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ABSTRACT

We present new exact solutions to the Einstein and Einstein-Maxwell field equations

that model the interior of neutral, charged and radiating stars. Several new classes

of solutions in static spherically symmetric interior spacetimes are found in the pres-

ence of charge. These correspond to isotropic matter with a specified electric field

intensity. Our solutions are found by choosing different rational forms for one of

the gravitational potentials and a particular form for the electric field. The models

generated contain results found previously including Finch and Skea (1989) neutron

stars, Durgapal and Bannerji (1983) dense stars, Tikekar (1990) superdense stars

in the limit of vanishing charge. Then we study the general situation of a compact

relativistic object with anisotropic pressures in the presence of the electromagnetic

field. We assume the equation of state is linear so that the model may be applied to

strange stars with quark matter and dark energy stars. Several new classes of exact

solutions are found, and we show that the densities and masses are consistent with

real stars. We regain as special cases the Lobo (2006) dark energy stars, the Sharma

and Maharaj (2007) strange stars and the realistic isothermal universes of Saslaw

et al (1996). In addition, we consider relativistic radiating stars undergoing gravi-

tational collapse when the fluid particles are in geodesic motion. We transform the

governing equation into Bernoulli, Riccati and confluent hypergeometric equations.

These admit an infinite family of solutions in terms of simple elementary functions

and special functions. Particular models contain the Minkowski spacetime and the

Friedmann dust spacetime as limiting cases. Finally, we model the radiating star

with shear, acceleration and expansion in the presence of anisotropic pressures. We

obtain several classes of new solutions in terms of arbitrary functions in temporal

and radial coordinates by rewriting the junction condition in the form of a Riccati

equation. A brief physical analysis indicates that these models are physically rea-

sonable.
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Chapter 1

Introduction

The theory of general relativity is an extension of the theory of special relativity by

incorporating gravitational effects. The behaviour of the gravitational field is accu-

rately described by the theory of general relativity. The theoretical predictions of

general relativity are consistent with the observational and experimental results in

astrophysics and cosmology (Davies 1989, Will 1981). In general relativity the grav-

itational field of an object is contained in the curvature spacetime, and spacetime

is taken to be a four-dimensional, differentiable manifold, endowed with a symmet-

ric, nondegenerate metric tensor field. Locally the spacetime geometry of general

relativity resembles that of special relativity but globally the geometries differ in

that the differentiable manifold is not flat. In general relativity the curvature of

spacetime is described by the Riemann tensor. The matter content is represented

by the symmetric energy momentum tensor, which in the case of a charge includes

the contribution of the electromagnetic field tensor. The total energy momentum

tensor is related to the Einstein tensor by the Einstein field equations which satisfy

the conservation laws, namely the Bianchi identities. The electromagnetic field is

subject to the Maxwell equations. The Einstein and Einstein-Maxwell field equa-

tions are systems of highly nonlinear partial differential equations which are difficult

to integrate without simplifying assumptions.

Historically the Schwarzschild (1916a) exterior solution is the first exact solution

of the Einstein field equations. The exterior Schwarzschild solution is essential for a
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discussion of the classical tests of general relativity (d’Inverno 1992, Wald 1984, Will

1981). The starting point in the study of fluid spheres is represented by the interior

Schwarzschild (1916b) solution from which many of the problems involving spherical

symmetry can be modelled. The Schwarzschild interior and exterior solutions match

smoothly at the boundary of the star. The Schwarzschild interior solution may be

used to model relativistic stars if the variations in the energy density are small. It

is a good approximation for small stars in which the pressures are not too large.

Exact models of the Einstein and Einstein-Maxwell system of field equations,

for spherically symmetric gravitational fields in static manifolds, are necessary to

describe compact spheres in relativistic astrophysics where the gravitational field

is strong. Spherically symmetric models are physically significant and are exten-

sively utilised in a variety of applications. In astrophysics, the collapse of a star can

be accurately modelled by a spherically symmetric gravitational field (Shapiro and

Teukolsky 1983). In cosmology, spherically symmetric spacetimes have been used to

model the behaviour and subsequent evolution of the early universe (Krasinski 1997).

Under high pressures stars may possess a nonzero charge during the early stages of

their evolution (Stephani 2004). Stars may also acquire a net charge through accre-

tion (Shvartsman 1971). The presence of an electric field can also counter the onset

of gravitational collapse, as a net charge distribution produces a repulsive Coulomb

force. This affects the formation of singularities (Treves and Turolla 1999). The

occurrence of charge does have consequences for the cosmic censorship hypothesis

( Joshi 1993, Joshi and Dwivedi 1992a, 1992b, 1992c). This conjecture states that

any singularity formed by gravitational collapse will always remain hidden behind

an event horizon. The presence of charge may affect the formation of naked singu-

larities in gravitational collapse, and exact solutions are helpful in investigations of

the cosmic censorship hypothesis. The recent analysis of Ivanov (2002) and Sharma

et al (2001) show that the presence of the electromagnetic field affects the values of

red shifts, luminosities and maximum mass of a compact relativistic object. Gupta

and Kumar (2005), Mukherjee (2001), Patel and Koppar (1987) and Tikekar and

Singh (1998) demonstrated that it is possible to model charged neutron stars with
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high densities within acceptable bounds for the surface red shift, luminosity and

the total mass. A number of conditions are normally placed on the energy density,

the pressure, the electric field intensity and the gravitational potentials to ensure

that the model is physically reasonable. However, we should point out that it is

rare to find a model that rigorously satisfies all these conditions. For a comprehen-

sive list of exact solutions to the Einstein field equations, many of which may be

used to describe the gravitational behaviour of stars, see Delgaty and Lake (1998),

Finch and Skea (1998), Krasinski (1997) and Stephani et al (2003). Knutsen (1988,

1989, 2000) provides a comprehensive treatment, in particular stellar models, of the

conditions to be satisfied for a realistic matter distribution. The interior solutions

of the Einstein-Maxwell field equations must match at the boundary to the exte-

rior Reissner-Nordstrom (Nordstrom 1918, Reissner 1916) solution. The exterior

Reissner-Nordstrom solution reduces to the Schwarzschild exterior solution in the

limit of vanishing electromagnetic field.

In recent years, many researchers have studied anisotropic matter where the

radial and tangential pressure components are different: these include the investi-

gations of Bowers and Liang (1974), Chaisi and Maharaj (2005, 2006a), Dev and

Gleiser (2002, 2003), Herrera et al (2002, 2004a), Maharaj and Chaisi (2006a, 2006b)

and Mak and Harko (2002, 2003) among others. They are important for studying

relativistic anisotropic spheres and to generate models that permit red shifts higher

than the critical red shift of certain isolated objects. Anisotropy also affects the

critical mass and stability of highly compact relativistic objects. Mak and Harko

(2002) and Sharma and Mukherjee (2002) pointed out that the anisotropic matter

appears to be a vital ingredient when modelling boson stars and strange matter

with densities higher than neutron stars. Thus far researchers have not investi-

gated the Einstein-Maxwell field equations with a linear equation of state when the

matter distribution is anisotropic. The linear equation of state may be applied to

model a quark star. Witten (1984) showed that formation of strange matter occur

in two ways: the quark-hadron phase transition in the early universe and conver-

sion of neutron stars into strange one at ultrahigh densities. It is expected that

3



strange stars form during the collapse of the core of a massive star after supernova

explosion (Cheng et al 1998). Drake et al (2002) suggested that the X-ray source

RXJ1856.5-3754 may be a strange star. The Fermi gas of 3A quarks constitutes a

single colour-singlet baryon with baryon number A. This structure of quarks leads to

a net positive charge inside the star. Therefore, as a part of this thesis we attempt

to model a stellar object in general when anisotropy and charge are present.

In an astrophysical environment, a star usually emits radiation and throws out

particles in the process of gravitational collapse. In this situation, the heat flow in

the interior of a star should not be neglected so that the interior solution of the

gravitational collapse of a radiating star should match to the exterior spacetime

described by the Vaidya (1951) solution. Models of relativistic radiating stars are

important for the investigation of the cosmic censorship (Goswami and Joshi 2004a,

2004b). Santos (1985) formulated the junction conditions for shear-free collapse,

matching the interior metric with the exterior Vaidya metric at the boundary of

the star which made it possible to obtain interior solutions. This treatment enabled

us to investigate physical features such as surface luminosity, dynamical stability,

relaxation effects and temperature profiles. De Oliviera et al (1985) proposed a

radiating model of an interior static configuration leading to slow gravitational col-

lapse. It was shown earlier that the slowest collapse arises in the case of shear-free

fluid interiors (Raychaudhuri 1955). Kolassis et al (1988) generated an exact model

by assuming geodesic fluid trajectories. In a recent treatment Herrera et al (2004b)

proposed a model with a vanishing Weyl tensor in a first order approximation with-

out solving the junction condition exactly. Then Maharaj and Covender (2005) and

Herrera et al (2006) solved the relevant junction condition exactly and generated

classes of solutions which contain the Friedmann dust solution as special case. Later

Misthry et al (2008) obtained several classes of solution by transforming the junc-

tion condition to the form of an Abel equation. The most general case involves

spacetimes with nonzero shear, acceleration and expansion. The first exact solution

with nonzero shear was obtained by Naidu et al (2006), considering geodesic mo-

tion of fluid particles and then Rajah and Maharaj (2008) obtained two classes of
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nonsingular solutions which contain the model of Naidu et al (2006).

In this thesis, we study spherically symmetric gravitational fields with isotropic

and anisotropic matter distributions in the presence of an electromagnetic field. We

show that it is possible to generate a variety of exact solutions which are physically

reasonable. The linear equation of state, modelling strange matter and quark matter,

is shown to be consistent with charge and anisotropy. Also, we consider relativistic

radiating stars undergoing gravitational collapse. In particular we seek new exact

solutions to the field equations that model the interior of charged, neutral and

radiating realistic stars.

This thesis is organised as follows:

• Chapter 1: Introduction.

• Chapter 2: We present a new class of exact solutions to the Einstein-Maxwell

system in closed form. This is achieved by choosing a generalised rational

form for one of the gravitational potentials and a particular form for the elec-

tric field. For specific values of the parameters the new series solution can

be written in terms of elementary functions. We regain a number of results

found previously including Finch and Skea (1989) neutron stars, Durgapal and

Bannerji (1983) dense stars, Tikekar (1990) superdense stars in the limit of

vanishing charge.

• Chapter 3: We obtain new exact models for the Einstein-Maxwell system

by specifying a particular form for one of the gravitational potentials and

the electric field intensity. The condition of pressure isotropy is reduced to

a second order linear differential equation. For specific parameter values it is

possible to find new exact models in terms of elementary functions. Our model

contains a particular charged solution found previously: this suggests that our

generalised model could be useful in the study of charged compact objects.

• Chapter 4: In this chapter, we study the general situation of a compact rela-

tivistic object with anisotropic pressures in the presence of the electromagnetic
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field with a linear equation of state. New classes of exact solutions are gener-

ated to the Einstein-Maxwell system. Our general model contains anisotropic

and isotropic models found previously. We demonstrate that our solutions

may be used to model quark stars. The masses and densities correspond to

realistic stellar objects.

• Chapter 5: We consider the linear equation of state for matter distributions

that may be applied to strange stars with quark matter. In our general ap-

proach the compact relativistic body allows for anisotropic pressures in the

presence of the electromagnetic field. New exact solutions are found to the

Einstein-Maxwell system. A particular case is shown to be regular at the stel-

lar centre. In the isotropic limit we regain the general relativistic isothermal

universe. We show that the mass corresponds to values obtained previously

for quark stars when anisotropy and charge are present.

• Chapter 6: In this chapter, we study the gravitational behaviour of a spheri-

cally symmetric radiating star when the fluid particles are in geodesic motion.

We transform the governing equation into a simpler form which allows for a

general analytic treatment. We find that Bernoulli, Riccati and confluent hy-

pergeometric equations are possible. These admit solutions in terms of elemen-

tary functions and special functions. Particular models contain the Minkowski

spacetime and the Friedmann dust spacetime as limiting cases. Our infinite

family of solutions contains specific models found previously. For a particu-

lar metric we briefly investigate the physical features, derive the temperature

profiles and plot the behaviour of the casual and acasual temperatures.

• Chapter 7: We study the behaviour of a relativistic spherically symmetric ra-

diative star with accelerating (or geodesic), expanding and shearing matter

distribution. We obtain several classes of new solutions by rewriting the junc-

tion condition in the form of a Riccati equation. A pleasing feature of our

solutions is the metrics are given for arbitrary functions of the radial coordi-

nate and the temporal coordinate which allows for a wider study of physical

6



features. For a particular metric we investigate the physical properties.

• Chapter 8: The results obtained in this thesis are summarised in the conclu-

sion.
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Chapter 2

Charged relativistic sphere with

generalised potentials

2.1 Introduction

In this chapter we use the approach of coupling the electromagnetic field tensor to

the matter tensor in Einstein’s equations such that Maxwell’s equations are satisfied.

We believe that the qualitative features generated in this charged model should yield

results which are physically reasonable. Our objective is to generate a new class of

solutions to the Einstein-Maxwell system that satisfies the physical criteria: the

gravitational potentials, electric field intensity and matter variables must be finite

and continuous throughout the stellar interior. The speed of the sound must be less

than the speed of the light, and ideally the solution should be stable with respect to

radial perturbations. A barotropic equation of state, linking the isotropic pressure to

the energy density, is often assumed to constrain the matter distribution. In addition

to these conditions the interior solution must match smoothly at the boundary of

the stellar object with the Reissner-Nordstrom exterior spacetime.

In recent years researchers have attempted to introduce a systematic approach to

finding solutions to the field equations. Maharaj and Leach (1996) generalised the

Tikekar superdense star, Thirukkanesh and Maharaj (2006) generalised the Durgapal

and Bannerji neutron star, and Maharaj and Thirukkanesh (2006) generalised the
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John and Maharaj (2006) model. These new classes of models were obtained by

reducing the condition of pressure isotropy to a recurrence relation with real and

rational coefficients which could be solved by mathematical induction, leading to

new mathematical and physical insights in the Einstein-Maxwell field equations.

