1

3 + 4ab3 Z−1
3 ] +

+ [6a2b2 Z2
2 + 6a2b2]Z−2

2 , (108)

where the Zm′

n′ at the right-hand side of Eq. (108) should be evaluated at ρ′ eiϑ
′
.

It is obvious that for the expansion of a general Zm
n (a + b ρ′ eiϑ

′
) one can construct a

concise and efficient computer code on basis of Theorem 3.1, taking advantage of the

various shortcuts and reuse of intermediate results such as those encountered in passing

in the above example.

7.2 Example for Section 4

We compute, using Theorem 4.1 and the notes thereafter, the Zernike expansion of

Z0
0 ∗∗corr Z

0
0 . It is easy to show by elementary means, Z0

0 ∗∗corr Z
0
0 being the area of the

common part of two disks of radius 1 whose centers are at a distance ρ apart, that

(Z0
0 ∗ ∗corr Z

0
0)(ρ) = 2

[
arccos(1

2
ρ)− 1

2
ρ
√

1− (1
2
ρ)2
]
, 0 ≤ ρ ≤ 2 . (109)

From Eq. (58) we have

(Z0
0 ∗ ∗corr Z

0
0)(ρ) = 2π

∞∫
0

J2
1 (u) J0(ρu)

u
du . (110)

24



This integral can be found in [39], 2.12.42, item 31 on p. 232, and this would yield Eq. (109)

when the parentheses would have been placed correctly in this reference (a cross-check

with [39], 2.12.42, item 15 on p. 230, that arises when the integral on the right-hand side

of Eq. (110) is differentiated with respect to ρ, shows inconsistency of [39] in this matter).

We have m′′ = m − m′ = 0 and n′′ is even at the right-hand side of Eq. (59), and this

yields

(Z0
0 ∗ ∗corr Z

0
0)(ρ) =

π

4

∑
n′′ even,≥0

(n′′ + 1) Γ000
00n′′ Z

0
n′′(

1
2
ρ) , 0 ≤ ρ ≤ 2 , (111)

where

Γ000
00n′′ = 8(−1)−

1
2
n′′

∞∫
0

J1(u) J1(u) Jn′′+1(2u)
du

u2
=

= 2(−1)
1
2
n′′ [Qn′′+1

00 + 2Qn′′+1
02 +Qn′′+1

22 ] , (112)

with, see Eq.(70),

Qn′′+1
00 = 1

2
(P

(0,0)
1
2
n′′

(0))2 , n′′ = 0, 2, ... , (113)

Qn′′+1
02 = 1

8
P

(0,2)
1
2
n′′−1

(0)P
(2,0)
1
2
n′′−1

(0) , n′′ = 2, 4, ... , (114)

Qn′′+1
22 =

(1
2
n′′ + 2)! (1

2
n′′ − 2)!

((1
2
n′′)!)2

1
32

(
P

(2,2)
1
2
n′′−2

(0)
)2

, n′′ = 4, 6, ... , (115)

while Q1
02 and Q1

22, Q
3
22 vanish. Thus this yields the Zernike 0-expansion of the function

2(arccos τ − τ
√

1− τ 2 ) =
∑

n′′ even,≥0

C0
n′′ Z

0
n′′(τ =

1

2
ρ) , 0 ≤ τ ≤ 1 . (116)

The C0
n′′ are given in integral form as

C0
n′′ = 4(n′′ + 1)

1∫
0

(arccos τ − τ
√

1− τ 2)R0
n′′(τ) τ dτ ; (117)

the evaluation of the integrals in Eq. (117) becomes cumbersome, already for low values

of n′′ = 0, 2, ... . We compute from Eqs. (112)–(116) and C0
n′′ = π

4
(n′′ + 1) Γ000

00n′′

C0
0 =

π

4
, C0

2 = − 3π

8
, C0

4 =
5π

32
, ... . (118)

Unfortunately, see Eq.(83), there does not seem to exist a closed formula for the values

of P
(γ,δ)
k (0) as required in Eqs. (113)–(115), except for the case γ = δ = 0, see [18],

