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Abstract: We examine the one-dimensional transient diffusion equation with a space-dependent
diffusion coefficient. Such equations can be derived from the Fokker–Planck equation and are
essential for understanding the diffusion mechanisms, e.g., in carbon nanotubes. First, we construct
new, nontrivial analytical solutions with the classical self-similar Ansatz in one space dimension.
Then we apply 14 different explicit numerical time integration methods, most of which are recently
introduced unconditionally stable schemes, to reproduce the analytical solution. The test results show
that the best algorithms, especially the leapfrog-hopscotch, are very efficient and severely outperform
the conventional Runge–Kutta methods. Our results may attract attention in the community who
develops multi-physics engineering software.

Keywords: diffusion; heat conduction; analytical solution; explicit time-integration; unconditionally
stable numerical methods
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1. Introduction

Pure diffusion or pure heat conduction in solids is one of the simplest transport pro-
cesses that we can imagine being described with a single linear partial differential equation
(PDE) of space and time. Diffusion means particle transport, and heat conduction means
energy transport. Although diffusion processes can be studied in different coordinate sys-
tems with different dimensions, here we consider only one Cartesian coordinate, therefore
the simplest regular diffusion PDE reads

∂u(x, t)
∂t

= D
∂2u(x, t)

∂x2 , (1)

where x, t ∈ R, u = u(x, t) is the distribution of the particle concentration (temperature in
case of heat conduction) in space and time, and D is the constant diffusion coefficient. The
concentration u = u(x, t) in the equation above is considered up to a constant; consequently,
it may also refer to the concentration with respect to the average.

For the case of spatially homogeneous systems, plenty of known analytical solutions
exist. These simple systems are often considered for the development and testing of new
numerical methods by mathematicians. However, in many practical problems, the prop-
erties of the materials, such as the diffusivity, the heat conductivity, the specific heat, and
the density, can widely vary in the system [1] (p. 15) due to natural or artificial inhomo-
geneities, thus we believe that new results for these systems are valuable. The general
space-dependent diffusion equation, which is also called the Fick–Jacobs equation [2] (p. 68),
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can be derived from the Fokker–Planck equation, as was shown by Zwanzig [3] or Reguera
and Rubi [4]. Such equations are used to describe the single-particle diffusion processes
in systems with structural inhomogeneities such as narrow ribbon channels [5]. These
kinds of systems emerge when molecules move through carbon nanotubes [6], systems of
channels, e.g., in zeolites [7], or in the membrane of cells [8].

To introduce and investigate irregular diffusion phenomena, we define the PDE (1)
with a non-constant diffusion coefficient. We consider that the diffusion coefficient has the
most common power law space dependence D(x) = D xm, therefore the diffusion equation
has the form of

∂u(x, t)
∂t

= D
∂

∂x

(
xm ∂u(x, t)

∂x

)
= D

(
mxm−1 ∂u(x, t)

∂x
+ xm ∂2u(x, t)

∂x2

)
, (2)

where D is always a constant that fixes the correct physical dimension for any given value
of m.

In one of our last studies [9] we investigated—after an exhausting historical overview—the
regular diffusion equation of Equation (1) with the self-similar, traveling wave, traveling
profile, or from some generalized self-similar trial functions. We found some new analytical
solutions for the regular diffusion equation that go far beyond the well-known Gaussian
(and error-type) solutions and can be expressed with the multiplication of Gaussian and
Kummer or Whittaker functions with different parameters. These sophisticated functions
can describe irregular solutions, which have a different rate of decay than the Gaussian fun-
damental solution. Additionally, we found solutions that show some oscillatory behavior
and a quick decay at large spatial and temporal coordinates. Among the numerous pre-
sented functions, some of them describe physically relevant solutions that have power-law
decay at infinite time and space coordinates. In this paper, we investigate the diffusion
equation that has space dependent diffusion coefficients, solve it with the classical self-
similar Ansatz, and present the possible solutions, which contain the Whittaker functions.
We will show that there is an exponential factor in the Whittaker functions that causes a
quicker decay than the Kummer functions (see Equation (4)). Such kinds of solutions are
still unknown in the scientific literature.

There is a detailed study by Bluman and Cole [10] describing numerous analytical
solutions to the diffusion equation, but our results are completely new and different from
those of Bluman and Cole. The natural generalizations of diffusion equations are the reac-
tion (or) advection–diffusion equations. Such systems may have spatially variable velocity
or diffusion coefficients as well. Zoppou and Knight obtained analytical solutions for this
case [11]. However, their solutions are different from ours as they use a Gaussian-type
trial function and not the general self-similar Ansatz. To find an analogy, we note that for
the incompressible multi-dimensional Navier–Stokes equation the analytic results derived
from the self-similar Ansatz are the Kummer functions [12]. For the compressible case,
however, the Whittaker function was obtained [12]. In this sense, we have to emphasize that
for processes where the diffusion coefficient has spatial dependence, the resulting functions
are qualitatively different from the time dependent case (for this latter case, see [13]).

There are a large number of numerical methods to solve the diffusion or heat conduc-
tion equation. The most widely known ones belong to the family of the finite difference
schemes (FDM) [14,15] or the finite element methods (FEM) [16], but these two can be
combined as well [17]. All of these methods have not only advantages but disadvantages
as well. The non-uniformity of physical properties implies that the coefficients in the
equations and thus the eigenvalues of the system matrix may have a range of several
orders of magnitude, therefore the problem can be highly stiff. In this case, the so-called
Courant–Friedrichs–Lewy (CFL) limit is very small, which means that conventional explicit
methods (such as Runge–Kutta or Adams–Bashforth types) are unstable when the time step
size is larger than this small threshold. We will demonstrate this effect for the Runge–Kutta
schemes in the current paper.
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Implicit methods have much better stability properties and they are considered to be
superior by many scholars, thus they are most often used to solve this and similar equa-
tions [18–27]. However, they require the solution of a system of algebraic equations at each
time step, whose parallelization is not straightforward. The calculations can be very slow
with extensive memory usage, especially if the matrix is huge and not tridiagonal, which is
frequent in more than one space dimension. As the formerly rapid increase of the CPU clock
frequencies has almost halted in recent decades, and the trend towards increasing parallelism
in high performance computing is massive [28,29], we believe that easily parallelizable explicit
methods have a growing comparative advantage on the long run.

Therefore, even if explicit and unconditionally stable algorithms are currently not
very popular (see [30–37] for counterexamples), we invested our time and energy into the
development of new, more effective ones, which work in an arbitrary number of space
dimensions. We have to emphasize that this is a nontrivial task. For example, Ndou et al.
very recently managed to significantly improve one of the most common explicit and stable
methods, the UPFD algorithm [38], but the price was that their method lost its simple and
explicit nature, as they applied a kind of proper orthogonal decomposition (POD). Contrary
to them, our algorithms are always fully explicit.

In our original papers [13,39–46], we examined our new methods theoretically and
tested them using simple analytical solutions as well as numerical reference solutions. We
demonstrated that they are able to serve with fairly accurate results much faster than the
widely used MATLAB ‘ode’ solvers. In the current paper, we use the constructed nontrivial
analytical solution to perform tests by varying some parameters of the problem to examine
how the individual methods perform and which of them can be proposed under different
circumstances.