We attempt to perform a similar analysis here to the coupled Einstein-Maxwell

equations for a general form of the gravitational potentials with charged matter. We

find that the generalised condition of pressure isotropy leads to a new recurrence

relation which can be solved in general.

We seek new exact solutions to the Einstein-Maxwell field equations, using the

systematic series analysis, which may be used to describe the interior relativistic

sphere. Our objective is to obtain a general class of exact solutions which contains

previously known models as particular cases. This approach produces a number

of difference equations, which we demonstrate can be solved explicitly from first

principles. We first express the Einstein-Maxwell system of equations for static

spherically symmetric line element as an equivalent system using the Durgapal and

Bannerji (1983) transformation in §2.2. In §2.3, we choose particular forms for

one of the gravitational potentials and the electric field intensity, which reduce the

condition of pressure isotropy to a linear second order equation in the remaining

gravitational potential. We integrate this generalised condition of isotropy equation

using the Frobenius method in §2.4. In general the solution will be given in terms

of special functions. However elementary functions are regainable, and in §2.5, we

find two categories of solutions in terms of elementary functions by placing certain

restriction on the parameters. In §2.6, we regain known charged Einstein-Maxwell

models and uncharged Einstein models from our general class of models. In §2.7, we

discuss the physical features, plot the matter variables and show that our models are

physically reasonable. The results of this chapter have been accepted for publication

in Thirukkanesh and Maharaj (2008a)
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2.2 The field equations

The gravitational field should be static and spherically symmetric for describing

the internal structure of a dense compact relativistic sphere which is charged. For

describing such a configuration, we utilise coordinates (xa) = (t, r, θ, φ), such that

the generic form of the line element is given by

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2). (2.2.1)

The Einstein field equations can be written in the form

1

r2

[

r(1 − e−2λ)
]′

= ρ, (2.2.2a)

− 1

r2

(

1 − e−2λ
)

+
2ν ′

r
e−2λ = p, (2.2.2b)

e−2λ

(

ν ′′ + ν ′2 +
ν ′

r
− ν ′λ′ − λ′

r

)

= p, (2.2.2c)

for neutral perfect fluids. The energy density ρ and the pressure p are measured

relative to the comoving fluid 4-velocity ua = e−νδa
0 and primes denote differentiation

with respect to the radial coordinate r. In the system (2.2.2a)-(2.2.2c), we are using

units where the coupling constant 8πG
c4

= 1 and the speed of light c = 1. This system

of equations determines the behaviour of the gravitational field for a neutral perfect

fluid source. A different but equivalent form of the field equations can be found if

we introduce the transformation

x = Cr2, Z(x) = e−2λ(r), A2y2(x) = e2ν(r), (2.2.3)

so that the line element (2.2.1) becomes

ds2 = −A2y2dt2 +
1

4CxZ
dx2 +

x

C
(dθ2 + sin2 θdφ2).
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The parameters A and C are arbitrary constants in (2.2.3). Under the transforma-

tion (2.2.3), the system (2.2.2a)-(2.2.2c) has the equivalent form

1 − Z

x
− 2Ż =

ρ

C
, (2.2.4a)

4Z
ẏ

y
+
Z − 1

x
=

p

C
, (2.2.4b)

4Zx2ÿ + 2Żx2ẏ + (Żx− Z + 1)y = 0, (2.2.4c)

where dots represent differentiation with respect to x.

In the presence of an electromagnetic field the system (2.2.4a)-(2.2.4c) has to be

replaced by the Einstein-Maxwell system of equations. We generate the system

1 − Z

x
− 2Ż =

ρ

C
+
E2

2C
, (2.2.5a)

4Z
ẏ

y
+
Z − 1

x
=

p

C
− E2

2C
, (2.2.5b)

4Zx2ÿ + 2Żx2ẏ +

(

Żx− Z + 1 − E2x

C

)

y = 0, (2.2.5c)

σ2

C
=

4Z

x

(

xĖ + E
)2

, (2.2.5d)

where E is the electric field intensity and σ is the charge density. This system of

equations governs the behaviour of the gravitational field for a charged perfect fluid

source. When E = 0 the Einstein-Maxwell equations (2.2.5a)-(2.2.5d) reduce to the

uncharged Einstein equations (2.2.4a)-(2.2.4c).

2.3 Choosing Z and E

We seek solutions to the Einstein-Maxwell field equations (2.2.5a)-(2.2.5d) by mak-

ing explicit choices for the gravitational potential Z and the electric field intensity

E on physical grounds. The system (2.2.5a)-(2.2.5d) comprises four equations in
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the six unknowns Z, y, ρ, p, E and σ. Equation (2.2.5c), called the generalised con-

dition of pressure isotropy, is the master equation in the integration process. In this

treatment we specify the gravitational potential Z and electric field intensity E, so

that it is possible to integrate (2.2.5c). The explicit solution of the Einstein-Maxwell

system (2.2.5a)-(2.2.5d) then follows. We make the particular choice

Z =
1 + ax

1 + bx
(2.3.1)

where a and b are real constants. The function Z is regular at the centre and well

behaved in the stellar interior for a wide range of values of a and b. It is important to

note that the choice (2.3.1) for Z is physically reasonable. This form for the potential

Z contains special cases which correspond to neutron star models, eg. when a = −1
2

and b = 1 we regain the uncharged dense neutron star of Durgapal and Bannerji

(1983). When a is arbitrary and b = 1 then Thirukkanesh and Maharaj (2006) and

Maharaj and Komathiraj (2007) found charged solutions to the Einstein-Maxwell

system. These solutions can be used to model a charged relativistic sphere with

desirable physical properties. Consequently the general form (2.3.1) contains known

physically acceptable uncharged and charged relativistic stars for particular values

of a and b. We seek to study the Einstein-Maxwell system with the choice (2.3.1) in

an attempt to find new solutions, and to show explicitly that cases found previously

can be placed into our general class of models.

Upon substituting (2.3.1) in equation (2.2.5c) we obtain

4(1 + ax)(1 + bx)ÿ + 2(a− b)ẏ +

[

b(b− a) − E2(1 + bx)2

Cx

]

y = 0. (2.3.2)

The differential equation (2.3.2) is difficult to solve in the above form; we first

introduce a transformation to obtain a more convenient form. We let

1 + bx = X, Y (X) = y(x), b 6= 0. (2.3.3)

With the help of (2.3.3), (2.3.2) becomes

4X [aX − (a− b)]
d2Y

dX2
+ 2(a− b)

dY

dX
+

[

(b− a) − E2X2

C(X − 1)

]

Y = 0 (2.3.4)
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in terms of the new dependent and independent variables Y and X respectively.

The differential equation (2.3.4) may be integrated once the electric field E is given.

A variety of choices for E is possible but only a few have the desirable features in

the stellar interior. Note that the particular choice

E2 =
αC(X − 1)

X2
=

αCbx

(1 + bx)2
(2.3.5)

where α is a constant has the advantage of simplifying (2.3.4). The electric field given

in (2.3.5) vanishes at the centre of the star, and remains continuous and bounded

for all interior points in the star. When b = 1 then E2 reduces to the expression in

the treatment of Maharaj and Komathiraj (2007). Thus the choice for E in (2.3.5)

is physically reasonable in the study of the gravitational behaviour of charged stars.

With the help of (2.3.5) we find that (2.3.4) becomes

4X [aX − (a− b)]
d2Y

dX2
+ 2(a− b)

dY

dX
+ [(b− a) − α]Y = 0. (2.3.6)

The differential equation (2.3.6) becomes

4X [aX − (a− b)]
d2Y

dX2
+ 2(a− b)

dY

dX
+ (b− a)Y = 0 (2.3.7)

when α = 0, and there is no charge.

2.4 Solutions

We need to integrate the master equation (2.3.6) to solve the Einstein-Maxwell

system (2.2.5a)-(2.2.5d). Two categories of solution are possible when a = b and

a 6= b.

2.4.1 The case a = b

When a = b equation (2.3.6) becomes

X2 d
2Y

dX2
− α

4a
Y = 0 (2.4.1)
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which is an Euler-Cauchy equation. The solution of (2.4.1) is

Y =































c1(1 + ax)(1+
√

1+α/a)/2 + c2(1 + ax)(1−
√

1+α/a)/2 if a > 0,

√
1 + ax

[

c1 sin
(√

a+α
4a

ln(1 + ax)
)

+c2 cos
(√

a+α
4a

ln(1 + ax)
)]

if a < 0,

(2.4.2)

where c1 and c2 are constants. From (2.2.5a) and (2.3.1) we observe that ρ = −E2

2
.

We do not pursue this case to avoid negative energy densities. It is interesting to

observe that when a = b = 0 then it is possible to generate an exact Einstein-

Maxwell solution to (2.2.5a)-(2.2.5d), for a different choice of E2, which contains

the Einstein universe as pointed out by Komathiraj and Maharaj (2007a).

2.4.2 The case a 6= b

Observe that it is not possible to express the general solution of the master equation

(2.3.6) in terms of conventional elementary functions for all values of a, b (a 6= b)

and α. In general the solution can be written in terms of special functions. It is

necessary to express the solution in a simple form so that it is possible to conduct

a detailed physical analysis. Hence in this section we attempt to obtain a general

solution to the differential equation (2.3.6) in series form. In a subsequent section

we show that it is possible to find particular solutions in terms of algebraic functions

and polynomials.

We can utilise the method of Frobenius about X = 0, since this is a regular

singular point of the differential equation (2.3.6). We write the solution of the

differential equation (2.3.6) in the series form

Y =

∞
∑

n=0

cnX
n+r, c0 6= 0 (2.4.3)

where cn are the coefficients of the series and r is a constant. For an acceptable so-

lution we need to find the coefficients cn as well as the parameter r. On substituting
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(2.4.3) in the differential equation (2.3.6) we have

2(a− b)c0r[−2(r − 1) + 1]Xr−1 +
∞
∑

n=1

[2(a− b)cn+1(n+ r + 1)[−2(n+ r) + 1]

+cn [4a(n+ r)(n+ r − 1) − (a− b+ α)]]Xn+r = 0.

(2.4.4)

For consistency the coefficients of the various powers of X must vanish in (2.4.4).

Equating the coefficient of Xr−1 in (2.4.4) to zero, we find

(a− b)c0r[2(r − 1) − 1] = 0

which is the indicial equation. Since c0 6= 0 and a 6= b, we must have r = 0 or r = 3
2
.

Equating the coefficient of Xn+r in (2.4.4) to zero we obtain

cn+1 =
4a(n+ r)(n+ r − 1) − [a− b+ α]

2(a− b)(n + 1 + r)[2(n+ r) − 1]
cn, n ≥ 0 (2.4.5)

The result (2.4.5) is the basic difference equation which determines the nature of

the solution.

We can establish a general structure for all the coefficients by considering the

leading terms. We note that the coefficients c1, c2, c3, ... can all be written in terms

of the leading coefficient c0, and this leads to the expression

cn+1 =
n
∏

p=0

4a(p+ r)(p+ r − 1) − (a− b+ α)

2(a− b)(p + 1 + r)[2(p+ r) − 1]
c0 (2.4.6)

where the symbol
∏

denotes multiplication. It is also possible to establish the

result (2.4.6) rigorously by using the principle of mathematical induction. We can

now generate two linearly independent solutions from (2.4.3) and (2.4.6). For the

parameter value r = 0 we obtain the first solution

Y1 = c0

[

1 +
∞
∑

n=0

n
∏

p=0

4ap(p− 1) − (a− b+ α)

2(a− b)(p+ 1)(2p− 1)
Xn+1

]

(2.4.7)

y1 = c0

[

1 +
∞
∑

n=0

n
∏

p=0

4ap(p− 1) − (a− b+ α)

2(a− b)(p+ 1)(2p− 1)
(1 + bx)n+1

]

.
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For the parameter value r = 3
2

we obtain the second solution

Y2 = c0X
3
2

[

1 +
∞
∑

n=0

n
∏

p=0

a(2p+ 3)(2p+ 1) − (a− b+ α)

(a− b)(2p+ 5)(2p+ 2)
Xn+1

]

(2.4.8)

y2 = c0(1 + bx)
3
2

[

1 +

∞
∑

n=0

n
∏

p=0

a(2p+ 3)(2p+ 1) − (a− b+ α)

(a− b)(2p+ 5)(2p+ 2)
(1 + bx)n+1

]

.

Therefore the general solution to the differential equation (2.3.2), for the choice

(2.3.5), is given by

y = a1y1(x) + b1y2(x) (2.4.9)

where a1 and b1 are arbitrary constants and y1 and y2 are given by (2.4.7) and

(2.4.8) respectively. It is clear that the quantities y1 and y2 are linearly independent

functions. From (2.2.5a)-(2.2.5d) and (2.4.9) the general solution to the Einstein-

Maxwell system can be written as

e2λ =
1 + bx

1 + ax
, (2.4.10a)

e2ν = A2y2, (2.4.10b)

ρ

C
=

(b− a)(3 + bx)

(1 + bx)2
− αbx

2(1 + bx)2
, (2.4.10c)

p

C
= 4

(1 + ax)

(1 + bx)

ẏ

y
+

(a− b)

(1 + bx)
+

αbx

2(1 + bx)2
, (2.4.10d)

E2

C
=

αbx

(1 + bx)2
. (2.4.10e)

The result in (2.4.10a)-(2.4.10e) is a new solution to the Einstein-Maxwell field

equations. Note that if we set α = 0, (2.4.10a)-(2.4.10e) reduce to models for

uncharged stars which may contain new solutions to the Einstein field equations

(2.2.4a)-(2.2.4c).
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2.5 Elementary functions

The general solution (2.4.9) can be expressed in terms of polynomial and algebraic

functions. This is possible in general because the series (2.4.7) and (2.4.8) terminate

for restricted values of the parameters a, b and α so that elementary functions are

possible. Consequently we obtain two sets of general solutions in terms of elementary

functions, by determining the specific restriction on the quantity a − b + α for

a terminating series. The elementary functions found using this method, can be

written as polynomials and polynomials with algebraic functions. We provide the

details of the process in the Appendix A; here we present a summary of the results.