Table 22.4.1 on p. 777. Furthermore, the C0
n′′ decay only slowly because of non-smooth

behaviour of (Z0
0 ∗ ∗corr Z

0
0)(ν, µ) around (ν, µ) = (0, 0) and, to a lesser extent, around

ν2+µ2 = 4, where (Z0
0 ∗∗corr Z

0
0)(ρ) is continuous differentiable, but not twice differentiable

with respect to ρ.
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7.3 Examples for Section 5

We have computed, using Theorem 5.1, the Fourier coefficients ak in the cosine represen-

tation

Rm
n (cosx) =

bn/2c∑
j=0

an−2j cos(n− 2j)x (119)

for various cases of integer n, m with n, m non-negative and n−m even and non-negative.

The results are collected in Table I.
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Figure 5: Plot of (a) R0
80(ρ), 0 ≤ ρ ≤ 1, and (b) R0

80(cosx), 0 ≤ x ≤ π/2. The sampling

rate used to display (a) is not high enough to adequately represent the last peak but one

just before ρ = 1.

TABLE I.

Rm
n in polynomial and cosine representation with ρ = cosx and ck = cos kx

R0
0 : 1 = c0

R0
2 : 2ρ2 − 1 = c2

R0
4 : 6ρ4 − 6ρ2 + 1 = 1

4
c0 + 3

4
c4

R0
6 : 20ρ6 − 30ρ4 + 12ρ2 − 1 = 3

8
c2 + 5

8
c6

R0
8 : 70ρ8 − 140ρ6 + 90ρ4 − 20ρ2 + 1 = 9

64
c0 + 5

16
c4 + 35

64
c8

R1
1 : ρ = c1

R1
3 : 3ρ3 − 2ρ = 1

4
c1 + 3

4
c3

R1
5 : 10ρ5 − 12ρ3 + 3ρ = 1

4
c1 + 1

8
c3 + 5

8
c5

R1
7 : 35ρ7 − 60ρ5 + 30ρ3 − 4ρ = 9

64
c1 + 15

64
c3 + 5

64
c5 + 35

64
c7

R2
2 : ρ2 = 1

2
c0 + 1

2
c2

R2
4 : 4ρ4 − 3ρ2 = 1

2
c2 + 1

2
c4

R2
6 : 15ρ6 − 20ρ4 + 6ρ2 = 3

16
c0 + 1

32
c2 + 5

16
c4 + 15

32
c6
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R2
8 : 56ρ8 − 105ρ6 + 60ρ4 − 10ρ2 = 9

32
c2 + 1

16
c4 + 7

32
c6 + 7

16
c8

R3
3 : ρ3 = 3

4
c1 + 1

4
c3

R3
5 : 5ρ5 − 4ρ3 = 1

8
c1 + 9

16
c3 + 5

16
c5

R3
7 : 21ρ7 − 30ρ5 + 10ρ3 = 15

64
c1 + 1

64
c3 + 27

64
c5 + 21

64
c7

R4
4 : ρ4 = 3

8
c0 + 1

2
c2 + 1

8
c4

R4
6 : 6ρ6 − 5ρ4 = 5

16
c2 + 1

2
c4 + 3

16
c6

R4
8 : 28ρ8 − 42ρ6 + 15ρ4 = 5

32
c0 + 1

16
c2 + 1

8
c4 + 7

16
c6 + 7

32
c8

R5
5 : ρ5 = 5

8
c1 + 5

16
c3 + 1

16
c5

R5
7 : 7ρ7 − 6ρ5 = 5

64
c1 + 27

64
c3 + 25

64
c5 + 7

64
c7

R6
6 : ρ6 = 5

16
c0 + 15

32
c2 + 3

16
c4 + 1

32
c6

R6
8 : 8ρ8 − 7ρ6 = 7

32
c2 + 7

16
c4 + 9

32
c6 + 1

16
c8

R7
7 : ρ7 = 35

64
c1 + 21

64
c3 + 7

64
c5 + 1

64
c7

R8
8 : ρ8 = 35

128
c0 + 7

16
c2 + 7

32
c4 + 1

16
c6 + 1

128
c8

In Fig. 5 we have displayed R0
80(ρ), 0 ≤ ρ ≤ 1, and R0

80(cosx), 0 ≤ x ≤ π/2 to

illustrate the point that the variation of the radial polynomial is more or less spread out

uniformly over the x-interval.