The rest of the paper is structured as follows. In Section 2, we analytically solve the
studied equation and plot the results. In Section 3, we describe the discretization methods
and the used numerical schemes. The results of the numerical calculations are presented in
Section 4, first for an equidistant, then for non-equidistant meshes. Finally, we summarize
our conclusions in Section 5, then write briefly about our future research directions.

2. Analytical Solution

To solve the PDE (2), we use the well-known reduction technique, where we define
a new variable η = x

tβ ∈ R, which is a combination of the spatial and temporal vari-
able. Then we try to find the solution u(x, t) with the self-similar Ansatz in the form
of u(x, t) = t−α f

(
x/tβ

)
, where α and β are arbitrary real constants, and f (η) is the shape

function with existing first and second continuous derivatives with respect to η. Substitut-
ing the first and second derivative of the Ansatz into the original Equation (2), we arrive to
an ordinary differential equation (ODE) for f (η)

− Dηm f ′′ + f ′
(

η

m− 2
− Dmηm−1

)
− α f = 0,

if and only if the following constraints are fulfilled for the exponents: α = arbitrary real
number, β = 1

2−m , where m is an arbitrary real parameter of the space dependent diffusion
coefficient in Equation (2). According to Maple 12 this ODE has the solution

f (η) = c1√
η e
− η−m+2

2D(m−2)2 ·M (1+(2m−4)α)|m−2|
2(m−2)2

, m−1
2m−4

(
|m−2|η−m+2

(m−2)3D

)
+

c2√
η e
− η−m+2

2D(m−2)2 ·W (1+(2m−4)α)|m−2|
2(m−2)2

, m−1
2m−4

(
|m−2|η−m+2

(m−2)3D

)
,

(3)
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where M and W are the Whittaker functions [12,47]. To see the connection to the former
results, we note the formulas for expressing the Whittaker functions [12] in terms of the
Kummer functions M and U as

Mκ,µ(z) = e−
z
2 zµ+ 1

2 M
(

µ− κ + 1
2 , 1 + 2µ; z

)
Wκ,µ(z) = e−

z
2 zµ+ 1

2 U
(

µ− κ + 1
2 , 1 + 2µ; z

)
.

(4)

It can be seen from the exponential factor that the Whittaker functions have a quicker
decay than the Kummer functions, as we noted in the Introduction. Figure 1 shows the
shape functions for various parameters, and Figure 2 exemplifies the time development of
the concentration function u for a given parameter set.

Mathematics 2022, 12, x FOR PEER REVIEW 5 of 28 
 

 

 
Figure 1. Shape functions of Equation (3) in the case of generalized space-dependent diffusion coef-
ficients for various values of α with different m exponents of the diffusion parameter: (A) 2α =− , 

(B) 1α =− , (C) 1
2α = , (D) 1α= , (E) 3

2α = , (F) 5
2α = . The real part of the solutions is 

presented for 1D= , 1 0c = , 2 1c = . The black, red, blue, green, brown, grey, and yellow lines are 

for 3 51 11, , 0, ,1,  , and 2 2 2 2m = − − , respectively. 

Figure 1. Shape functions of Equation (3) in the case of generalized space-dependent diffusion
coefficients for various values of α with different m exponents of the diffusion parameter: (A) α = −2,
(B) α = −1, (C) α = 1

2 , (D) α = 1, (E) α = 3
2 , (F) α = 5

2 . The real part of the solutions is presented
for D = 1, c1 = 0, c2 = 1. The black, red, blue, green, brown, grey, and yellow lines are for
m = −1 , − 1

2 , 0, 1
2 , 1 , 3

2 , and 5
2 , respectively.



Mathematics 2022, 10, 2813 5 of 26Mathematics 2022, 12, x FOR PEER REVIEW 6 of 28 
 

 

 
Figure 2. The solution of Equation (2). The presented u(x, t) function with the shape function of 
Equation (3) is for the α = 1, c1 = 0, c2 = 1, 2D =  and m = 1/3 parameter set. One can see that the 
solution decays more quickly in time than in space. 

3. The Procedure of the Numerical Solution 
3.1. The Equation and Its Discretization in the Non-Uniform Case 

If the properties of the material depend on space, we can use the following equation: 

( ) ( ) ( )u uc x x k x
t x x

ρ ∂ ∂ ∂ =  ∂ ∂ ∂ 
, (5) 

where, in the case of heat conduction, c, ρ, and k are the specific heat, density, and heat 
conductivity, respectively, and / ( )D k cρ=  is the thermal diffusivity. If one differenti-

ates the term ( ) uk x
x

∂
∂

 with respect to x on the right side of (5) considering k as a continu-

ous function, then one obtains a similar equation to (2), where an extra drift term with the 
first spatial derivative of u appears. To avoid this, we follow another strategy, and discre-
tize the function k, and at the same time the space derivatives in Equation (5) by the stand-
ard central difference formula to obtain 

( ) ( ) ( ) ( )1( ) ( ) .   
2 2

i

i i i i
i i i i

x

u x x u x u x x u xu x xc x x k x k x
t x x x

 + Δ − − Δ −∂ Δ Δ   = + + −    ∂ Δ Δ Δ    
ρ

At this point, we switch from node to cell variables. This means that iu , ic , and iρ  
are the approximation of the average temperature, specific heat, and density of cell i, by 
their value at the cell center. Furthermore, i,i+1k  is the heat conductivity between cell i 

Figure 2. The solution of Equation (2). The presented u(x, t) function with the shape function of
Equation (3) is for the α = 1, c1 = 0, c2 = 1, D = 2 and m = 1/3 parameter set. One can see that the
solution decays more quickly in time than in space.

3. The Procedure of the Numerical Solution
3.1. The Equation and Its Discretization in the Non-Uniform Case

If the properties of the material depend on space, we can use the following equation:

c(x)ρ(x)
∂u
∂t

=
∂

∂x

(
k(x)

∂u
∂x

)
, (5)

where, in the case of heat conduction, c, ρ, and k are the specific heat, density, and heat
conductivity, respectively, and D = k/(cρ) is the thermal diffusivity. If one differentiates
the term k(x) ∂u

∂x with respect to x on the right side of (5) considering k as a continuous
function, then one obtains a similar equation to (2), where an extra drift term with the first
spatial derivative of u appears. To avoid this, we follow another strategy, and discretize
the function k, and at the same time the space derivatives in Equation (5) by the standard
central difference formula to obtain

c(xi)ρ(xi)
∂u
∂t

∣∣∣∣
xi

=
1

∆x

[
k
(

xi +
∆x
2

)
u(xi + ∆x)− u(xi)

∆x
+ k
(

xi −
∆x
2

)
u(xi − ∆x)− u(xi)

∆x

]
.

At this point, we switch from node to cell variables. This means that ui, ci, and ρi are
the approximation of the average temperature, specific heat, and density of cell i, by their
value at the cell center. Furthermore, ki,i+1 is the heat conductivity between cell i and its
(right) neighbor, estimated by its value at the border of the cells. Now the previous formula
will have the form

dui
dt

=
1

ciρi∆x

(
ki,i+1

ui+1 − ui
∆x

+ ki−1,i
ui−1 − ui

∆x

)
.
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For a non-equidistant grid, let us denote the length of the cell by ∆xi. The distance
between the cell-center of the two neighboring cells as di, i+1 = (∆xi + ∆xi+1)/2. Using
these, the equation above can be generalized as follows:

dui

dt
=

1
ciρi∆xi

(
ki,i+1

ui+1 − ui
di,i+1

+ ki,i−1
ui−1 − ui

di,i−1

)
.