In terms of the original variable x, the first category of solution can be written as

y = d1(1 + ax)
1
2

[

1 − (n+ 1)

n+1
∑

i=1

(

4a

b− a

)i
(2i− 1)(n+ i)!

(2i)!(n− i+ 1)!
(1 + bx)i

]

+d2 (1 + bx)
3
2

[

1 +
3

(n + 1)

n
∑

i=1

(

4a

b− a

)i
(2i+ 2)(n+ i+ 1)!

(n− i)!(2i+ 3)!
(1 + bx)i

]

(2.5.1)

for a − b + α = a(2n + 3)(2n + 1), where d1 and d2 are arbitrary constants. The

second category of solutions can be written as

y = d3(1 + ax)
1
2 (1 + bx)

3
2 ×

[

1 +
3

n(n− 1)

n−2
∑

i=1

(

4a

b− a

)i
(2i+ 2)(n+ i)!

(2i+ 3)!(n− i− 2)!
(1 + bx)i

]

+d4

[

1 − n(n− 1)
n
∑

i=1

(

4a

b− a

)i
(2i− 1)(n+ i− 2)!

(2i)!(n− i)!
(1 + bx)i

]

(2.5.2)

for a− b+α = 4an(n−1), where d3 and d4 are arbitrary constants. It is remarkable

to observe that the solutions (2.5.1) and (2.5.2) are expressed completely in terms of

elementary functions only. This does not happen often considering the nonlinearity

of the gravitational interaction in the presence of charge. We have given our solutions

in a simple form: this has the advantage of facilitating the analysis of the physical

features of the stellar models. Observe that our approach has combined both the
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charged and uncharged cases for a relativistic star: when α = 0 we obtain the

solutions for the uncharged case directly.

2.6 Known solutions

It is interesting to observe that we can regain a number of physically reasonable

models from the general class of solutions found in this chapter. These individual

models can be generated from the general series solution (2.4.9) or the simplified el-

ementary functions (2.5.1) and (2.5.2). We generate explicitly the following models.

Case I: Hansraj and Maharaj charged stars

For this case we set a = 0, b = 1 and 0 ≤ α < 1. Then from (2.4.7) we find that

y1 = c0

[

1 +

∞
∑

n=0

n
∏

p=0

−(1 − α)

2(p+ 1)(2p− 1)
(
√

1 + x)2n+2

]

= c0

([

1 − (
√

(1 − α)(1 + x))2

2!
+

(
√

(1 − α)(1 + x))4

4!

−(
√

(1 − α)(1 + x))6

6!
+ ...

]

+
√

(1 − α)(1 + x)
[

√

(1 − α)(1 + x)

−(
√

(1 − α)(1 + x))3

3!
+

(
√

(1 − α)(1 + x))5

5!
− ...

])

= c0 cos
√

(1 − α)(1 + x) + c0
√

(1 − α)(1 + x) sin
√

(1 − α)(1 + x).
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Equation (2.4.8) gives the result

y2 = c0(
√

1 + x)3

[

1 +

∞
∑

n=0

n
∏

p=0

−(1 − α)

(2p+ 5)(2p+ 2)
(
√

1 + x)2n+2

]

=
3c0

(
√

1 − α)3

([

√

(1 − α)(1 + x) − (
√

(1 − α)(1 + x))3

3!

+
(
√

(1 − α)(1 + x))5

5!
− ...

]

−
√

(1 − α)(1 + x)
[

1

−(
√

(1 − α)(1 + x))2

2!
+

(
√

(1 − α)(1 + x))4

4!
− ...

])

=
3c0

(
√

1 − α)3

[

sin
√

(1 − α)(1 + x) −
√

(1 − α)(1 + x) cos
√

(1 − α)(1 + x)
]

.

Hence the general solution becomes

y =
[

D1 −D2

√

(1 − α)(1 + x)
]

cos
√

(1 − α)(1 + x)

+
[

D2 +D1

√

(1 − α)(1 + x)
]

sin
√

(1 − α)(1 + x) (2.6.1)

where D1 and D2 are new arbitrary constants. The class of charged solutions (2.6.1)

is the first category found by Hansraj and Maharaj (2006).

When a = 0, b = 1 and α = 1 we easily obtain the result

y = a1 + b1(1 + x)
3
2 (2.6.2)

from (2.4.9). This is the second category of the Hansraj and Maharaj charged

solutions.
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We now set a = 0, b = 1 and α > 1. Then from (2.4.7) we obtain

y1 = c0

[

1 +

∞
∑

n=0

n
∏

p=0

(α− 1)

2(p+ 1)(2p− 1)
(
√

1 + x)2n+2

]

= c0

([

1 +
(
√

(α− 1)(1 + x))2

2!
+

(
√

(α− 1)(1 + x))4

4!

+
(
√

(α− 1)(1 + x))6

6!
+ ...

]

−
√

(α− 1)(1 + x)
[

√

(α− 1)(1 + x)

+
(
√

(α− 1)(1 + x))3

3!
+

(
√

(α− 1)(1 + x))5

5!
+ ...

])

= c0 cosh
√

(α− 1)(1 + x) − c0
√

(α− 1)(1 + x) sinh
√

(α− 1)(1 + x).

Equation (2.4.8) gives the result

y2 = c0(
√

1 + x)3

[

1 +
∞
∑

n=0

n
∏

p=0

(α− 1)

(2p+ 5)(2p+ 2)
(
√

1 + x)2n+2

]

=
−3c0

(
√
α− 1)3

([

√

(α− 1)(1 + x) +
(
√

(α− 1)(1 + x))3

3!

+
(
√

(α− 1)(1 + x))5

5!
+ ...

]

−
√

(α− 1)(1 + x) [1

+
(
√

(α− 1)(1 + x))2

2!
+

(
√

(α− 1)(1 + x))4

4!
+ ...

])

=
−3c0

(
√
α− 1)3

(sinh
√

(1 − α)(1 + x) −
√

(1 − α)(1 + x) cosh
√

(1 − α)(1 + x)).

Therefore, the general solution becomes

y =
[

D2 −D1

√

(α− 1)(1 + x)
]

sinh
√

(α− 1)(1 + x)

+
[

D1 −D2

√

(α− 1)(1 + x)
]

cosh
√

(α− 1)(1 + x) (2.6.3)

where D1 and D2 are new arbitrary constants. This is the third category of charged

solutions found by Hansraj and Maharaj.
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The exact solutions (2.6.1), (2.6.2) and (2.6.3) were comprehensively studied by

Hansraj and Maharaj (2006), and it was shown that these solutions correspond to

a charged relativistic sphere which is realistic as all conditions for physically ac-

ceptability are met. The condition of causality is satisfied and the speed of light is

greater than the speed of sound.

Case II: Maharaj and Komathiraj charged stars

If b = 1, then (2.5.1) becomes

y = d1(1 + ax)
1
2

[

1 − (n+ 1)

n+1
∑

i=1

(

4a

1 − a

)i
(2i− 1)(n+ i)!

(2i)!(n− i+ 1)!
(1 + x)i

]

+d2 (1 + x)
3
2

[

1 +
3

(n+ 1)

n
∑

i=1

(

4a

1 − a

)i
(2i+ 2)(n+ i+ 1)!

(n− i)!(2i+ 3)!
(1 + x)i

]

(2.6.4)

for a− 1 + α = a(2n+ 1)(2n+ 3). When b = 1 then (2.5.2) gives

y = d3(1 + ax)
1
2 (1 + x)

3
2

[

1 +
3

n(n− 1)

n−2
∑

i=1

(

4a

1 − a

)i
(2i+ 2)(n+ i)!

(2i+ 3)!(n− i− 2)!
(1 + x)i

]

+d4

[

1 − n(n− 1)

n
∑

i=1

(

4a

1 − a

)i
(2i− 1)(n+ i− 2)!

(2i)!(n− i)!
(1 + x)i

]

(2.6.5)

for a−1+α = 4an(n−1). The two categories of solutions (2.6.4) and (2.6.5) corre-

spond to the Maharaj and Komathiraj (2007) model for a compact sphere in electric

fields. The Maharaj and Komathiraj charged stars have a simple form in terms of

elementary functions; they are physically reasonable and contain the Durgapal and

Bannerji (1983) model and other exact models corresponding to neutron stars.

Case III: Finch and Skea neutron stars

When α = 0, we obtain

y =
[

D1 −D2

√
1 + x

]

cos
√

1 + x+
[

D2 +D1

√
1 + x

]

sin
√

1 + x (2.6.6)

from (2.6.1). Thus, we regain the Finch and Skea (1989) model for a neutron star

when the electromagnetic field is absent. The Finch and Skea neutron star model
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has been shown to satisfy all the physical criteria for an isolated spherically sym-

metric stellar uncharged source. It is for this reason that this model has been used

by many researchers to model the interior of neutron stars.

Case IV: Durgapal and Bannerji neutron stars

If we take α = 0 and n = 0 then 2a+ b = 0, and we get

y = d1(1 + ax)
1
2 (5 − 4ax) + d2(1 − 2ax)

3
2

from (2.5.1). If we set a = −1
2

(ie., b = 1), then it is easy to verify that this equation

becomes

y = c1(2 − x)
1
2 (5 + 2x) + c2(1 + x)

3
2 (2.6.7)

where c1 = d1/3
√

2 and c2 = d2 are new arbitrary constants. Thus we have re-

gained the Durgapal and Bannerji (1983) neutron star model. This model satisfies

all physical criteria for acceptability and has been utilised by many researchers to

model uncharged neutron stars.

Case V: Tikekar superdense stars

If we take α = 0 and n = 2 then 7a+ b = 0, and we find

y = d3(1 + ax)(1 − 7ax)
3
2 + d4

[

1 +
1

2
(1 − 7ax) − 1

8
(1 − 7ax)2

]

from (2.5.2). If we set a = −1 (ie., b = 7) and let x̃ =
√

1 − x then this equation

becomes

y = c1x̃(1 − 7

8
x̃2)

3
2 + c2

[

1 − 7

2
x̃2 +

49

24
x̃4

]

(2.6.8)

where c1 = d38
3
2 and c2 = −d4/3 are new arbitrary constants. Thus we have regained

the Tikekar (1990) model for superdense neutron star from our general solution.

The Tikekar superdense model plays an important role in describing highly dense

matter, cold compact matter and core-envelope models for relativistic stars. The

Tikekar relativistic star falls into a more general class of models with spheroidal

spatial geometry found by Maharaj and Leach (1996); this class can be generalised

to include the presence of an electric field as shown by Komathiraj and Maharaj

(2007b).

22



2.7 Physical analysis

In this section we demonstrate that the exact solutions found in this chapter are

physically reasonable and may be used to model a charged relativistic sphere. We

observe from (2.4.10a) and (2.4.10b) that the gravitational potentials e2ν and e2λ

are continuous in the stellar interior and nonzero at the centre for all values of the

parameters a, b and α. From (2.4.10c), we can express the variable x in terms of the

energy density ρ only as

x =
1

4b

{

C[2(b− a) − α]ρ−1 ±
√

C2[2(b− a) − α]2ρ−2 + 8C[4(b− a) + α]ρ−1 − 4
}

.

Therefore from (2.4.10d), the isotropic pressure p can be expressed in terms of ρ only.

Thus all the forms of the solutions presented in this chapter satisfy the barotropic

equation of state p = p(ρ) which is a desirable feature. Note that many of the

solutions appeared in the literature do not satisfy this property.

To illustrate the graphical behaviour of the matter variables in the stellar interior

we consider the particular solution (2.6.1). In this case the line element becomes

ds2 = −A2
[(

D1 −D2

√

(1 − α)(1 + r2)
)

cos
√

(1 − α)(1 + r2)

+
(

D2 +D1

√

(1 − α)(1 + r2)
)

sin
√

(1 − α)(1 + r2)
]2

dt2

+(1 + Cr2)dr2 + r2(dθ2 + sin2 θdφ2). (2.7.1)

For simplicity we make the choice A = 1, C = 1, D1 = 1, D2 = 4 in the metric

(2.7.1). We choose α = 1
2

for charged matter and we consider the interval 0 ≤ r ≤ 1

to generate the relevant plots. We utilised the software package Mathematica to

generate the plots for ρ, p, E2 and dp
dρ

respectively. The dotted line corresponds to

α = 1
2

and E2 6= 0; the solid line corresponds to α = 0 and E2 = 0. In Figure 2.1, we

have plotted the energy density on the interval 0 ≤ r ≤ 1. It can be easily seen that

the energy densities in both cases are positive and continuous at the centre; it is a

monotonically decreasing function throughout the interior of the star from centre to
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the boundary. In Figure 2.2, we have plotted the behaviour of the isotropic pressure.

The pressure p remains regular in the interior and is monotonically decreasing. The

role of the electromagnetic field is highlighted in Figures 2.1 and 2.2: the effect of E2

is to produce smaller values for ρ and p. From Figures 2.1 and 2.2 we observe that

the presence of E does not significantly affect ρ but has a much greater influence

on p closer to the centre. We believe that this follows directly from our choice

(2.3.5) for the electric field intensity; other choices of E generate different profiles

as indicated in Komathiraj and Maharaj (2007a). The electric field intensity E2

is given in Figure 2.3 which is positive, continuous and monotonically increasing.

In Figure 2.4, we have plotted dp
dρ

on the interval 0 ≤ r ≤ 1 for both charged and

uncharged cases. We observe that dp
dρ

is always positive and less than unity. This

indicates that the speed of the sound is less than the speed of the light and causality

is maintained. Note that the effect of the electromagnetic field is to produce lower

values for dp
dρ

and the speed of sound is decreased when α 6= 0. Hence we have shown

that the solution (2.6.1), for our particular chosen parameter values, satisfies the

requirements for a physically reasonable charged body.
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Figure 2.1: Energy density.

