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1. INTRODUCTION 

 
1.1. Early history of nanoparticles 

  

Nanotechnology, nanoscience, nanostructure, nanoparticles are now of the 

most widely used words in scientific literature. Nanoscale materials are very attractive 

for possible machine, which will be able to travel through the human body and repair 

damaged tissues or supercomputers which small enough to fit in shirt pocket. 

However, nanostructure materials have potentials application in many other areas, 

such as biological detection, controlled drug delivery, low-threshold laser, optical 

filters, and also sensors, among others.1,2  

In fact, metal nanoparticles have been used a long time ago e.g. Damascus 

steel which used to make sword and Glass Lycurgus Cup which has unique color.3-5 

Even though, nanoparticles have been used along time ago, but no body realized 

that it reached nanoparticles scale. It is like just unintentionally technique to produce 

nanoparticles. After the modern device developed to analyzed material in nanoscale, 

scientist can prove nanotechnology has been developed and become an interesting 

subject for science today.   

 

 

 

Fig 1.1 Nanowires in Damascus steel. The dark stripes indicate 
nanowires of several hundreds nanometers in length 
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Blade made from Damascus steel produce from about 500 AD in Damascus.6 

It become renowned because (1) the extreme strength (2) The sharpness (3) the 

resilience and (4) the beauty of their characteristic surface pattern7,8.The fascinating 

legend story it can cut clean through rock and still remain sharp enough to cut 

through a silk scarf dropped on the blade. Many scientist try to reveal this special 

properties and encounter multiwalled carbon nanotube in steel (MWNTs)5,9. 

The famous Glass Lycurgus Cup from the Romans times (4th century AD) 

contains silver and gold nanoparticles in approximate ratio 7:3 which have size 

diameter about 70 nm 10,11. The presence of these metal nanoparticles gives special 

color display for the glass. When viewed in reflected light, for example in daylight, it 

appears green. However, when a light is shone into the cup and transmitted through 

the glass, it appears red. This glass can still be seen in British museum. 

 

  

 

Fig. 1.2 Lycurgus Cup (a) green color, if light source comes 
from outside of the cup (b) red color, if the light source comes 
from inside of the cup. 

 

Nanoparticles (1-200nm) have unique electronic, optical, and catalytic 

properties. Its properties is also connected to the method how to prepare 

nanoparticles to control the shape and size of nanoparticles, provide exciting building 

blocks for nanoscaled assemblies, structure, and devices. Miniaturization of 

structures by mechanic methods and electron-beam lithography is reaching the 
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theoretical limits of about 50 nm. For further miniaturization of chemical object, 

alternative approaches must be developed and also to find the applications12-14. 

 

1.2. Synthesis of metallic nanoparticles 

 
Many colloidal nanoparticles synthesis have been known15-17, but recent 

worked is  dedicated to nanoparticles syntheses specifically for the construction of 

devices and nanostructures. These particles may consist of a particular material, be 

of a particular size, or have specialized surface functionality. It has even become 

possible to have some degree of control over the nanoparticles shape18,19. Stability of 

nanoparticles is also become one of the point. Special precautions have to be taken 

to avoid their aggregation or precipitation. Glassware is cleaned thoroughly, while 

reagent solutions and solvents are all filtered and of the highest purity. And 

syntheses sometimes also involve the use of a stabilizing agent, which associates 

with the surface of the particle, provides charge or solubility properties to keep the 

nanoparticles suspended, and thereby prevents their aggregation. 

 

1.2.1.  Reductive synthesis of noble metal colloids 

 

The simplest and by far the most commonly used preparation for gold 

nanoparticles is the aqueous reduction of HAuCl4 by sodium citrate at boiling 

point17,20. Although sodium citrate is the most common reducing agent, metal 

nanoparticles can also be synthesized by the use of borohydride and other reducing 

agents21,22. The application of alcohols as reductants for the production of platinum 

nanoparticles allows control over the size of the particles: Higher alcohols yield larger 

particles, which indicates that a more rapid reduction rate of the [PtCl6]
2- ions is an 

important factor for the production of smaller particles23. 

Particles synthesized by citrate reduction are nearly monodisperse spheres of 

a size controlled by the initial reagent concentrations (Fig. 1.3).24,25 They have a 

negative surface charge as a consequence of a weakly bound citrate coating and are 

easily characterized by their plasmon absorbance band (at about 520 nm for 15 nm 

particles). Nanoparticles from other noble metals may also be prepared by citrate 
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reduction, such as silver particles from AgNO3, palladium from H2[PdCl4], and 

platinum from H2[PtCl6].
26-28 The similarities in the preparation of these different metal 

colloids allows the synthesis of mixed-metal particles, which may have functionality 

different from each individual metal29. For example, the reduction of suitable mixtures 

of noble metal salts can lead to alloy or mixed grain particles. 

 

 

 

Fig. 1.3. Gold nanoparticles synthesized by citrate reduction.  

 

More interestingly, composite particles can be built up in shells by the 

synthesis of a small colloidal nuclei followed by its enlargement with a different metal: 

a gold colloid can be covered with silver30,31.Well defined core/shell organosilicon 

micronetworks with topologically trapped gold particles have also been prepared 

using a molecular reactor technique.32 Metallic nanoparticles can be capped with 

various shells, such as conductive, nonmetallic graphite26, or semiconductive CdS33. 

This capping can be done in situ if the reductive formation of nanoparticles is 

performed in the presence of the shell-forming material26 or the shell can be 

organized later through a chemical reaction on the surface of the nanoparticles33. 

The enlargement of a nanoparticle can take place even after the colloidal seed 

particle has been immobilized on a substrate. In such cases, a colloid-functionalized 

glass substrate is introduced to a gold-34 or silver-35 depositing solution, to thereby 

enlarge the surface-bound nanoparticles and provide a method of control over their 
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size and density. Such core-shell particles have been studied extensively because 

their properties can differ from those of the core or shell materials32,36. The synthesis 

of particles that bear surface functionality is desirable for the purpose of 

nanoparticles handling and the construction of functional architectures. This 

functionalization of the nanoparticles surface can be accomplished during the 

nanoparticles synthesis by the addition of a suitable agent to the reaction vessel. As 

the nanoparticles form, the surface functionalization agent attaches to the 

nanoparticles, which also imparts an enhanced stability and gives additional control 

over their size. The borohydride reduction of HAuCl4 in the presence of (g-

mercaptopropyl)-trimethoxysilane gives rise to very small (1-5 nm) gold nanoparticles 

which bear a surface silane functionality37. Other borohydride reductions in the 

presence of thiols38 have produced nanoparticles with a surface functionality from 

amines to carboxylic acids. Where the surface functionalization agent is not water 

soluble, a two phase synthesis can be used, as in the preparation of long chain 

alkanethiol surfaces on gold colloids39,40. The surface functionalization agent does 

not even need to bind covalently with the nanoparticles. Nanoparticles have been 

synthesized in the presence of dendrimeric41,42  and polymeric43-45 stabilizers, and 

have been formed in the cavities of micelles46,47 and silicate sols48,49. Gold and silver 

nanoparticles functionalized by adsorbed disulfides have also been generated in the 

presence of sodium borohydride50. Disulfides offer the advantage that asymmetrical 

disulfides, that have two distinct functional groups (RSSR'), may be used, which 

enables the possibility of generating mixed, self-assembled monolayers (SAMs) that 

possess a homogeneous distribution of functional groups or chain lengths. The use 

of disulfides also allows the functionalization of nanoparticles with groups such as 

quinones that are otherwise incompatible with thiols (normally, a thiol would be used 

rather than a disulfide). The application of different capping materials or the 

preparation of mixed bimetallic particles allows control of the size and shape of the 

nanoparticles.51-53 For example, platinum nanoparticles with cubic, tetrahedral, 

polyhedral, or irregular-prismatic shapes could be generated selectively when the 

initial concentrations of [PtCl6]
2+ and polyacrylic acid were varied for the reductive 

particle formation51. 
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1.2.2. Synthesis of semiconductor nanoparticles 

 

The production of semiconductor nanoparticles and their organization on solid 

supports is of great importance for the fabrication of nanoelectronic devices. The 

quantum properties of these particles have potential uses in information-processing 

devices and, in recognition of this, they are often called “Q particles”54. By far the 

most studied of these are cadmium sulfide particles55,56. These and related colloidal 

particles (for example, PbS57,58, Ag2S
59,60, CdSe61,62,  and TiO2

63,64 can be prepared 

relatively easily by using inverse micelles as nanoscale reaction vessels65. Firstly, 

solutions of inverse micelles are prepared, one containing the metal salt (usually as 

the chloride) and the other containing Na2S (or Na2Se for the production of CdSe, 

and so forth). These solutions are mixed together and nanoparticles form as the 

different micelles exchange their contents. Alternatively, the sulfide can be introduced 

as H2S gas. After the particles are formed, they may be stabilized by the addition of a 

thiol, which bonds to the surface of the nanoparticles and may also contain other 

functionalities if a mixture of thiols is used, nanoparticles with a mixture of surface 

groups are produced56,58. The particles may be isolated after disrupting the micelles 

(provided that this has not already taken place in the stabilization step). The 

synthesis of CdS nanoparticles gives a highly monodisperse product but for some 

other materials, such as PbS, the procedure gives particles with a much wider size 

distribution. Several metal-sulfide nanoparticles have also been synthesized by a 

similar route involving a polymer (rather than micellar) stabilizer66, and related 

cadmium compounds have been synthesized from organometallic reagents67. Other 

semiconductor nanoparticles of interest include gallium nitride68,69 and titania; 

nanoparticles of the latter can be synthesized either by precipitation70 or in micelles71. 

 

1.2.3. Other techniques for nanoparticle synthesis 

 

Smaller nanoparticles may be formed in the gas phase72,73, or by ablation 

using high peak-power laser pulses74,75, while others have been etched76,77, 

electrodeposited78, or synthesized directly onto surfaces79,80, or in Langmuir-Blodgett 

(LB) layers81. These techniques cater for the specialized needs of researchers who 
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require colloids of particular sizes, shapes, or materials. For the cheap and easy 

synthesis of simple nanoparticles, there is no substitute for solution-state synthesis, 

which can be used to prepare bulk quantities without the need for specialized 

laboratory apparatus. 

 

1.3.  Non-analytical applications of nanoparticles 

 

Nanoparticles are important in a diverse set of fields, and they can generally 

be classified as two type i.e. engineered or nonengineered. Engineered nanoparticles   

are intentionally designed and created with physical properties tailored to meet the 

need of specific application. They can be end product in and of themselves, as in the 

case of quantum dots or pharmaceutical drugs, sensor for special purposes, or they 

can be component later incorporated into separate end products, such as carbon 

black in rubber products. Either way the particle’s physical properties are extremely 

important to their performance or the performance of any product into which they are 

ultimately incorporated. Nonengineered nanoparticles, on the other hand, are 

unintentionally generated nanoparticles, such as atmospheric nanoparticles created 

during combustion. With nonengineered nanoparticles, physical properties also play 

importance role as they determine whether or not ill effect will occur as a result of the 

presence of these particles. For non analytical application nanoparticles based 

materials have been developed for drug and gene delivery82, tissue engineering83, 

tumor destruction84, separation and purification of biological molecules and cell85, and 

also - Phagokinetic studies86. 

 

1.3.1. Tissue engineering 

 

Natural bone surface is quite often contains features about 100 nm across. If 

the surface of an artificial bone implant were left smooth, the body would try to reject 

it. So production of a fibrous tissue covering the surface of the implant is preferable to 

get smooth surface. This thin layer will reduce the bone-implant contact, which may 

result in loosening of the implant and further inflammation. Nano-sized features can 

help to get smooth surface. It was demonstrated the hip or knee prosthesis which 
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produced from nano-sized particles could reduce the chances of rejection as well as 

to stimulate the production of osteoblasts. The osteoblasts are the cells which are 

responsible for the growth of the bone matrix and are found on the advancing surface 

of the developing bone. The effect was demonstrated with polymeric, ceramic and, 

metal materials87. More than 90% of the human bone cells from suspension adhered 

to the nanostructured metal surface 88. Using nano-sized would allow to design a 

more durable and longer lasting hip or knee replacements and to reduce the chances 

of the implant getting loose.  

 

1.3.2. Cancer therapy 

 

Photodynamic cancer therapy is based on the destruction of the cancer cells 

by laser generated singlet oxygen, which is cytotoxic. A greater quantity of a special 

dye that to generate the singlet oxygen is taken in by the cancer cells when 

compared with a healthy tissue.  Hence, a given laser radiation to the cell will only 

destroy the cancer cells. Unfortunately, there is a side effect of this treatment. The 

remaining dye molecules migrate to the skin and the eyes and make the patient very 

sensitive to the daylight exposure. This effect can last for up to six weeks. An attempt 

to avoid this affect was enclosed the dye molecules inside a porous nanoparticles89. 

The dye stayed trapped inside the nanoparticles and did not spread to the other parts 

of the body. Even though the dye was trapped in the nanoparticles, the ability to 

generate oxygen was not effected due to the size of pore is about 1 nm which can 

freely allow the oxygen to diffuse out. 

 

1.3.3.  Manipulation of cells and biomolecules 

 

Functionalized magnetic nanoparticles have found many applications including 

cell separation and probing 90. Most of the magnetic particles studied so far are 

spherical, which somewhat limits the possibilities to make these nanoparticles 

multifunctional. Alternative cylindrically shaped nanoparticles can be created by 

employing metal electrodeposition into nanoporous alumina template91. Depending 

on the properties of the template, nanocylinder radius can be selected in the range of 
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5 to 500 nm while their length can be as big as 60 μm. By sequentially depositing 

various thicknesses of different metals, the structure and the magnetic properties of 

individual cylinders can be tuned widely. As surface chemistry for functionalisation of 

metal surfaces is well developed, different ligands can be selectively attached to 

different segments. For example, porphyrins with thiol or carboxyl linkers were 

simultaneously attached to the gold or nickel segments respectively. Thus, it is 

possible to produce magnetic nanowires with spatially segregated fluorescent parts. 

In addition, because of the large aspect ratios, the residual magnetisation of these 

nanowires can be high. Hence, weaker magnetic field can be used to drive them. It 

has been shown that a self-assembly of magnetic nanowires in suspension can be 

controlled by weak external magnetic fields. This would potentially allow controlling 

cell assembly in different shapes and forms. Moreover, an external magnetic field can 

be combined with a lithographically defined magnetic pattern ("magnetic trapping"). 

 

1.3.4. Commercial exploration 

 
Some of the companies involved in the development and commercialisation of 

nanomaterials  (Table 1)92 .   

 
Table 1: Examples of Companies commercialising nanomaterials for 
bio- and medical applications. 
 

 

Company 
Major area of 

activity 
Technology 

Advectus Life Sciences 

Inc. 

Drug delivery Polymeric nanoparticles 

engineered to carry antitumour 

drug across the blood-brain 

barrier 

Alnis Biosciences, Inc. Bio-pharmaceutical Biodegradable polymeric 

nanoparticles for drug 

delivery 
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Argonide Membrane filtration Nanoporous ceramic materials 

for endotoxin 

filtration, orthopaedic and 

dental implants, DNA and 

protein separation 

BASF  Toothpaste  Hydroxyapatite nanoparticles 

seems to improve dental 

surface 

Biophan Technologies, 

Inc. 

MRI shielding Nanomagnetic/carbon 

composite materials to shield 

medical devices from RF fields 

Capsulution 

NanoScience AG 

Pharmaceutical 

coatings to improve 

solubility of drugs 

Layer-by-layer poly-electrolyte 

coatings, 8–50 nm 

 

Dynal Biotech  

 

 Magnetic beads 

Eiffel Technologies Drug delivery Reducing size of the drug 

particles to 50–100 nm. 

EnviroSystems, Inc. Surface 

desinfectsant  

Nanoemulsions 

Evident Technologies Luminescent 

biomarkers 

Semiconductor quantum dots 

with amine or carboxyl groups 

on the surface, emission from 

350 to 2500 nm  

Immunicon Tarcking and 

separation of 

different cell types  

magnetic core surrounded by a 

polymeric layer coated with 

antibodies for capturing cells 

KES Science and 

Technology, Inc. 

AiroCide filters  

 

Nano-TiO2 to destroy airborne 

pathogens 

NanoBio Cortporation Pharmaceutical 

Antimicrobal  

nano-emulsions 
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NanoCarrier Co., Ltd  

 

Drug delivery  Micellar nanoparticles for 

encapsulation of drugs, 

proteins, DNA 

NanoPharm AG  

 

Drug delivery Polybutilcyanoacrylate 

nanoparticles are coated with 

drugs and then with surfactant, 

can go across the blood-brain 

barrier 

Nanoplex Technologies, 

Inc: 

Nanobarcodes for 

bioanalysis 

 

Nanoprobes, Inc.  

 

Gold nanoparticles 

for biological 

markers  

Gold nanoparticles bio-

conjugates for TEM and/or 

fluorescent microscopy 

Nanoshpere, Inc.  

 

Gold biomarkers  DNA barcode attached to each 

nanoprobe for identification 

purposes, PCR is used to 

amplify the signal; also 

catalytic silver deposition to 

amplify the 

signal using surface plasmon 

resonance 

NanoMed 

Pharmaceutical, Inc.  

Drug delivery  Nanoparticles for drug delivery 

Oxonica Ltd  

 

Sunscreens  Doped transparent 

nanoparticles to effectively 

absorb harmful UV and 

convert it into heat 

PSiVida Ltd  

 

Tissue engineering, 

implants, drugs and 

gene delivery, 

bio-filtration 

Exploiting material properties 

of nanostructured 

porous silicone 
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Smith & Nephew  

 

Acticoat bandages  Nanocrystal silver is highly 

toxic to pathogenes 

QuantumDot Corporation  

 

Luminescent 

biomarkers  

Bioconjugated semiconductor 

quantum dots 

 

 

1.4. Analytical applications of nanoparticles 

 

The unique physical and chemical properties of nanostructured materials 

provide excellent prospects for interfacing biological recognition events with 

electronic signal transduction and for designing a new generation of bioelectronic 

devices with novel functions. Especially, Au nanoparticles (AuNPs) represent 

excellent biocompatibility and display unique structural, electronic, magnetic, optical 

and catalytic properties which have made them a very attractive material for 

biosensor, chemisensor and electrocatalyst93-95.  

 

1.4.1. Enzymatic biosensor based on gold nanoparticles  

 

The direct electron transfer (DET) from redox-protein to the electrode surface 

is a very important subject in bioelectrochemistry to understand the mechanism of 

many bioelectrochemical reactions and construct the biochemical sensors. Therefore, 

many scientists have devoted their efforts to realize the direct electrochemistry of 

proteins. An extremely important challenge in the direct electrochemistry of proteins 

is the establishment of satisfactory electrical communication between the active site 

of the enzyme and the electrode surface96,97. However, the redox center of most 

oxidoreductase is electrically insulated by a protein shell. Because of this shell, the 

protein cannot be oxidized or reduced at an electrode at any potential. In order to 

achieve this task, mediator (discrete, electroactive intermediaries between electrodes 

and solution couples) have been utilized. More recently, it is interesting to find that 

the DET of some redox-proteins can also take place with the help of nanoparticles 

without need of additional mediators. Modification of electrode surfaces with the 

AuNPs will provide a microenvironment similar to that of the redox-proteins in native 
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systems and gives the protein molecules more freedom in orientation, thereby 

reducing the insulating effect of the protein shell for the DET through the conducting 

tunnels of AuNPs. In 1996, Natan and co-workers 98 have reported a reversible 

electrochemistry of horse heart cytochrome c at SnO2 electrodes modified with 12 

nm-diameter AuNPs. Since then, a great deal of literatures have been reported to 

complete the DET of redox-proteins using AuNPs as promoter.  