Because we are in one spatial dimension, we consider the cross-section area of the
system as unity. Using these quantities, the volume and the heat capacity of the cell
can be expressed as Vi = ∆xi, and Ci = ciρi∆xi, respectively, and the thermal resistance
between these cells is approximated as Rij ≈ dij/kij. Now we have the equation for the
time derivative of each cell-variable:

dui
dt

=
ui−1 − ui
Ri−1,iCi

+
ui+1 − ui
Ri+1,iCi

,

which can be written into a matrix form

d
→
u

dt
= M

→
u , (6)

where the system matrix M is N × N dimensional. One can find more details about this
kind of discretization (for the case of more space dimensions as well) in Chapter 5 of the
book [48] and in our previous paper [42].

We implement the power-law space dependence D = D xm of the diffusion coefficient
only at the level of the k coefficients, so take c ≡ 1 and ρ ≡ 1 for simplicity. Let us
consider the 1D interval x ∈ [x0, xN ], L = xN − x0, and we construct a non-equidistant
spatial grid using the following procedure. We start with the definition of the coordinates
x0, x1, . . . , xN of the cell borders:

xj = xj−1 + ∆xj−1, Cj = ∆xj = ∆x0(1 + γ j ) , j = 1, . . . , N.

where x0, ∆x0, and γ will be given in the concrete example. If γ is positive or negative,
then the cell sizes are increasing or decreasing from left to right, respectively. If γ is zero,
then the grid is equidistant and L = N∆x. Now the cell centers X1, . . . , XN can be given
as follows:

Xj = xj−1 +
∆xj

2
, j = 1, . . . , N.

The resistances are calculated as follows:

Ri, i+1 =
Xi+1 − Xi

ki, i+1
=

Xi+1 − Xi

D(xi)
m , i = 1, . . . , N − 1.

Therefore, the concentrations, e.g., the Dirichlet boundary conditions, are calculated
at the X1, . . . , XN cell centers, and the conductivities are calculated at the x1, . . . , xN−1
cell borders. The time variable is always discretized uniformly, so if t ∈

[
t0, tfin], then

tj = t0 + jh, j = 1, . . . , T, hT = tfin − t0.

3.2. The Applied 14 Numerical Algorithms

Here we briefly present necessary information about the used schemes in one space
dimension and give the source of the publications where the interested reader can find more
details. First, the formula for the simplest case (equidistant mesh and uniform material
properties, Equation (1)) is presented, then it is immediately generalized for a non-uniform
mesh (Equation (6)). The purpose of the first, simplest form is to make comparison easier,
as in most mathematical textbooks and papers numerical algorithms are presented in this
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form. The second, more general forms are essential because, during our present work, we
use only them.

For the case of the general one-dimensional mesh, let us introduce two notations:

ri =
h
Ci

(
1

Ri, i−1
+

1
Ri, i+1

)
and Ai =

h
Ci

(
ui−1

Ri, i−1
+

ui+1

Ri, i+1

)
, i = 1, . . . , N. (7)

The first quantity is the generalization of the usual mesh-ratio r = Dh
∆x2 valid for

Equation (1) if it is discretized using a uniform mesh. The second quantity reflects the state
and the effect of the neighbors of cell i.

1. The first invented among our methods is the constant neighbor (CNe) algo-
rithm [45,49]. For a uniform mesh, the following formula must be applied for each node:

un+1
i = un

i · e− 2r +
un

i−1 + un
i+1

2

(
1− e− 2r

)
, (8)

whereas for non-uniform mesh, the new values of the cell variables are:

un+1
i = un

i · e− ri +
Ai
ri

(
1− e− ri

)
. (9)

2. The CpC algorithm [43] is the organization of the CNe scheme into a two-stage
method, in which the first stage is a fractional time step with length ph. Here we use only
p = 1

2 , because typically this yields better accuracy than the other values of p. At the first
stage, new predictor values of u are calculated with the CNe formula using a h1 = h/2 time
step size:

upred
i = un

i · e− r +
un

i−1 + un
i+1

2
(
1− e− r) and upred

i = un
i e− ri/2 +

Ai
ri

(
1− e− ri/2

)
.

Using these results, new values of the Ai quantities are calculated

Anew
i =

h 1

Ci

 upred
i−1

Ri, i−1
+

upred
i+1

Ri, i+1

, (10)

and then, at the second stage, these are used during the full-time step size corrector step. It
means that, at the end of the time step, the final values are

un+1
i = un

i · e− 2r +
upred

i−1 + upred
i+1

2

(
1− e− 2r

)
and un+1

i = un
i · e− ri +

Anew
i
ri

(
1− e− ri

)
.

3. The 2-stage linear-neighbor (LNe or LNe2) method [45] starts with using the CNe
method as a predictor to calculate new upred

i values, which are valid at the end of the
current time step. Using them we can introduce a quantity, which is proportional to the
aggregated slopes of the neighbors

si = upred
i−1 + upred

i+1 − un
i−1 − un

i+1,

and then, for the uniform mesh, the corrector values of the two-stage LNe method are

un+1
i = un

i e− 2r +
un

i−1 + un
i+1

2

(
1− e−2r

)
+

si
2

(
1− 1− e−2r

2r

)
. (11)



Mathematics 2022, 10, 2813 8 of 26

In the case of a non-uniform mesh, we need to calculate new Anew
i values similarly to

Formula (10), but with full h time step size h instead of h1. Using these the corrector step is
as follows:

un+1
i = un

i e− ri +

(
Ai −

Anew
i − Ai

ri

)
1− e− ri

ri
+

Anew
i − Ai

ri
. (12)

4. Based on the corrector values in Equations (11) or (12), one can repeat (11) or (12)—
first by recalculating si and Anew

i again—to obtain new corrector results. This procedure
gives a three stage-scheme altogether, which is called the LNe3 method [45]. This algorithm
is still second order, but more accurate than the LNe2.

5. The CLL method [46] is very similar to the LNe3 method. The difference is that,
due to fractional time steps at the first and second stages, it achieves third order temporal
convergence, but only if the second fractional time step is h2 = 2h/3. Generally, the length
of the first fractional step is ph, 2

3 ≤ p < 2, but here we take p = 2
3 to achieve the best

accuracy and to spare CPU time by avoiding the extra calculation of the exponential factors
e− pri . Therefore, in the first stage, we calculate new predictor values of the variables with
the CNe formula, but with a h1 = 2h/3 time step:

uC
i = un

i · e−4r/3 +
un

i−1 + un
i+1

2

(
1− e−4r/3

)
and uC

i = un
i e− 2ri/3 +

Ai
ri

(
1− e− 2ri/3

)
.

In the second stage, we use formulas similar to (11) and (12), but with an h2 = 2h/3 time
step size to obtain the first corrector values. For the uniform mesh, we have

un+1
i = un

i e−4r/3 +
un

i−1 + un
i+1

2

(
1− e−4r/3

)
+

s1
i
2

(
1− 1− e−4r/3

4r/3

)
, (13)

where s1
i = uC

i−1 + uC
i+1 − un

i−1 − un
i+1. For a non-uniform mesh, we need to calculate new

Anew
i values similarly to Formula (10), i.e., AC

i = h1
Ci

(
uC

i−1
Ri, i−1

+
uC

i+1
Ri, i+1

)
. Using these, the

corrector step is as follows:

un+1
i = un

i e− 2ri/3 +

(
Ai −

AC
i − Ai

2ri/3

)
1− e− 2ri/3

ri
+

AC
i − Ai

ri
. (14)

In the third stage, a full time step is taken. For the uniform mesh, we have

un+1
i = un

i e−2r +
un

i−1 + un
i+1

2

(
1− e−2r

)
+

3s2
i

4

(
1− 1− e−2r

2r

)
, (15)

where s2
i = uCL

i−1 + uCL
i+1 − un

i−1 − un
i+1. In the more general case, we have

un+1
i = un

i e− ri +

(
Ai −

ACL
i − Ai

2ri/3

)
1− e− ri

ri
+

ACL
i − Ai

2ri/3
, (16)

where ACL
i = h2

Ci

(
uCL

i−1
Ri, i−1

+
uCL

i+1
Ri, i+1

)
.