For particular parameter values our plots of the behaviour of ρ, p, E2 and dp
dρ

show that they were physically reasonable. A pleasing feature of our plots is that
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Figure 2.2: Matter pressure.

0.2 0.4 0.6 0.8 1.0
r

0.02

0.04

0.06

0.08

0.10

0.12

E2

Figure 2.3: Electric field.

we can distinguish between charged and uncharged exact solutions. The presence of

charge leads to smaller values of ρ, p and dp
dρ

in the figures generated. This indicates

that the presence of charge can dramatically affect the behaviour of the matter and

gravitational variables.
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Figure 2.4: dp/dρ.
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Chapter 3

Some new static charged spheres

3.1 Introduction

Exact solutions of the Einstein-Maxwell system of field equations, for spherically

symmetric gravitational fields in static manifolds, are necessary to describe charged

compact spheres in relativistic astrophysics. The solutions to the field equations

generated have a number of different applications in relativistic stellar systems. It is

for this reason that a number of investigations have been undertaken on the Einstein-

Maxwell equations in recent times. A comprehensive review of exact solutions and

criteria for physical admissability is provided by Ivanov (2002). A general treatment

of nonstatic spherically symmetric solutions to the Einstein-Maxwell system, in the

case of vanishing shear was, performed by Wafo Soh and Mahomed (2000) using

symmetry methods. The uncharged case was considered by Wafo Soh and Mahomed

(1999) who show that all existing solutions arise because of the existence of a Noether

point symmetry; the physical relevance of the solutions was investigated by Feroze et

al (2003). The matching of nonstatic charged perfect fluid spheres to the Reissner-

Nordstrom exterior metric was pursued by Mahomed et al (2003) who highlighted

the role of the Bianchi identities in restricting the number of solutions.

In this chapter, our objective is to find a new class of solutions to the Einstein-

Maxwell system that satisfies the physical criteria. We attempt to perform a similar

analysis applied in the previous chapter to the coupled Einstein-Maxwell equations
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by choosing a different rational form for one of the gravitational potentials and a

particular form for the charged matter distribution. We obtain a new recurrence

relation with real and rational coefficients by simplifying the condition of pressure

isotropy, which can then be solved explicitly from first principles. The Einstein

Maxwell system of field equations are given in §3.2. In §3.3, we choose specific

forms for one of the gravitational potentials and the electric field intensity, which

reduce the condition of pressure isotropy to a linear second order equation in the

remaining gravitational potential. We integrate this equation using the method

of Frobenius in §3.4. In general the solution will be given in terms of elementary

functions. We demonstrate that it is possible to find two category of solutions in

terms of elementary functions by placing certain restriction on the parameters. We

regain known charged Einstein-Maxwell models from our general class of models in

§3.5. In §3.6, we discuss the physical features of the solutions found, plot the matter

variables, and show that our models are physically reasonable. The results of this

chapter have been accepted for publication in Maharaj and Thirukkanesh (2008a).

3.2 Basic equations

We assume that the spacetime is spherically symmetric and static which is con-

sistent with the study of charged compact objects in relativistic astrophysics. In

Schwarzschild coordinates (t, r, θ, φ) the generic form of the line element is given by

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2). (3.2.1)

With the help of the the transformations

x = Cr2, Z(x) = e−2λ(r), A2y2(x) = e2ν(r),
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the Einstein-Maxwell field equations for the line element (3.2.1) can be written in

the form as

1 − Z

x
− 2Ż =

ρ

C
+
E2

2C
, (3.2.2a)

4Z
ẏ

y
+
Z − 1

x
=

p

C
− E2

2C
, (3.2.2b)

4Zx2ÿ + 2Żx2ẏ +

(

Żx− Z + 1 − E2x

C

)

y = 0, (3.2.2c)

σ2

C
=

4Z

x

(

xĖ + E
)2

, (3.2.2d)

where A and C are real constants. For more information on the Einstein-Maxwell

system with isotropic pressures see §2.2.

3.3 Choosing potentials

Our objective is to find a new class of solutions to the Einstein-Maxwell system

by making explicit choices for the gravitational potential Z and the electric field

intensity E. We make the choice for Z as

Z(x) =
(1 + ax)2

1 + bx
, (3.3.1)

where a and b are real constants. Note that the choice (3.3.1) ensures that the

gravitational potential e2λ is regular and well behaved in the stellar interior for a

wide range of values of the parameters a and b. In addition, when x = 0 then

Z = 1 which ensures that there is no singularity at the stellar centre. A special

case of (3.3.1) was studied by Komathiraj and Maharaj (2007a). The choice (3.3.1)

does produces charged and uncharged solutions which are necessary for constructing

realistic stellar models. On substituting (3.3.1) in (3.2.2c) we obtain

4(1 + ax)2(1 + bx)ÿ + 2(1 + ax)[b(1 + ax) − 2(b− a)]ẏ

+

[

(a− b)2 − E2(1 + bx)2

Cx

]

y = 0, (3.3.2)
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which is a second order differential equation.

The differential equation (3.3.2) may be solved if a particular choice of the electric

field intensity E is made. For our purpose we set

E2

C
=
αa(b− a)x

(1 + bx)2
, (3.3.3)

where α is a constant. The electric field intensity specified in (3.3.3) vanishes at the

centre of the sphere; it is continuous and bounded in the stellar interior for wide

range of values of x. The quantity E2 has positive values in the interior of star for

relevant choices of the constants α, a and b. Therefore the form given in (3.3.3) is

physically reasonable to study the behaviour of charged spheres. With the choice

(3.3.3) we can express (3.3.2) in the form

4(1 + ax)2 [b(1 + ax) − (b− a)] ÿ + 2a(1 + ax) [b(1 + ax) − 2(b− a)] ẏ

+a(b− a)(b− a− αa)y = 0. (3.3.4)

In (3.3.4) we assume that a 6= 0 and a 6= b so that the electric field intensity is

present. When α = 0 there is no charge.

3.4 Solutions

To find the solution of the Einstein-Maxwell system we need to integrate the master

equation (3.3.4). We consider two cases on the integration process: α = b
a
− 1 and

α 6= b
a
− 1.

3.4.1 The case α = b

a
− 1

In this case the differential equation (3.3.4) becomes

2(1 + ax) [b(1 + ax) − (b− a)] ÿ + a [b(1 + ax) − 2(b− a)] ẏ = 0. (3.4.1)

Equation (3.4.1) is easily integrable and the solution can be written as

y(x) = c1

(

√

a(1 + bx)

b− a
− arctan

√

a(1 + bx)

b− a

)

+ c2, (3.4.2)
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where c1 and c2 are constants of integration. Therefore the solution of the Einstein-

Maxwell system (3.2.2a)-(3.2.2d) becomes

e2λ =
1 + bx

(1 + ax)2
, (3.4.3a)

e2ν = A2

[

c1

(

√

a(1 + bx)

b− a
− arctan

√

a(1 + bx)

b− a

)

+ c2

]2

, (3.4.3b)

ρ

C
=

(b− 2a)(6 + bx)

2(1 + bx)2
− a2x(11 + 6bx)

2(1 + bx)2
, (3.4.3c)

p

C
=

(2a− b)(2 + bx)

2(1 + bx)2
+
a2x(3 + 2bx)

2(1 + bx)2

+
2ac1(1 + ax)

√

a(1+bx)
b−a

c1(1 + bx)

(

√

a(1+bx)
b−a

− arctan
√

a(1+bx)
b−a

)

+ c2

, (3.4.3d)

E2

C
=

(b− a)2x

(1 + bx)2
. (3.4.3e)

Observe that because of the restrictions α = b
a
− 1 and b 6= a the charged solution

(3.4.3) does not have an uncharged limit. Therefore this solution models a sphere

that is always charged and cannot attain a neutral state. Note that the solution

(3.4.3) is expressed in a simple form in terms of elementary functions which facilitates

a physical analysis of the matter and gravitational variables.

3.4.2 The case α 6= b

a
− 1

With α 6= b
a
− 1, equation (3.3.4) is difficult to solve. Consequently we introduce

the transformation

y = (1 + ax)dU(1 + ax), (3.4.4)
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where U is a function of (1 + ax) and d is constant. With the help of (3.4.4), the

differential equation (3.3.4) can be written as

4(1 + ax)2 [b(1 + ax) − (b− a)] Ü

+2(1 + ax) [b(4d+ 1)(1 + ax) − 2(2d+ 1)(b− a)] U̇

+

[

2bd(2d− 1)(1 + ax) − (b− a)

(

b

a
− 1 − α− 4d2

)]

U = 0. (3.4.5)

Note that there is substantial simplification if we take

b

a
− 1 − α = 4d2.

Then (3.4.5) becomes

2(1 + ax)

[

(1 + ax) − (b− a)

b

]

Ü

+

[

(4d+ 1)(1 + ax) − 2(2d+ 1)
(b− a)

b

]

U̇ + d(2d− 1)U = 0, (3.4.6)

where b 6= 0. We observe that the point 1 + ax = b−a
b

is a regular singular point of

the differential equation (3.4.6). Therefore, the solution of the differential equation

(3.4.6) can be written in the form of an infinite series by the method of Frobenius:

U =
∞
∑

i=0

ci

[

(1 + ax) − (b− a)

b

]i+r

, c0 6= 0, (3.4.7)

where ci are the coefficients of the series and r is the constant. To complete the

solution we need to find the coefficients ci as well as the parameter r explicitly. On

substituting (3.4.7) in the differential equation (3.4.6) we have

(b− a)

b
c0r(2r − 3)

[

(1 + ax) − (b− a)

b

]r−1

+

∞
∑

i=1

{

ci
(b− a)

b
(i+ r)(2i+ 2r − 3)

+ci−1[(i+ r − 1)(2i+ 2r + 4d− 3) + d(2d− 1)]}
[

(1 + ax) − (b− a)

b

]i+r−1

= 0.

(3.4.8)
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For the consistency the coefficients of various powers of
[

(1 + ax) − (b−a)
b

]

must

vanish in (3.4.8). Equating the coefficient of
[

(1 + ax) − (b−a)
b

]r−1

in (3.4.8) to zero,

we find

c0r(2r − 3) = 0.

which is the indicial equation. As c0 6= 0 we must have r = 0 or r = 3/2. Equating

the coefficient of
[

(1 + ax) − (b−a)
b

]i+r−1

in (3.4.8) to zero we obtain

ci =

(

b

a− b

)

[(i+ r − 1)(2i+ 2r + 4d− 3) + d(2d− 1)]

(i+ r)(2i+ 2r − 3)
ci−1, i ≥ 1. (3.4.9)

The difference equation (3.4.9) governs the structure of the solution. We can express

the structure for the general coefficient ci in terms of the leading coefficient c0 as

ci =

(

b

a− b

)i i
∏

p=1

[(p+ r − 1)(2p+ 2r + 4d− 3) + d(2d− 1)]

(p+ r)(2p+ 2r − 3)
c0, (3.4.10)

where the conventional symbol
∏

denotes multiplication. We can verify the result

(3.4.10) using mathematical induction.

We can now generate two linearly independent solutions to (3.4.6) with the help

of (3.4.7) and (3.4.10). For the parameter value r = 0, we obtain the first solution

U1 = c0

[

1 +
∞
∑

i=1

(

b

a− b

)i i
∏

p=1

[(p− 1)(2p+ 4d− 3) + d(2d− 1)]

p(2p− 3)
×

[

(1 + ax) − (b− a)

b

]i
]

.

For the parameter value r = 3/2, we obtain the second solution

U2 = c0

[

(1 + ax) − (b− a)

b

]3/2
[

1 +

∞
∑

i=1

(

b

a− b

)i

×

i
∏

p=1

[(2p+ 1)(p+ 2d) + d(2d− 1)]

p(2p+ 3)

[

(1 + ax) − (b− a)

b

]i
]

.

Since the functions U1 and U2 are linearly independent we have found the general
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solution to (3.4.6). Therefore, the solutions to the differential equation (3.3.4) are

y1(x) = c0(1 + ax)d

[

1 +

∞
∑

i=1

(

b

a− b

)i

×

i
∏

p=1

[(p− 1)(2p+ 4d− 3) + d(2d− 1)]

p(2p− 3)

[

(1 + ax) − (b− a)

b

]i
]

(3.4.11)

and

y2(x) = c0(1 + ax)d

[

(1 + ax) − (b− a)

b

]3/2
[

1 +
∞
∑

i=1

(

b

a− b

)i

×

i
∏

p=1

[(2p+ 1)(p+ 2d) + d(2d− 1)]

p(2p+ 3)

[

(1 + ax) − (b− a)

b

]i
]

. (3.4.12)

Thus the general solution to the differential equation (3.3.2), for the choice of the

electric field (3.3.3), is given by

y(x) = A1y1(x) + A2y2(x), (3.4.13)

where A1 and A2 are arbitrary constants and d2 =
(

b
a
− 1 − α

)

/4. From (3.4.13)

and (3.2.2a)-(3.2.2d), the exact solution of the Einstein-Maxwell system becomes

e2λ =
1 + bx

(1 + ax)2
, (3.4.14a)

e2ν = A2y2, (3.4.14b)

ρ

C
=

(3 + bx)(b− 2a)

(1 + bx)2
− a2x(5 + 3bx)

(1 + bx)2
− αa(b− a)x

2(1 + bx)2
, (3.4.14c)

p

C
= 4

(1 + ax)2

(1 + bx)

ẏ

y
+
a(2 + ax) − b

(1 + bx)
+
αa(b− a)x

2(1 + bx)2
, (3.4.14d)

E2

C
=

αa(b− a)x

(1 + bx)2
. (3.4.14e)

We believe that this is a new solution to the Einstein-Maxwell system. In general

the models in (3.4.14) cannot be expressed in terms of elementary functions as the
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series in (3.4.11) and (3.4.12) do not terminate. Consequently the solution will be

given in terms of special functions. Terminating series are possible for particular

values of a and b as we show in the next section.