When nanoparticle/protein conjugates are assembled on the electrode via 

simple self-assembly technology, the third generation nanoparticles-based 

biosensors can be facilely fabricated. Dong’s group99 has developed a novel method 

to construct a third-generation horseradish peroxidase biosensor by self-assembling 

AuNPs into three-dimensional sol–gel network. Fig. 1.4 shows the stepwise 

preparation process of the biosensor. First, a clean gold electrode was modified with 

three-dimensional matrix by treatment with hydrolyzed (3-mercaptopropyl)-

trimethoxysilane (MPS), then AuNPs were infiltrated into the matrix by forming Au-S 

covalent linkage. Finally horseradish peroxidasewas introduced into the electrode 

surface by electrostatic attraction between negatively charged AuNPs and positively 

charged horseradish peroxidase.  

 

 

 
Fig. 1.4 Hydrolysis of MPS (A) and the stepwise biosensor 
fabrication process (B)99. 
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This biosensor could be fabricated reproducibly, exhibiting fast amperometric 

responses (2.5 s) to H2O2, high sensitivity and long-term stability. The detection limit 

of the biosensor could attain 2.0 µM, and the linear range was between 5.0 µM and 

10.0 mM. Another group100 has also completed direct electrochemistry of cytochrome 

c on a novel electrochemical interface constructed by self-assembling AuNPs onto a 

three-dimensional silica gel network. In addition, some thiols with specific functions 

could also be assembled on the electrode surface. Thus, AuNPs could be 

immobilized on the self-assembly monolayer surface and complete the DET of some 

redox-proteins. For instance, Gu et al have reported the DET of hemoglobin on the 

citrated-capped AuNPs assembled on a cysteamine modified gold substrate101. 

Furthermore, they investigated the electrocatalytic activity of nanoparticle/ 

hemoglobin electrode towards H2O2 reduction. As a result, a stable nanoparticle 

biosensor was constructed. In addition, the DET of glucose oxidase and horseradish 

peroxidase was well demonstrated by Pingarron and co-workers96 and Chen102 on 

AuNPs immobilized cysteamine modified gold electrode. 

The AuNPs modified carbon paste electrodes have provided a good 

microenvironment for completing the DET of different redox-proteins. For instance, Ju 

and co-worker103 [95] reported that the DET between immobilized myoglobin and 

colloidal gold modified carbon paste electrode was completed. The myoglobin 

immobilized on the colloidal AuNPs displayed a pair of redox peaks in 0.1M pH 7.0 

PBS with a formal potential of about −0.108V (versus NHE). Furthermore, the 

preparation of a xanthine oxidase biosensor, based on a carbon paste electrode 

modified with electrodeposited AuNPs, for the amperometric determination of 

hypoxanthine was reported by Pingarron group104. Our group synthesized a kind of 

gold nanoparticle protected by a synthetic lipid (DDAB). With the help of these 

AuNPs, hemoglobin could exhibit a DET reaction on DDAB protected AuNPs 

modified glassy carbon electrode105. In addition, the AuNPs modified ITO and screen-

printed rhodium–graphite electrodes could be also developed to complete the DET of 

some redox-protein such as myoglobin106 and cytochrome P450scc107. 

Recently, layer-by-layer (LbL) assembly technique based on electrostatic 

interaction 108,109 was suggested to be used to tailor the electrochemical interface for 

completing the DET of  some redox-proteins and constructing novel electrochemical 
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biosensors. For instance, Hoshi et al.110 prepared multilayer membranes by the LBL 

deposition of glucose oxidase and AuNPs on sensor substrates, such as a Pt 

electrode and a quartz glass plate, to prepare glucose sensors. Sun et al.111 reported 

a feasible approach to construct multilayer films of glucose oxidase/ AuNPs on the 

Au electrode surface using a cysteamine as a covalent attachment cross-linker. The 

biosensor constructed with six bilayers of GOD/AuNPs showed a wide linear 

response to glucose in the range of 10 µM – 0.013 M, with a fast response less than 

4 s, high sensitivity of 5.72 µAmM−1 cm−2, as well as good stability and long-term life.  

It is well-known that the polymer–nanoparticles composites possess the 

interesting electrical, optical and magnetic propertiessuperior to those of the parent 

polymer and nanoparticles. The nanocomposite composed of AuNPs and biopolymer 

such as chitosan and carboxymethyl chitosan was also employed as excellent matrix 

for completing the DET of some redoxprotein and fabricating novel biosensor 112,113. 

For instance, Chen’s group113 demonstrated a novel biocomposite made of chitosan 

hydrogel, glucose oxidase, and AuNPs by a direct and facile electrochemical 

deposition method under enzymefriendly conditions for glucose biosensor. The 

biocomposite provided a shelter for the enzyme to retain its bioactivity at 

considerably extreme conditions, and the decorated AuNPs in the biocomposite 

offered excellent affinity to enzyme. The biosensor exhibited a rapid response (within 

7 s) and a linear calibration range from 5.0 µM to 2.4 mM with a detection limit of 2.7 

µM for the detection of glucose. Later, Zhu and co-workers114 reported the DET of 

horseradish peroxidase based on biocompatible carboxymethyl chitosan–AuNPs 

nanocomposite. A novel biosensor for H2O2 was constructed based on the above 

nanocomposite. The biosensor exhibited a fast amperometric response (5 s), a good 

wide linear range of concentrations from 5.0×10−6 to 1.4×10−3 M, and a low detection 

limit of 4.01×10−7 M. Furthermore, Indium tin oxide (ITO) electrode115 could also be 

used to fabricate a novel disposable biosensor based on enzyme immobilized on Au-

chitosan nanocomposite combined with flow injection analysis for the rapid 

determination of H2O2. 
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1.4.2. Application of gold nanoparticles for genosensors 

 

The development of electrical DNA hybridization biosensors has attracted 

considerable research efforts116,117. Such DNA sensing applications require high 

sensitivity through amplified transduction of the oligonucleotide interaction. 

Electrochemical devices offer elegant routes for interfacing, at the molecular level, 

the DNA recognition and signal transduction elements, and are uniquely qualified for 

meeting the low-cost, low-volume, and power requirements of decentralized DNA 

diagnostics. The AuNPs modified electrochemical sensing interfaces offer elegant 

ways for interfacing DNA recognition events with electrochemical signal transduction, 

and for amplifying the resulting electrical response. AuNPs-based amplification 

schemes reported have led to improved sensitivity of bioelectronic assays by several 

orders of magnitude. Thus, AuNPs-based electrochemical device will provide new 

opportunity for gene diagnostics in the future.  

 

 

 

Fig. 1.5 Schematic procedure of the different strategies used for 
the integration of AuNPs into DNA sensing systems: (A) 
previous dissolving of AuNPs by using HBr/Br2 mixture followed 
by Au(III) ions detection, (B) direct detection of AuNPs anchored 
onto the surface of the genosensor, (C) conductometric 
detection, (D) enhancement with silver or gold followed by 
detection, (E) AuNPs as carriers of other AuNPs, (F) AuNPs as 
carriers of other electroactive labels118. 
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Merkoci and co-workers reviewed118 recent important achievements on the 

electrochemical sensing of DNA using AuNPs. In that review, the author discussed 

recent some novel strategies for genosensors based on AuNPs. Fig. 1.5 depicted a 

schematic of the most important strategies used to integrate AuNPs in DNA detection 

systems. These strategies consist of: (A) the electrochemical detection of AuNPs 

label by detecting the gold ions released after acidic dissolving; (B) direct detection of 

AuNPs anchored onto the surface of a conventional genosensor (based on stripping 

voltammetry); (C) silver enhancement using conductometric technique; (D) 

enhancement of AuNPs anchored to conventional genosensor surface by using silver 

or gold; (E) AuNPs as carriers of other AuNPs; (F) using AuNPs as carriers for other 

electroactive labels.  

In 2001 both Wang’s group119 and that of Limoges120 reported on the use of 

colloidal gold tags for electronic detection of DNA hybridization. This protocol relied 

on capturing the AuNPs to the hybridized target, followed by highly sensitive anodic 

stripping electrochemical measurement of the metal tracer. This approach could 

attain a detection limit in the picomolar range. In addition, the electrochemical 

genosensors based on AuNPs labels could be amplified by the catalytic 

electrodeposition of silver and its subsequent stripping. A better detection limit was 

reported when a silver enhancement method was employed, based on the 

precipitation of silver on AuNPs tags and its dissolution (in HNO3) and subsequent 

electrochemical potentiometric stripping detection121,122. This method was reported to 

obtain a detection limit in the femtomolar range. 

Because the HBr/Br2 solution is highly toxic and therefore methods based on 

direct electrochemical detection of AuNPs tags, which replace the chemical oxidation 

agent, have been also reported recently. For instance, Merkoci and co-workers 

reported a novel AuNPs-based protocol for detection of DNA hybridization based on 

a magnetically trigged direct electrochemical detection of gold quantum dot tracers. It 

relied on binding target DNA with Au67 quantum dot in a ratio 1:1, followed by a 

genomagnetic hybridization assay between Au67-DNA and complementary probe 

DNA marked paramagnetic beads. Differential pulse voltammetry was used for a 

direct voltammetric detection of resulting Au67 quantum dot-target 

DNA/complementary DNA-paramagnetic bead conjugate on magnetic graphite-epoxy 
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composite electrode. This method could attain a lowdetection limit in the nanomolar 

range123.  

Enhancements by precipitation of silver or gold onto the AuNPs labels have 

been reported so as to achieve amplified signals and lower detection limits124. For 

instance, Fang’s group demonstrated an electrochemical detection method for 

analyzing sequence-specific DNA using AuNPs marked DNA probes and subsequent 

signal amplification step by silver enhancement. The assay relied on the electrostatic 

adsorption of target oligonucleotides onto the sensing surface of the glassy carbon 

electrode (GCE) and its hybridization to the AuNPs-labeled oligonucleotides DNA 

probe. After silver deposition onto AuNPs, binding events between probe and target 

were monitored by the differential pulse voltammetry signal of the large number of 

silver atoms anchored on the hybrids at the electrode surface. A detection limit of 

50pM of complementary oligonucleotides was obtained based on this novel 

approach. In addition to silver enhanced technology, Rochelet-Dequaire et al.125 

developed a new efficient protocol for the sensitive quantification of a 35 base-pair 

human cytomegalovirus nucleic acid target (tDNA). In this assay, the hybridization of 

the target adsorbed on the bottom of microwells with an oligonucleotide modified 

AuNPs detection probe (pDNA-Au) was monitored by the anodic stripping detection 

of the chemically oxidized gold label at a screen-printed microband electrode 

(SPMBE). Thanks to the combination of the sensitive AuIII determination at a SPMBE 

with the large amount of AuIII released from each pDNA-Au, the picomolar detection 

limits of tDNA could be achieved. Further enhancement of the hybridization signal 

based on the autocatalytic reductive deposition of ionic gold (AuIII) on the surface of 

the AuNPs labels anchored on the hybridswas first envisaged by incubating the 

commonly used mixture ofAuIII and hydroxylamine. This strategy, which led to an 

efficient increase of the hybridization response, allowed detection of tDNA 

concentrations as low as 600 aM (i.e. 104 lower than that without amplification).  

Another signal amplification strategy is to attach electroactive 

ferrocenylhexanethiol molecules or electrogenerated chemiluminescence (ECL) 

indicator to the AuNPs labels. Zhou’s group [126] reported that AuNPs/streptavidin 

conjugates covered with 6-ferrocenylhexanethiol were attached onto a biotinylated 

DNA detection probe of a sandwich DNA complex. Due to the elasticity of the DNA 
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strands, the ferrocene caps on AuNPs/streptavidin conjugates were positioned in 

close proximity to the underlying electrode modified with a mixed DNA capture 

probe/hexanethiol self-assembled monolayer and could undergo reversible electron-

transfer reactions.Adetection level, down to 2.0pM for oligodeoxynucleotide samples 

could be obtained. In addition, a novel sensitive ECL method for the detection DNA 

hybridization based on AuNPs carrying multiple ECL probes was developed by 

Zhang and co-workers [129]. A detection limit of 5.0×10−12 mol L−1 for target DNA 

was achieved126,127. 

 

1.4.3. Application of gold nanoparticles for immunosensors 

 
Immunosensors are important analytical tools based on the detection of the 

binding event between antibody and antigen. The recent development of 

immunoassay techniques focused in most cases on decreasing analysis times, 

improving assay sensitivity, simplification and automation of the assay procedures, 

low-volume analysis. Among types of immunosensors, electrochemical 

immunosensors are attractive tools and have received considerable attention 

because they are easy and economical to mass production, they are robust, and they 

achieve excellent detection limits with small analyte volumes. Furthermore, the 

availability of a variety of new materials with unique properties at nanoscale 

dimension, such as AuNPs, has attracted widespread attention in their utilization for 

the bioassay, especially for electrochemical detection. Recently, several novel 

strategies have been proposed to develop electrochemical immunosensors with high 

sensitivity using AuNPs128,129.  

A novel and sensitive electrochemical immunoassay for immunoglobulin G 

(IgG) has been developed by Limoges and co-workers130 using a colloidal gold label 

via anodic stripping voltammetry technology. A low detection limit (concentration as 

low as 3×10−12 M) could be obtained, which was competitive with colorimetric 

enzyme linked immuno-sorbent assay or with immunoassays based on fluorescent 

europium chelate labels. Furthermore, Shen’s group131 reported a novel 

electrochemical immunoassay based on the precipitation of silver on colloidal gold 

labels. After metal silver dissolution in an acidic solution, the signal was indirectly 
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determined by anodic stripping voltammetry at a glassy carbon electrode.Adetection 

limit as lowas 1 ng mL−1 human IgG was achieved. The enhancement in sensitivity 

for an electrochemical immunoassay by the autocatalytic deposition of Au3+ onto 

AuNPs has been studied by Huang’s group132. By coupling the autocatalytic 

deposition with square-wave stripping voltammetry, the rabbit immunoglobulin G 

analyte could be determined quantitatively. A very low detection limit, 0.25 pgmL−1 

(1.6 fM) was obtained, which is three orders of magnitude lower than that obtained by 

a conventional immunoassay using the same AuNPs labels.  

Novel enzyme-labeled electrochemical immunosensors were well developed 

by several groups. For instance, Ju’s group133 reported that a highly hydrophilic and 

conductive colloidal AuNPs/titania sol–gel composite membrane could be employed 

as electrochemical sensing interface for horseradish peroxidase-labeled 

electrochemical immunosensor. Later, a novel electrochemical immunosensor for 

human chorionic gonadotrophin (hCG) was developed by the same group134 via the 

immobilization of hCG on AuNPs doped three-dimensional (3D) sol–gel matrix. The 

3D organized composite structure was prepared by assembling AuNPs into a 

hydrolyzed (3-mercaptopropyl)-trimethoxysilane sol–gel matrix, which showed good 

biocompatibility. After the interfacial competitive immunoreaction, the formed HRP-

labeled immunoconjugate showed good enzymatic activity for the oxidation of o-

phenylenediamine by H2O2. The immunosensor showed good precision, high 

sensitivity, acceptable stability and reproducibility.  

Label-free electrochemical immunosensors using AuNPs as enhancing 

sensing component have been the focus of intense research due to their simplicity, 

speedy analysis and high sensitivity. The technique is mainly based on the detection 

of a change in physical properties as a result of antibody–antigen complex formation. 

The direct determination of immunospecies by detecting the change of impedance 

caused by immunoreactions has been demonstrated. A simple and sensitive label-

free electrochemical immunoassay electrode for detection of carcinoembryonic 

antigen (CEA) has been developed by Yao’s group. CEA antibody (CEAAb) was 

covalently attached on glutathione (GSH) monolayer-modified AuNPs and the 

resulting CEAAb-AuNPs bioconjugates were immobilized on Au electrode by 

electrocopolymerization with o-aminophenol (OAP). Electrochemical impedance 
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spectroscopy studies demonstrated that the formation CEA antibody–antigen 

complexes increased the electron-transfer resistance of [Fe(CN)6]3−/4− redox pair at 

the poly-OAP/CEAAb-AuNPs/Au electrode. The immunosensor could detect the CEA 

with a detection limit of 0.1 ng mL−1 and a linear range of 0.5–20 ng mL−1 135,136. 

 

 

 
 
Fig. 1.6 (a) Schematic representation of the preparation of an 
immunosensing layer. (b) Schematic view of electrochemical 
detection of mouse IgG or PSA137. 

 

DNA-free ultrasensitive electrochemical immunosensors have received 

considerable interests because of their advantage including simplify, rapidness and 

high sensitivity. Yang’s group137 developed an ultrasensitive and simple 

electrochemical method for the fabrication of a sandwich-type heterogeneous 

electrochemical immunosensor. Fig. 1.6 shows a typical fabrication procedure of 

DNA-free electrochemical immunosensor. An IgG layer was formed on an ITO 

electrode via a stepwise assembly process (Fig. 1.6a). First, partially 

ferrocenyltethered dendrimer (Fc-D) was immobilized to the ITO electrode by 

covalent bonding between dendrimer amines and carboxylic acids of a phosphonate 

self-assembled monolayer. Some of the unreacted amines of Fc-D were modified 

with biotin groups to allow the specific binding of streptavidin. Afterward, biotinylated 

antibodies were immobilized to the streptavidin-modified ITO electrode. An IgG-

nanocatalyst conjugate was prepared via direct adsorption of IgG on 10 nm AuNPs. 

Mouse IgG or prostate specific antigen was chosen as a target protein (Fig. 1.6b). 
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The IgG-nanocatalyst conjugate and the immunosensing layer sandwiched the target 

protein. Signal amplification was achieved by catalytic reduction of p-nitrophenol (NP) 

to p-aminophenol (AP) using gold nanocatalyst labels and the chemical reduction of 

pquinone imine (QI) by NaBH4. This novel DNA-free method could attain a very low 

detection limit (1 fg mL−1).   

 

1.4.4. Application of gold nanoparticles for electrocatalytic 
chemosensors 
 

Nanometer-sized AuNPs exhibiting excellent catalytic activity have received 

considerable attention due to their relative high surface area-to-volume ratio, and 

their interface-dominated properties, which significantly differ from their bulk 

counterparts. Thus, interest in the catalytic properties of AuNPs has increased 

rapidly. In particular, AuNPs have been studied extensively for the design and 

fabrication of electrocatalysts and using as an enhancing component of catalytic 

activity or selectivity. The large surface-to-volume ratios and active sites of AuNPs 

constitute part of the driving force in developing nanosized electrocatalysts. Various 

methodologies have been used for the tailoring of AuNPs on electrode surfaces for 

electrocatalytic applications, which include the anchoring by electrostatic interaction, 

covalent linkage, and electrochemical deposition, etc. Thus AuNPs modified 

electrochemical interface behaving as nanoelectrode ensembles have been widely 

used as enhancing catalytic interface for the development of electrochemical 

sensors. In principle, the electroanalytical detection limit at a nanoelectrode 

ensemble can be much lower than that at an analogous macrosized electrode 

because the ratio between the faradaic and capacitive currents is higher 138. Several 

groups139,140 have been interested in the  evelopment of novel 2-D or 3-D AuNPs 

modified nanoelectrode ensembles for enhancing electrochemical responses.  

AuNPs could also be employed as enhancing materials for electrochemical 

investigation of cell141 and electrocatalyzing some small biomolecules such as 

glucose142, norepinephrine143, dopamine144, catechol145, epinephrine146 and ascorbic 

acid147, etc. For instance, Raj and co-worker148 reported a nonenzymatic 

electrochemical method for the detection of glucose by using AuNPs self-assembled 
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on a 3D silicate network obtained by using sol–gel processes. The nanosized Au 

particles have been self-assembled on the thiol tail groups of the silicate network and 

enlarged by hydroxylamine. The AuNPs efficiently catalyzed the oxidation of glucose 

at less-positive potential (0.16 V) in phosphate buffer solution (pH 9.2) in the absence 

of any enzymes or redox mediators. This novel nonenzymatic glucose sensor 

showed excellent sensitivity with a detection limit of 50 nM.  