Now we turn our attention to the odd–even hopscotch methods. To apply any version
of them, one needs a bipartite spatial grid, in which all the nearest neighbors of the odd
nodes or cells are even and vice versa. The spatial and temporal structure (similar to the
stencil) of the examined schemes are presented in Figure 3, where the time flows from the
top to the bottom of the figure. In the case of each method, only one odd and one even cell is
present in the figure, and the stages are symbolized by colorful boxes. The repeating blocks
are indicated by the dashed green line. For example, the leapfrog-hopscotch structure
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(a) consists of two half and many full time steps. First, a half-sized time step (symbolized by
a blue box with the number ‘0′ inside in Figure 3a) is taken for the odd cells using the initial
values, then full-time steps are taken strictly alternately for the even and odd cells until the
end of the last timestep (pink box), which should be halved for odd cells to reach exactly
the same final time as the even nodes do. The main point is that when a new value of ui
is calculated, always the latest values of the neighbors ui±1 must be used, which ensures
stability and quite fast convergence at the same time.
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6. The leapfrog-hopscotch-CNe (LH-CNe) method [13] is obtained if we apply the
CNe formula in each stage of the LH structure (Figure 3a) with the appropriate time step
size. For example, the first stage (which has half-length on the time axis) reads as follows:

u
1
2
i = u0

i · e
− r +

u0
i−1 + u0

i+1
2

(
1− e− r) and u

1
2
i = u0

i · e
− ri/2 +

A0
i

ri

(
1− e− ri/2

)
whereas the middle stages apply the following formula:

un+1
i = un

i · e− 2r +
ulatest

i−1 +ulatest
i+1

2
(
1− e− 2r) and un+1

i = un
i · e− ri +

Alatest
i
ri

(1− e− ri ) for a
uniform and a non-uniform mesh, respectively, where the latest values of the neighbors are
used to calculate Alatest

i by Formula (10). For the sake of programming simplicity, the total
number of cells N of the 1D grid are always odd in our numerical experiments, thus at the
first stage, the above formula has been applied for the i = 3 , 5 , 7 , N − 2 cells, and then
the boundary conditions have been calculated for the middle of the time intervals for the
first and last cell as well.

7. The next method is the leapfrog-hopscotch (LH) method. It uses the so called θ
formula. In our case, this has the form for a uniform mesh:

un+1
i =

(1− 2rθ)un
i + r

(
ulatest

i−1 + ulatest
i+1

)
1 + 2r(1− θ)

, (17)

and (in the general case),

un
i =

(1− riθ)un
i + Alatest

i
1 + ri(1− θ)

. (18)

In the paper [13] where it was published, several numerical experiments were conducted,
and since then we have been using the formula, which was proven to be the most accurate
(labelled with L2 in [13]). It means that θ = 0 is applied at the first stage and θ = 1

2 in all
other stages.
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8. In the case of the original odd-even hopscotch algorithm [50], abbreviated by OOEH
here, the usual FTCS (explicit Euler) formula was used at the first stage and the implicit
Euler formula in the second stage in the structure shown in Figure 3b. The formulas for the
uniform and non-uniform mesh are the following:

FTCS : un+1
i = (1− 2r)un

i + r
(
un

i−1 + un
i+1
)

and un+1
i = (1− ri)un

i + Ai.

Implicit Euler : un+1
i =

un
i +r(un+1

i−1 +un+1
i+1 )

1+2r and un+1
i =

un
i +Alatest

i
1+ri

.

As we showed before [40], this is a powerful explicit method for spatially uniform
cases, but if the stiffness ratio is large, its error can be very large [41].

9. The reversed (odd-even) hopscotch method (RH) applies the same structure and the
same formulas as the OOEH method, but the formulas are in the opposite order. However,
when first-stage calculations start, the new values of the neighbors are not known. Therefore,
the implicit formula can be applied only with a trick, which is to handle the neighbors not
implicitly, but explicitly. This idea yields the following first-stage formulas:

un+1
i =

un
i + r

(
un

i−1 + un
i+1
)

1 + 2r
and un+1

i =
un

i + Ai

1 + 2ri
. (19)

If one has the code of the original OOEH, then it is easy to obtain the code of the RH
algorithm, as one needs to interchange the formulas of the first and second stages only. We
demonstrated [41] that this RH algorithm has much smaller errors in the case of extremely
stiff systems than the OOEH method.

10. The shifted-hopscotch (SH) algorithm [42] consists of five stages (two half and
three full-time steps). As shown in Figure 3c, these altogether span two full time steps for
odd and even cells, as well. In this paper, we use the theta Formulas (17) and (18) with the
theta values that are proven to be the best (S4 algorithm in [42]). It means θ = 0 is applied
at the first, θ = 1

2 in the second, third, and fourth, and θ = 1 at the fifth stage.
11. The asymmetric-hopscotch (ASH) algorithm [51] is a reduced version of the SH

scheme. As shown in Figure 3d, it consists of only three stages (two half and one full-time
step), which together span one full time step for odd and even cells, as well. The set of the
theta values that is proven to be the best (A1 algorithm in [51]) is θ = 0 in the first, θ = 1

2 in
the second, and θ = 1 in the third stage.

12. The pseudo-implicit (PI) two-stage algorithm is taken from [44] (Algorithm 5 there)
in the case of the pure diffusion equation with parameter λ = 1, which means we take
a half time step to obtain the predictor values and then a full time step for the corrector
values. The following formulas must be applied for each cell:

Stage 1 : upred
i =

un
i +

r
2 (un

i−1+un
i+1)

1+r and upred
i =

un
i +Ai/2
1+ri/2 .

Stage 2 : un+1
i =

(1−r)un
i +r

(
upred

i−1 +upred
i+1

)
1+r and un+1

i =
(1−ri/2)un

i +Anew
i

1+ri/2 ,

where Anew
i = h

Ci

(
upred

i−1
Ri, i−1

+
upred

i+1
Ri, i+1

)
. One can see that the trick of the explicit treatment of

the neighbors is the same as in the RH method.
13. The Dufort–Frankel (DF) method [52] (p. 313) is a known but non-conventional

explicit and unconditionally stable algorithm that has the formula for the uniform and
non-uniform case:

un+1
i =

(1− 2r)un−1
i + 2r

(
un

i−1 + un
i+1
)

1 + 2r
and un+1

i =
(1− ri)un−1

i + 2Ai

1 + ri
.
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As the formulas contain un−1
i , it is a one-stage but two-step method. It means that u1

i
has to be calculated from u0

i by another method to start the algorithm. We use the CNe
formula for this purpose.