3.5 Elementary functions

It is possible to generate exact solutions in terms of elementary functions from the

series in (3.4.13). This is possible for specific values of the parameters a, b and α

so that the series (3.4.11) and (3.4.12) terminate. Consequently two categories of

solutions are obtainable in terms of elementary functions by placing restrictions on

the quantity b
a
−1−α. We provide the details of the process in the Appendix B; here

we present a summary of the results. We can express the first category of solution,

in terms of the variable x, as

y1(x) = A1
1

(1 + ax)n
×

n
∑

i=0

(−1)i−1

(

b

b− a

)i
(2i− 1)

(2i)!(2n− 2i+ 1)!

[

(1 + ax) − (b− a)

b

]i

+A2
1

(1 + ax)n

[

(1 + ax) − (b− a)

b

]3/2

×

n−1
∑

i=0

(

b

a− b

)i
(i+ 1)

(2i+ 3)!(2n− 2i− 2)!

[

(1 + ax) − (b− a)

b

]i

, (3.5.1)
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where b
a
− 1 − α = 4n2 relates the constants a, b, α and n. The second category of

solution, in terms of the variable x, is given by

y2(x) = A1
1

(1 + ax)n−1/2
×

n
∑

i=0

(−1)i−1

(

b

b− a

)

(2i− 1)

(2i)!(2n− 2i)!

[

(1 + ax) − (b− a)

b

]i

+A2
1

(1 + ax)n−1/2

[

(1 + ax) − (b− a)

b

]3/2

×

n−2
∑

i=0

(

b

a− b

)i
(i+ 1)

(2i+ 3)!(2n− 2i− 3)!

[

(1 + ax) − (b− a)

b

]i

, (3.5.2)

where b
a
− 1 − α = 4n(n− 1) + 1 relates the constants a, b, α and n. Thus we have

extracted two classes of solutions (3.5.1) and (3.5.2) to the Einstein-Maxwell system

in terms of elementary functions from the infinite series solution (3.4.13). This class

of solution can be expressed as combinations of polynomials and algebraic functions.

The simple form of (3.5.1) and (3.5.2) helps in the study of the physical features of

the model.

From our general classes of solutions (3.5.1) and (3.5.2), it is possible to generate

particular solutions found for charged stars previously . If we take b = 1 andK = 1−a
a

then it is easy to verify that the equation (3.5.1) becomes

y1(x) = D1

[

K

K + 1 + x

]n n
∑

i=0

(−1)i−1 (2i− 1)

(2i)!(2n− 2i+ 1)!

[

1 + x

K

]i

+D2

[

K

K + 1 + x)

]n [
1 + x

K

]3/2

×

n−1
∑

i=0

(−1)i (i+ 1)

(2i+ 3)!(2n− 2i− 2)!

[

1 + x

K

]i

, (3.5.3)
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where K−α = 4n2, D1 = A1

(1−a)n and D2 = A2

(1−a)n−3/2 . Also, equation (3.5.2) becomes

y2(x) = D1

[

K

K + 1 + x

]n−1/2 n
∑

i=0

(−1)i−1 (2i− 1)

(2i)!(2n− 2i)!

[

1 + x

K

]i

+D2

[

K

K + 1 + x

]n−1/2 [
1 + x

K

]3/2

×

n−2
∑

i=0

(−1)i (i+ 1)

(2i+ 3)!(2n− 2i− 3)!

[

1 + x

K

]i

, (3.5.4)

where K − α = 4n(n − 1) + 1, D1 = A1

(1−a)n−1/2 and D2 = A2

(1−a)n−2 . Thus we have

regained the Komathiraj and Maharaj (2007a) charged model; our solutions allow

for a wider range of models for charged relativistic spheres. We illustrate this feature

with an example involving a specific value for n. For example, suppose that n = 1

then b = (5 + α)a and we get

y =
a1(7 + α+ 3(5 + α)ax) + a2(1 + (5 + α)ax)3/2

1 + ax
(3.5.5)

from (3.5.1) where a1 and a2 are new arbitrary constants. From (3.5.5) and (3.2.2a)-
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(3.2.2d) the solution to the Einstein-Maxwell system becomes

e2λ =
1 + (5 + α)ax

(1 + ax)2
, (3.5.6a)

e2ν = A2

[

a1(7 + α + 3(5 + α)ax) + a2(1 + (5 + α)ax)
3
2

1 + ax

]2

, (3.5.6b)

ρ

C
=

a(3 + α− ax)

1 + (5 + α)ax
+

2a(1 + ax) [3 + α− (5 + α)ax]

[1 + (5 + α)ax]2

− αa2(4 + α)x

2 [1 + (5 + α)ax]2
, (3.5.6c)

p

C
=

2a(1 + ax)

[1 + (5 + α)ax]
×

[

4a1(4 + α) + a2(1 + (5 + α)ax)
1
2 (13 + 3α + (5 + α)ax)

]

[

a1 (7 + α + 3(5 + α)ax) + a2 (1 + (5 + α)ax)
3
2

]

−a(3 + α− ax)

1 + (5 + α)ax
+

αa2(4 + α)x

2 [1 + (5 + α)ax]2
, (3.5.6d)

E2

C
=

αa2(4 + α)x

[1 + (5 + α)ax]2
. (3.5.6e)

Note that the solution of the form (3.5.6) cannot be regained from Komathiraj and

Maharaj (2007a) charged models except for the value of a = 1
(5+α)

. This indicates

that our model is a generalisation of the Komathiraj and Maharaj charged models

with wider behaviour in the gravitational and electromagnetic fields.

3.6 Physical analysis

In this section, we consider briefly the physical features of the models generated

in this chapter. For the pressure to vanish at the boundary r = R in the solution

(3.4.14) we require p(R) = 0 which gives the condition

4(1 + aCR2)2

[

ẏ

y

]

r=R

+ a(2 + aCR2) − b+
αa(b− a)CR2

2(1 + bCR2)
= 0, (3.6.1)
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where y is given by (3.4.11)-(3.4.13). This will constrain the values of a, b and α.

The solution of the Einstein-Maxwell system for r > R is given by the Reissner-

Nordstrom metric as

ds2 = −
(

1 − 2m

r
+
q2

r2

)

dt2+

(

1 − 2m

r
+
q2

r2

)−1

dr2+r2
(

dθ2 + sin2 θdφ2
)

, (3.6.2)

where m and q are the total mass and the charge of the star. To match the potentials

in (3.4.14) to (3.6.2) generates the relationships between the constants A1, A2, a, b

and R as follows
(

1 − 2m

R
+
q2

R2

)

= A2[A1y1(R) + A2y2(R)]2, (3.6.3a)

(

1 − 2m

R
+
q2

R2

)−1

=
1 + bCR2

(1 + aCR2)2
. (3.6.3b)

The matching conditions (3.6.1) and (3.6.3) place restrictions on the metric coeffi-

cients; however there are sufficient free parameters to satisfy the necessary condi-

tions that arise for the model under study. Since these conditions are satisfied by

the constants in the solution a relativistic star of radius R is realisable.

From (3.4.14a) and (3.4.14b) we easily observe that the gravitational potentials

e2λ and e2ν are continuous and well behaved for wide range of the parameters a and

b. From (3.4.14c), the variable x can be expressed solely in terms of the energy

density ρ as

x =
1

2b(3a2C + bρ)

[

b2C − 2bρ− 5a2C − 2abC ±
√

(a− b)C×

√

[−27a2bC + a3C(25 + 6bα) − b2(bC + 8ρ) + ab(3bC + 8ρ+ 2bαρ)]
]

Hence, from (3.4.14d) the isotropic pressure p can be written as a function of en-

ergy density ρ only. Therefore the solutions generated in this chapter satisfy the

barotropic equation of state p = p(ρ). Many of the solutions found previously do

not satisfy this desirable feature. We illustrate the graphical behaviour of matter

variables in the stellar interior for the particular solution (3.5.6). We assume that

a1 = −4.897, a2 = C = 1 and a = α = 1/4 for simplicity, and we consider the inter-

val 0 ≤ r ≤ 1. To generate the plots for ρ, p, E2, dp/dρ and p versus ρ, we utilised
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the software package Mathematica. The behaviour of the energy density is plotted

in Figure 3.1. It is positive and monotonically decreasing towards the boundary of

the stellar object. In Figure 3.2, we have plotted the behaviour of matter pressure p;

this is regular, monotonically decreasing and becomes zero at the vacuum boundary

of the stellar object. In Figure 3.3, we describe the behaviour of the electric field

intensity. It is well behaved and a continuous function. In Figure 3.4, we have

plotted the speed of sound dp/dρ. We observe that 0 ≤ dp/dρ ≤ 1 throughout the

interior of the stellar object. Therefore the speed of the sound is less than the speed

of the light and causality is maintained. In Figure 3.5, we have plotted the pressure

p verses the density ρ and we find that this approximates a linear function. This

behaviour is to be expected as the gradients of p and ρ have similar profiles in the

stellar interior. Thus we have demonstrated that the particular solution satisfies

the requirements for a physically reasonable stellar interior in the context of general

relativity.
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Figure 3.1: Energy density.

39



0.2 0.4 0.6 0.8 1.0
r

0.05

0.10

0.15

p

Figure 3.2: Matter pressure.
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Figure 3.3: Electric field intensity.
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Figure 3.4: Speed of sound dp/dρ.
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Figure 3.5: Pressure versus density.
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Chapter 4

Charged anisotropic matter with

linear equation of state

4.1 Introduction

Since the pioneering paper by Bowers and Liang (1974) there have been extensive

investigations in the study of anisotropic relativistic matter distributions in general

relativity to include the effects of spacetime curvature. The anisotropic interior

spacetime matches to the Schwarzschild exterior model. The early work of Rud-

erman (1972) showed that nuclear matter may be anisotropic in density ranges of

1015 gcm−3 where nuclear interactions need to be treated relativistically. Note that

conventional celestial bodies are not composed purely of perfect fluids so that radial

pressures are different from tangential pressures. Anisotropy can be introduced by

the existence of a solid stellar core or by the presence of a type 3A superfluid as

indicated by Kippenhahn and Weigert (1990). Different kinds of phase transitions

(Sokolov 1980) or pion condensation (Sawyer 1972) can generate anisotropy. Binney

and Tremaine (1987) have considered anisotropies in spherical galaxies in the context

of Newtonian gravitational theory. Herrera and Santos (1995) studied the effects of

slow rotation in stars and Letelier (1980) analysed the mixture of two gases, such

as ionized hydrogen and electrons, in a framework of a relativistic anisotropic fluid.

Weber (1999) showed that strong magnetic fields serve as a vehicle for generating
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anisotropic pressures inside a compact sphere. Some recent anisotropic models for

compact self-gravitating objects with strange matter include the results of Lobo

(2006) and Sharma and Maharaj (2007) with a barotropic equation of state. There-

fore the study of anisotropic fluid spheres in static spherically symmetric spacetimes

is important in relativistic astrophysics.

In recent years there have been several investigations of the Einstein-Maxwell

system of equations for static spherically symmetric gravitational fields usually with

isotropic pressures to include the effects of the electromagnetic field. The interior

spacetime must match at the boundary to the Reissner-Nordstrom exterior model.

The models generated can be used to describe charged relativistic bodies in strong

gravitational fields such as neutron stars. Many exact solutions have been given by

Ivanov (2002) and Thirukkanesh and Maharaj (2006) which satisfy the conditions

for a physically acceptable charged relativistic sphere. Charged spheroidal stars have

been studied extensively by Komathiraj and Maharaj (2007b), Sharma et al (2001),

Patel and Koppor (1987), Tikekar and Singh (1998) and Gupta and Kumar (2005).

These charged spheroidal models contain uncharged neutron stars in the relevant

limit and are consequently relevant in the description of dense astrophysical objects.

We point out the particular detailed studies of Sharma et al (2006) in cold compact

objects, Sharma and Mukherjee (2002) analysis of strange matter and binary pulsars,

and Sharma and Mukherjee (2001) analysis of qurk-diquark mixtures in equilibrium

in the presence of the electromagnetic field. Charged relativistic matter is also

relevant in modeling core-envelope stellar system as shown in the treatments of

Thomas et al (2005), Tikekar and Thomas (1998) and Paul and Tikekar (2005) in

which the stellar core is an isotropic fluid surrounded by a layer of anisotropic fluid.

Consequently the study of charged fluid spheres in static spherically symmetric

spacetimes is of significance in relativistic astrophysics.

From the above motivation it is clear that both anisotropy and the electromag-

netic field are important in astrophysical processes. However previous treatments

have largely considered either anisotropy or electromagnetic field separately. The

intention of this chapter is to provide a general framework that admits the possi-
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bility of tangential pressures with a nonvanishing electric field intensity. We believe

that this approach will allow for a richer family of solutions to the Einstein-Maxwell

field equations and possibly provide a deeper insight into the behaviour of the grav-

itational field. On physical grounds we impose a barotropic equation of state which

is linear, that relates the radial pressure to the energy density and allows for the

existence of strange matter. Our general model will contain strange matter solutions

found previously. In this regard we mention the following recent works on strange

stars. Mak and Harko (2004) and Komathiraj and Maharaj (2007c) found analytical

models in the MIT bag model (Witten 1984) with a strange matter equation of state

in the presence of an electromagnetic field. Sharma and Maharaj (2007) generated

a class of exact solutions which can be applied to strange stars with quark matter

for neutral anisotropic matter. Lobo (2006) found stable dark energy stars which

generalise the gravastar model governed by a dark energy equation of state.