In addition to enhancing detection of small biomolecules, AuNPs derivated 

electrodes were also used to detect some toxic substances149-151. AuNPs modified 

carbon screen-printed, glassy carbon and basal plane pyrolytic graphite electrodes 

have been reported to detect Sb (III)149and As (III)150,151 with high sensitivity. The 

electrolytic oxidation of nitric oxide and hydrazine was also developed by several 

groups152-155. It is found that the AuNPs modified electrode exhibited high catalytic 

activity for NO and hydrazine. For instance, Raj and co-worker155 reported an 

ultrasensitive electrochemical detection of hydrazine using AuNPs self-assembled on 

a sol–gel-derived 3D silicate network, followed by seed-mediated growth of gold. This 

nanostructured platform was highly sensitive toward the electrochemical oxidation of 

hydrazine. A very large decrease in the overpotential (800 mV) and significant 

enhancement in the peak currents with respect to the bulk Au electrode were 

observed without using any redox mediator. The nanostructured platform showed 

excellent sensitivity with an experimental detection limit of 200 pM.  

 

1.4.5. Multicolor optical coding for biological assays 

 

Increasing research in proteomics and genomic generates escalating number 

of sequence data and requires development of high throughput screening 

technologies. Various array technologies has been used in parallel analysis are likely 

to reach saturation when a number of array elements exceed several millions. A 

three-dimensional approach, based on optical "bar coding" of polymer particles in 

solution, is limited only by the number of unique tags one can reliably produce and 

detect. Single quantum dots of compound semiconductors were successfully used as 

a replacement of organic dyes in various bio-tagging applications156. By combining 

differently sized and having different fluorescent colors quantum dots, and also 
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combining them in polymeric microbeads will give further advantages157. A precise 

control of quantum dot ratios has been achieved. The selection of nanoparticles used 

in those experiments had 6 different colours as well as 10 intensities. It is enough to 

encode over 1 million combinations. The uniformity and reproducibility of beads was 

high letting for the bead identification accuracies of 99.99%. 

 

1.4.6 Application of nanoparticles for signal amplification 

 

a. Silver nanoparticles enhance Local Plasmon Resonance signals 

 
Triangular silver nanoparticles (~100 nm wide and 50 nm high) have 

remarkable optical properties. In particular, the peak extinction wavelength, λmax of 

their localized surface plasmon resonance (LSPR) spectrum is unexpectedly 

sensitive to nanoparticle size, shape, and local (~10-30 nm) external dielectric 

environment. This sensitivity of the LSPR λmax to the nanoenvironment has allowed 

us to develop a new class of nanoscale affinity biosensors. The essential 

characteristics and operational principles of these LSPR nanobiosensors will be 

illustrated using the well-studied biotin-streptavidin system. Exposure of biotin-

functionalized Ag nanotriangles to 100 nM streptavidin (SA) caused a 27.0 nm red-

shift in the LSPR λmax. The LSPR λmax shift, ΔR/ΔRmax, versus [SA] response curve 

was measured over the concentration range 10-15 M < [SA] < 10-6 M. Comparison of 

the data with the theoretical normalized response expected for 1:1 binding of a ligand 

to a multivalent receptor with different sites but invariant affinities yielded 

approximate values for the saturation response, ΔRmax = 26.5 nm, and the surface-

confined thermodynamic binding constant Ka,surf ) 1011 M-1. At present, the limit of 

detection (LOD) for the LSPR nanobiosensor is found to be in the low-picomolar to 

high-femtomolar region. A strategy to amplify the response of the LSPR 

nanobiosensor using biotinylated Au colloids and thereby further improve the LOD is 

demonstrated. Several control experiments were performed to define the LSPR 

nanobiosensor’s response to nonspecific binding as well as to demonstrate its 

response to the specific binding of another protein. These include the following: (1) 

electrostatic binding of SA to a nonbiotinylated surface, (2) nonspecific interactions of 

prebiotinylated SA to a biotinylated surface, (3) nonspecific interactions of bovine 
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serum albumin to a biotinylated surface, and (4) specific binding of anti-biotin to a 

biotinylated surface. The LSPR nanobiosensor provides a pathway to ultrasensitive 

biodetection experiments with extremely simple, small, light, robust, low-cost 

instrumentation that will greatly facilitate field-portable environmental or point-of-

service medical diagnostic applications158. 

 

b. Gold nanoparticles enhance the signal of Quatz Crystal Microbalance 

 

Amanda and Coworker report a novel strategy for the high-sensitive detection 

of target biomolecules with very low concentrations on a quartz crystal microbalance 

(QCM) device using gold nanoparticles as signal enhancement probes. By employing 

a streptavidin–biotin interaction as a model system, we could prepare biotin-

conjugated gold nanoparticles maintaining good dispersion and long-term stability by 

controlling the biotin density on the surface of gold nanoparticles that have been 

investigated by UV-vis spectra and AFM images. These results showed that 10 μM 

N-(6-[biotinamido]hexyl)-3′-(2′-pyridyldithio)propionamide (biotin-HPDP) was the 

critical concentration to prevent the nonspecific aggregation of gold nanoparticles in 

this system. For sensing streptavidin target molecules by QCM, biotinylated BSA was 

absorbed on the Au surface of the QCM electrode and subsequent coupling of the 

target streptavidin to the biotin in the sensing interface followed. Amplification of the 

sensing process was performed by the interaction of the target streptavidin on the 

sensing surface with gold nanoparticles modified with 10 μM biotin-HPDP. The 

biotinylated gold nanoparticles were used as signal amplification probes to improve 

the detection limit, which was 50 ng/ml, of the streptavidin detection system without 

signal enhancement, and the calibration curve determined for the net frequency 

changes showed good linearity over a wide range from 1 ng/ml to 10 μg/ml for the 

quantitative streptavidin target molecule analysis. In addition, the measured 

dissipation changes suggested that the layer of biotin-BSA adsorbed on the Au 

electrode and the streptavidin layer assembled on the biotin-BSA surface were highly 

compact and rigid. On the other hand, the structure formed by the biotinylated gold 

nanoparticles on the streptavidin layer was flexible and dissipative, being elongated 

outward from the sensing surface159. 
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c. Nanoparticles enhance the Florescence 

 

Methodologies for glucose sensing based on the specific biological 

interactions between Con A, dextran-coated gold nanoparticles and glucose, and the 

interactions between dextran, glucose, and boronic-acid capped silver nanoparticles 

in solution have been developed. The new approaches promise new tunable glucose 

sensing platforms. Dextran-coated gold nanoparticles were aggregated with the 

addition of Con A resulting in increase an in absorbance of nanoparticles at 650 nm, 

where the post-addition of glucose caused the dissociation of the aggregates and 

thus a decrease in the absorbance at 650 nm. The interaction of glucose and dextran 

with boronic acid-capped silver nanoparticles in solution resulted in enhanced 

luminescence intensity cumulatively due to surface enhanced fluorescence and the 

decrease in absorbance at 400 nm, with an increase in absorbance at 640 nm. 

Lifetime measurements were used to distinguish the contribution from the surface-

enhanced fluorescence. TEM was employed to assess the aggregation of 

nanoparticles. An enhancement of signal of fluorescence by specific shape, e.g gold 

rod and silver triangle of nanoparticles also observed160-162. 

 

1.5. Objective of the work 

 

The main objectives of the work were screening of new bioanalytical 

application of metallic nanoparticles including electrocataysis, localized plasmon 

resonance, accelerating of protein crystallization. The main attention was paid to gold 

nanoparticles. A part of the work was performed for industrial partner, this work 

included development of irreversible freezing indicator based on gold nanoparticles 

as well as an optimization of the indicator performance and a development of 

continuous synthesis of nanoparticles which can be scaled up easily. This experience 

was then used for development of automated Layer-by-Layer deposition of 

conductive polymers. Main scientific goals of the work were: 

• optimization of a procedure for deposition of gold nanoparticles / polymer 

composites on the electrode surface; 
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• investigation of electrocatalytical activity of electrodes modified by gold 

nanoparticles to biologically important substances (glucose, dopamine) and of 

possibility to develop non-enzymatic sensor for these compounds; 

• investigation of nucleation of proteins in the presence of gold nanoparticles. 
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2. EXPERIMENTAL 

 

2.1. Reagents and Materials 

 
Reagents  

 

All chemicals and solvents used were purchased from Aldrich (Steinhein, 

Germany), Fluka (Buchs, Switzerland), Chempur (Karlsruhe) or Merck (Darmstadt, 

Germany). All chemical were utilized without further purification. All chemicals were 

of analytical grade unless otherwise stated. Dialysis tubes with a molecular weight 

cutoff of 12,000–14,000 were from Carl Roth.  All experiments, if not specified, were 

carried out at room temperature (22±2°C).  All experiment used Millipore water.  

 

Buffers 

 

The following table outlines the buffers used in this work (Table 2.1). All 

buffers were prepared with MILLIPORE water. The pH was adjusted with 0.1 M and 1 

M HCl or 0.1 M and 1 M NaOH when necessary.  

 

Table 2.1 Buffer Solutions 

 

Buffer Composition pH Experiment 

A 

5,8362 gr NaH2PO4 

15,466 gr Na2HPO4 

Dilute until 1 Liter 

7 

Determination of 

dopamine  

B 

4,0280 gr CH3COONa 

9,7534 ml CH3COOH 

Dilute until 1 Liter 

4 

Determination of 

dopamine 

 

The concentration of phosphate ion in Buffer A is 0,1 M and the concentration of 

acetate ion in buffer B is 0,2 M. 
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Electrodes  

 

Thin film gold electrodes on glass or silicon support were formed by 

photolithography. The thickness of metal layer is about 250 nm; the electrode area is 

0.38 mm2. Before use, the electrodes were cleaned by pure water, ethanol, acetone 

and chloroform consecutively.  After dried, rinsed thoroughly with pure water and 

dried in the nitrogen gas flow.  

 

 

 

 

 

Fig. 2.1 Thin film of gold electrode on the silicon support.  

 

2.2. Methods of Characterization. 

 

2.2.1. Cyclic Voltammetry 

 

Cyclic Voltammetry provides qualitative information chemical reactions. The 

information about an analyte is obtained by current measuring when the potential is 

varied.  The power of cyclic voltammetry results from the ability to provide information 

on the thermodynamics of redox processes, on kinetics of heterogeneous electron 

transfer reaction, and on coupled chemical reactions or adsorption processes. Cyclic 

voltammetry is often the first experiment to be performed in an electroanalytical 

study. 

In particular, it offers a rapid analysis of redox potentials of the electroactive 

species, as well as convenient evaluation of the effect of media upon the redox 

process.  



 

EXPERIMENTAL 

 -30-

 

 

 

 

Fig. 2.2 Potential-time excitation signal in cyclic voltammetry 
experiment. 

 

 

Cyclic voltammetry consist of linier scanning of the potential of working 

electrode using a triangular potential waveform (Fig. 2.2). Depending on the 

information sought, single or multiple cycles can be used. During the potential sweep, 

the potentiostat measures the current resulting from the applied potential. The 

resulting plot of current versus potential is termed a cyclic voltammogram. The cyclic 

voltammogram is a complicated time-dependent function of a large number of 

physical and chemical parameters. 

Fig 2.3 illustrates the response of a reversible redox couple during a single 

potential cycle (in an unstirred solution). It is assumed that only the oxidized form O is 

present initially.  Thus, a negative-going potential scan is chosen for the first half-

cycle, starting from a value where no reduction occurred. As the applied potential 

approaches the characteristic Eo for the redox process, a cathodic current begins to 

increase, until a peak is reached. The sweep is reversed after traversing the potential 

region where the reduction process takes place (a least 90/n mV beyond the peak). 

During the reverse scan, R molecules are reoxidized back to O and it result in an 

anodic peak. 
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Fig. 2.3 Typical cyclic voltammogram for a reversible  
O + ne-            R redox process 
 

 

Formation of the diffusion layers near electrode surface layer gives the 

characteristic peaks in the cyclic voltammogram. These can be understood by 

examining the concentration-distance profiles during the potential sweep. Fig 2.4 

illustrates for gradients of concentration for the reactant and product at different 

times. (a) the initial potential value, (b) and (d) the formal potential of the couple 

during the forward and reversed scans respectively, and (c) to the achievement of a 

zero reactant surface concentration. The continuous change in the surface 

concentration is coupled with an expansion of the diffusion layer thickness. The 

resulting current peaks reflect the continuous change of concentration gradient with 

the time. The increase of the peak current corresponds to the achievement of 

diffusion control, while the current drop (beyond the peak) exhibits a t-1/2 dependence 

(independent of applied potential). For the above reasons, the reversal current has 

the same shape as the forward one.  
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Figure 2.4 Concentration distribution of oxidized and reduced form of 
redox couple at different times during a cyclic voltammetric 
experiment corresponding to the initial potential (a), to the formal 
potential of couple during the forward and reversed scans (b,d) and 
to the achievement of a zero reactant surface concentration (c) 

 

 

Data interpretation 

 

There are several parameters which are important and can be used for 

characterization of redox reaction in the cyclic voltammogram. Four of these 

observables, the two peak currents and two peak potentials, provide the basis for 

diagnostics developed by Nicholson and Shain for analyzing the cyclic voltametric 

response.  
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Reversible systems 

 

The peak current for a reversible couple (at 25oC), is given by Randles-Sevcik 

equation 

 

2/12/12/35 )1069.2( vACDnxi p =     ………………….2.1 

 

Where n is the number of electrons, A is electrode area (in cm2), C is the 

concentration (in mol cm-3), D is the diffusion coefficient (in cm2 s-1), and v is the scan 

rate (in V s-1). The ratio of the reverse to forward peak current, Ip,r/Ip,f, is unity for a 

simple reversible couple but very different when the redox reaction is slow or coupled 

with a chemical reaction. This peak ratio is strongly affected by chemical reaction 

coupled to redox process. The current peaks are commonly measured by 

extrapolating the preceding baseline current. 

The position of the peaks on the potential axes (Ep) is related to the formal 

potential of the redox process. The formal potential for a reversible couple is centered 

between Ep,a and Ep,c. 

 

2

,, cpapo
EE

E
+

=  ………….…………..…….2.2 

 

The separation between the peak potentials (for a reversible couple) is given 

by 

 

V
n

EEE cpapp

059,0
,, =−=Δ ………………..…..2.3 

 

Thus, the peak separation can be used to determine the number of electrons 

transferred, and as a criterion for a Nerstian behavior. Accordingly, a fast one 

electron process exhibits a ΔEp of about 59 mV. Both the cathodic and anodic peak 

potentials are independent of the scan rate. It is possible to relate the half-peak 
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potential (Ep/2, where the current is half of the peak current) to the polarographic half-

wave potential E1/2 : 

    

V
n

EE p

028.0
2/12/ ±=      ………………….2.4 

 

(The sign is positive for reduction process) 

 

 

Irreversible and quasi-reversible systems. 

 

For irreversible processes (those with sluggish electron exchange), the 

individual peaks are reduced in size and widely separated (Fig. 2.5, curve A). Totally 

irreversible systems are characterized by a shift of the peak potential with the scan 

rate. 
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Where α is the transfers coefficient and na is the number of electrons involved 

in the charge-transfer step. Thus, Ep occurs at potentials higher than Eo, with the 

ovepotential related to ko and α. Independent of the value ko, such as peaks 

displacement can be compensated by an appropriate change of the scan rate. The 

peak potential and the half-peak potential (at 25oC) will differ by 48/ αn mV. Hence, 

the voltammogram becomes more drawn-out as αn decreases.  

 

The peak current, given by 
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Is still proportional to the bulk concentration, but will be lower in height 

(depending upon the value of α). Assuming a value of 0.5, the ratio of the reversible 

to irreversible current peaks is 1.27 (i.e. the peak current for the irreversible process 

is about 80% of the peak for a reversible one). 

For quasi reversible systems (with 10-1>ko>10-5cm s-1) the current is controlled 

by both the charge transfer and mass transport. The shape of the cyclic 

voltammogram is a function of aDk o π  (where RTnFva = ). As aDk o π  increases, 

the process approaches the reversible case. For small values of aDk
o π  (i.e., at 

very fast v) the system exhibit an irreversible behavior. Overall, the voltammogram of 

a quasi-reversible system are more drawn-out and exhibit a larger separation in peak 

potential compared to those of a reversible system (Fig. 2.5, curve B) 

 

 

 

 

 

Fig. 2.5 Cyclic voltammogram for irreversible (curve A) and quasi-
reversible (curve B) redox processes. 

 

 

Qualitative applications 

 

Cyclic voltammetry can also be useful for quantitative response, based on 

measurement of the peak current (equation 2.1). Such quantitative applications 

require the establishment of proper baseline. For neighboring peaks (of mixture), the 



 

EXPERIMENTAL 

 -36-

base line for the second peak is obtained by extrapolating the current decay of the 

first one (in accordance with t-1/2). Background reaction, primarily those associated 

with the double-layer charging and redox-surface processes, limit the detection limit 

to around the 1x10-5M level. Background-subtracted cyclic voltammetry can be 

employed for measuring lower concentration163. In particular fast-scan (1000Vs-1) 

background-subtracted cyclic voltammetry is seeing increased use for the in-vivo 

monitoring in neurotransmitters (such as dopamine or serotonin) in the brain. Such 

coupling of digital background substraction and fast voltammetric measurements 

provides the subsecond temporal resolution necessary for detecting dynamic 

concentration changes in the micromolar range occurring in the extracellular 

environtment of the brain. The good temporal and chemical resolution of such in-vivo 

cyclic voltammetric experiment offers improved under standing of the chemistrx of the 

brain. These repetitive scanning in-vivo experiments generate large quantities of data 

that are best represented as three-dimensional (potential, current, time) color contour 

images. For example, the temporal release of dopamine following electrical 

stimulation is evidenced from the rapid interferences from adsorption processed and 

chemical reactions that are coupled to the primary oxidation reaction of 

catecholamines neurotransmitters164. 

 

2.2.2. Electrical Impedance Spectroscopy (EIS) 

 

Impedance spectroscopy is an effective technique for probing the features of 

chemically-modified electrodes and for understanding electrochemical reaction rates. 

Impedance is the totally complex resistance encountered when a current flows 

through a circuit made of combinations of resistors, capacitors, or inductors. 

Electrochemical transformations occurring at the electrode–solution interface can be 

modeled using components of the electronic equivalent circuitry that correspond to 

the experimental impedance spectra. Particularly useful to model interfacial 

phenomena is the Randles and Ershler electronic equivalent-circuit model (Fig. 2.6).  

This includes the double-layer capacitance Cd, the ohmic resistance of the 

electrolyte solution Rs, the electron transfer resistance Rp, and the Warburg 

impedance W resulting from the diffusion of ions from the bulk solution to the 
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electrode surface. The impedance of the interface, derived by application of Ohm’s 

law, consists of two parts, a real number Z′ and an imaginary one, Z″: 

 

 

 

Figure 2.6 Faradaic impedance spectra presented in the form of 
Nyquist plots, along with the electronic equivalent circuit of the 
electrified interface.  
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where j2 = -1 

 

Impedance spectroscopy requires an application of a small-amplitude perturbing 

sinusoidal voltage signal (at a ω frequency) to the electrochemical cell and 

measuring the current response. The resulting faradaic impedance spectrum, known 

as a Nyquist plot, corresponds to the dependence of the imaginary impedance value 

on the real on (e.g., Fig. 2.6), and contains extensive information about the electrified 

interface and the electron transfer reaction. Nyquist plots commonly include a 

semicircle region lying on the axis followed by a straight line. The semicircle portion 

(observed at higher frequencies) corresponds to the electron-transfer-limited process, 

while the straight line (characteristic of the low-frequency range) represents the 
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diffusion-limited process. Such spectra can be used for extracting the electron 

transfer kinetics and diffusional characteristics. In the case of very fast electron 

transfer processes the impedance spectrum includes only the linear part, while very 

slow electron transfer processes are characterized by a large semicircular region. 