14. For comparison purposes, we use that version of the fourth order Runge–Kutta
(RK4) method, which is maybe the most common [53] (p. 737). If we apply it to our spatially
discretized system, we have

k1
i = r

(
un

i−1 + un
i+1 − 2un

i , and k1
i = Ai − riun

i ,
)

k2
i = r

(
un

i−1 + k1
i−1/2 + un

i+1 + k1
i+1/2− 2un

i − k1
i , and k2

i = A1
i − ri

(
un

i + k1
i /2
)
,
)

k3
i = r

(
un

i−1 + k2
i−1/2 + un

i+1 + k2
i+1/2− 2un

i − k2
i , and k3

i = A2
i − ri

(
un

i + k2
i /2
)
,
)

k4
i = r

(
un

i−1 + k3
i−1 + un

i+1 + k3
i+1 − 2un

i − 2k3
i , and k4

i = A3
i − ri

(
un

i + k3
i /2
)
,
)

and finally
un+1

i = un
i +

(
k1

i + 2k2
i + 2k3

i + k4
i

)
/6.

Here As
i =

h
Ci

( un
i−1+ks

i−1/2
Ri, i−1

+
un

i+1+ks
i+1/2

Ri, i+1

)
, s ∈ {1, 2, 3}.

Therefore, the CNe, CpC, LNe, LNe3, CLL, LH-CNe, LH, RH, SH, ASH, and PI
methods are constructed by our research group and the verifications, analytical proofs,
etc. are typically presented in those original papers. The methods are proven to have the
following theoretical order of convergence in the time step size. The CNe method is first
order, the CpC, LNe, LNe3, CLL, LH-CNe, LH, OOEH, RH, SH, ASH, PI, and DF methods
are second order, the CLL method is third order, and the RK4 scheme is fourth order in
time step size. All algorithms, (except, of course, the RK4 method) are unconditionally
stable for the linear diffusion equation, i.e., the above noted CFL limit is not valid for them.
We emphasize again that unconditionally stability is not the rule but the exception among
explicit methods, for example, as it is well known, explicit Runge–Kutta methods cannot
be A-stable [54] (p. 60).

It is worth noting that the CNe, CpC, LNe, LNe3, and LH-CNe schemes are not only
stable but positivity preserving, which sets a limit to their error. More precisely, the new
un+1

i values are the convex combination of the old un
i , un

i−1, un
i+1 etc. values, thus the

maximum and minimum principles [55] (p. 87) are automatically fulfilled. This directly
reflects the second law of thermodynamics, which states that heat can spontaneously go
only from a colder place to a warmer place, which excludes the increase of oscillations in
the solutions as time elapses. Thus, these methods do not yield any unphysical oscillations
even for very large time step sizes. However, as we will see, this favorable property restricts
the speed of the convergence of these methods, so they are often the least accurate for small
and medium time step sizes. More concretely, they seriously underestimate the speed of
the diffusion process (especially for larger time step sizes), which can be perceived as a
“negative” dissipative error.

We also note that the hopscotch-type methods need a special bipartite grid, but in one
space dimension this is a trivial requirement. However, these algorithms do not require to
temporarily store another copy of the array for the concentration variable, so their memory
requirements are minimal. Other methods, even the CNe, store at least one extra array with
the same number of elements as u.

4. Numerical Results
4.1. Preliminaries

To measure the accuracy, we use the usual L∞ error, which is the largest absolute
difference between the exact value of the concentration uanalytic

i and unum
i obtained by the

studied numerical method at the final time tfin:

Error = max
1≤i≤N

∣∣∣uanalytic
i (tfin)− unum

i (tfin)
∣∣∣. (20)
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We examine this error as a function of the time step size h. For this purpose, we first
calculate the error for a very large h, then repeat this with decreased time step sizes until
we reach small error values. From Figure 3, one can see that the SH and the ASH structure
are obtained by halving a time step to the odd nodes. This might be considered as a hidden
extra advantage given to these methods. Therefore, for the sake of honesty and to make
comparisons easier, we renormalize their time step size, i.e., we introduce the effective time
step size, which is

heff =
4
5

h for the SH, heff =
2
3

h for the ASH and heff = h for all other methods. (21)

With this modification, the CNe, LH-CNe, LH, OOEH, RH, SH, ASH, and DF methods
require only one calculation of Ai and the new u values of the cells in a given time step,
so they have the highest speed. The CpC, LNe2, and PI need two calculations (Anew

i and

upred
i must also be calculated), so their running time is roughly twice larger. The required

number of calculations is three for the LNe3 and the CCL, whereas it is obviously four for
the RK4 method, so they are approximately proportionally slower. We note that there are
plenty of data about the running times of the recent methods in our original papers.

In all numerical experiments we use the following parameters:

D = 1 , α = 1.5 , N = 199 , c1 = 1 , c2 = 0t0 = 0.5tfin = 0.6. (22)

All other parameters can vary in concrete cases. It means that we are going to repro-
duce the following reference solution:

C(x, t) = t−
3
2 f
( x

tβ

)
=

√
tβ−3

x
· e
−

( x
tβ

)−m+2

2(m−2)2 ·M (1+3(m−2))|m−2|
2(m−2)2

, m−1
2m−4

 |m− 2|
(

x
tβ

)−m+2

(m− 2)3

. (23)

MATLAB software has been used to do all numerical calculations, where the Kummer
M function (confluent hypergeometric function of the first kind) has been calculated via the
command hypergeom. We note that calculating the two values of the boundary conditions
for a given time point is four orders of magnitude slower than performing the numerical
steps for all the 199 nodes of the grid.

All the eigenvalues of the system matrix M are negative. The stiffness ratio of the prob-
lem can be defined as λMAX/λMIN, where λMIN (λMAX) are the smallest (largest) absolute
value eigenvalues of M. However, there are threshold time step sizes hFTCS

MAX = |2/λMAX|
and hRK4

MAX ≈ |2.8/λMAX| (frequently called CFL limits), above which the solutions by FTCS
(explicit Euler) and RK4 schemes, respectively, are expected to blow up [54].

4.2. Spatially Uniform Grid, γ = 0

Experiment 1: We use an equidistant grid with ∆x = 0.01, x ∈ [0.1 , 2.09], and we set
m = 3.6. For this problem, hFTCS

MAX = 3.9 · 10−6 and the stiffness ratio is 2.6 · 106. In Figure 4,
the errors as a function of the time step size are shown in a log–log diagram. Because we
use a fixed space step size and decrease only the time step size, the errors cannot go to zero,
but only to the residual error due to space discretization, which can be seen in the bottom
left of the figure.

We calculated the numerical order of convergence using two values of the errors
belonging to two subsequent time step sizes using the formula

Error ∼ hp ⇒ p =
log Error(h1)

Error(h2)

log(h 1/h2)
.

In Table 1, we present numerical order for one pair of neighboring error quantities (one
section of the curves in Figure 4) with the values of the errors for each method.



Mathematics 2022, 10, 2813 13 of 26

Mathematics 2022, 12, x FOR PEER REVIEW 14 of 28 
 

 

( ) ( )
( )( )
( ) ( )

2

2

2

2

3 3
2 22

1 3 2 2 31,
2 42 2

2
, e

2

mx m
t
m

m m m
mm

xm
x t tC x t t f M

xt m

β
β β

β

− + − + 
 
 −−− −

+ − − −
−−

  −      = = ⋅ ⋅     −  
 

. (23) 

MATLAB software has been used to do all numerical calculations, where the Kum-
mer M function (confluent hypergeometric function of the first kind) has been calculated 
via the command hypergeom. We note that calculating the two values of the boundary 
conditions for a given time point is four orders of magnitude slower than performing the 
numerical steps for all the 199 nodes of the grid. 