The objective of this treatment is to generate exact solutions to the Einstein-

Maxwell system, with linear equation of state, that may be utilised to describe

a charged anisotropic relativistic body. In §4.2, we express the Einstein-Maxwell

system as a new system of differential equations using a coordinate transformation,

and then rewrite the system in another form which is easier to analyse. Three classes

of new exact solutions to the Einstein-Maxwell system are found in §4.3 in terms

of simple elementary functions. We show that particular uncharged anisotropic

strange stars found in the past are contained in our general family of solutions.

In §4.4, we show that the solutions are physically admissible and plot the matter

variables for particular parameter values. We generate values for the mass and

central density in §4.5 for charged and uncharged matter. This analysis extends the

treatment of Sharma and Maharaj (2007) to include charge, and confirms that the

exact solutions found are physically reasonable. The work contained in this chapter

has been published in Thirukkanesh and Maharaj (2008b).
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4.2 The field equations

Our intention is to model the interior of a dense star. On physical grounds it is

necessary for the gravitational field to be static and spherically symmetric. Conse-

quently, we assume that the interior of a spherically symmetric star is described by

the line element

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2) (4.2.1)

in Schwarzschild coordinates (xa) = (t, r, θ, φ).We take the energy momentum tensor

for an anisotropic charged imperfect fluid sphere to be of the form

Tij = diag

(

−ρ− 1

2
E2, pr −

1

2
E2, pt +

1

2
E2, pt +

1

2
E2

)

, (4.2.2)

where ρ is the energy density, pr is the radial pressure, pt is the tangential pres-

sure and E is the electric field intensity. These quantities are measured relative to

the comoving fluid 4-velocity ui = e−νδi
0. For the line element (4.2.1) and matter

distribution (4.2.2) the Einstein-Maxwell field equations can be expressed as

1

r2

[

r(1 − e−2λ)
]′

= ρ+
1

2
E2, (4.2.3a)

− 1

r2

(

1 − e−2λ
)

+
2ν ′

r
e−2λ = pr −

1

2
E2, (4.2.3b)

e−2λ

(

ν ′′ + ν ′2 +
ν ′

r
− ν ′λ′ − λ′

r

)

= pt +
1

2
E2, (4.2.3c)

σ =
1

r2
e−λ(r2E)′, (4.2.3d)

where primes denote differentiation with respect to r and σ is the proper charge

density. In the field equations (4.2.3a)-(4.2.3d), we are using units where the cou-

pling constant 8πG
c4

= 1 and the speed of light c = 1. The system of equations

(4.2.3a)-(4.2.3d) governs the behaviour of the gravitational field for an anisotropic
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charged imperfect fluid. Note that the system (4.2.3a)-(4.2.3d) becomes

1

r2

[

r(1 − e−2λ)
]′

= ρ, (4.2.4a)

− 1

r2

(

1 − e−2λ
)

+
2ν ′

r
e−2λ = p, (4.2.4b)

e−2λ

(

ν ′′ + ν ′2 +
ν ′

r
− ν ′λ′ − λ′

r

)

= p, (4.2.4c)

for matter distributions with isotropic pressures (pr = pt) in the absence of charge

(E = 0).

The mass contained within a radius r of the sphere is defined as

m(r) =
1

2

∫ r

0

ω2ρ(ω)dω. (4.2.5)

A different, but equivalent, form of the field equations is obtained if we introduce a

new independent variable x, and define functions y and Z, as follows

x = Cr2, Z(x) = e−2λ(r), A2y2(x) = e2ν(r), (4.2.6)

which was first suggested by Durgapal and Bannerji (1983). In (4.2.6), the quantities

A and C are arbitrary constants. Under the transformation (4.2.6), the system

(4.2.3a)-(4.2.3d) becomes

1 − Z

x
− 2Ż =

ρ

C
+
E2

2C
, (4.2.7a)

4Z
ẏ

y
+
Z − 1

x
=

pr

C
− E2

2C
, (4.2.7b)

4xZ
ÿ

y
+ (4Z + 2xŻ)

ẏ

y
+ Ż =

pt

C
+
E2

2C
, (4.2.7c)

σ2

C
=

4Z

x

(

xĖ + E
)2

, (4.2.7d)

where dots denote differentiation with respect to the variable x. The mass function

(4.2.5) becomes

m(x) =
1

4C3/2

∫ x

0

√
wρ(w)dw (4.2.8)
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in terms of the new variables in (4.2.6).

For a physically realistic relativistic star we expect that the matter distribution

should satisfy a barotropic equation of state pr = pr(ρ). For our purposes we assume

the linear equation of state

pr = αρ− β, (4.2.9)

where α and β are constants. Then it is possible to write the system (4.2.7a)-(4.2.7d)

in the simpler form

ρ

C
=

1 − Z

x
− 2Ż − E2

2C
, (4.2.10a)

pr = αρ− β, (4.2.10b)

pt = pr + ∆, (4.2.10c)

∆ = 4CxZ
ÿ

y
+ 2C

[

xŻ +
4Z

(1 + α)

]

ẏ

y

+
(1 + 5α)

(1 + α)
CŻ − C(1 − Z)

x
+

2β

(1 + α)
, (4.2.10d)

E2

2C
=

1 − Z

x
− 1

(1 + α)

[

2αŻ + 4Z
ẏ

y
+
β

C

]

, (4.2.10e)

σ2

C
= 4

Z

x
(xĖ + E)2, (4.2.10f)

where the quantity ∆ = pt−pr is the measure of anisotropy in this model. In the sys-

tem (4.2.10a)-(4.2.10f), there are eight independent variables (ρ, pr, pt,∆, E, σ, y, Z)

and only six independent equations. This suggests that it is possible to specify

two of the quantities involved in the integration process. The resultant system will

remain highly nonlinear but it may be possible to generate exact solutions.
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4.3 Generating exact models

We must make physically reasonable choices for any two of the independent variables

and then solve the system (4.2.10a)-(4.2.10f) to generate exact models. In this

chapter, we choose forms for the gravitational potential Z and electric field intensity

E. We make the specific choices

Z =
1 + (a− b)x

1 + ax
, (4.3.1)

E2

C
=

k(3 + ax)

(1 + ax)2
, (4.3.2)

where a, b and k are real constants. The gravitational potential Z is regular at

the origin and well behaved in the stellar interior for a wide range of values for

the parameters a and b. The electric field intensity is continuous, bounded and a

decreasing function from the origin to the boundary of the sphere. Therefore the

forms chosen in (4.3.1)-(4.3.2) are physically reasonable. On substituting (4.3.1)

and (4.3.2) in (4.2.10e) we obtain

ẏ

y
=

(1 + α)b

4 [1 + (a− b)x]
+

αb

2(1 + ax) [1 + (a− b)x]

− β(1 + ax)

4C [1 + (a− b)x]
− (1 + α)k(3 + ax)

8(1 + ax) [1 + (a− b)x]
, (4.3.3)

which is a linear equation in the gravitational potential y. For the integration of

equation (4.3.3) it is convenient to consider three cases: b = 0, a = b and a 6= b.

4.3.1 The case b = 0

When b = 0, (4.3.3) becomes

ẏ

y
= − β

4C
− (1 + α)k(3 + ax)

8(1 + ax)2
(4.3.4)

with solution

y = D(1 + ax)
−k(1+α)

a exp

[

2k(1 + α)

a(1 + ax)
− βx

4C

]

, (4.3.5)

where D is the constant of integration. We observe that ρ = −E2

2
for this case which

we do not consider further to avoid negative energy densities.
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4.3.2 The case a = b

When a = b, (4.3.3) becomes

ẏ

y
=

(1 + α)a

4
+

αa

2(1 + ax)
− β(1 + ax)

4C
− (1 + α)k(3 + ax)

8(1 + ax)
. (4.3.6)

On integrating (4.3.6) we get

y = D(1 + ax)
2aα−(1+α)k

4a exp[F (x)], (4.3.7)

where F (x) = x
8C

[−kC(1 + α) − 2β + a(2C(1 + α) − βx)] and D is the constant of

integration. Then we can generate an exact model for the system (4.2.10a)-(4.2.10f)
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as follows

e2λ = 1 + ax, (4.3.8a)

e2ν = A2D2(1 + ax)
2aα−k(1+α)

2a exp[2F (x)], (4.3.8b)

ρ

C
=

(2a− k)

2

(3 + ax)

(1 + ax)2
, (4.3.8c)

pr = αρ− β, (4.3.8d)

pt = pr + ∆, (4.3.8e)

∆ =
1

16C(1 + ax)3

{

C2
[

k2(1 + α)2x(3 + ax)2

+4a2x(3 − 8α + 9α2 + a2(1 + α)2x2 + 2ax(2 + 3α+ 3α2))

−4k(12 + a3(1 + α)2x3 + a2x2(7 + 9α+ 6α2) + ax(12 + 5α+ 9α2))
]

−4Cx(1 + ax)2[(1 + α)(2a2x− 3k) − aβ(k(1 + α) − 6α− 4)]

+4β2x(1 + ax)4
}

, (4.3.8f)

E2

C
=

k(3 + ax)

(1 + ax)2
, (4.3.8g)

in terms of elementary functions.

The solution (4.3.8a)-(4.3.8g) may be used to model a charged anisotropic star

with a linear equation of state. In this case the mass function is

m(x) =
(2a− k)x3/2

4C3/2(1 + ax)
, (4.3.9)
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which is similar to forms used in other investigations. The gravitational potentials

and matter variables are continuous and well behaved in the stellar interior. Note

that when k = 0 the model (4.3.8a)-(4.3.8g) reduces to a solution for uncharged

anisotropic stars. Equation (4.3.8f) yields

∆ =
1

4C(1 + ax)3

{

C2a2x
[

3 − 8α + 9α2 + a2(1 + α)2x2 + 2ax(2 + 3α+ 3α2)
]

−2Cx(1 + ax)2[(1 + α)a2x+ aβ(3α+ 2)] + β2x(1 + ax)4
}

(4.3.10)

when k = 0 so that the model is necessarily anisotropic with ∆ 6= 0 in general even in

the simpler case of uncharged matter. Some treatments of the physical properties of

anisotropic spheres in general relativity include the investigations of Dev and Gleiser

(2002, 2003), Mak and Harko (2002, 2003), Chaisi and Maharaj (2005, 2006a) and

Maharaj and Chaisi (2006a) with ∆ 6= 0.

4.3.3 The case a 6= b

On integrating (4.3.3) we get

y = D(1 + ax)l[1 + (a− b)x]n exp

[ −aβx
4C(a− b)

]

(4.3.11)

where D is the constant of integration, and l and n are given by

l =
2αb− (1 + α)k

4b
,

n =
1

8bC(a− b)2

[

2a2C(k(1 + α) − 2αb) − abC(5k(1 + α) − 2b(1 + 5α))

+b2(3kC(1 + α) − 2bC(1 + 3α) + 2β)
]

.
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Then we can generate an exact model for the system (4.2.10a)-(4.2.10f) in the form

e2λ =
1 + ax

1 + (a− b)x
, (4.3.12a)

e2ν = A2D2(1 + ax)2l[1 + (a− b)x]2n exp

[ −aβx
2C(a− b)

]

, (4.3.12b)

ρ

C
=

(2b− k)

2

(3 + ax)

(1 + ax)2
, (4.3.12c)

pr = αρ− β, (4.3.12d)

pt = pr + ∆, (4.3.12e)

∆ =
−bC

(1 + ax)
− bC(1 + 5α)

(1 + α)(1 + ax)2
+

2β

(1 + α)

+
Cx[1 + (a− b)x]

(1 + ax)

[

4

(

a2l(l − 1)

(1 + ax)2
+

2a(a− b)ln

(1 + ax)[1 + (a− b)x]

+
(a− b)2n(n− 1)

[1 + (a− b)x]2

)

− 2aβ(a(l + n)[1 + (a− b)x] − bn)

(a− b)C(1 + ax)[1 + (a− b)x]
+

a2β2

4C2(a− b)2

]

− 4[1 + ax(2 + (a− b)x)] − b(5 + α)x

2(a− b)(1 + α)(1 + ax)3[1 + (a− b)x]
×

[

−4b2Cn+ a3x(−4C(l + n) + βx) + a2(4C(l + n)(2bx− 1) + β(2 − bx)x)

+a(−4b2C(l + n)x+ β + b(4Cl + 8Cn− βx))
]

, (4.3.12f)

E2

C
=

k(3 + ax)

(1 + ax)2
, (4.3.12g)

in terms of elementary functions.

Therefore we have generated a second class of solutions (4.3.12a)-(4.3.12g) that

models a charged anisotropic star with a linear equation of state. The mass function

51



has the form

m(x) =
(2b− k)x3/2

4C3/2(1 + ax)
. (4.3.13)

The form of the mass function (4.3.13) represents an energy density which is mono-

tonically decreasing in the stellar interior and remains finite at the centre x = 0.

It is physically reasonable and has been used in the past to study the properties of

isotropic fluid spheres: Matese and Whitman (1980) generated equilibrium configu-

rations in general relativity, Finch and Skea (1989) studied neutron star models and

Mak and Harko (2003) analysed anisotropic relativistic stars with this form of mass

function. Lobo (2006) demonstrated that (4.3.13) is consistent with stable dark

energy stars which generalises the gravastar model of Mazur and Mottola (2004). It

was then shown that large stability regions exist close to the event horizon thereby

making it difficult to distinguish dark energy stars from black holes. Sharma and

Maharaj (2007) found a new class of exact solutions to Einstein equations that can

be applied to strange stars with quark matter with this mass distribution. Conse-

quently the mass function (4.3.13) is of astrophysical importance in the description

of compact objects.

It is interesting to observe that for particular parameter values we can regain un-

charged anisotropic and isotropic models (k = 0) from our general solution (4.3.12a)-

(4.3.12g). We regain the following particular cases of physical interest:

(i) Sharma and Maharaj model

If we set β = αρs then

pr = α(ρ− ρs),

where ρs is the density at the surface r = s. Thus we regain the equation of state

of Sharma and Maharaj (2007). Then by setting C = 1 and A2D2 = B we find that

the line element is of the form

ds2 = −B(1 + ar2)α[1 + (a− b)r2]γ exp

( −aβr2

2(a− b)

)

dt2

+
1 + ax

1 + (a− b)x
dr2 + r2(dθ2 + sin2 θdφ2), (4.3.14)
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where

γ =
5abα− 2a2α− 3b2α + ab− b2 + bβ

2(a− b)2
.