The diameter of the semicircle equals the electron transfer resistance. The intercepts 

of the semicircle with the Z’ axis corresponds to those of Rs. In addition to 

fundamental electrochemical studies, the technique has been found extremely useful 

for transduction of bioaffinity events in connection to modern electrical 

immunosensors and DNA biosensors. Such transduction of bioaffinity events relies 

on the increased insulation of the electrode surface in respect to redox probes (e.g., 

ferrocyanide), present in the solution, on binding of large biomolecules (e.g., capture 

of an antigen that retards the electron transfer)164. Voltammetry and Impedance 

spectroscopy measurement on this work have been done using AUTOLAB PGSTAT 

13 electrochemical work station. 

 

2.2.3. Surface Plasmon Resonance(SPR) 

 

Surface plasmon resonance (SPR) is a phenomenon which occurs when light 

is reflected off thin metal films.  

 

 

 

Fig. 2.7. Total Internal Reflection (TIR) for non-absorbing media. 
Refractive index (n), evanescent field (E) and  angle of incidence (θ)  
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When a light beam propagating in a medium of higher refractive index meets an 

interface at a medium of lower refractive index at an angle of incidence above a 

critical angle (Mirabella165, de Mello166), the light is totally reflected at the interface 

and propagates back into the high refractive index medium (see Fig. 2.7). 

Although the fully reflected beam does not lose any net energy across the 

Total Internal Reflection (TIR) interface, the light beam leaks an electrical field 

intensity called an evanescent field wave into the low refractive index medium. The 

amplitude of this evanescent field wave decreases exponentially with distance from 

the interface, decaying over a distance of about one light wavelength from the 

surface (Fig. 2.8).  

 

 

Fig. 2.8 Relative evanescent electric field amplitude (E) versus 
distance to solid/solution interface (nm). Continuous line for SPR-
evanescent wave (gold film), dashed line for nonabsorbing TIR (no 
gold film). 

 

 

If the lower refractive index media has a non-zero absorption coefficient, the 

evanescent field wave may transfer the matching photon energy to the medium. This 

is exploited in internal reflection spectroscopy (IRS) as reviewed by Mirabella165. The 

penetration depth of the evanescent field wave is usually defined as the distance 

over which the wave decays to 1/e, or about 37%, of its maximum intensity. If the 

TIR-interface is coated with a layer of a suitable conducting material, such as a 

metal, of a suitable thickness the polarized component of the evanescent field wave, 

may penetrate the metal layer and excite electromagnetic surface plasmon waves 
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propagating within the conductor surface that is in contact with the low refractive 

index medium (Fig. 2.9). For a non-magnetic metal like gold, this surface plasmon 

wave will also be p-polarized and, due to its electromagnetic and surface propagating 

nature, will create an enhanced evanescent wave (Fig. 2.10). 

 

 

 

Fig. 2.9 SPR is excited by p-polarized totally internally reflected light 
at a glass/metal film interface, the surface plasmon enhancing the 
evanescent field amplitude (E). SPR is observed as a dip in the 
reflected light intensity at a specific angle of reflection. 

 

 

This evanescent wave has electric field components directed in all spatial 

orientations during penetration into the low refractive index medium. Because the 

electric field penetrates a short distance into the lower refractive index medium, the 

conditions for SPR are sensitive to the refractive index at the gold surface. For 

plasmon excitation by a photon to take place the energy and momentum of these 

“quantum-particles” must both be conserved during the photon “transformation” into a 

plasmon. This requirement is met when the wavevector for the photon and plasmon 

are equal in magnitude and direction for the same frequency of the waves (the 

wavevector is a parameter in the mathematical formula for the electromagnetic wave 

related to the momentum). The direction of the wavevector is the direction of the 

wave propagation (i.e. the light ray direction), while its magnitude depends on the 

refractive indices of the media that the electromagnetic field wave interacts with along 
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its propagation path. Since the wave vector of the plasmon wave is bound to the 

conductor surface, it is the wavevector of the component of the incident light which is 

parallel to the conductor surface that can be equal to the wave-vector of the surface 

plasmons (ksp, kx in Figure 2.9). The magnitude of the surfaceparallel wavevector, kx, 

is the wavevector of the incident light times sin(θ), (Fig. 2.9). 
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The wavevector of the plasmon wave, ksp, depends on the refractive indices of the 

conductor, ngold, (being a constant complex number) and the sample medium, n2, as  
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In both expressions the wavelength is the value for the light wave in vacuum. Thus, 

an increased refractive index of the sample, n2, penetrated by the plasmon enhanced 

evanescent field increases the wavevector of the plasmon wave. The wavevector of 

the light kx can be tuned to equate the plasmon wavevector by varying either the 

angle of incidence, θ, or the wavelength of the light, Figure 2.9. The dielectric 

equations describing this dependence and the application of this technology are 

discussed in detail by Swalen167, Kovacs168,  Kretschmann169, Liedberg170, 

Jönsson171 and Davies172. The wavevector and energy match enables a resonant 

absorption of energy via the light-evanescent wave field, a plasmon excitation (SPR) 

causing a characteristic drop in the reflected light intensity. For a given wavelength of 

incident light, SPR is seen as a dip in the intensity of reflected p-polarized light at a 

specific angle of incidence (Fig. 2.9). Monochromatic light is focused in a wedge-

shaped beam on the TIR interface and the angle of minimum reflectance intensity is 

determined using a two dimensional detector array (see Figure 2.10). The low 

refractive index medium is the surface coating of the sensor chip and the 

“surrounding” sample solution. Biomolecular interactions occurring at the sensor 

surface change the solute concentration and thus the refractive index within the 
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evanescent wave penetration range. The angle of incidence required to create the 

SPR phenomenon (the SPR angle) is therefore altered and it is this change which is 

measured as a response signal. 

 

 

Fig. 2.10. Surface Plasmon Resonance (SPR) detection unit.  

 

 

Fig 2.10. The incident p-polarized light is focused into a wedge-shaped beam 

providing simultaneously a continuous interval of light wavevectors kx. This range 

covers the working range for the plasmon wavevector ksp during biomolecular 

interaction analysis. An increased sample concentration in the surface coating of the 

sensor chip causes a corresponding increase in refractive index which alters the 

angle of incidence required to create the SPR phenomenon (the SPR angle). This 

SPR angle is monitored as a change in the detector position for the reflected intensity 

dip (from I to II). By monitoring the SPR-angle as a function of time the kinetic events 

in the surface are displayed in a sensorgram. All the SPR measurements in this work 

have been done by Biosuplar-3 from analytical µ-Systems. 

 

2.2.4. Conductivity measurement 

 

Resistance measurement  in the normal range (>10Ω) are generally made 

using the 2-wire method shown in the figure 2.11 (a). The test current is forced 

through the test lead and the resistance being measured (RS). The meter then 
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measures the voltage across the resistance through the same set of test leads and 

computes the resistance value accordingly. 

The main problem with 2-wire method as applied to low resistance 

measurements is the lead resistance (RLEAD). Since the test current (I) causes a 

small but significant voltage drop across the lead resistance, the voltage (VM) 

measured by the meter will not be exactly the same as the voltage (VR) directly 

across the test resistance (RS), and considerable error can result. Typical lead 

resistance lies in the range of 1mΩ to 10mΩ, so it is very difficult to obtain accurate 

2-wire resistance measurement below 10Ω to 100Ω (depending on the lead 

resistance) 

 

 

(a) 

 

 

 

(b) 

 

Fig. 2.11 Scheme Two point measurement system (a), Four point 
measurement system (b). 
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Due to the limitation of the 2-wire method, the 4-wire (Kelvin) connection 

method shown in the figure 2.11 (b) is generally preferred for low-resistance 

measurement. These measurements can be made using a DMM, micro ohmmeter, or 

a separate current source and voltmeter. With this configuration, the test current (I) is 

forced through the test resistance (RS) through one set of test leads, while the 

voltage (VM) across the DUT is measured through a second set of the leads called 

sense leads, it is usually negligible (typically pA or less) and can generally be ignored 

for all practical purposes. Since the voltage drop across the sense leads is negligible, 

the voltage measured by the meter (VM) is essentially the same as the voltage (VR) 

across the resistance (RS). Consequently, the resistance value can be determined 

much more accurately than with 2-wire method. Note that the voltage-sensing leads 

should be connected as close to the resistor under test as possible to avoid including 

the resistance of the test leads in the measurement. Fig 2.11 is the scheme of the 

conductive measurement. The measurement has been performed using Keithley 617 

and Keithley 2400. Absorbance spectra were measured using UV-Vis CARY 50 Bio. 
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3. RESULTS AND DISCUSSIONS 

3.1. Conductive chemoassay for glucose 

 
This part of my experimental work is focused on the development of new 

assay for the glucose analysis. It should be fast, simple, cheap, and have low 

detection limit. One method which can promise fast, simple, cheap, and probably 

have low detection limit is conductivity measurement. The idea is to combine 

conductivity with silver mirror reaction which is the common method to produce silver 

mirror using glucose. It is produced by reacting glucose with ammoniacal silver 

solution. The reaction is described as the following. 

 

 

The reaction can describe that the number of silver formed in the reaction depends 

on the number of glucose. If It is assumed that silver layer can be deposited in the 

surface of four point electrode (Fig. 3.1 ), then the resistance of the silver layer can 

be measured (i.e. silver particle). It is expected that the different amount of the silver 

which formed on the surface of the electrode will give different value of the 

resistance, while the number of silver which formed depends on the concentration of 

glucose. 

 

 

 

Fig. 3.1 Four points electrode. 
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After several attempts of measurement using different concentration of 

glucose, unfortunately this technique didn’t give good result. No dependence has 

been observed during the experiments. This problem most probably is because of no 

homogeneous layer of silver has been formed on the surface of the electrode. 

Another attempt also has been done to improve this method by adding conductive 

polymer (i.e. polypyrrole) support on the surface of the electrode (Fig 3.2), but that 

also has given poor reproducibility.  

 

 

 

 

 

 

 

Fig 3.2 Scheme of conductive chemoassay for glucose with 
polypyrrole support  

 

3.2. Silver mirror reaction in the paper support 

 

Other attempt to analyze glucose is continued by silver mirror reaction in the 

paper support. The basic idea is to use the diffusion of glucose and Ag(NH3)2
+ from 

two opposite directions that will meet at the reaction zone (about in the middle of the 

paper). The illustration of the experiment is demonstrated in fig 3.3. 

 

 

 

 

 

 

 

 

 

Fig. 3.3 Illustration of silver mirror reaction in the paper support. 

50 nm
 Polypyrrole 

Silver 

Paper 

Glucose Ag(NH3)2
+

Reaction zone 
formation of black color 



 

RESULTS AND DISCUSSIONS 

 -47-

The reaction between glucose and Ag(NH3)2
+ will produce the black color on the 

paper support. The reaction from the different concentration of glucose (in constant 

concentration Ag(NH3)2
+) will expectedly result different length and/or position of the 

black color in the paper support.  

The experiment of the silver mirror reaction in the paper support using 

constant Ag(NH3)2
+ and various glucose concentration is demonstrated in fig 3.4. The 

formation of black color in the paper support reveals as expected, but this technique 

has poor sensitivity and gives only semi quantitative analysis.  

 

    

   (a)        (b) 

 

(c) 

Fig 3.4 Detection of glucose using silver mirror reaction in the paper 
support technique. The concentrations of glucose are 500, 1000, 
1500 and 2000 ppm from up to down respectively. Initial time (a), 
after 1 hours (b), after 1 day (c)  

 

3.3. Preparation of nanoparticles 

 
There are several ways to synthesize gold nanoparticles in this work i.e.  

either in aqueous or organic solution, or using different oxidation agent. Each way will 
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result in the different stability of the nanoparticles formed. The stability is very 

important to be considered for storage and application purpose.  

 

Preparation gold nanoparticles using sodium citrate in the aqueous solution  
 

Gold nanoparticles are produced from reduction of HAuCl4 by sodium citrate.  

This process has been done in boiling temperature of the solution. 1 mL of 1% 

sodium citrate has been added into 10 mL of 1 mM aqueous solution of HAuCl4 

under intensive stirring (Fig 3.5).  

 

HAuCl4
1M

1 mL Sodium Citrate
0.1M

raw
Gold nanoparticles 

- Transfer 10 ml solution to a bottle
- Stirr the solution
- Heat the solution up to boiling point

- Wait the reaction, the color of  solution 
will change gradually. Stop the heating 
if the color become red wine

Gold nanoparticles 

- dialysis is performed for 3 times. Each 
time for 24 hours.

 

 
Fig. 3.5 Scheme of preparation of gold nanoparticles in aqueous 
solution 

 

If the reagent is mixed in the room temperature, the color will change slowly become 

blue. That blue color will stay for long time or change to black color due to the 

aggregation of particles if the concentration of HAuCl4 is quite high. This blue or black 

color indicates that the size of the gold nanoparticles is relatively big. At this 
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condition, an attempt to boil this solution has been done expecting the solution would 

change to red, but the solution remains blue. 

On the contrary, at the boiling temperature, the reaction begins immediately 

after the sodium citrate solution is added into the HAuCl4 solution. The reaction can 

be observed from the changes of the color of the solution. The figure 3.6 

demonstrates the changes of color during the reaction.  

 

                                                                                    

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6 Changes of color during the reaction of the reduction HAuCl4 
by sodium citrate gold nanoparticles synthesis in boiling temperature. 

 

The initial color of HAuCl4 is yellow, and soon after addition of sodium citrate 

in boiling state, the color changes in sequence to colorless, dark blue, and finally red 

wine. At this final state the solution is then cooled in the room temperature. The 

obtained suspension of nanoparticles is stored at room temperature and used within 

several days. The optical absorbance of the gold plasmon band in the suspension is 

about 1.5 (at λ = 519 nm, this corresponds to the spectral maximum); the 

spectrophotometer UV Vis CARY 50 Bio is used. The mean diameter of 

nanoparticles determined by SEM (LEO SUPRA35 ) is about 14 nm (the details of 

characterization will be explained later).  

If we consider the changes of color of the solution during the reaction, 

probably the big particles are formed (blue and black color) in the beginning of the 
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reaction, then the big particles cleavage to smaller size and finally formed 

nanoparticles (red wine color). However, it is not clear why the solution remains blue 

after boils the solution which is mixed in the room temperature.  

Unfortunately, no one has studied the detailed reaction which takes place in 

the above mixture until this time. But the following is mechanism of this chemical 

process proposed by S. Kumar, K.S Gandhi and R. Kumar.173 The reaction occurs as 

a multiple-step process. The initial step is the oxidation of citrate which yields 

dicarboxy acetone : 

 

 

        +   CO2   +   H+   +    2e- 

 

The second step is the reduction of auric salt to aurous salt : 

 

AuCl3 + 2e-                        AuCl +  2Cl- 

 

The third step is the disproporsionation of aurous species to gold atoms 

 

      AuCl     2Auo   +  AuCl3 

 

The overall stoichiometry of reduction reaction can then be presented as. 

 

 

                         2 HAuCl4 +    3      

 

 

 

 

    2Auo  + 3                  + 6 Cl- + 3H+ + 3CO2 
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(
-
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Purification of gold nanoparticles. 

 

Nanoparticles which are produced by reducing HAuCl4 with sodium citrate 

have very limited time storage. In order to get highly stable nanoparticles, purification 

has been performed for industrial purpose. Removal of the side product of the 

reaction between HAuCl4 with sodium citrate is considered to make gold 

nanoparticles more stable. The purification is done using dialysis technique. The 

dialysis is done in three days by immersing the dialysis tube containing gold 

nanoparticles in 5 L millipore water (Fig. 3.7). The water is changed every 24 hour.  

The result demonstrates that gold nanoparticles are more stable after the purification 

process. The stability of the gold nanoparticles will be described more detail in the 

part freezing indicator. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 3.7. Dialysis device. 
 
 

Silver nanoparticles synthesis using Sodium Citrate 

 

An attempt in my work also tries to synthesize silver nanoparticles. Silver 

nanoparticles are produced by reduction of silver nitrate by sodium citrate. The 

procedure is similar to production of gold nanoparticles using sodium citrate which is 
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described above. The reaction is done in boiling temperature of AgNO3. The color 

changes from colorless to yellow (Fig. 3.8).                                        

 

 

 

 

 

 
                (a)                            (b)                               (c) 

Fig 3.8 Changes of color during the synthesis of silver nanoparticles.  
Initial (a), in the middle of reaction (b), end of the reaction (c). 

 

Preparation of gold nanoparticles using sodium borohydride. 

 
  The limited stability of gold nanoparticles prepared by reduction of HAuCl4 

using sodium citrate is the reason to try other reducing agents. The basic procedure 

for the synthesis of gold nanoparticles using sodium borohydride is similar to the 

procedure in using of sodium citrate.  0.5 ml of 0.5  mM sodium borohydride is added 

to  1 mM 10 ml HAuCl4 with stirring. The color of the solution has changed from 

yellow to red/purple (Fig.3.9b). The reaction takes place at room temperature. This 

reaction does not need high temperature to proceed. The changes of color are very 

fast. Fig 3.9 demonstrates the change of the color, and finally aggregation of 

nanoparticles occurred. 

 

                                                                                                             

 

 

 

                        
 (a)                                     (b)                                   (c) 

 
Fig. 3.9. Changes of color in reduction HAuCl4 by NaBH4 in gold 
nanoparticles synthesis. (a) initial, (b) gold nanoparticles, (c) 
aggregation of nanoparticles 
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 The rate of reaction depends on the concentration of the reduction agent (NaBH4). It 

can be changed from several minutes until several days by addition of corresponding 

concentration of the reagent. But this part is not our main concern. Our concern is to 

get nanoparticles fast and stable for long time. Synthesis gold nanoparticles using 

NaBH4 is found difficult to be stopped. However once the reaction is started, the gold 

nanoparticles grow along the time. After red color has been achieved which shows 

the formation gold nanoparticles, the solution becomes dark, and continues growing 

and growing, and finally the particles settle down in the bottom of the flask (Fig 3.9c). 

An attempt to stop the reaction is by bubbling oxygen into the flask to oxidize the 

remained NaBH4. Thousand times of oxygen is introduced into the solution. After two 

hours bubbling oxygen into the flask and let the solution for one night, the 

agglomeration of gold nanoparticles is still happened. This method is not suitable for 

industrial preparation purpose which need fast and stable product for a long periods.  