All the eigenvalues of the system matrix M are negative. The stiffness ratio of the 
problem can be defined as MAX MIN/λ λ , where ( )MIN MAXλ λ  are the smallest (largest) ab-
solute value eigenvalues of M. However, there are threshold time step sizes 

FTCS
MAX MAX 2 /h = λ  and RK4

MAX MAX 2.8 /h λ≈  (frequently called CFL limits), above which 
the solutions by FTCS (explicit Euler) and RK4 schemes, respectively, are expected to blow 
up [54]. 

4.2. Spatially Uniform Grid, γ = 0 

Experiment 1: We use an equidistant grid with 0 01x .Δ = , [ ]0 1 2 09x . , .∈ , and we set 

m = 3.6. For this problem, S 6FTC
MAX 3.9 10h −= ⋅  and the stiffness ratio is 62.6 10⋅ . In Figure 4, 

the errors as a function of the time step size are shown in a log–log diagram. Because we 
use a fixed space step size and decrease only the time step size, the errors cannot go to 
zero, but only to the residual error due to space discretization, which can be seen in the 
bottom left of the figure. 

 

Figure 4. Errors as a function of the effective time step size heff for Experiment 1. The errors are
defined in (20), and heff is defined in (21). The slopes of the error curves give the order of convergence
of the methods.

We also plotted the initial and final concentrations for the CLL and LH methods with
different time step size in Figure 5, where the errors are approximately the same, namely
0.0483 for the CLL method (h = 6.5 · 10−5) and 0.0465 for the LH method (h = 0.0021). In
Figure 6, the u(x, t) functions are presented in the form of 3D surfaces for the analytical
and one numerical solution. One can see that the two surfaces are indistinguishable by the
naked eye. Finally, in Figure 7, we present the function uanalytic(t, x)− unum(t, x), i.e., the
difference between the analytical solution and the LH method for h = 0.0021 as a function
of space and time in a 3D plot to help the readers to visualize how the error is developing
in time.

Experiment 2: In this example, we shift the space interval to x ∈ [4 , 5.99], while we
keep the values of Equation (22) and those of the previous experiment: ∆x = 0.01, m = 3.6.
For this problem, hFTCS

MAX = 8.3 · 10−8, and the stiffness ratio is 1.2 · 107. From Figure 8, one
can see that now the errors start to significantly decrease (with decreasing h) only below
h = 10−3 instead of h = 10−2 as in Figure 4. In contrast, the errors finally tend to much
smaller values for the best methods. However, the RK4 method is practically useless, as it is
unstable even for h = 5 · 10−7 and therefore it is missing from the figure. The errors of some
methods and the appropriate numerical orders are tabulated in Table 2. In Figure 9, we
plotted the functions u for the LH and the DF method with a different time step size, where
the errors are approximately the same, namely 7.0 · 10−4 for the LH method (h = 5.2 · 10−4),
and 7.2 · 10−4 for the DF method (h = 2.6 · 10−4). In Figure 10, we present the difference
between the analytical solution and the LH method for h = 5.2 · 10−4 as a function of space
and time in a 3D plot to help the readers to visualize how the error is developing in time.
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Figure 5. The concentration u as a function of the x variable in the case of the initial function u0,
the analytical solution at tfin, the CLL method for h = 6.5 · 10−5, and the leapfrog-hopscotch (LH)
method for h = 0.0021 for Experiment 1. We emphasize that the conventional Runge–Kutta methods
are unstable for these time step sizes.

Table 1. Errors and numerical order of different algorithms for Experiment 1.

Numerical Method Error (L∞) Numerical Order

CNe, h = 8.12 · 10−6 3.03 · 10−2
1.00

CNe, h = 4.07 · 10−6 1.52 · 10−2

CpC, h = 8.12 · 10−6 5.2 · 10−3
1.77

CpC, h = 4.07 · 10−6 1.5 · 10−3

LNe, h = 8.12 · 10−6 6.0 · 10−3
1.75

LNe, h = 4.07 · 10−6 1.8 · 10−3

LNe3, h = 8.12 · 10−6 1.7 · 10−3
2.42

LNe3, h = 4.07 · 10−6 3.2 · 10−4

CLL, h = 8.12 · 10−6 9.1 · 10−4
2.53

CLL, h = 4.07 · 10−6 1.6 · 10−4

LH−CNe, h = 8.12 · 10−6 3.0 · 10−3
1.98

LH−CNe, h = 4.07 · 10−6 7.6 · 10−4

PI, h = 8.12 · 10−6 5.0 · 10−3
1.65

PI, h = 4.07 · 10−6 1.6 · 10−4

LH, h = 0.0021 4.7 · 10−2
2.62

LH, h = 0.0010 7.6 · 10−3
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Table 1. Cont.

Numerical Method Error (L∞) Numerical Order

OOEH, h = 0.0021 1.36
2.33

OOEH, h = 0.0010 0.27

RH, h = 0.0021 1.38
2.22

RH, h = 0.0010 0.30

SH, h = 0.0021 0.30
2.28

SH, h = 0.0010 6.1 · 10−2

ASH, h = 0.0021 0.30
2.28

ASH, h = 0.0010 6.1 · 10−2

DF, h = 0.0021 0.14
1.67

DF, h = 0.0010 4.5 · 10−2
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Table 2. Errors and numerical order of different algorithms for Experiment 2.

Numerical Method Error (L∞) Numerical Order

CNe, h = 4.1 · 10−6 4.9 · 10−3
1.14

CNe, h = 2.0 · 10−6 2.2 · 10−3

LNe, h = 4.1 · 10−6 2.3 · 10−3
1.18

LNe, h = 2.0 · 10−6 1.0 · 10−3

CLL, h = 4.1 · 10−6 1.0 · 10−3
1.22

CLL, h = 2.0 · 10−6 4.3 · 10−4

LH, h = 1.3 · 10−4 3.3 · 10−5
2.49

LH, h = 6.5 · 10−5 5.8 · 10−6

OOEH, h = 1.3 · 10−4 7.1 · 10−3
2.00

OOEH, h = 6.5 · 10−5 1.8 · 10−3

DF, h = 1.3 · 10−4 3.5 · 10−4
3.39

DF, h = 6.5 · 10−5 3.3 · 10−5
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Figure 8. The L∞ errors as a function of the time step size h for an equidistant mesh for large x
(Experiment 2). RK4 is not present in the figure because it is unstable for the examined time step
sizes, as the CFL limit for the standard RK4 method is approximately h ≈ 1.2 · 10−7.
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the case of Experiment 2. The LH and the DF curves almost coincide.
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Experiment 3: Here we fix the time step size to h = 5 · 10−4 and vary the parameter
m. The following parameters have been set as ∆x = 0.015, x ∈ [4 , 5.99], and of course, we
keep the values given in Equation (22). The errors are plotted in Figure 11. For simplicity,
we disregard the usage of effective time step sizes for the SH and ASH methods, and, due
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to that, their curves are very close to each other. One can see that the good performance
of the LH and the DF methods is not an accident but a general trend. The RK4 method is
completely missing from the figure as it never provided any meaningful value for this time
step size.
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RK4 is not present in the figure because it is unstable for the examined time step size.