The line element (4.3.14) corresponds to the uncharged anisotropic model of Sharma

and Maharaj (2007). They showed that this solution may be used to describe

compact objects such as strange stars with a linear equation of state with quark

matter.

(ii) Lobo model

If we set β = 0 then

pr = αρ

and we regain the equation of state studied by Lobo (2006). Then on setting a =

2b, C = 1 and A2D2 = 1 we generate the metric

ds2 = −(1+br2)(1−α)/2(1+2br2)αdt2+

(

1 + 2br2

1 + br2

)

dr2+r2(dθ2+sin2 θdφ2). (4.3.15)

The line element (4.3.15) corresponds to the uncharged anisotropic model of Lobo

(2006). We point out that the line element (4.3.15) serves as an interior solution with

α < −1
3

which may be matched to an exterior Schwarzschild solution in a model for

dark energy stars. Lobo (2006) proved that stability regions exist for dark energy

stars by selecting particular values of α in a graphical analysis.

(iii) Isotropic models

In general ∆ 6= 0 so that the model remains anisotropic. However for particular

parameter values we can show that ∆ = 0 in the relevant limit in the general

solution (4.3.12a)-(4.3.12g). If we set a = 0 and b = 1 then we obtain

l =
α

2

n =
1

4C
[β − (1 + 3α)C]

∆ =
x

4C(1 − x)
[β − 3(1 + α)C][β − (1 + 3α)C]. (4.3.16)
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Two different cases arise as a consequence of (4.3.16) if we set ∆ = 0.

In the first case, we observe that when β = 0 and α = −1 then ∆ = 0. The

equation of state becomes pr(= pt) = −ρ. For this case the line element becomes

ds2 = −
(

1 − r2

R2

)

dt2 +

(

1 − r2

R2

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (4.3.17)

where we have set A = D = 1 and C = 1
R2 . The metric (4.3.17) corresponds to the

familiar isotropic uncharged de Sitter model.

In the second case, we see that when β = 0 and α = −1
3

then ∆ = 0. The

equation of state becomes pr(= pt) = −1
3
ρ. For this case the line element becomes

ds2 = −A2dt2 +

(

1 − r2

R2

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (4.3.18)

where we have set D = 1 and C = 1
R2 . The metric (4.3.18) corresponds to the well

known isotropic uncharged Einstein model.

4.4 Physical analysis

The solutions found in this chapter may be connected to the Einstein-Maxwell equa-

tions for the exterior of our source. We need to match the Reissner-Nordstrom

exterior spacetime

ds2 = −
(

1 − 2m

r
+
q2

r2

)

dt2 +

(

1 − 2m

r
+
q2

r2

)−1

dr2 + r2
(

dθ2 + sin2 θdφ2
)

to the interior spacetime (4.2.1) across the boundary r = R. This generates the

conditions

1 − 2m

R
+
q2

R2
= A2y2(CR2)

(

1 − 2m

R
+
q2

R2

)−1

=
1 + aCR2

1 + (a− b)CR2

which relates the constants a, b, A, C,D, α and β. This demonstrates that the con-

tinuity of the metric coefficients across the boundary of the star r = R is easily

satisfied as there are sufficient number of free parameters. If there is a surface layer
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of charge then the pressure may be nonzero which would place restrictions on the

function ν through the matching conditions at the boundary. However the number

of free parameters available easily satisfies the necessary conditions that arise for a

particular model under investigation.

We now briefly consider the physical behaviour of the models generated in §4.3.3

for the case a 6= b. From the explicit forms (4.3.12a) and (4.3.12b) we can easily

see that the gravitational potentials e2ν and e2λ are continuous, well behaved and

nonsingular at the origin. The energy density ρ is continuous and monotonically

decreasing from the centre to the boundary of the star, which is a necessary condition

for a realistic model. The radial pressure pr also has the same feature because ρ

and pr are linked by a linear equation of state. The tangential pressure pt is also

nonsingular at the origin and continuous for a wide range of the parameters a, b

and k. To maintain the usual casuality condition we must place the restriction that

0 ≤ α ≤ 1 if we require dpr

dρ
≤ 1. However note that our models do allow for α < 0 in

the case of anisotropic dark energy stars. The form chosen for electric field intensity

E is physically reasonable and describes a decreasing function .

With the help of a particular example we can demonstrate the above features

graphically. Figures 4.1-4.4 represent the energy density, the radial pressure, the

tangential pressure and the electric field intensity, respectively. To plot the graphs

we choose the parameters a = 3, b = 2.15, α = 0.33, β = αρs = 0.198, C = 1 and

k = 0.2, where ρs is the density at the boundary r = s = 1.157. Note that our

choice of α = 0.33 ensures that both the radial pressure and the tangential pressure

for the neutral sphere vanish at the boundary. We observe from Figures 4.1-4.4

that the matter variables ρ, pr, pt and E have the appropriate features to describe

a compact relativistic sphere. Solid lines represent uncharged matter and dashed

lines include the effect of charge in Figures 4.1-4.3. We observe that the effect of E

is to produce lower values for ρ, pr and pt when compared to the case of uncharged

matter. In Figure 4.5 we have plotted the measure of anisotropy ∆ for the same

parameter values used above. Note that the effect of the electromagnetic field is to

increase the magnitude of ∆ which affects the behaviour of pt.
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Figure 4.1: Energy density.
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Figure 4.2: Radial pressure.
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Figure 4.3: Tangential pressure.
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Figure 4.4: Electric field intensity.
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Figure 4.5: Measure of anisotropy.

4.5 Stellar structure

In this section we show that the solutions generated in this chapter can be used

to describe realistic compact objects. In particular we seek to compare our results

with those of Sharma and Maharaj (2007) since they regain values for the stellar

mass agreeable with observations. To achieve consistency with Sharma and Maharaj

(2007) we introduce the transformations

ã = aR2, b̃ = bR2, β̃ = βR2, k̃ = kR2.

Under these transformations the energy density becomes

ρ =
(2b̃− k̃)(3 + ãy)

2R2(1 + ãy)2
, (4.5.1)

and the mass contained within a radius s has the form

M =
(2b̃− k̃)s3/R2

4(1 + ãs2/R2)
, (4.5.2)
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where we have set C = 1 and y = r2

R2 . When k̃ = 0 (or E = 0), (4.5.1) and (4.5.2)

reduce to the expressions of Sharma and Maharaj (2007):

ρ =
b̃(3 + ãy)

R2(1 + ãy)2
, M =

b̃s3/R2

2(1 + ãs2/R2)
(4.5.3)

which gives the density ρ and mass M of an uncharged star of radius s.

If we choose ã = 53.34, b̃ = 54.34, R = 43.245 km and s = 7.07 km then we can

produce an uncharged model (k̃ = 0) with mass M = 1.433M� and central density

ρc = 4.672 × 1015gcm−3. The corresponding value of α = 0.437 is obtained by

requiring that the anisotropy vanishes at the boundary. To simplify comparison with

Sharma and Maharaj (2007) we have used the same values of ã, b̃, R and s; however

our value for α is a correction. It should be noted that these results are consistent

with the equation of state for strange matter formulated by Dey et al (1998). This

has astrophysical significance as their model has been used to describe the X-ray

binary pulsar SAX J1808.4-3658. When the charge is nonzero we set k̃ = 37.403 and

then we obtain the mass M = 0.940M� and central density ρc = 3.064×1015gcm−3.

The values for M and ρc generalise the figures of Sharma and Maharaj (2007) to

include the effect of the electromagnetic field. Choosing different set of values for

the parameters will produce different results as shown in Table 4.1. Note that the

values presented in Table 4.1 correspond to a star of radius s = 7.07km. The

value of k̃ = 37.403 is selected, in generating Table 4.1, so that the density and

mass of the Sharma and Maharaj (2007) analysis is regained for uncharged matter.

Furthermore, the value of k̃ = 37.403 with E = 0 generates a star of mass 1.433M�

which is the same as the strange star model of Dey et al (1998). With this value

of k̃ we find that the star has mass 0.940M� in the presence of charge so that the

stellar core has a lower density which represents a weaker field. This is consistent

as the effect of the electromagnetic field is repulsive.

We observe that the values for the mass in the presence of charge (E 6= 0) is

always less than the uncharged case. The central density of the charged sphere is also

less than the uncharged case. Sharma and Maharaj (2007) showed that anisotropy

affects the mass and central densities of massive objects. We have shown that the

inclusion of the electromagnetic field also affects M and ρc. Both anisotropy and
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b̃ ã α ρc M ρc M

(×1015 gcm−3) (M�) (×1015 gcm−3) (M�)

E = 0 E = 0 E 6= 0 E 6= 0

30 23.681 0.401 2.579 1.175 0.971 0.443

40 36.346 0.400 3.439 1.298 1.831 0.691

50 48.307 0.424 4.298 1.396 2.691 0.874

54.34 53.340 0.437 4.671 1.433 3.064 0.940

60 59.788 0.457 5.158 1.477 3.550 1.017

70 70.920 0.495 6.017 1.546 4.410 1.133

80 81.786 0.537 6.877 1.606 5.269 1.231

90 92.442 0.581 7.737 1.659 6.129 1.314

100 102.929 0.627 8.596 1.705 6.989 1.386

183 186.163 1.083 15.730 1.959 14.124 1.759

Table 4.1: Central density and mass for different anisotropic stellar models for

neutral and charged bodies

charge are physical quantities that affect the range of degenerate states in our model.

For the calculation of mass and central density we have set s = 7.07 km, R = 43.245

km, k̃ = 37.403 and ρs = 1.17119 × 1015gcm−3 for the uncharged case.
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Chapter 5

Generalised isothermal models

with strange equation of state

5.1 Introduction

In an early and seminal treatment the existence of quark matter in a stellar config-

uration in hydrostatic equilibrium was suggested by Itoh (1970). Subsequently the

analysis of strange stars consisting of quark matter has been considered in a number

of investigations. Strange stars are likely to form in the period of collapse of the

core regions of a massive star after a supernova explosion which was pointed out by

Cheng et al (1998). The core of a neutron star or proto-neutron star is a suitable

environment for conventional barotropic matter to convert into strange quark mat-

ter. Regions of low temperatures and sufficiently high temperatures are required for

a first or second order phase transition which results in deconfined quark matter.

Another possibility suggested by Cheng and Dai (1996) to explain the formation

of a strange star is the accretion of sufficient mass in a rapidly spinning dense star

in X-ray binaries which undergoes a phase transition. The behaviour of matter at

ultrahigh densities for quark matter is not well understood: in an attempt to study

the physics researchers normally restrict their attention to the MIT bag model (see

the treatments of Chodos et al (1974), Farhi and Jaffe (1984) and Witten (1984)).
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The strange matter equation of state is taken to be

p =
1

3
(ρ− 4B) (5.1.1)

where ρ is the energy density, p is the pressure and B is the bag constant. The

vacuum pressure B is the bag model equilibrates the pressure and stabilises the

system; the constant B determines the quark confinement. The studies of Bombaci

(1997), Dey et al (1998), Li et al (1995, 1999a, 1999b), Pons et al (2002), Usov

(2004) and Xu et al (1999, 2001) directed at particular compact astronomical objects

suggest that these could be strange stars composed of quark matter with equation

of state (5.1.1).

Mak and Harko (2004) found an exact general relativistic model of a quark

star that admits a conformal Killing vector. This was shown by Komathiraj and

Maharaj (2007c) to be a part of a more general class of exact analytical models

in the presence of the electromagnetic field with isotropic pressures. The role of

anisotropy was investigated by Lobo (2006), Mak and Harko (2002) and Sharma

and Maharaj (2007) for strange stars with quark matter with neutral anisotropic

distributions. It is our intention to study the Einstein-Maxwell system with a linear

equation of state with anisotropic pressures; this treatment would be applicable to

a strange stars which are charged and anisotropic which is the most general case.

The field equations are given in §5.2. A new exact solution, in terms of simple

elementary functions, is given in §5.3. In §5.4, we demonstrate that it is possible

to find a particular model which is nonsingular at the stellar origin. The limit

of vanishing anisotropy is studied in §5.5, and we regain the isothermal universes

studied previously. In §5.6, we consider the physical features of the new solutions,

plot the matter variables for particular parameter values and show that the quark

star mass is consistent with earlier treatments. The results of this chapter have been

accepted for publication in Maharaj and Thirukkanesh (2008b).
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5.2 Basic equations

It is our intention to model the interior of a dense realistic star with a general matter

distribution. On physical grounds we can take the gravitational field to be static

and spherically symmetric. Consequently, we assume that the gravitational field of

the stellar interior is represented by the line element

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2) (5.2.1)

in Schwarzschild coordinates (xa) = (t, r, θ, φ). We consider the general case of a

matter distribution with both anisotropy and charge. Therefore we take the energy

momentum tensor for the interior to be an anisotropic charged imperfect fluid; this

is represented by the form

Tij = diag

(

−ρ− 1

2
E2, pr −

1

2
E2, pt +

1

2
E2, pt +

1

2
E2

)

. (5.2.2)

With the help of the transformations

x = Cr2, Z(x) = e−2λ(r), A2y2(x) = e2ν(r),
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the Einstein-Maxwell field equations can be written in the form

ρ

C
=

1 − Z

x
− 2Ż − E2

2C
, (5.2.3a)

pr = αρ− β, (5.2.3b)

pt = pr + ∆, (5.2.3c)

∆ = 4CxZ
ÿ

y
+ 2C

[

xŻ +
4Z

(1 + α)

]

ẏ

y
+

(1 + 5α)

(1 + α)
CŻ

−C(1 − Z)

x
+

2β

(1 + α)
, (5.2.3d)

E2

2C
=

1 − Z

x
− 1

(1 + α)

[

2αŻ + 4Z
ẏ

y
+
β

C

]

, (5.2.3e)

σ2

C
= 4

Z

x
(xĖ + E)2, (5.2.3f)

where A,C, α and β are constant. For more information on the Einstein-Maxwell

system with anisotropic pressures see §4.2.