 

Preparation suspension of gold nanoparticles in non-polar medium 

 

Gold nanoparticles in organic solution are performed for nucleation agent of protein 

and freezing indicator experiments. 6 ml 30 mM  hydrogen tetrachloroaurate aqueous 

solution is mixed with  16 ml of 50 mM tetraoctylammonium bromide in toluene. The 

mixture is stirred vigorously until all tetrachloro aurate transfer to toluene phase which 

is shown by change of the color. The color of aqueous solution changes from yellow 

to colorless. The organic solution changes from colorless to red. After separation of 

organic phase from the aquaeous phase, 34 mg of dodecanethiol is added to the 

organic phase solution. Freshly prepared 4 ml 0,5 mM sodium borohydride solution is 

added slowly with vigorously stirring for 3 hours. Solvent is evaporated until 2 ml 

using vacuum devices, and continued with the addition 80 ml ethanol. The solution is 

kept at -18oC for 4 hours in the refrigerator, and let for overnight. To remove the 

excess of dodecanethiol, the cleaning of gold nanoparticles using ethanol is 

repeated. 80 ml ethanol is added to the precipitate after removal of the ethanol from 

the solution, then let the solution for overnight. The precipitate is separated from the 

ethanol, and dried using vacuum device (Fig 3.10). These gold nanoparticles which 

are covered by dodecanethiol is soluble in non-polar medium174. 
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6 mL, 
30 mM HAuCl4 

in water

16 mL, 

30 mM tetraoctylammonium 

bromide in toluene

2 phase mixture
(organic and aqueous)

- Stir the mixture vigorously until all 
HACl4 transferred to organic phase.
- Separate the organic phase from 
aqueous phase

Aquaeous PhaseOrganic Phase

Precipitate golnanoparticles
+

Ethanol

Raw
Gold nanoparticles

coverred by dodecanthiol
Ethanol

- separate the precipite from the solvent

- Add  34 mg dodecanthiol
- Add  freshly prepared sodium borohidride
- stir for 3 hours
- Evaporate the solution until 2 mL
- Add 80 ml ethanol 
- kept in -18oC for 4 hours
- let the solution  for overnight in room temperature

 add 80 ml Ethanol -
-kept in -18oC for 4 hours -

let the solution for overnight in room 
temperature -

separate the precipitate -

Gold nanoparticles
coverred by dodecanthiol

Ethanol

- dry the precipitate using vacuum 
device

 

Fig. 3.10. Scheme of preparation gold nanoparticles in the organic 
solution 
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Continuous synthesis of gold nanoparticles 

 

After producing gold nanoparticles in small scale successfully, it is a challenge 

to produce gold nanoparticles in big scale for industrial purposes. If we consider the 

way in “Preparation gold nanoparticles using sodium citrate in the aqueous solution” 

as described in detail previously,  big scale synthesis of gold nanoparticles will need 

big reactor which is equipped with good stirring device. So, the reaction can run 

homogenously. If the stirring is not sufficient to make solution homogenously, gold 

nanoparticles may not grow perfectly as in small scale. This is a common problem if 

we want to develop from laboratory to industrial scale. Considering the above 

reasons, I have made some experiments to introduce a continuous synthesis of gold 

nanoparticles based on the principal reaction in batch method. Fig 3.11 is the initial 

scheme of continuous synthesis of gold nanoparticles. 

 

 

 

 

 

 

 

Fig. 3.11. Scheme of automation of gold nanoparticles synthesis. 

 

Concentration of HAuCl4 and sodium citrate introduced into peristaltic pump are 1 

mM and  0.01%  respectively.  Silicon tube is used for this experiment. Formation of 

gold nanoparticles starts when both of the solution mixed in the heater (water bath). 

This initial scheme raises two problems which make the reaction of formation of gold 

nanoparticles incompletely. The formation of gas (CO2) has caused inconstant rate of 

the output that influences the quality of the gold nanoparticles formed. Degasation of 

HAuCl4 and sodium citrate solution has been performed, but that can not help. The 

second problem, poor thermal conductivity of the silicon tube has made the 

temperature of the mixed solution is relatively lower than the expected temperature 

Peristaltic 
pump 

Heater 

HAuCl4 Na-Citrate 
Gold 

nanoparticle
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(i.e. boiling point). One special shape of glass (Fig 3.12) is then introduced in the 

heater to solve those problems. 

 

 

 

 

 

 

 

 

 

 
Fig 3.12 Illustration of the special shape of glass to remove gas during 
reaction and to help optimization of the heating for continuous gold 
nanoparticles synthesis. 

 

 

When the mixed solution (i.e. HAuCl4 and sodium citrate) in the silicon tube comes to 

the special glass, the solution will be held for definite time in the glass (Fig 3.12). In 

that place, the mixed solution gets heating better than in the silicon tube, so that 

formation of gold nanoparticles can be performed completely, as well as the gas 

which formed during the reaction can be released. This addition of special shape of 

glass  can produce better quality of gold nanoparticles. An attempt has also been 

tried to mix the reagents, i.e. HAuCl4 and sodium citrate, before peristaltic pump to 

find the optimize production of gold nanoparticles. Mixing of HAuCl4 and sodium 

citrate before peristaltic pump gives blue color solution product that indicates 

formation of big size of gold particles.  

The flow rate of the reactants is controlled by the peristaltic pump which can 

be adjusted to get suitable complete time reaction of gold nanoparticles formation. 

Various flow rates (0.91, 1.14, 1.47, 1.90, 2.22, 2.62 and 2.99 µL/s) of the pump have 

been applied to observe the influence of the quality of gold nanoparticles produced. 

The gold nanoparticles produced give red color similar look as produced in the batch 

method synthesis but with different intensity of the color due to lower concentration of 

Outlet 

Inlet 
HAuCl4 

Na-Citrate 
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HAuCl4 solution used. The details information of the spectrum of plasmon band of 

gold nanoparticles using UV-Vis spectrophotometer will be given the later. 

 

 

 

Fig. 3.13. The device for continuous gold nanoparticles synthesis. 

. 

3.4 Characterization of Nanoparticles 

 

After the synthesis of the nanoparticles, the next step is the characterization. 

The characterization will give information about the spectrum of the plasmon band, 
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size and also shape of the nanoparticles. The first characterization has been 

performed by UV-Vis spectrophotometer. Fig 3.14 is the spectrum of gold 

nanoparticles that are produced using sodium citrate reducing agent in batch 

method. 
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Fig. 3.14. UV-VIS spectrum of 1 mM gold nanoparticles solution by 
batch technique  
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Fig. 3.15 UV-Vis spectrum of 1 mM gold nanoparticles solution by 
continuous technique.  
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Fig 3.14 demonstrates that the peak of the spectrum of the gold nanoparticles using 

batch technique is at 523 nm, and the same value of the peak also has been given 

by the continuous technique (Fig 3.15). That indicates that both the synthesis 

techniques produce the same size of the gold nanoparticles.  
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Fig. 3.16 UV-Vis spectra of silver nanoparticles solution by batch 
method. 

 

. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3.17 UV Spectrum of the gold nanoparticles synthesized at room 
temperature (without heating, blue color appeared) (A), continued with 
heating at boiling point for 7 minutes (B). The UV-Vis spectrum of gold 
nanoparticles synthesized using continuous method at boiling 
temperature(C) 
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Fig. 3.16 demonstrates the spectrum of the silver nanoparticles which is 

produced by batch technique using sodium citrate reducing agent. The peak of the 

spectrum is at 435 nm. 

Fig 3.17 demonstrates the different results of the gold nanoparticles which are 

synthesized using different temperature treatment. The three spectrums show almost 

similar peak (at 523 nm), but each line has different absorbance value in each point 

of the wavelength. This indicates that the gold nanoparticles produced have different 

size of distribution. The narrower the spectrum of the plasmon band indicates the 

more homogenous size of distribution.  

If the height of the peak is calculated from the based line of the spectrum, 

spectrum (C) shows the highest absorbance, that indicates the highest number of the 

gold nanoparticles in the solution. Spectrum (A) has higher absolute absorbance (i.e. 

1.4) than spectrum (C) (i.e. 0.95) but lower peak height (calculated from the based 

line of the spectrum). Most probably that is because the spectrum (A) has more 

numbers of big particles in the solution that reflects much more light than the 

spectrum (B). After gold nanoparticles solution synthesized at room temperature (A) 

is boiled, the spectrum shows lower absorbance (B). Most probably the precipitation 

of big particles is the explanation of the decreasing of absorbance value. 
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Fig. 3.18 UV-Vis spectrum of 1 mM gold nanoparticles solution by 
continuous synthesis technique in various flow rates. 
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Fig 3.18 demonstrates the spectrums of the plasmon band of gold 

nanoparticles which have been produced using continuous system in various flow 

rates of the pump. Fig 3.19 demonstrates that the optimum flow rate for continuous 

synthesis of the gold nanoparticles is 2.25 µL/s. Most probably, big particles are 

formed if the gold nanoparticles solution is too long in the heater (lower than the 

optimum flow rate) 

 

 

 
 
 
 
 
 
 
 
 
 
 
Fig 3.19 Dependence of absorbance upon flow rates of the pump. 
Absorbance calculated from the based line of the UV-Vis 
spectrum at 523 nm. 

 

The second type of the characterization of nanoparticles is SEM and TEM to 

determine the size of the nanoparticles. Fig 3.20 is TEM image of the gold 

nanoparticles before dialysis. The size of the nanoparticles is estimated about 14 nm 

 

 

 

 

 

 

 

 

 

 

Fig. 3.20 TEM image of the gold nanoparticles before dialysis. 

50 nm
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Fig 3.21 shows that the size of the gold nanoparticles after dialysis is bigger than 

before dialysis. Some of nanoparticles most probably undergo aggregation during the 

dialysis process. The size of gold nanoparticles is estimated between 20 nm – 50 nm. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.21  SEM image of the gold nanoparticles after dialysis. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.22 TEM image of gold nanoparticles covered by 16-
mercaptohexadecanoic acid after dialysis. 

 

An attempt to stabilize the gold nanoparticles has been performed by adding 

16-mercaptohexadecanoic acid to the solution. The 16-mercaptohexadecanoic acid 

will cover the gold nanoparticles, and is expected to give more stable gold 
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nanoparticles. Fig 3.22 is TEM image of the gold nanoparticles which is covered by 

16-mercaptohexadecanoic acid (the gold nanoparticles solution is purified by dialysis 

technique before adding the 16-mercaptohexadecanoic acid).  The average size of 

the covered gold nanoparticles is bigger than the uncovered nanoparticles. The size 

of the covered gold nanoparticles is estimated about 20 nm – 100 nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.23 TEM image of silver nanoparticles before dialysis. 

 

Fig 3.23 is TEM image of the silver nanoparticles before dialysis. The size of 

silver nanoparticles is estimated about 50 nm that is bigger than gold nanoparticles 

which are produced with the same methods. After dialysis process to get more stable 

silver nanoparticles, the average size of silver nanoparticles becomes smaller. Figure 

3.24 demonstrates the size of the silver nanoparticles after dialysis that is estimated 

about 20 nm. The decreasing size of the silver nanoparticles probably is caused by 

precipitation of the large silver nanoparticles during dialysis, while the small particles 

remain in the solution.  
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Fig. 3.24 TEM image of the silver nanoparticles after dialysis. 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 3.25 TEM image of silver nanoparticles after dialysis that is 
covered by 16-mercaptohexadecanoic acid. 

 

Addition of 16-mercaptohexadecanoic acid into the purified silver nanoparticles is 

performed. Fig 3.25 shows the silver nanoparticles which are covered by 16-

mercaptohexadecanoic acid. The average size of the silver nanoparticles is 

estimated 20 nm that has similar size with the uncovered silver nanoparticles. But the 

most interesting part, the silver nanoparticles demonstrate the formation of the wire 

shape. 

50 nm

50 nm



 

RESULTS AND DISCUSSIONS 

 -65-

3.5 Detection of glucose 

 
A number of industrial, medical and biotechnological applications demand a 

simple technique for analysis of sugars. The developed methods include traditional 

methods of quantitative analyses (silver mirror reaction), as well as polarometry175, IR 

spectroscopy176, affinity sensors based on phenylboronic acid177-179 and lectins180,181 

and enzymatic biosensors182,183. Some of these approaches are not selective others 

(affinity sensors with lectins, enzymatic biosensors) give detailed information on 

molecular types of sugars. The most perspective for routine applications are 

considered to be biosensors based on the corresponding oxidases or other enzymes. 

Such sensors are highly selective, sensitive, fast and reversible. However, many 

applications demand such a sensor which is stable being exposed to high 

temperature, aggressive chemicals, heavy metals and other enzyme inhibitors; which 

can be cleaned in hard conditions, dried and stored for a long time and does not 

need to be calibrated often. Such a sensor can be based on non-enzymatic 

electrochemical oxidation of glucose. The advantages and disadvantages of 

enzymatic and non-enzymatic sensors for glucose are discussed in184.  

The most appropriate electrode for electrochemical oxidation of glucose was 

considered the platinum one185. However, low sensitivity, poisoning by adsorbed 

intermediates and chloride and poor selectivity184 were the reasons to search for 

another electrode surface providing selective electrochemical activity towards 

glucose. Modifications of platinum electrode by Tl, Pb, Bi and WO3 were studied186. 

However, a high affinity of platinum to the most of organic compounds leading to fast 

poisoning of the electrocatalytical surface, low sensitivity and toxicity of heavy metals 

hinder a further development in this field. 

Another promising material for development of non-enzymatic electrochemical 

sensors for glucose is gold. The mechanism of electrochemical oxidation of glucose 

on gold electrodes was studied in187. It was demonstrated that the oxidation is a 

multistep process, and the first step includes a formation of catalytically active gold 

hydroxide. The glucose oxidation starts at the electrode potential of - 0.75 V vs SCE 

and becomes fast after increasing the potential up to -0.35 V vs SCE. A further 

increase of the electrode potential leads to the blocking of the glucose oxidation, 
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probably due to formation of gold oxide187. An essential improvement of 

electrocatalytical properties of gold electrodes can be reached by oxidative treatment 

of the gold surface188-190. Glucose oxidation was also studied at several metal ad-

layers (Hg, Cu, Ag, Ru, Pt, Pd and Cd) deposited on gold surfaces191,192. The role of 

the catalytically active adlayers (Ag and Hg) was related either to the shift of the pzc 

of the electrode or to the formation of catalytically active metal hydroxide sites. The 

latter process occurs at less positive potentials for silver192 or results in a larger 

amount of adsorbed OH- for mercury191. Another approach for development of gold-

based glucose sensors is the immobilization of gold nanoparticles on a conductive 

carrying substrate. First attempts for using this approach were recently reported193,194 

but no difference was detected in the voltammetric response for glucose oxidation at 

the Au-nanoparticles modified and gold-plate electrodes194. The present investigation 

presents another attempt to use gold nanoparticles immobilized on gold electrodes 

for voltammetric detection of glucose. 

 
Preparation of gold electrodes modified by gold nanoparticles  
 

The gold electrodes consisted of a thin gold layer sputtered onto a glass or 

silicone support with adhesive chromium sublayer. The electrodes had a disk-shaped 

gold pad with a macroscopic area of 0.385 mm2 and connected to a contact pad by a 

contact line of 8 mm length and 10 µm width. Deposition of nanoparticles was 

performed by LbL (Layer-by-Layer) technique195: the gold electrode was immersed 

into the freshly prepared 0,2% solution of polyacrylic acid (pH 10) for 30 minutes, 

rinsed in water, immersed into the suspension of gold nanoparticles for 15 minutes, 

and rinsed with water again. This cycle was repeated three times. The quality of the 

electrode surface was controlled by optical microscopy. Surface plasmon resonance 

(SPR) monitoring of deposition of gold nanoparticles was performed by SPR-

reflectometer Biosuplar-3 from Analytical µ-Systems (www.biosuplar.com). The 

experiments were performed in slope mode (i.e. as measurement of the intensity of 

the reflected light at fixed incident angle). Gold coated SPR-slides were used for the 

LbL deposition in these measurements 
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Measurement condition 

 
Electrochemical measurements were performed by AUTOLAB PGSTAT-13 

electrochemical workstation (EcoChemie, The Netherlands). A standard three-

electrode electrochemical cell was used. The electrode assembly consisted of a bare 

or modified Au electrode as the working electrode, a Pt wire as counter electrode, 

and Ag/AgCl (sat) as the reference electrode. The potential in all figures are indicated 

relative this reference electrode. The measurements were performed in 0.1 M NaOH 

at 22o C. And other properties of electrode during detection of glucose also have 

been observed using impedance spectroscopy.  

 
Results and discussion 

 
Modified gold nanoparticles were obtained using LbL procedure. The 

gold/polymer layers deposited on the surface of gold electrode using three-cycle and 

characterized by SEM ; the mean size of the gold nanoparticles was estimated to be 

about 14 nm (Fig. 3.26).  

 

Fig 3.26 SEM image of gold electrodes coated by gold nanoparticles 
and polymer. The circle in the inset (corresponding approximately to 
the size of the nanoparticles) is 14 nm in diameter. 

 

Identification of the polymer in the SEM images was performed by destroying using 

focused electron beam; also samples without gold nanoparticles, without polymer as 
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well as uncoated gold electrodes were studied. The figure shows that LbL deposition 

resulted in the formation of a rough polymer layer impregnated by gold nanoparticles. 

The procedure of LbL deposition was optimized by using surface plasmon 

resonance monitoring. Typical results for the SPR shift at different steps of the LbL 

deposition procedure are shown in fig.3.27.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.27. Surface plasmon resonance (SPR) monitoring of the 
formation of nanocomposite layer from polyacrilic acid and gold 
nanoparticles on the gold surface. The letters W, P and Au indicate the 
beginning of perfusion of the SPR cell with water (W), polyacrilic acid 
(P) and suspension of gold nanoparticles (Au). 
 

 

Optimization of the deposition demonstrated, that it is not necessary to use ω-

terminated thiolated compounds to get defined surface charge of the gold surface: an 

immersion of the uncoated gold electrode in polyacrilic acid in alkaline pH at open 

circuit potential provides irreversible adsorption of this polymer. Probably, the surface 

charge of the gold is positive at such conditions. This explains also the next step of 

the deposition - very strong adsorption of gold nanoparticles on the polymer coated 

gold surface. A further rinsing with water demonstrated that this adsorption is also 

irreversible. This cycle of subsequent deposition of the polymer and nanoparticles 

was repeated several times, the SPR effect was less and less pronounced for each 

consecutive cycle. One has to take into account that because of very high signal 
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changes, the relation between reflecting light and shift of SPR angle was not linear, 

which lead to about 50% decrease of sensitivity at high signal values. However, this 

non-linearity has no influence on the qualitative conclusion drawn above. It is also 

important to stress that no gold deposition was observed if the polyacrilic acid 

deposition step was omitted in the LbL deposition cycle.  

After optimization of the nanoparticles deposition procedure by means of SPR 

monitoring, the same procedure was used for coating of thin layer gold electrodes 

fabricated on the surface of oxidized silicon wafer. Three cycles of the deposition of 

polyacrilic acid and gold nanoparticles led to the formation of characteristic gold 

luster on the surface of oxidized silicon. With a microscope, it was possible to see 

optical changes also on the surface of the gold electrode (Fig. 3.28). An increase of 

the number of cycles till eight led to the formation of visually perfect gold layer on the 

surface of silicon oxide; a high electrical conductivity of this layer in lateral direction 

was measured. However, because of decreasing of stability at increasing number of 

layers, gold electrodes modified by three cycles of deposition of gold nanoparticles 

and polyacrilic acid were used in the electrochemical part of our work.  

 

      
 
 
Fig. 3.28. Thin layer of gold (a circle and a 10 µM wide connection 
wire) on the surface of oxidized silicon wafer before (left) and after 
(right) three deposition cycles including consecutive adsorption of 
polyacrilic acid and immobilization of gold nanoparticles. See text for 
details.  
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Electrochemical oxidation of glucose on electrodes coated by gold 
nanoparticles. 
 

The voltammetric curve of bare gold electrode measured in  0.1 M NaOH (Fig. 

3.29, curve 1) demonstrated typical gold oxidation/reduction behavior usually 

associated to formation and reduction of gold oxide185. Very similar voltammetric 

curve but with a higher current was observed for the gold electrodes coated by gold 

nanoparticles (Fig. 3.29, curve 3). In the presence of glucose, an additional oxidation 

starting at 0.2 V appeared (Fig. 3.29, curve 2). The same curve measured with gold 

nanoparticles coated electrode (Fig. 3.29, curve 4), showed much more pronounced 

glucose oxidation currents.  