8 Conclusion and outlook

In this paper we have used the basic identity in the classical Nijboer-Zernike theory of

optical aberrations to prove three new analytic results for the Zernike circle polynomials,

and we have indicated the relevance of these new results for the fields of optical lithogra-

phy, ophthalmology and computational optics. The first result is an analytic formula for

the expansion coefficients of a circle polynomial Zm
n when it is considered on an arbitrary

disk, contained in the nominal disk ρ ≤ 1, and expanded in terms of the orthogonal circle

polynomials pertaining to this smaller disk. This result embodies an analytic solution

of the much studied problem in lithography and ophthalmology of how the expansion

coefficients of a non-uniform complex pupil function change when this function is con-

sidered on sub-disks of the nominal disk. It would be interesting to see how this result

generalizes when restriction to subdomains with elliptic, rather than circular, boundaries

were considered. At present, there are no results for this more general situation, since the

very choice of orthogonal polynomials on these more general subdomains is a non-trivial

issue. The second result concerns the computation of the Zernike expansion of the optical

transfer function (OTF) from the Zernike expansion of the complex pupil function that
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yields the OTF in the form of an autocorrelation function. This problem has received

attention from researchers in the optics community for more than half a century, but a

complete analytic solution was not presented yet. It is expected that the analytic solu-

tion presented in this paper will contribute, for instance, to faster calculation schemes

for pattern transfer in high-resolution optical lithography and to faster operation of pupil

function retrieval schemes in optics. The third result concerns the analytic determination

of the Fourier coefficients of the radial polynomials R
|m|
n (ρ) when the radial variable ρ,

0 ≤ ρ ≤ 1, is replaced by cosx, 0 ≤ x ≤ π/2. The explicit form of these coefficients

presented in this paper shows that they are all non-negative and small. Thus, this result

offers, in conjunction with FFT-methods, an attractive prospect for methods to perform

the radial integration in diffraction integrals.

The analytic formulas given in this paper for the quantities just mentioned contain fac-

torials, monomials and Jacobi polynomials only, and are thus readily and numerically

efficiently implemented. For all these three results, the quantities of interest have first

been expressed, using the basic result of the Nijboer-Zernike theory, as integrals involv-

ing the product of three Bessel functions. In all cases, it appeared that the expressions

for these integrals, as given in existing literature, can be reduced to the simpler form

described above, making the application of the results of this paper quite feasible.

A Convergence of the integral in Eq. (7)

We shall show in this appendix that for non-negative integers n and m with n−m even

and non-negative, the integral

v∫
0

Jn+1(u) Jm(ρu) du (120)

as v →∞ converges to (−1)
n−m

2 Rm
n (ρ) for 0 ≤ ρ < 1 and to 0 for ρ > 1, and that it does

so boundedly in ρ ≥ 0 and uniformly in ρ outside (1 − ε, 1 + ε) for any ε > 0. We have

from [18], 9.2.1 on p. 364

Jk(u) =

√
2

πu
cos(u− 1

2
kπ − 1

4
π) +O(u−3/2) , u→∞ , (121)

and Jk(u) is smooth and bounded on u ≥ 0. Therefore, to show bounded and uniform

convergence of the integral in Eq. (120) as v → ∞ on the appropriate sets of ρ, it is

sufficient to establish this for the integral

2

π

v∫
0

1

u
cos(u− 1

2
(n+ 1) π − 1

4
π) cos(ρu− 1

2
mπ − 1

4
π) du . (122)

Once this has been established, the issue of to what the integral in Eq. (120) converges

is settled by the remark that Zm
n and 2πin exp(imϕ) Jn+1(2πr)/2πr, see Eq. (5), are 2D
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Fourier pairs so that Fourier inversion of the latter function yields the former in L2(R)-

sense while the former function is smooth outside the set ν2 + µ2 = 1.