4.3. Spatially Non-Equidistant Grid

Experiment 4: Now we set γ = −0.003, m = 3.6, x0 = 0.1, and ∆x0 = 0.012, thus
the last cell length is ∆xN = 0.0048 and its center is at XN = 1.7692. For this problem,
hFTCS

MAX = 1.7 · 10−6, and the stiffness ratio is 5.8 · 106. In Figure 12, one can see that the
error-functions are very similar to those in Figure 4, which means that the methods work
well for the non-equidistant case as well. Some errors and the calculated numerical orders
are presented in Table 3. In Figure 13, the deviations of the numerical solution from the
analytical one is shown as a function of space and time.

Table 3. Errors and numerical order of different algorithms for Experiment 3.

Numerical Method Error (L∞) Numerical Order

CNe, h = 8.1 · 10−6 4.1 · 10−2
1.03

CNe, h = 4.1 · 10−6 2.0 · 10−2

LNe, h = 8.1 · 10−6 1.1 · 10−2
1.66

LNe, h = 4.1 · 10−6 3.4 · 10−3

CLL, h = 8.1 · 10−6 2.4 · 10−3
2.24

CLL, h = 4.1 · 10−6 5.1 · 10−4
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Table 3. Cont.

Numerical Method Error (L∞) Numerical Order

LH, h = 2.1 · 10−3 7.2 · 10−2
3.00

LH, h = 1.0 · 10−3 9.0 · 10−3

OOEH, h = 2.1 · 10−3 4.45
1.90

OOEH, h = 1.0 · 10−3 1.19

DF, h = 2.1 · 10−3 0.18
1.31

DF, h = 1.0 · 10−3 7.2 · 10−2
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Experiment 5: Now we set γ = 0.04 to obtain a mesh where the length of the cells is
rapidly increasing with x. We choose m = 7.2, x0 = 0.3, and ∆x0 = 0.004, thus the last cell
length is ∆xN = 0.0358, and its center is at XN = 4.262. For this problem, hFTCS

MAX = 2.3 · 10−8,
and the stiffness ratio is 9.1 · 108.

In Figure 14, the error functions are presented. The errors of six numerical schemes and
the numerical orders are presented in Table 4. One can see that even the least accurate CNe
method beats the RK4 scheme, as CNe reaches the minimum error at about h = 3 · 10−6,
whereas RK4 can be stable only below h ≈ 3.2 · 10−8, at an almost two orders of magnitude
smaller time step size. We are going to examine the reason for this.
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RK4 is not present in the figure because it is unstable for the examined time step sizes, as it is stable
only below h ≈ 3.2 · 10−8.
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Table 4. Errors and numerical order of different algorithms for Experiment 5.

Numerical Method Error (L∞) Numerical Order

CNe, h = 2.6 · 10−4 3.7 · 10−2
0.87

CNe, h = 1.3 · 10−4 2.0 · 10−2

LNe, h = 2.6 · 10−4 1.3 · 10−2
1.31

LNe, h = 1.3 · 10−4 5.0 · 10−3

CLL, h = 2.6 · 10−4 4.4 · 10−3
1.56

CLL, h = 1.3 · 10−4 1.5 · 10−3

LH, h = 1.7 · 10−2 8.3 · 10−2
1.81

LH, h = 8.3 · 10−3 2.4 · 10−3

SH, h = 2.1 · 10−3 3.6 · 10−2
3.08

SH, h = 1.0 · 10−3 4.2 · 10−3

DF, h = 8.3 · 10−3 7.9 · 10−2
2.10

DF, h = 4.2 · 10−3 1.8 · 10−2

In Figure 15, we plot the functions u for the CNe and the SH method with a differ-
ent time step size, where the errors are comparable, namely, 0.02 for the CNe method
(h = 1.3 · 10−4), and 0.036 for the SH method (h = 0.0021).
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Figure 15. The concentration u as a function of the x variable in the case of the initial function u0, the
analytical solution at tfin, the CNe method for h = 1.3 · 10−4, and the SH method for h = 2.1 · 10−3.
The SH curve almost coincides with the exact one for small values of x, whereas this is true for the
CNe curve for large x. The CFL limit for the standard RK4 method is approximately h ≈ 3.2 · 10−8.

We can see that there are two completely different types of difficulties in this problem.
As one can see on the left-hand side of Figure 11, the function u is changing rapidly for small
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values of x. For x < 1, the quickly converging methods, such as the OOEH, LH, SH, ASH, and
OOEH, approximate the true solution quite well, whereas other methods, especially the CNe,
lag behind. The other difficulty can be understood if one calculates the resistances: they are
decreasing from R1,2 = 22.3 to R198,199 = 1.2 · 10−6, thus the right side of the problem yields
extremely large (negative) eigenvalues. The tiny CFL limit for the conditionally stable RK
methods is caused by this right side, where actually nothing interesting happens from the
physical point of view, as the function is very flat and changes almost nothing. This is a
fatal weakness of the conventional RK methods and causes trouble, albeit to a much smaller
extent, to the SH and other otherwise rapidly converging schemes. In the case of the RK and
those hopscotch-type methods that are not unconditionally positive, unphysical oscillations
appear, but in the unconditionally stable cases, these oscillations are damped and never
grow unbounded. This damping is very effective for the LH method, and that is why it is
more accurate than the positivity preserving CpC and LNe3 methods, even for large time
step sizes. For the OOEH, RH, SH, and ASH schemes, this damping is not very effective for
large time step sizes; it is only enough to keep them stable, that is why their error is rather
large on the right-hand side of Figures 4, 8, 12 and 14. Another difference is that the LH
method produces the largest oscillations on the left side, where the true function is changing
rapidly, whereas the RH, SH, and ASH methods do it at the right side. To illustrate this, in
Figure 16, we have plotted the difference uanalytic

i (tfin)− unum
i (tfin) cell by cell as a function

of the x variable for four different methods. The time- development of the error is presented
in Figure 17 for the CLL method.
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5. Discussion and Summary

We have constructed a set of novel analytical solutions for the non-steady-state lin-
ear diffusion equation using a similarity transformation for the case when the diffusion
coefficient depends on the space coordinate. The solution is a linear combination of the
Whittaker functions, thus it is highly nontrivial.

We have reproduced the new analytical solution by 14 numerical methods, one of
which is the most standard fourth order Runge–Kutta method, and the rest are explicit
and unconditionally stable schemes, most of them recently invented. First, we have used a
spatially uniform (equidistant) mesh, then a non-uniform one, where ∆x changed smoothly.
We observed that usually the leapfrog-hopscotch method has the best performance and the
Dufort–Frankel has the second best. However, if unconditional positivity is essential, the
LNe3 method can be used. Nevertheless, all of the unconditionally stable explicit methods
give accurate results for orders-of-magnitude larger time step size than the standard explicit
methods. Therefore, we encourage scholars who still use the explicit RK method for the sim-
ulation of linear diffusion or heat conduction problems to switch to an unconditionally stable
explicit method. If the diffusion is nonlinear or contains extra terms (convection or reaction),
more investigation of these schemes is still necessary. That is why we consider this study
as a precursor of subsequent investigations in which we analyze concentration dependent
(nonlinear) diffusion equations as well as reaction–diffusion equations of different types,
e.g., the FitzHugh–Nagumo [56], the Allen [57], and the Burgers–Huxley equation [58].
Reaction–diffusion equations come into play in numerous scientific fields, such as mathe-
matical biology [59], plasma physics, or even social sciences. We are going to use the Ansatz
to obtain new analytical solutions, then adapt some of the most efficient methods (especially
the LH) to these cases. We note that a few of our methods have already been applied to
Fisher’s equation with good results, so we believe in the successful continuation.
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37. Savović, S.; Drljača, B.; Djordjevich, A. A comparative study of two different finite difference methods for solving advection–
diffusion reaction equation for modeling exponential traveling wave in heat and mass transfer processes. Ric. Mat. 2021, 71,
245–252. [CrossRef]