 

Fig. 3.29. Voltammograms of uncoated gold electrodes (curves 1, 3) 
and gold electrodes coated by a layer consisting from polyacrylic acid 
and gold nanoparticles (curves 2, 4) in 0.1 M NaOH in the absence 
(curves 1, 2) and in the presence (curves 3,4) of 0.5 mM glucose. 
Sweep rate: 20 mV/s. Inset: curves 1 and 2 with magnification of the 
current scale. 

 

It was further observed that the application of the potential sweep between -

1.0 V and +1.0 V leads to irreversible changes in voltammograms. Therefore, the 
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potential sweep was limited to the range from – 0.1 V to +0.4V. The voltammetric 

signals observed at such conditions were essentially different. Potential sweep to the 

anodic direction resulted in oxidation peak at about +0.24 - +0.28 V. No negative 

reduction peak was observed during the potential sweep in the cathodic direction. 

Instead, a second positive peak at the potential of about +0.12 V was observed. The 

concentration dependence of electrochemical signals associated with glucose 

oxidation (Fig. 3.30) was studied in the medically important concentration range 

between 0.5 mM and 8 mM with 0.5 mM step. The heights of both peaks were found 

to be linearly dependent on the glucose concentration (Fig. 3.31), the correlation 

coefficients being 0,987 and 0,989 for the peaks at anodic and cathodic directions of 

the potential scans correspondingly. These linear dependencies can be used as 

calibrations for analytical applications.  
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Fig. 3.30. Cyclic voltammograms of the gold electrodes coated by gold 
nanoparticles measured in 0.1 M NaOH with concentrations of glucose 
varying from 0.5 mM to 8 mM with a step of 5 mM. Sweep rate: 50 
mV/s 
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Fig 3.31. Dependence of the currents measured at cathodic direction 
of the potential sweep at the potential +0.117 V (A) and at the anodic 
direction of the potential sweep at the potential +0.238 V (B). The 
measurement conditions are indicated in Fig. 3.27.  

 

Potentially dependent current blockage 

 

The physical reason for the appearance of oxidation peak during cathodic 

direction of the potential sweep can be in the electrical blockage of the electrode 

surface by not-conductive gold oxide forming at potentials higher than +0.3 V. This 

insulating layer leads also to the decrease of the oxidation current during the 

potential sweep to anodic direction. Such effect was discussed earlier for glucose 

oxidation on bare gold electrodes187. In the case of gold electrodes coated by gold 

nanoparticles, this effect may be much more significant: electrons should tunnel not 

only through oxide layer on the electrolyte-metal interface but also through oxide 

layer of about double thickness between nanoparticles and metal (Fig. 3.32). 
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Fig. 3.32. Formation of insulating gold oxide on all gold surfaces leads 
to longer tunneling distance and therefore to higher resistance 
increase for the gold electrodes coated by gold nanoparticles. 
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Fig. 3.33. Dependence of the resistance (left) and capacitance (right) 
of the gold electrodes coated by polyacrylic acid and nanoparticles on 
the electrode potential.  
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The blocking effect of anodic potential was studied directly, by impedance 

spectroscopy. To exclude a complicated analysis of equivalent circuits and numerous 

assumptions required for such analysis, we suggested that the active component of 

the current at 5 Hz is caused by the electrode resistance while the reactive 

component at 10 kHz is caused by the electrode capacitance. The results of such 

simplified analysis are presented in Fig. 3.33. Increase of the electrode resistance 

and decrease of the electrode capacitance indicate to the formation of insulating 

layer on the electrode surface. Most probably this layer consists of gold oxide.  

 

Selectivity aspects 

 

 Glucose analysis in biological liquids is performed mainly in blood or urine. 

Most physiological components of these liquids are not electrochemically active in the 

potential range used in the glucose sensor (-0.1 - +0.4 V); the only exceptions are 

probably glucose and uric acid. Because of this reason, the electrochemical activity 

of uric acid on the gold nanoparticles modified gold electrodes was studied and 

compared with the electrochemical activity of glucose. Changes of voltammograms 

induced by introduction of glucose or uric acid are presented in fig. 3.34. The 

electrochemical signal of uric acid has usual monotonous shape; the current is 

almost zero if the electrode potential does not exceed +0.15 V. The concentrations of 

glucose in blood and urea are respectively 3 - 8 mM and below 0.5 mM while these 

values for urine are respectively below 0.65 mM and 1.2 - 6 mM196. Comparing these 

values with the experimental data (Fig. 3.34), we conclude that uric acid should not 

interfere the measurements in blood. Oppositely, the measurements of glucose in 

urine by this method seem not to be appropriate due to strong interference of uric 

acid. Possible influence of non-biological substances (drugs, food additives, etc.) 

which can be also presented in blood demand a further investigation.  

 The peak of glucose oxidation observed at the cathodic direction of the 

potential sweep is especially interesting for analytical applications. First, it is 

observed at very low potentials thus decreasing the number of possible interferents. 

Second, the current at the peak potential is about zero in the absence of glucose 
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(Fig. 3.31A). This makes possible the application of the techniques of standard 

additions for glucose analysis. 
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Fig. .3.34. Cyclic voltammograms of the gold electrodes coated by 
gold nanoparticles measured in 0.1 M NaOH (1), in 0.1 M NaOH in the 
presence of 3 mM glucose (2) and in 0.1 M NaOH in the presence of 3 
mM uric acid (3). Sweep rate: 50 mV / s. 

 

3.6 Detection of dopamine 

 

Dopamine belongs to the group of catecholamine and plays an important role 

in the function of central nervous, renal, hormonal and cardiovascular systems197,198. 

Its deficiency can lead to brain disorders such as Parkinson’s disease or 

schizophrenia199-201. The development of methods for dopamine quantification in 

blood and biological fluids has received much attention in recent investigations. 

Different attempts have been made to develop electrochemical detection of 

dopamine using electrodes with various types of surface modification: chemically 

modified electrodes202-209, electroactive polymer modified electrodes210-221 and 

nanoparticles modified electrodes221-226. The testing of various modified electrodes 

for the dopamine oxidation reaction relates to the following problems:(a) fouling of the 

surface of conventional electrodes due to the absorption of oxidation products which 

results in poor reproducibility, (b) interfering reactions due to the co-existence of 

other analytes and mainly of ascorbic acid in the biological fluids which undergo 
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oxidation in a similar potential range, and (c) high concentration of the interfering 

analytes in comparison to dopamine (e.g. the concentration of ascorbic acid is about 

1000 times higher than that of dopamine), resulting in poor selectivity and sensitivity 

for dopamine detection. 

The detection of dopamine in the presence of excess of ascorbic acid and the 

development of a sensor with good selectivity, sensitivity and reproducibility is still a 

challenging task in the electroanalytical research. In this work, we report on the use 

of gold nanoparticles modified electrode for detection of dopamine in the presence of 

ascorbic acid in aqueous solutions. In the previous work on dopamine detection by 

means of gold nanoparticles modified electrodes the nanoparticles immobilization 

was performed by means of amine222 or sulfhydril223 terminated self assembled 

monolayer, by embedding in a poly(3,4-ethylenedioxythiophene)221 or poly-(4-

aminothiophenol)224 films or by mixing in a carbon paste226.  

In our investigation gold nanoparticles are deposited on the surface of a gold 

electrode using the Layer by Layer technique. The general idea was to incorporate 

the gold nanoparticles into a negatively charged matrix205 thus combining fast 

electron transfer kinetics on the surface of the gold nanoparticles227, electrostatic 

discrimination of negatively charged species (e.g. ascorbate ions) and increase in the 

local concentration of the positively charged analyte (dopamine) near the sensor 

surface. A similar approach was attempted by embedding gold nanoparticles into a 

conducting polymer matrix with hydrophilic (charged) and hydrophobic (neutral) 

regions221. However, the intrinsic electroactivity of conductive polymers is in the origin 

of high pseudocapacitive current which may affect the sensitivity of these materials. 

In our investigation this problem is overcome by using an inert polymeric material 

without intrinsic electroactivity.  

 

Procedure of the experiment 

 

 Hydrogen tetrachloroaurate(III) hydrate was obtained from Chem Pur. 

Polyacrylic acid (M.W.500 - 1000 kD) and Nafion-117 solution (5%, in the mixture of 

lower aliphatic alcohols and water) were from Fluka. Sodium citrate, dopamine, 

sodium acetate, acetic acid, monosodium hydrogen phosphate, and disodium 
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hydrogen phosphate were from Merck, ascorbic acid and other chemicals were from 

Sigma-Aldrich. All reagents were of analytical grade. Deionized water was purified 

using Millipore Milli-Qsystem (18.2 MΩ) and used in all preparations. 

 The preparation of gold nanoparticles was performed according to the 

classical procedure17. Shortly, 1 mL of 1% sodium citrate is added into10 mL of 

boiled 1 mM aqueous solution of HAuCl4 under intensive stirring. In several minutes 

the color of the solution changes from yellow to colorless, then dark blue, dark red 

and finally red wine color; at this moment the solution was cooled. The obtained 

suspension of nanoparticles was stored at room temperature and used within several 

days. The optical absorbance of the gold plasmon band in the suspension is about 

1.5 at the spectral maximum (519 nm). A UV-vis spectrophotometer CARY 50 Bio 

was used for this measurement. Scanning electrone microscopy (SEM) was 

performed by LEOSUPRA 35.  

 The gold electrodes were prepared by RF-sputtering on a glass or silicone 

support with adhesive chromium sub-layer resulting in about 250 nm thick gold 

layers. The electrodes were disk-shaped with a macroscopic area of 0.385 mm2 

connected to a contact pad by a contact line of 8 mm length and 10 µm width. Other 

details are described in228. The deposition of gold nanoparticles was performed by 

Layer by layer (LbL) technique: the gold electrode was immersed into the freshly 

prepared 0.2% (w/w) solution of polyacrylic acid (pH 10) for 30 minutes, rinsed in 

water, immersed into the suspension of the gold nanoparticles for 15 minutes, and 

rinsed with water again. This cycle was repeated three times. The quality of the 

electrode surface was controlled by optical microscopy. Further in the text these 

electrodes will be termed nano-Au electrodes.  

 Most of the electrochemical measurements were performed by an AUTOLAB 

PGSTAT-13 electrochemical workstation (Eco Chemie, The Netherlands); the 

measurements at fast sweep rate were performed by a CH Instruments (USA) 

potentiostat 602 A. Standard three electrode electrochemical cell was used. The 

electrode assembly consisted of a bare or modified Au electrode as working 

electrode, a Pt wire as counter electrode, and Ag/AgCl (sat) as reference electrode. 

The potentials are indicated relative to this reference electrode. The measurements 

were performed in 0.1 M phosphate buffer, pH 7 or 0.2 M acetate buffer, pH 4 at 
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22oC. Before use the electrodes were cleaned electrochemically in the buffer solution 

by applying of a single potential scan from -0.1 V to 3 V with 50 mV/s. 

 Surface plasmon resonance (SPR) monitoring of the gold surface was 

performed by a SPR-reflectometer Biosuplar-321 from Mivitec GmbH / Analytical µ-

System (www.biosuplar.com) in the tracking mode; the laser wavelength was 650 

nm. The SPR signals were recalculated into changes of refractive index; calibration 

with KCl solutions was used. Gold-coated SPR slides were connected to the 

potentiostat for simultaneous SPR spectroscopy and cyclic voltammetry; the potential 

applied to the gold coated SPR-slide was cycled from -0.1 V to 0.4 V in the 

phosphate buffer (pH 7.0) or from 0.0 V to 0.5 V in the acetate buffer (pH 4.0) with 

sweep rate of 5 mV/s. 

 Nafion deposition was performed from a mixture of Nafion-117 solution (5%) 

with isopropanol (1:2 v/v) by setting a droplet on the nano-Au electrode. After 

evaporation, the Nafion film was treated first at 80°C for 12 h, then at 130°C for 30 

min. The thickness of the Nafion layer, estimated by the shift of the focus plane of 

visual microscope, was about 1 µm.   

 

Results and discussion 

 
a.  Electrochemical behavior at neutral pH 

 
 Fig. 3.35 shows consecutive voltammetric curves obtained by means of the 

nano-Au electrode in the presence of dopamine in phosphate buffer at pH=7. The 

gradual inhibition in both oxidation and reduction reactions indicates the loss of 

electroactivity of the investigated electrode. The initial voltammetric curve could not 

be recovered even after transfer of this electrode back into phosphate buffer (in the 

absence of dopamine) and continuous cycling. Usual electrochemical methods to 

clean the electrode surface by high cathodic (-1 V) or high anodic (+2 V) potentials 

did also not help the electrode recovery.  
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Fig. 3.35. Ten cycles of cyclic voltammograms measured with a gold 
electrode modified by gold nanoparticles. Electrolyte: 2 mM dopamine 
in 0.1 M phosphate buffer, pH 7. The curve with the highest reduction 
and oxidation currents was observed during the first cycle; in each 
next cycle the current was smaller.  

 

 

The irreversible behavior of the nano-Au electrode can be due either to some 

changes in the multilayer structure (for example, desorption and loss of gold 

nanoparticles) or to irreversible adsorption of dopamine oxidation products on the 

gold surface. This question was addressed by means of simultaneous SPR and 

voltammetric measurements, performed on a gold-coated SPR slide in the presence 

of dopamine. For synchronization of the devices, the sweep rate was decreased to 5 

mV/s. The results demonstrated irreversible changes in the SPR signal (Fig. 3.36), 

corresponding to an increase in the refractive index near the surface by 2.9.10-3 units 

in the first cycle. To calculate the thickness of the adsorbed layer, data on its 

refractive index are needed. Assuming that the layer’s refractive index is close to the 

typical values for dopamine, phenol polyphenol and pyrocatechines (1.55 - 1.63), the 

layer thickness is estimated to be about 1 -2 nm. (The calculation is performed 

according to229 ). The estimation of the adsorbed layer’s thickness based on the 

oxidation charge, by assuming one electron per one oxidized dopamine molecule 

and 1 g/mL density230 , gives a value for the thickness of about 50 nm. The difference 

in these two values can be explained by the following reasons: (i) only a small 



 

RESULTS AND DISCUSSIONS 

 -80-

amount (few percent) of the primary dopamine oxidation products forms the 

insulating film, (ii) the formation of the insulating film from the primary dopamine 

oxidation product is an oxidation process resulting in the release of additional 

electrons, therefore the total stoichiometry can be much higher than one. The 

formation of an insulating layer due to dopamine oxidation was suggested earlier for 

other types of electrodes219,220, but the application of simultaneous SPR- and 

electrochemical measurements allowed us to observe this process directly and to 

make quantitative characterization of this layer.  
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Fig. 3.36. Changes in the surface plasmon resonance signal monitored 
during the cycling of a non-modified gold electrode in the presence of 
2 mM dopamine in 0.1 M phosphate buffer solution  at pH 7. 

 

The irreversible behavior, observed in the course of the dopamine oxidation, 

diminishes in each subsequent voltammetric cycle. Electrode conditioning, performed 

by means of 5 cycles, decreases the signal loss to 1.4% per cycle. A deposition of a 

Nafion is often considered as an almost universal coating against undesirable 

adsorption. However, a coating of nano-Au electrode by Nafion did not lead to any 

decrease in the fouling. Moreover, this coating resulted in essential loss of 

electrocatalytical activity, shift of the dopamine oxidation peak to higher anodic 

potentials and disappearance of the corresponding reductive peak. The loss of the 

activity of the Nafion coated electrode is presented in Fig. 3.37 (squares), the effect 
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was 57% signal loss for the first 10 cycles, and 2.8% signal loss per cycle after the 5-

th cycle. An effective way to diminish the electrode fouling is the increasing in the 

sweep rate231. This approach turned out to be effective also for the nano-Au 

electrodes (Fig. 3.37, triangles) - the loss of the signal during the first 10 cycles was 

below 23%. For the electrode which was conditioned by 5 cycles, the loss of the 

signal was below 0.8% per cycle. Such loss of the sensor activity can be tolerated in 

the most biological applications. One can expect that further increase in the sweep 

rate can exclude the irreversible behavior of the nano-Au electrode almost 

completely. 
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Fig. 3.37. Decrease of the dopamine oxidation current in ten 
subsequent cycles of potential sweep. The current values correspond 
to oxidation peaks, the current of the first cycle was considered as 
100%. The measurements were performed in the presence of 2 mM 
dopamine in 0,1 M phosphate at pH 7.0 for the electrodes with gold 
nanoparticles immobilized by LbL deposition with polyacrylic acid 
without coating (● and ▲) and with coating by Nafion (■) at sweep rate 
of 50 mV/s (● and ■) or 10 V/s  (▲).  
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b. Electrochemical behavior at pH 4 

 

 Fig. 3.38 shows voltammograms measured on the nano-Au electrode in the 

presence of dopamine in acetate buffer at pH 4. In contrast to the measurements at 

pH 7 (Fig. 3.35), the consecutive voltammetric cycles are almost coinciding and show 

that no fouling of the electrode surface occurs in this solution. Both oxidation and 

reduction peaks are well resolved and can be used for quantitative electroanalytical 

determination of dopamine in electrolytes.  
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Fig. 3.38. Cyclic voltammograms measured by gold electrode modified 
by gold nanoparticles in the presence of 2 mM dopamine in 0.2 M 
acetate buffer solution, pH 4. 

 

 

The absence of fouling effects on the gold surface during the dopamine oxidation at 

pH 4 was also confirmed by SPR measurements. The SPR signal (Fig. 3.39) 

measured in the course of potentiodynamic cycling in 0.2 M acetate buffer on a gold-

coated SPR slide indicates a reversible electrochemical process. The magnitude of 

the irreversible component per cycle is about 100 times smaller than at pH 7; an 

estimation of the mean effective thickness of the layer of the oxidized dopamine 

species on the electrode surface, based on the same assumption as for pH 7, gives a 

value for the adsorbed layer’s thickness of only 10 pm per cycle. Thus, in this case 

almost no poisoning of the gold surface occurs: the electrochemical measurements 
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do not indicate the formation of an insulating film and the SPR measurements do not 

indicate the formation of a layer with refractive index different from water.  

500 750 1000 1250

940

960

980

1000

1020

1040

Cycle 3Cycle 2

S
P

R
 S

ig
n

a
l,

 r
e
l.

 u
n

it
s

Time, s

Cycle 1

 

Fig. 3.39. Changes in the surface plasmon resonance signal monitored 
during the cycling of a non-modified gold electrode in the presence of 
2 mM dopamine in 0,2 M acetate buffer at pH 4. 

 

c. Comparison of bare gold electrodes and gold electrodes modified by gold 
nanoparticles.  
 

The electrocatalytical behavior of a given electrode material can be observed 

as a decrease in the reaction polarization (decrease in the overvoltage) or as an 

increase in the reaction current. The behavior of the latter type was observed in the 

case of dopamine oxidation at the nano-Au electrode. In such a case a comparison 

of the electrode areas with and without catalyst becomes critical. In order to estimate 

the catalyst surface, the nano-Au electrodes were studied by SEM. The results 

demonstrated that the surface density of gold nanoparticles on the electrode surface 

is 3.3.1015/m2 and the mean diameter is 14 nm. Taking into account the total surface 

of the gold nanoparticles, the electrode surface area should be increased by a factor 

of two. However, the nanoparticles are distributed along the polymer chains which 

are several thousands times longer than the size of nanoparticles, but only the 

nanoparticles which are placed within the electron tunneling distance from the 

electrode surface (< 0.5 nm) can be electrochemically active. Also, due to the 

contacting of the nanoparticles to the macroscopic gold electrode substrate, some 
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part of their surface gets lost for the oxidation reaction. Additionally, adsorption of the 

inert non-conductive polymer on the surfaces of the gold nanoparticles and the 

macroscopic gold electrode, leads to further decrease in the electrochemically active 

surface. This discussion demonstrates that only a decrease in the electrochemically 

active electrode area after the LbL deposition of the gold nanoparticles should be 

expected.  
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Fig. 3.40. Voltammograms measured in presence of 2 mM dopamine 
in 0,2 M acetate buffer at pH 4 using non-modified gold electrode (A) 
and gold electrode modified by gold nanoparticles (B).  