Using elementary trigonometric identities, we have

2

π

v∫
1

1

u
cos(u− 1

2
(n+ 1) π − 1

4
π) cos(ρu− 1

2
mπ − 1

4
π) du =

=
(−1)p

π

v∫
1

sin(1− ρ)u

u
du− (−1)q

π

v∫
1

cos(1 + ρ)u

u
du =

=
(−1)p

π

(1−ρ)v∫
1−ρ

sinx

x
dx− (−1)q

π

(1+ρ)v∫
1+ρ

cosx

x
dx , (123)

where we have set p = 1
2

(n−m), q = 1
2

(n+m). Since both functions

y∫
0

sinx

x
dx , y ≥ 0 ;

y∫
1

cosx

x
dx , y ≥ 1 , (124)

are bounded and have a finite limit as y → ∞, the convergence of the integral in

Eq. (122) is bounded in ρ ≥ 0 and uniform in any closed set of ρ’s not containing 1. The

assumption that n and m have same parity is essential:
∞∫
1

1
u

cos2 u du =∞.
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[21] S.A. Comastri, L.I. Perez, G.D. Pérez, G. Martin and K. Bastida, “Zernike expansion

coefficients: rescaling and decentring for different pupils and evaluation of corneal

aberrations”, J. Opt. A: Pure Appl. Opt. 9, 209–221 (2007).

[22] A.J.E.M. Janssen and P. Dirksen, “Computing Zernike polynomials of arbitrary de-

gree using the discrete Fourier transform”, J. Europ. Opt. Soc. Rap. Public. 2, 07012

(2007).

[23] C.J.R. Sheppard, S. Campbell and M.D. Hirschhorn, “Zernike expansion of separable

functions of Cartesian coordinates”, Appl. Opt. 43, 3963–3966 (2004).

[24] A.M. Cormack, “Representation of a function by its line integrals, with some radio-

logical applications, II”, J. Appl. Phys. 35, 2908–2913 (1964).

[25] E.C. Kintner and R.M. Sillitto, “A new “analytic” method for computing the optical

transfer function”, Optica Acta 23, 607–619 (1976).

[26] E.C. Kintner, “An analytic recurrence for computing the cross-multiplication coeffi-

cients in an analytic OTF method”, Optica Acta 24, 1237–1246 (1977).

[27] R.M. Aarts and A.J.E.M. Janssen, “Acoustic holography for piston sound radiation

with non-uniform velocity profiles”, 17th International Congress on Sound & Vibra-

tion, 1-6, Cairo, 18-22 July, 2010.

[28] A.J.E.M. Janssen, “Zernike circle polynomials and infinite integrals involving the

product of Bessel functions”, arXiv:1007.0667v1, 5 July, 2010; also available from

Library of Eindhoven University of Technology ISBN: 978-90-386-2290-3.

[29] H.H. Hopkins, “The numerical evaluation of the frequency response of optical sys-

tems”, Proc. Phys. Soc. London B 70, 1002–1005 (1957).

[30] J. Macdonald, “The calculation of the optical transfer function”, Optica Acta 18,

269–290 (1971).

31



[31] O.T.A. Janssen, S. van Haver, A.J.E.M. Janssen, H.P. Urbach and S.F. Pereira,

“Extended Nijboer-Zernike (ENZ) based mask imaging: Efficient coupling of electro-

magnetic field solvers and the ENZ imaging algorithm”, Proc. SPIE 6924, 692410

(2008).
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[37] A. Erdélyi et al., Tables of integral transforms, Vol. 2 (McGraw-Hill, New York,

1954).

[38] Y.L. Luke, Integrals of Bessel functions (McGraw-Hill, New York, 1962).

[39] A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, Integrals and Series, Volume 2:

Special Functions (Gordon and Breach Science, New York, 1986).

32