38. Ndou, N.; Dlamini, P.; Jacobs, B.A. Enhanced Unconditionally Positive Finite Difference Method for Advection–Diffusion–
Reaction Equations. Mathematics 2022, 10, 2639. [CrossRef]

39. Saleh, M.; Nagy, Á.; Kovács, E. Part 1: Construction and investigation of new numerical algorithms for the heat equation.
Multidiszcip. Tudományok 2020, 10, 323–338. [CrossRef]

40. Saleh, M.; Nagy, Á.; Kovács, E. Part 2: Construction and investigation of new numerical algorithms for the heat equation.
Multidiszcip. Tudományok 2020, 10, 339–348. [CrossRef]

41. Saleh, M.; Nagy, Á.; Kovács, E. Part 3: Construction and investigation of new numerical algorithms for the heat equation.
Multidiszcip. Tudományok 2020, 10, 349–360. [CrossRef]

42. Nagy, Á.; Saleh, M.; Omle, I.; Kareem, H.; Kovács, E. New stable, explicit, shifted-hopscotch algorithms for the heat equation.
Math. Comput. Appl. 2021, 26, 61. [CrossRef]

43. Kovács, E.; Nagy, Á.; Saleh, M. A set of new stable, explicit, second order schemes for the non-stationary heat conduction equation.
Mathematics 2021, 9, 2284. [CrossRef]

44. Jalghaf, H.K.; Kovács, E.; Majár, J.; Nagy, Á.; Askar, A.H. Explicit stable finite difference methods for diffusion-reaction type
equations. Mathematics 2021, 9, 3308. [CrossRef]

45. Kovács, E. A class of new stable, explicit methods to solve the non-stationary heat equation. Numer. Methods Partial Differ. Equ.
2020, 37, 2469–2489. [CrossRef]

46. Kovács, E.; Nagy, Á.; Saleh, M. A New Stable, Explicit, Third-Order Method for Diffusion-Type Problems. Adv. Theory Simul.
2022, 5, 2100600. [CrossRef]

47. Wikipedia Whittaker Function. Available online: https://en.wikipedia.org/wiki/Whittaker_function (accessed on 5 August 2022).
48. Munka, M.; Pápay, J. 4D Numerical Modeling of Petroleum Reservoir Recovery; Akadémiai Kiadó: Budapest, Hungary, 2001; ISBN

963-05-7843-3.
49. Kovács, E. New Stable, Explicit, First Order Method to Solve the Heat Conduction Equation. J. Comput. Appl. Mech. 2020, 15, 3–13.

[CrossRef]
50. Gourlay, A.R.; McGuire, G.R. General Hopscotch Algorithm for the Numerical Solution of Partial Differential Equations. IMA J.

Appl. Math. 1971, 7, 216–227. [CrossRef]
51. Saleh, M.; Kovács, E. New Explicit Asymmetric Hopscotch Methods for the Heat Conduction Equation. In Proceedings of the

1st International Electronic Conference on Algorithms, Online, 27 September–10 October 2021; MDPI: Basel, Switzerland, 2021;
Volume 2, p. 22.

52. Hirsch, C. Numerical Computation of Internal and External Flows, Volume 1: Fundamentals of Numerical Discretization; Wiley: Hoboken,
NJ, USA, 1988.

53. Chapra, S.C.; Canale, R.P. Numerical Methods for Engineers, 7th ed.; McGraw-Hill Science/Engineering/Math: New York, NY, USA, 2015.
54. Iserles, A. A First Course in the Numerical Analysis of Differential Equations; Cambridge Univ. Press: Cambridge, UK, 2009; ISBN

9788490225370.
55. Holmes, M.H. Introduction to Numerical Methods in Differential Equations; Springer: New York, NY, USA, 2007; ISBN 978-0387-

30891-3.

http://doi.org/10.3390/math10142375
http://doi.org/10.1007/s42514-019-00002-y
http://doi.org/10.1016/j.compfluid.2020.104425
http://doi.org/10.1108/HFF-01-2016-0038
http://doi.org/10.1016/j.advengsoft.2006.08.001
http://doi.org/10.1088/1742-6596/909/1/012038
http://doi.org/10.1155/2020/9647416
http://doi.org/10.1016/j.amc.2010.10.020
http://doi.org/10.33899/csmj.2011.163605
https://www.researchgate.net/publication/357606287_An_Unconditionally_Stable_Scheme_for_Two-Dimensional_Convection-Diffusion-Reaction_Equations
https://www.researchgate.net/publication/357606287_An_Unconditionally_Stable_Scheme_for_Two-Dimensional_Convection-Diffusion-Reaction_Equations
http://doi.org/10.1007/s11587-021-00665-2
http://doi.org/10.3390/math10152639
http://doi.org/10.35925/j.multi.2020.4.36
http://doi.org/10.35925/j.multi.2020.4.37
http://doi.org/10.35925/j.multi.2020.4.38
http://doi.org/10.3390/mca26030061
http://doi.org/10.3390/math9182284
http://doi.org/10.3390/math9243308
http://doi.org/10.1002/num.22730
http://doi.org/10.1002/adts.202100600
https://en.wikipedia.org/wiki/Whittaker_function
http://doi.org/10.32973/jcam.2020.001
http://doi.org/10.1093/imamat/7.2.216


Mathematics 2022, 10, 2813 26 of 26

56. Agbavon, K.M.; Appadu, A.R. Construction and analysis of some nonstandard finite difference methods for the FitzHugh–
Nagumo equation. Numer. Methods Partial Differ. Equ. 2020, 36, 1145–1169. [CrossRef]

57. Sabawi, Y.A.; Ahmed, S.B.; Hamad, H.Q. Numerical Treatment of Allen’s Equation Using Semi Implicit Finite Difference Methods.
Eurasian J. Sci. Eng. 2022, 8, 90–100. [CrossRef]

58. Verma, A.K.; Kayenat, S. An efficient Mickens’ type NSFD scheme for the generalized Burgers Huxley equation. J. Differ. Equ.
Appl. 2020, 26, 1213–1246. [CrossRef]

59. Alba-Pérez, J.; Macías-Díaz, J.E. A finite-difference discretization preserving the structure of solutions of a diffusive model of
type-1 human immunodeficiency virus. Adv. Differ. Equ. 2021, 2021, 158. [CrossRef]

http://doi.org/10.1002/num.22468
http://doi.org/10.23918/eajse.v8i1p90
http://doi.org/10.1080/10236198.2020.1812594
http://doi.org/10.1186/s13662-021-03322-y

	Introduction 
	Analytical Solution 
	The Procedure of the Numerical Solution 
	The Equation and Its Discretization in the Non-Uniform Case 
	The Applied 14 Numerical Algorithms 

	Numerical Results 
	Preliminaries 
	Spatially Uniform Grid,  = 0 
	Spatially Non-Equidistant Grid 

	Discussion and Summary 
	References