 

 Fig. 3.40 shows voltammetric curves measured in the presence of dopamine 

by non-modified gold electrodes and by nano-Au electrodes. The higher oxidation 

currents, observed on the Au-nano electrode, should be attributed to the effect of the 

catalytically active gold atoms228 on the surface of the nanoparticles. An additional 

effect contributing to the higher electrochemical activity of the nano-Au electrode is 

an electrostatic interaction between the positively charged dopamine species and the 

slightly negatively charged polyacrylic matrix resulting in an increase in local 

concentration of dopamine near the electrode surface. 

One of the main substances interfering with the electrochemical detection of 

dopamine is ascorbic acid. For that reason further experiments were performed to 

test electrochemical activity of the nano-Au electrode with respect to the oxidation of 

this analyte. Comparison of the voltammetric curves (Fig. 3.41), measured in the 
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presence of ascorbic acid on the macroscopic gold electrode and the nano-Au 

electrode shows almost no difference between the performances of these electrodes. 

In fact, the oxidation currents measured on the pristine Au electrode are slightly 

higher in the almost entire potential window for both forward and reverse scans. 

Therefore, the electrocatalytical effect of the gold nanoparticle either does not occur 

for oxidation of ascorbic acid or there is an additional effect inhibiting its oxidation on 

the nano-Au electrode. Considering the charge distribution on the electrode surface 

consisting of the gold nanoparticles and the negatively charged polymer (polyacrylic 

acid) and bearing in mind that the ascorbate anion is also negatively charged, an 

electrostatic repulsion and thus a limited access of this interferent to the surface of 

the gold nanoparticles is expected. The same mechanism was earlier suggested for 

exclusion of anionic interferents by coating with Nafion232.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.41. Voltammograms measured in presence of 2 mM ascorbic 
acid in 0,2 M  acetate buffer at pH 4 using non-modified (A) gold 
electrode and gold electrode modified by gold nanoparticles (B).  

 

d. Selectivity of dopamine detection. 

 

 A comparison of the voltammetric scans measured in 2 mM solutions of 

ascorbic acid (Fig. 3.41) and of dopamine (Fig. 3.40) shows that the oxidation peaks 

due to both analytes are resolved by about 240 mV. At equal concentrations of both 

substances the dopamine oxidation peak is about three times higher than the 

oxidation peak of the ascorbic acid. It is to note that a reduction peak on nano-Au 
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electrode is observed only for the dopamine reaction and therefore it can be also 

used (instead of the corresponding oxidation peak) for quantitative detection of 

dopamine in the presence of ascorbic acid.  

Fig. 3.43 shows voltammograms measured by the gold electrodes modified by 

gold nanoparticles at various concentrations of dopamine in the absence of ascorbic 

acid. The oxidation currents (measured at E=0.36 V) and the reduction currents 

(measured at E=0.24 V) are plotted against dopamine concentration (Fig. 3.44 and 

fig 3.45 respectively). Both signals demonstrate linear concentration dependence in 

the whole studied concentration range (4-40 µM). 
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Fig. 3.43. Voltammograms measured on the gold electrodes modified 
by gold nanoparticles at various concentrations of dopamine in 0,2 M 
acetate buffer at pH 4 in the absence of ascorbic acid. 
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Fig. 3.44. Concentration dependence of the dopamine oxidation peak 
measured at 0.36 V in 0,2 M acetic buffer at pH 4 in the absence of 
ascorbic acid (data from fig. 3.43). 
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Fig. 3.45. Concentration dependence of the dopamine oxidation peak 
measured at 0.24 V in 0,2 M acetic buffer at pH 4 in the absence of 
ascorbic acid (data from fig. 3.43). 
 



 

RESULTS AND DISCUSSIONS 

 -88-

A similar series of voltammetric measurements was performed at various 

concentrations of dopamine (from 4 to 40 µM) in the presence of 1 mM ascorbic acid 

(Fig. 3.46). The mechanism of the inhibition of ascorbic acid oxidation by much 

smaller concentrations of dopamine is not clear but this process does not affect the 

electrochemical activity of dopamine. The plots of the dopamine oxidation (at E=0.36 

V) and reduction (at E=0.24 V) currents against dopamine concentration (Fig. 3.47 

and fig 3.48 respectively) show linear concentration dependences in the whole 

studied concentration range (4-40 µM). 
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Fig. 3.46. Voltammograms of gold electrodes modified with gold 
nanoparticles measured in 0,2 M acetic buffer at pH 4 in the presence 
of 1 mM of ascorbic acid at various concentrations of dopamine. 
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Fig. 3.47. Concentration dependence of the dopamine oxidation peak 
measured at 0.36 V in the presence of 1 mM ascorbic acid in 0,2 M 
acetic buffer at pH 4 (data from Fig. 12). 
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Fig. 3.48. Concentration dependence of the dopamine reduction peak 
measured at 0.24 V in the presence of 1 mM ascorbic acid in 0,2 M 
acetic buffer pH 4 (data from Fig. 12). 
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3.7 Nanoparticles as nucleation centers for protein crystallization 

 

Biochemical functions of proteins are closely related to their molecular 

structure. Common techniques for determination of the protein structure include X-ray 

crystallography and NMR spectroscopy. These methods provide atomic resolution of 

the protein molecules in solid and liquid state, respectively. Before analysis, proteins 

need to be crystallized, and exactly this step is the main barrier for analysis of a 

number of proteins by X-ray crystallography techniques. Additionally, crystallization is 

a way to obtain ultrapure protein samples, it makes this approach important for 

different fields of biological science and biotechnology.  

Crystallization of proteins includes nucleation and crystal growth. During the 

nucleation stage, the solute protein molecules dispersed in the solvent start to gather 

into clusters and form stable nuclei. These clusters are stable only if they reached 

some critical size; smaller clusters tend to dissolve. This size depends on physical 

conditions, such as temperature233,234 and pressure235, and on protein concentration. 

Once the critical size is reached, the protein crystal is growing spontaneously so long 

as the solution is in the supersaturated state. Different aspects of protein 

crystallization have been studied. For examples, an influence of  temperature 

gradient233,234, ultrasonic treatment236,237, magnetic238,239 or electric fields237,239,240 

were studied. Other efforts were focused on the search for a suitable nucleant in 

order to reduce the nucleation energy barrier241,242. However, no effective nucleation 

agent for crystallization of different types of proteins was suggested so far.  

In the present work we demonstrated for the first time that gold nanoparticles 

are effective nucleants for crystallization of proteins. This system was tested with two 

model proteins of very different structure: Hen-Egg-White Lysozyme (HEWL) and 

ferritin in apo- and holo- form. Last years gold nanoparticles were used for different 

applications13 including (electro)catalysis243, development of chemical sensors228 , 

amplification of signals in bioanalytics244,245 or generation of plasmonic effects246,247. 

This paper describes a new application of this system. 
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Result 

 

Preliminary semi-quantitative experiments using the droplet method showed a 

drastic increase of the nucleation number of HEWL in the presence of gold 

nanoparticles. No lysozyme crystals were observed if HEWL crystallization solution 

(25 mg/mL) is incubated for 30 days at 20oC in the absence of gold nanoparticles. 

The presence of gold nanoparticles leads to the formation of about 40 crystals/cm2 at 

the same condition. Similar results were obtained with ferritin. The crystals of 

lysozyme and ferritin formed in the presence of uncoated gold nanoparticles are 

presented in the Fig. 3.49. 

 

 

 

 

a b 

 

Figure 3.49 . Images of lysozyme (a) and ferritin (b) crystalls formed 
from supersaturated aqueous solutions in the presence of uncoated 
gold nanoparticles. The images were obtained by differential 
interference contrast microscopy.  

 

Crystallization with double pulse technique234,237 confirmed quantitatively that 

uncoated gold nanoparticles as well as nanoparticles coated by alkylthiol with COOH 

– terminated groups increased significantly the nucleation number of HEWL: the 

number of crystals was increased from about 180 crystals/cm2 in the absence of gold 

nanoparticles until 230 - 280 crystals/cm2 in the presence of these types of gold 

nanoparticles (Table 3.1). An incorporation of macroscopic pieces of gold wire into 
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the cell does not induce HEWL nucleation, therefore the nucleation effect is caused 

by some peculiarities of the nanoparticles surface.   

 

Table 3.1. Influence of gold nanoparticles on the nucleation and 
growth of lysozyme crystals.  

 

number of lysozyme crystals, n/cm2 

In the presence of gold 
nanoparticles 

 

 

experimental 
technique 

 
 

without 
nanoparticles

 

uncoated 

with –COOH 
terminated 
groups 

Initial 

metastable 

conditions 

 

0 

 

41 

 

47 

double 

pulse 

technique 

 

180 

 

230 

 

280 

 

The results suggest that namely the gold nanoparticles induce lysozyme and 

ferritin crystallization. It is well known that a heterogeneous nucleation is 

thermodinamically much more favourable than the homogeneous one248. Probably, 

proteins form a monomolecular layer on the surface of gold nanoparticles introduced 

into protein solution. For uncoated nanoparticles this process may be driven by 

formation of Au-S bonds between thiol groups of methionin of the proteins and gold 

atoms on the surface of the nanoparticles. For nanoparticles with COOH-terminated 

coating, such a process can be explained by electrostatic interaction of negatively 

charged carboxy-groups and some positively charged aminoacids. The difference 

between gold nanoparticles and macroscopic gold wires may be in the much higher 

curvature of the nanoparticle surface leading to additional surface energy of bound 

molecules of the protein monolayer.  

Gold atoms are much heavier than the atoms of protein molecules (C, N, S, H, 

O) and this gives a possibility to observe gold nanoparticles included in or attached to 

the HEWL crystals. Typically not single gold nanoparticles but aggregates of these 
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nanoparticles were trapped in the smallest protein crystals (Fig.3.50). Also chains of 

gold nanoparticles were often observed on the surface of HEWL crystals. This 

confirms the conclusion that the gold nanoparticles or their aggregates effect on 

nucleation and growth of the lysozyme crystals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.50. TEM images of gold nanoparticles deposited from 
aqueous suspension (a) and of the nanoparticle inside partially melted 
lysozyme nanocrystal (marked by by the circle).(b). 

 

To distinguish gold nanoparticles on the surface of the protein crystals, an 

Energy-Dispersive X-Ray (EDX) investigation was performed (Fig.3.51). The signals 

of Na and Cl arises from the salt crystallization, the signal of sulfur indicate on the 

presence of protein.  
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Figure 3.51. EDX analysys of gold nanoparticles deposited from 
aqueous solution on metal holder (a) and of lysozyme crystallized by 
gold nanoparticles (b). The presence of Au peaks in (a) and (b) 
confirm the presence of gold nanoparticles and their aggregates in 
both probes. Besides the higher Au peaks, peaks of Na and Cl arising 
from the precipitation agent (NaCl), and S from the protein are 
observed in (b).  

 

Condition of the experiment 

 

Most of the experiments have been performed with tetragonal HEWL crystals 

(50 mM acetate buffer, pH = 4.5) following standard prescriptions. Briefly, the 

solutions were mixed to obtain 25 mg/ml of lysozym in 0,5 M NaCl and 70 µg/mL gold 

nanoparticles. Similiar experiments with ferritin were performed at 0.5 mg/ml of 

ferritin, 1.6% (w/v) CdSO4, 200 mM acetate buffer, pH=5. The preparation of gold 

nanoparticles was performed according to the classical procedure17. Shortly, 1 mL of 

1% sodium citrate is added into10 mL of boiled aqueous solution of HAuCl4 (1 mM) 

 

a
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under intensive stirring. In several minutes the color of the solution changes from 

yellow to colorless, then to dark blue, dark red and finally to the red wine color; at this 

moment the reaction was stopped by fast cooling of the solution. The obtained 

suspension was dialyzed against Millipore water three times each for 24 h at the 

volume ratio of 1:250. The suspension of gold nanoparticles was stored at room 

temperature and used within several days. The optical absorbance of the gold 

plasmon band in the suspension is about 1.5 at the spectral maximum (519 nm), UV 

Vis spectrophotometer CARY 50 Bio was used. The mean diameter of nanoparticles 

determined by SEM (LEOSUPRA 35) is about 14 nm; similar values were obtained 

by dynamic light scattering (Zeta-Sizer from Malvern was used). 

Preliminary experiments have been performed in the batch sitting droplet 

configuration with both HEWL and ferritin crystallization. A direct comparison of the 

number of the grown protein crystals in the two probes were performed under the 

same conditions in the presence and absence of the gold nanoparticles. Smaller 

crystals in the presence of gold nanoparticles are more stable in vacuum 

environment so they can be easier analyzed by TEM. For this characterization, we 

performed an experiment by sitting droplet technique directly on the surface of a 

Formvar film at 13oC for 10 min to obtain small crystals (from 0,1 to 5 µm). The rest 

of the solution has been removed by filter paper prior to TEM characterization. 

Similar procedure but with a microscope object holder instead of the Formvar film 

was used for SEM analyses. 

A quantitative study of the crystal nucleation in the presence of gold 

nanoparticles has been performed in the quasi-two-dimensional glass cells. The 

nucleation of HEWL crystals takes place in thin (typically 100 μm thick) solution layer 

that is confined between two glass plates of the cell (Fig.3.52). This cell has a small 

volume and allows excellent microscopic observations and easy cleaning. Two series 

of experiments were performed with HEWL in these cells: investigations under meta-

stable conditions (at 20oC) when no nucleation without gold nanoparticles was 

observed as well as with the classical double-thermal-pulse technique. This 

technique provides time separation of the nucleation and growth stages. The 

experiments were started with metastable HEWL solutions at room temperature, 

20oC249. Then the temperature was fast decreased down to 10oC, which corresponds 
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to the supersaturated state, and HEWL start nucleate. Then the temperature was 

increased up to 20oC, this blocks formation of new HEWL nuclei but allows the 

existing nuclei to grow. In 21 days, the number of the nucleated and grown crystals 

was counted. The experiments performed in the quasi-two-dimensional glass cells 

without and with gold nanoparticles were also performed in the presence of three 

gold wires of 100 μm diameter and 2,8 cm length. 

 

 

 

 

 

 

 

 

 

 

Figure 3.52. The quasi two-dimensional cell for investigation of 
crystallization consists of two optically parallel glass plates (1); a 
protein solution was injected through inlet (2) into the gap between the 
plates. 

 

The protein crystals were characterized using Scanning Electron Microscopy 

(SEM, JEOL, JSM 6390), Energy Dispersive Spectroscopy (EDS) and Transmission 

Electron Microscopy (TEM, JEOL-TEM 100B). Indeed, the electron microscopy 

encounters some difficulties during observation of the protein crystals, both due to 

the vacuum environment extracting water from the crystals, and due to heating by the 

electron beam. (HEWL crystals burn or melt at 80 kV TEM for 10 s). The detection of 

the gold nanoparticles incorporated in protein crystals (near the crystal surface) can 

be done easily using EDS. 

 

3.8 Localized Surface Plasmon Resonance 

 

Greater understandings of nanoscience and nanoscale phenomena are vital 

for the development of devices based on nanotechnology. Relevant to this work, the 

potential to develop highly sensitive and specific sensors for biological targets 

motivates a portion of the research in this field. Nanoscale development, termed the 

2 

1 
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Localized Surface Plasmon Resonance (LSPR) nanosensor, is a refractive index 

based sensing device that relies on the extraordinary optical properties of gold 

nanoparticles. It is well established that the maximum extinction wavelength, ìmax, of 

the LSPR is dependent upon the composition, size, shape, and interparticle spacing 

of the nanoparticles as well as the dielectric properties of their local environment (i.e. 

substrate, solvent, and surface-confined molecules). The basic idea of this technique 

is based on the following Mie equation. 

 

 

 

 

Where Vo = (4π/3)R3, ω is the angular frequency of the exciting radiation εm is the 

electric function of the medium surrounding (or the embedding) the metallic 

nanoparticles and ε1 and ε2 are the real and imaginary part of the dielectric function of 

the metallic nanoparticles, respectively. Even it is well known but, only a few papers 

in this technique had been published.  

The following is one of the experiment about the effect of the medium 

surrounding gold nanoparticles by Mulvaney250 

 

Figure 3.53 Position of the plasmon band of gold nanoparticles in 
numerous solvents which have different refractive index. 
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Figure 3.53 demonstrates the correlation between the refractive index of the solvent 

against the peak position of surface plasmon band. It shows poor sensitivity because 

every 0.5 of refractive index units gives only 2 nm differences in the surface plasmon 

band. 

Various glucose concentrations (i.e. 1, 2, 3, 4, and 5 %) in constant gold 

nanoparticles solution are measured using UV-Vis spectrophotometer. The 

spectrums are analyzed. The difference of the refractive index between 1% and 5% 

glucose solution is 0.008 unit251. Based on fig 3.53, that difference of the refractive 

index will influence only 0.032 at the plasmon band difference. 
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Fig. 3.54 Gold nanoparticles plasmon band (1 mM) in various 
concentration of glucose 

 

Fig 3.54 demonstrates the spectrums of the gold nanoparticles in various 

concentrations of glucose. Normalization of the spectrums is performed (Fig 3.55) to 

minimize the random error. Normalization of the spectrums is performed by dividing 

all the points with the maximum its peak value. Most of the spectrums are almost 

identical because the shifting of the plasmon band is very small. Magnification of the 

slope of the spectrum is also performed (Fig 3.56) to see the dependencies more 

precisely. Fig 3.56 demonstrates the spectrums have shifted to the right for higher 

glucose concentrations. That shifting indicates that LSPR work for glucose analysis, 
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but this technique unfortunately has poor sensitivity. It becomes clear that an 

exploiting of this technology required special optical techniques designed for 

detection of small spectral changes, for example differential double wavelength 

measurements. 
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Fig 3.55. Normalization curve of gold nanoparticles plasmon band (1 
mM) in various concentration of gold nanoparticles 
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Fig 3.56 Magnification of the slope from fig. 3.55 
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3.9 Freezing indicator 

 

This part of the work is industrial project. Gold nanoparticles can change its 

color irreversibly when the solution become frozen (0oC ± 0.5), is one of the 

interesting property (Fig 3.57). This property is used for the development of freezing 

indicator. This indicator may be useful for specific application. An example, If we 

would like to store vaccine, WHO recommends that oral poliovirus vaccine should be 

stored either at between 0oC and 8oC. Maintaining the vaccine in correct temperature 

is an essential part of a successful immunization program, but in developed countries 

faulty procedures may occur more commonly than is generally believed. A survey 

was conducted in a health district in central Italy to assess the methods of vaccine 

transportation and storage. From 52 primary vaccination offices inspected, 39 

(76.5%) had a refrigerator for vaccine storage but only 17 (33.3%) kept records of 

received and stored doses. None of the seven main offices selected for monitoring 

had a maximum and minimum thermometer and none monitored the internal 

temperature of the refrigerator252.  

 

 

 

        

 

 

 

 

(a) (b) 

 

Fig. 3.57 Color of gold nanoparticles, before (a), and after (b) freezing. 
 

Mathias253 reported that between 14% and 35% of refrigerators or transport 

shipments were found to have exposed vaccine to freezing temperatures, while in 

studies that examined all segments of distribution, between 75% and 100% of the 

vaccine shipments were exposed. More rigorous study designs were associated with 
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higher levels of freeze exposure. As more expensive, freeze-sensitive vaccines are 

introduced into immunization schedules, freeze prevention will become increasingly 

critical for ensuring that the world's children are receiving fully potent vaccine.  

Gold nanoparticles can be proposed as a new alternative for freezing 

indicator. The suggestion is to stick the freezing indicator on the each packaging of 

the vaccine. Once the freezing indicator change color to colorless, that indicates that 

the vaccine has been exposed to freezing state. 

An attempt to stabilize nanoparticles has been performed by adding some 

additives. It is expected that the additives will give longer storage time or faster 

respond to temperature change. The list of the additives used can be seen in the 

table 3.2 

 

Table 3.2 Name of additives 

 

No Name of additives 

1 Sodium cellulose phosphate 

2 Zinc Dust 

3 Silica Gel 

4 Silver Iodide (home made, without purification) 

5 Glucose 

6 Snowmax 20µg/ml 

7 Snowmax 80µg/ml 

8 Snowmax 100µg/ml 

9 No additive 

 

The result of the test demonstrates at fig 3.58. It shows that zinc dust, silica 

gel, silver iodide (home made, without purification) affect instability of the gold 

nanoparticles solution. The color of gold nanoparticles changes after addition of the 

additives in room temperature (Fig. 3.58a). Snowmax 100 µg/ml is considered to be 

the one of the fast additives that can change color (Fig 3.58b). After the gold 

nanoparticles is frozen completely, all the solution become colorless (Fig 3.58c) 
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(a) 

 

(b) 

 

(c) 

Fig. 3.58 Gold nanoparticles with the additives at room temperature 
(a), near the freezing point (b), after completely freezing then defrosted 
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Another attempt to improve the stability of the gold nanoparticles in the 

solution also has been performed as the following procedure. 

 

The procedure of the experiment 

 

The solution of gold nanoparticles is prepared using reduction of sodium citrate 

reaction as described before, and purified by dialysis process. Some amounts of this 

solution are sampled, and different additives are added into them, and then sealed in 

the glass ampules (Table 3.3). Every type and concentration of the additives is 

repeated 3 times. The ampules are heated in the thermostat oven at 850C. The state 

of the samples is observed within 47 days. The picture of each ampules is taken 

when necessary (Table. 3.4). The samples which become colorless during test period 

are deleted from the experiment.  The rest amount of the solutions is characterized 

by UV-Vis spectrophotometer. 

 
Tabel 3.3 Types of Additive added into the gold nanoparticles solution. 

 

 Concentrations of additives 
(J) 

Type of chemicals 
(R) 

1 2 3 
A  Triton X-114 

B sodium decyl sulfate 

C cetyl pyridinium bromide 

D 16-mercaptohaxanedecanoic acid

E 6-mercapto-1-propanol 

F 3-mercaptopropionic acid 

G 11-mercapto-1-undecanol 

H 4-aminophenol 

X –blank solution (without heating) 

X +blank solution (with heating) 

0.1 %   

0.1 %   

0.1 %   

5·10-4 M 

5·10-4 M 

5·10-4 M 

5·10-4 M 

5·10-4 M 

     - 

     - 

0.01% 

0.01% 

0.01% 

5·10-5 M 

5·10-5 M 

5·10-5 M 

5·10-5 M 

5·10-5 M 

     - 

     - 

0.001% 

0.001% 

0.001% 

5·10-6 M 

5·10-6 M 

5·10-6 M 

5·10-6 M 

5·10-6 M 

     - 

     - 

 

Codes of the ampule : RJ-number of repetition 
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Table 3.4. Color changes of the gold nanoparticles solutions. 

 

day) date A   Triton X-114 
B  sodium decyl 

sulfate 
C  cetyl pyridinium 

bromide 

D   16-
mercaptohaxanedeca

noic acid 
1) 

14.09.06 
no change no change no change 

2) 

15.09.06 
 

no change no change 

 

3) 

16.09.06 
 

no change 

  

4) 

17.09.06 

 

no change 

  

5) 

18.09.06 
no change no change no change no change 

6) 

19.09.06 
no change no change no change no change 

7) 

20.09.06 
no change no change no change no change 

8) 

21.09.06 
   

10) 

23.09.06 
   

12) 

25.09.06 
   

14)  

27.09.06 
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17) 

30.09.06 

   

19) 

2.10.06 

   

22) 

5.10.06   

26) 

9.10.6   

32) 

15.10.06   

47) 

30.10.06 
  

 

Table 3.4 (continued) 

 

day) 

date 
E 6-mercapto-1-

propanol 

F 3-
mercaptopropionic 

acid 

G 11-mercapto-1-
undecanol 

H  4-aminophenol 

1) 

14.09.06 no change no change no change 

2) 

15.09.06 

 

no change 

 
no change 

 

no change 

3) 

16.09.06 

 

no change no change 

  

4) 

17.09.06 

 

no change no change no change no change 
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5) 

18.09.06 
no change no change no change no change 

6) 

19.09.06 

 

no change no change no change no change 

7) 

20.09.06 

 

no change no change no change no change 

8) 

21.09.06 

    

10) 

23.09.06 
   

12) 

25.09.06 
    

14) 

27.09.06 

 
   

 

No change 

17) 

30.09.06 
    

 

19) 

2.10.06 
    

22) 

5.10.06 

 
    

26) 

9.10.06 
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32) 

15.10.06 
no change 

   

47) 

30.10.06 

 

no change 
   

 

Table 3.4 demonstrates that the color of gold nanoparticles containing 

sodium decyl sulfate does not change until the end of the experiment (47 days). The 

gold nanoparticles solution with 6-mercapto-1-propanol, in all concentration 

examined undergo aggregation after 32 days. Some others samples of the gold 

nanoparticles solution also undergo aggregation (Table 3.4). The rest of the samples 

then are tested by freezing them (Fig. 3.59) and also analyzed using UV-VIS 

spectrophotometer (Fig 3.60) 

 

 

(a) 

 

(b) 

Fig 5.59 Gold nanoparticles solution, initial state (a) and (b) left, frozen 
state (a) right, defrosted state (b) right. 
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Fig 5.59 demonstrates that Triton X-114 and cetyl pyridinium bromide can not be 

used for additive of the gold nanoparticles solution as freezing indicator because the 

color change is reversible after defrosting (Fig. 5.59b right sample A2 and C1 

respectively).   

 

 
 

 

 

 

 

 

 

 

 

 

      

  (a) 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
     (b 
 



 

RESULTS AND DISCUSSIONS 

 -109-

350 400 450 500 550 600 650 700 
0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

Wave length (nm)

 X
 X+ 
 A3 
 B3 
 G3 

X+

X

B3

A3
G3

A
b

s 
o

rb
a

n
ce

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     (c) 
 
Figure 3.60 The UV Vis spectrums of the remaining samples of gold 
nanoparticles solution. 

 

 

Fig 3.60 demonstrates UV-Vis spectrums of the sample B1, B2, B3 and C1 

are the most stable, because they have the highest plasmon band intensity when the 

intensity of the spectrum is measured from the based line. They also have the same 

peak with the standard (spectrum X) at 523 nm. Even though sample C1 is almost as 

stable as sample B, but sample C1 shows an increasing intensity of the based line. 

Other additives also show increasing intensity on all the part of the wavelength like 

sample C1. That increasing intensity of the based line probably is caused by the 

formation of bigger particles in the solution.  

 
3.10. Automation of Layer-by-Layer deposition. 
 

The aim of the work in this part is to suggest an automation depostion for 

industrial purpose. Automated deposition of defined amount of conductive polymer 

onto solid surface can be simply performed by Layer- by Layer (LbL) in flow mode. 

The LbL deposition developed by Decher254 is widely used as a simple technique for 

fabrication of multilayered structures for a broad area of scientific and technological 
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applications. This approach can be used for formation of mixed cationic/anionic films 

from polyelectrolytes254 including films containing biomolecules255, conducting 

polymers256-261 or nanoparticles228. Some applications of LbL formed films require a 

large number of the deposited layers. This reason as well as commercial fabrication 

of these structures is a motivation for automation of LbL technique. One of the 

recently suggested automated approaches is based on deposition of sprayed 

polyelectrolyte multilayer; this method can be used for industrial coating of large 

areas262. Other automation techniques are based on the development of mechanical 

robot for alternative dipping of the sample into solutions of cationic and anionic 

electrolytes263.  

We suggest here another technology which is much more simple and cheap 

and has such additional advantages as a control of gaseous environment near the 

sample and excluding of its possible exposure to dust, light or other physical and 

chemical factors. The technology is based on dynamic adsorption of polyelectrolyte 

from the flow of diluted polyelectrolyte solution. The alteration of electrolytes is 

performed simply by switching of electromagnetic valve controlled by low frequency 

pulse generator. Formation of thin film consisting of alternating layers of polyaniline 

(PANI) and polystyrenesulfonate (PCC) are used as a model system providing simple 

electrochemical determination of amount of deposited electroactive polymer.  

PANI is synthesized by oxidation of 0.1 M aniline in 0.5 M sulfuric acid with 0.1 

M ammonium persulfate. The dipping solution of PANI in water is prepared according 

to Cheung et al264. The concentrations of PANI and PSS in dipping solution 

recalculated to the concentrations of monomers are 1 mM and 10 mM respectively.  

The principle of the new technology for automation LbL deposition is shown in 

the fig. 3.61. The set-up is very simple and consists of two reservoirs with diluted 

anionic and anionic polyelectrolytes (or other materials suitable for LbL deposition), 

electromagnetic valve controlled by a square pulse generator and flow cell with a 

solid support which should be coated, and peristaltic pump. There is no special 

requirement in the used equipment. For deposition of PANI-PSS films, a flow rate of 

0,915 ml/min, a flow cell with the volume of about 20 µL and duration of each 

adsorption cycle of 4 min is selected. Longer time of the adsorption cycle is also 

tested, but the results are identical. 
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Electrochemical analysis of the formed films is performed with Autolab 

PGSTAT-13 electrochemical workstation (EcoChemie, The Netherlands) using three 

electrode configuration with a gold working electrode (S = 0,25 mm2), SCE reference 

and Pt-wire counter electrode.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.61. Scheme of the automated set-up for PANI – PSS multilayer 
deposition. 
 
 
 

The new approach has been tested with a deposition of up to 45 bi-layers of 

PANI – PSS. Cyclic voltammetry has been performed after deposition of each fifth bi-

layer. Typical PANI voltammograms (Fig. 3.62) are observed. The increase of the 

current is associated with the increase of the amount of polyaniline adsorbed on the 

surface at each step of the deposition procedure (Fig. 3.63). The results obtained by 

the automated deposition show good reproducibility and linear increase of the anodic 

peak current for a large number of deposited bi-layers.  

In view of possible electroanalytical application, the obtained PANI – PSS 

multilayer coatings are tested for electrooxidation of ascorbic acid. Fig. 3.64 shows 

the electrochemical redox activity of the layer in neutral media and the voltammetric 

response due to ascorbic acid oxidation. By means of potentiostatic measurements, 

the concentration dependence of the AA oxidation currents is studied in the 0,05 – 

0,8 mM range. A linear current versus concentration plot (Fig. 3.65) is obtained.  
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Fig. 3.62. PANI – PSS voltammogram in the presence of 0.5 M 
H2SO4, recorded at 100 mV.s-1 after 5, 15, 25, 35 and 45 cycle of the 
automated LbL deposition. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 3.63. Dependence of the first anodic peak current versus layer 
number obtained by cyclic voltammetry (■).  

 

The data for electrocatalytic activity of the self assembled PANI/PSS coatings 

are compared with electrochemically deposited ‘self doped’ PANI265, PANI/PSS266 
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and PANI/polyvinylsulfonate267. The comparison shows that PANI/PSS LbL structure 

is active in the sub-millimolar range and have a very low detection limit (0,05 mM 

AA), whereas the electrochemically obtained layers have about one order higher of 

detection limits magnitude and  are mostly investigated at millimolar AA 

concentrations.  

 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.64. Voltamogram of PANI – PSS layers measured at 100 mV/s 
in PBS buffer pH 7 (A) and in 1 mM ascorbic acid (B).  
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Fig. 3.65. AA oxidation current measured at E=0.4 V at different AA 
concentrations. 
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4. SUMMARY 

 

The work includes improvements of surface technology, new analytical 

applications of metallic nanoparticles and optimization of technological steps for 

production of different types of metallic nanoparticles in discrete and continuous 

modes. The technology of LbL deposition was optimized and applied for 

immobilization of metallic nanoparticles. SPR detection was used for the 

determination of optimal deposition conditions and on-line monitoring of the 

deposition process. Simple approach for automation of LbL deposition allowing one 

to deposit up to hundreds of layers was developed. The technology was proved by 

electrochemical analysis for deposition of electrochemically active polymers. A new 

diffusion based semi-quantitative assay for detection of sugars was suggested.  

Electrochemical oxidation of glucose and dopamine on electrodes modified 

with gold nanoparticles was studied. Conditions for electrochemical analysis of these 

substances in the presence of typical natural interferents were evaluated. A 

combination of voltammetry and impedance spectroscopy was used to demonstrate a 

formation of insulating layer on gold surface, this resulted in explanation of 

anomalous shape of voltammetric curves. A combination of electrochemical and SPR 

measurements demonstrated directly a formation of an insulating layer on the 

electrode surface and was used for optimization of the assay conditions. The results 

indicate a possibility to develop an enzyme free sensors for glucose and dopamine. 

It was discovered that gold nanoparticles are effective nucleating agents for 

protein crystallization. Nanoparticles induce protein crystallization at lower 

supersaturation and increase the number of protein crystals formed at higher 

supersaturation. The fact that this technology works with so different proteins as 

lysozyme and ferritin allows one to suggest that it may be also applied for many other 

proteins including the ones which are reluctant to crystallization by known 

technologies. 

Irreversible freezing indicators based on gold nanoparticles were developed. 

The filling suspension containing nanoparticles, nucleation and stabilization agents 

were optimized in sense of stability and irreversibility of color changes. A large scale 

production of this indicator will be started in spring 2008.  
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5. ZUSAMMENFASSUNG 

 

Die Arbeit umfasst Verbesserungen der Oberfläche Technologie, neue 

analytische Anwendungen von metallischen Nanopartikeln und Optimierung der 

technologischen Schritte für die Herstellung von verschiedenen Arten von 

metallischen Nanopartikeln in diskreter und kontinuierlicher Art. Die Technologie der 

LbL Deposition wurde für die Immobilisierung von metallischen Nanopartikeln 

optimiert. SPR-Messungen wurden für die Bestimmung der optimalen Bedingungen 

der Deposition und der on-line Überwachung des Depositionsprozesses verwendet. 

Ein einfaches Verfahren für die Automatisierung der LbL Deposition wurde 

entwickelt, so dass bis zu Hunderte von Schichten abgeschieden werden können. 

Die Technologie wurde anhand der Abscheidung elektrochemisch aktiver Polymere 

durch elektrochemische Analyse geprüft.Ein neuer semi-quantitativer auf Diffusion 

basierender Assay für die Erkennung von Zuckern wurde vorgeschlagen. 

Die elektrochemische Oxidation von Glucose und Dopamin mittels Gold-

Nanopartikeln modifizierten Elektroden wurde untersucht. Die Bedingungen für die 

elektrochemische Analyse dieser Stoffe in der Anwesenheit von typischen 

natürlichen Interferenzen wurden ausgewertet. Eine Kombination von Voltammetrie-

und Impedanz-Spektroskopie wurde verwendet, um die Bildung einer isolierenden 

Schicht auf der Gold-Oberfläche zu demonstrieren. Dies führte zu einer anomalen 

Form der Voltammogramme. Eine Kombination von elektrochemischen und SPR-

Messungen hat direkt die Bildung einer Isolierschicht auf der Elektrodenoberfläche 

gezeigt und wurde für die Optimierung der Test-Bedingungen verwendet. Die 

Ergebnisse zeigen die Möglichkeit zur Entwicklung eines Enzym-freien Sensors für 

Glucose und Dopamin. 

Es wurde entdeckt, dass Gold-Nanopartikel wirksame Keimbildner für die 

Protein Kristallisation sind. Nanopartikel induzieren die Protein Kristallisation bei 

niedriger Übersättigung und erhöhen die Anzahl der erzeugten Protein-Kristalle bei 

höherer Übersättigung. Die Tatsache, dass diese Technologie mit so verschiedenen 

Proteinen wie Lysozym und Ferritin funktioniert erlaubt es vorzuschlagen, dass sie 

möglicherweise auch für viele andere Proteine, einschließlich derjenigen, die keine 

Kritallisation bei bei bekannten Technologien zeigen, anwendbar ist. 
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Irreversibel Frostindikatoren, wurden auf der Grundlage von Gold-

Nanopartikeln entwickelt. Die verwendete Suspension beinhaltet Nanopartikel, 

Keimbildner und Stabilisatoren, die im Sinne der Stabilität und der Irreversibilität der 

Farbänderung optimiert wurden. Eine groß angelegte Produktion von diesen 

Indikatoren wird im Frühjahr 2008 begonnen. 
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6. KESIMPULAN 

 
Penelitian yang dilakukan meliputi pengembangan teknologi permukaan, 

aplikasi analitik baru dari nanopartikel logam serta optimisasi teknologi untuk 

pembuatan berbagai jenis nanopartikel secara diskrit dan kontinyu. Optimasi 

teknologi deposisi LbL dilakukan, dan digunakan untuk imobilisasi nanopartikel 

logam. Pengukuran menggunakan SPR, dipakai dalam penentukan kondisi optimal 

dan pengamatan secara on-line dari deposisi yang dilakukan. Telah dikembangkan 

pendekatan sederhana deposisi otomatis secara LbL, yang memungkinkan 

seseorang mendeposisi sampai ratusan lapis. Teknologi ini dibuktikan secara 

elektrokimia dari polimer aktif yang di deposisikan.  Suatu uji semi kuantitatif 

berdasarkan prinsip difusi untuk analisis gula telah pula di ajukan. 

Oksidasi glukosa dan dopamin pada permukaan elektroda yang telah 

dimodifikasi dengan naopartikel emas telah dipelajari. Kondisi untuk analisis secara 

elektrokimia dari senyawa-senyawa tersebut dalam ion pengganggu alaminya juga 

telah di pelajari. Kombinasi voltametri dan impedans spektroskopi digunakan untuk 

menunjukkan pembentukan lapisan insulator pada permukaan emas, yang kemudian 

dapat dipakai menjelaskan bentuk anomali dari voltamogram yang dihasilkan. 

Kombinasi pengukuran elektrokimia dan  SPR  menunjukkan secara langsung 

pembentukan lapisan insulator tersebut pada permukaan elektroda, sekaligus pula 

digunakan untuk optimasi kondisi pengukuran. Hasil menunjukkan adanya 

kemungkinan untuk mengembangkan sensor bebas enzim bagi glukosa dan 

dopamin 

Gold nanopartikel juga diketahui merupakan agen nukleasi yang effektif untuk 

kristalisasi protein. Nanopartikel memicu kristalisasi protein pada kondisi 

supersaturasi rendah, dan meningkatkan jumlah kristal protein yang terbentuk pada 

supersaturasi tinggi. Terbukti bahwa teknik ini bekerja pada protein yang berbeda 

seperti lysozyme dan ferritin, yang mungkin mengilhami seseorang bahwa hal 

tersebut dapat juga di gunakan pada protein lain, termasuk  pada protein yang tidak 

bisa dikristalisasi dengan teknik yang ada sekarang. 

Indikator titik beku yang tidak balik berbahan dasar nanopartikel emas telah 

dikembangkan. Suspensi dari indikator ini berisi nanopartikel, agen nukleasi dan 
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stabilisator, dan telah di optimisasi untuk memperoleh kestabilan dan perubahan 

warna yang tidak dapat balik. Produksi skala besar dari indikator ini, direncanakan 

dibuat pada musim semi 2008. 
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