The definition of mass function takes the form

m(x) =
1

4C3/2

∫ x

0

√
wρ(w)dw. (5.2.4)

5.3 New solutions

In this chapter, we choose different physically reasonable forms for the gravitational

potential Z and electric field intensity E and then integrate the system (5.2.3a)-

(5.2.3f) to generate exact models. We make the specific choices

Z =
1

a+ bxn
, (5.3.1)

E2

C
=

2k(d+ 2x)

a+ bxn
, (5.3.2)
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where a, b, d, n and k are real constants. The potential Z is regular at the origin and

continuous in the stellar interior for a wide range of values for the parameters a, b

and n. The electric field intensity E is a bounded and decreasing function from the

origin to the surface of the sphere. Therefore the forms chosen in (5.3.1)-(5.3.2) are

physically acceptable. These specific choices for Z and E simplify the integration

process. Equation (5.2.3e) can be written as

ẏ

y
=

(a− 1)(1 + α)

4x
+
α

2

bnxn−1

(a + bxn)
+

(1 + α)b

4
xn−1

− β

4C
(a+ bxn) − (1 + α)k

4
(d+ 2x) (5.3.3)

where we have used (5.3.1) and (5.3.2). This has the advantage of being a first order

linear equation in the gravitational potential y.

Equation (5.3.3) can be integrated in closed form to give

y = Dx
(a−1)(1+α)

4 (a+ bxn)
α
2 exp[F (x)], (5.3.4)

where we have defined

F (x) = −βx

4C

[

a+
bxn

n+ 1

]

+
(1 + α)

4

[

bxn

n
− k(dx+ x2)

]

and D is a constant of integration. Now from (5.3.1), (5.3.2) and (5.3.4) we can
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generate an exact model for the system (5.2.3a)-(5.2.3f) as follows

e2λ = a+ bxn, (5.3.5a)

e2ν = A2D2x
(a−1)(1+α)

2 (a+ bxn)α exp[2F (x)], (5.3.5b)

ρ

C
=

(a− 1) + bxn

x(a + bxn)
+

2bnxn−1

(a+ bxn)2
− k(d+ 2x)

(a + bxn)
, (5.3.5c)

pr = αρ− β, (5.3.5d)

pt = pr + ∆, (5.3.5e)

∆ =
1

4

{

4C(1 − a− bxn)

x(a+ bxn)
− 4bCn(1 + 5α)xn−1

(1 + α)(a+ bxn)2
+

8β

(1 + α)

−2[4a− bxn(n(1 + α) − 4)]2

(1 + α)x(a + bxn)3

(

a2(βx− C(1 + α)) + bxn (C [(1 + α)×

(1 − bxn + dkx+ 2kx2) − 2nα
]

+ bβxn+1
)

+ a
[

2bβxn+1

+C(1 + α)(1 + dkx+ 2kx2 − 2bxn)
])

+
Cx

(a + bxn)

[

1

x2
((a− 1)(1 + α)

(

4bnαxn

(a+ bxn)
+ (a(1 + α) − 5 − α)

)

+
4bnαxn(2a(n− 1) + (nα− 2)bxn)

(a+ bxn)2

)

−2[a(1 + α)(a− 1 + bxn) + bxn(2nα− (1 + α))]

Cx2(a + bxn)
(βx(a+ bxn)

+C(1 + α)(k(dx+ 2x2) − bxn)
)

+ 4
(

(1 + α)(b(n− 1)xn−2 − 2k)

−bnβx
n−1

C
+

[C(1 + α)(k(d+ 2x) − bxn−1) + β(a+ bxn)]2

4C2

)]}

, (5.3.5f)

E2

C
=

2k(d+ 2x)

a+ bxn
. (5.3.5g)
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The equations (5.3.5a)-(5.3.5g) represent an exact solution to the Einstein-Maxwell

system (5.2.3a)-(5.2.3f) for a charged imperfect fluid with the linear equation of

state pr = αρ − β. Exact solutions with the equation of state pr = αρ − β have

been used to model compact objects such as strange stars, as shown by Sharma and

Maharaj (2007), and dark energy stars which are stable, as demonstrated by Lobo

(2006). The exact solution (5.3.5a)-(5.3.5g) may be regarded as a generalisation of

an isothermal universe model as we indicate in §5.5.

5.4 A nonsingular model

The solution (5.3.5a)-(5.3.5g) admits singularities at the stellar centre in general

The singularity may be avoided for particular parameter values. If we set a = 1 and

n = 1 then we generate the line element

ds2 = −A2D2(1 + bx)α exp[2F (x)]dt2 + (1 + bx)dr2 + r2(dθ2 + sin2 θdφ2), (5.4.1)

where F (x) = − βx
8C

(2 + bx) + (1+α)
4

[bx− k(dx+ x2)], with energy density

ρ

C
=
b(3 + bx)

(1 + bx)2
− k(d+ 2x)

(1 + bx)
. (5.4.2)

When k = 0 then the mass function (5.2.4) has the form

m(x) =
bx3/2

2C3/2(1 + bx)
. (5.4.3)

The expression of the mass function given in (5.4.3) represents an energy density

which is monotonically decreasing in the interior of the uncharged sphere and has

a finite value at the centre x = 0. This is physically reasonable and similar mass

profiles appear in the treatments of general relativistic equilibrium configurations

of Matese and Whitman (1980), neutron star models of Finch and Skea (1989),

anisotropic stellar solutions of Mak and Harko (2003), and the dark energy stars

of Lobo (2006). The gravitational potentials for charged imperfect fluid solution

corresponding to the line element (5.4.1) are nonsingular at the origin. The energy

density ρ, the measure of anisotropy ∆, and associated quantities pr and pt are also
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regular at the centre for our choice of E. Note that the quantity ∆ vanishes at the

centre and is a continuous function in the stellar interior. Hence the model (5.3.5a)-

(5.3.5g) admits a particular case corresponding to the parameter values a = 1 and

n = 1 which is regular and well behaved at the origin.

5.5 Isotropic models

It is possible to consider the special case of isotropic pressures with pr = pt in the

uncharged limit for neutral matter. When k = 0 (E = 0) equation (5.3.5f) becomes

∆ =
1

4

{

4C(1 − a− bxn)

x(a + bxn)
− 4bCn(1 + 5α)xn−1

(1 + α)(a+ bxn)
+

8β

(1 + α)

−2[4a− (n(1 + α) − 4)bxn]

(1 + α)x(a+ bxn)3

[

a2(βx− C(1 + α)) − bxn (C ((1 + α)(bxn − 1)

+2nα) − bβxn+1
)

+ a
(

C(1 + α)(1 − 2bx2) + 2bβxn+1
)]

+
C

x(a + bxn)
[4b(n− 1)(1 + α)xn + (a− 1)(1 + α)(a(1 + α) − 5 − α)

+
4(a− 1)bnα(1 + α)xn

(a+ bxn)
+

4bnα[2a(n− 1) + b(nα− 2)xn]xn

(a+ bxn)2
− 4bnβxn+1

C

+
[aβx− b(C(1 + α) − βx)xn]2

C2
+

2

C(a + bxn)
×

(a(1 + α)(a− 1 + bxn) + (2nα− (1 + α))bxn) ((C(1 + α) − βx)bxn − aβx)]} .

(5.5.1)

Equation (5.5.1) shows that the model remains anisotropic even for the uncharged

case in general. However for particular parameter values we can show that ∆ = 0

in the relevant limit in the general solution (5.3.5a)-(5.3.5g). If we set b = 0 and

β = 0 then (5.5.1) becomes

∆ =
C(a− 1)

4ax

{

a(1 + α)2 −
[

4α + (1 + α)2
]}

.
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From the above equation we easily observe that when a = 1 and a = 1 + 4α
(1+α)2

the measure of anisotropy ∆ vanishes. When a = 1 we note from (5.3.5c) that

ρ = 0 since b = k = 0. Consequently we cannot regain an isotropic model when

a = 1; to avoid vanishing energy densities we must have a 6= 1 when ∆ = 0. When

a = 1 + 4α
(1+α)2

we obtain the expressions

ds2 = −Br 4α
1+αdt2 +

[

1 +
4α

(1 + α)2

]

dr2 + r2(dθ2 + sin2 θdφ2), (5.5.2)

ρ =
4α

[4α + (1 + α)2]r2
, pr(= pt) = αρ, (5.5.3)

where we have set A2D2aα = B and C = 1.

The above solution was obtained by Saslaw et al (1996) in their investigation of

general relativistic isothermal universes. Since ρ ∝ r−2 we may interpret (5.5.2) as

a relativistic cosmological metric since there is an analogy that can be made with

the well known Newtonian solution as pointed out by Chandrasekhar (1939). In the

Newtonian case the density ρ is finite in the core regions and decreases according

to r−2 in the rest of the model. The total mass and region of the isothermal model

are infinite. Therefore the line element (5.5.2) may be interpreted as a relativis-

tic inhomogeneous universe where the nonzero pressure balances gravity. Saslaw

et al (1996) point out that (5.5.2) may be viewed as the asymptotic state of the

Einstein-de Sitter cosmological model, in an expansion-free state as t → ∞, where

the hierarchial distribution of matter has clustered over large scales. As t→ ∞ the

Einstein-de Sitter model tends to the line element (5.5.2) and the universe evolves

into an isothermal static sphere given by the exact solution (5.5.2) with equation of

state pr(= pt) = αρ. To move from the pressure-free Einstein-de Sitter model to the

static isothermal metric requires a phase transition for condensation through clus-

tering of galaxies. It is interesting to observe that Chaisi and Maharaj (2006b) and

Maharaj and Chaisi (2006b) have obtained generalised anisotropic static isothermal

spheres by utilising a known isotropic metric to produce a new anisotropic solution

of the Einstein field equations. Govender and Govinder (2004) have found simple

nonstatic generalisations of isothermal universes which describe an isothermal sphere
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of galaxies in quasi-hydrostatic equilibrium with heat dissipation driving the system

to equilibrium. Hence the imperfect relativistic fluid, in the presence of electromag-

netic field, with the linear equation of state pr = αρ− β, is a generalisation of the

conventional isothermal model with a clear physical basis.

5.6 Physical analysis

We observe that the exact solution (5.3.5a)-(5.3.5g) may be singular at the origin

in general. The solution should be used to describe the gravitational field of the

envelope in the outer regions of a quark star or a dark energy star with equation

of state pr = αρ − β. To avoid the singularity at the centre another solution is

required to model the stellar core. Examples of core-envelope models in general

relativity are provided by Thomas et al (2005), Tikekar and Thomas (1998) and

Paul and Tikekar (2005). We observe that if a = 1 then the imperfect charged

solution (5.3.5a)-(5.3.5g) admits the line element

ds2 = −A2D2(1 + bxn)α exp[2F (x)]dt2 + (1 + bxn)dr2 + r2(dθ2 + sin2 θdφ2), (5.6.1)

where F (x) = − βx
4C

[

1 + bxn

n+1

]

+ (1+α)
4

[

bxn

n
− k(dx+ x2)

]

. It is clear from (5.6.1) that

the gravitational potentials are nonsingular at the origin for all values of n. If n = 1

then there is no singularity in the energy density ρ and the model is nonsingular

throughout the stellar interior. However if n 6= 1 then the gravitational potential

potentials (5.6.1) may continue to be well behaved but singularities may appear in

the matter variables at the origin r = 0.

By considering a particular example we can demonstrate graphically that the

matter variables are well behaved outside the origin. Figures 6.1-6.5 represent the

energy density, the radial pressure, the tangential pressure, the electric field inten-

sity and the measure of anisotropy, respectively. Note that solid lines represent un-

charged matter (E = 0) and dashed lines include the effect of charged matter E 6= 0.

To plot the graphs we choose the parameters n = 2, a = 1, b = 40, k = 2, d = 1, α = 1
3

and β = 0.3569, and the stellar boundary is set at r = 1. From Figures 5.1 and

5.2 we see that both the energy density ρ and the radial pressure pr are continuous
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throughout the interior, increasing from the centre to r = 0.32 and then decreasing.

Note that the radial pressure is zero at the boundary r = 1 for the uncharged case

E = 0. We observe from Figure 5.3 that the tangential press pt is continuous and

well behaved in the interior regions. From Figure 5.4 we observe that the electric

field intensity E is decreasing smoothly throughout the stellar interior. We can ob-

serve from Figure 5.5 that the measure of anisotropy is continuous throughout the

stellar interior. The behaviour of ∆ outside the centre is likely to correspond to

physically realistic matter in the presence of the electromagnetic field. Figure 5.5

has a profile similar to the anisotropic boson stars studied by Dev and Gleiser (2002)

and the compact anisotropic relativistic spheres of Chaisi and Maharaj (2005). From

the figures we can see that the effect of electric field intensity E is to produce lower

values for ρ, pr, pt and ∆.
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Figure 5.1: Energy density.

0.2 0.4 0.6 0.8 1.0
r

-1

1

2

3

pr

E ¹ 0

E = 0

Figure 5.2: Radial pressure.
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Figure 5.3: Tangential pressure.
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Figure 5.4: Electric field intensity.
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Figure 5.5: Measure of anisotropy.

We now show that the solutions generated in this chapter can be used to describe

realistic compact objects for the case n = 1 as an example from §5.3. In our model,

when n = 1, the parameters b has the dimension of length−2, k has the dimension
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of length−4 and d has the dimension of length2. For simplicity, we introduce the

transformations

b̃ = bR2, k̃ = kR4, d̃ = dR−2,

where R is a parameter which has the dimension of a length. Under these transfor-

mations the energy density becomes

ρ =
1

R2

[

b̃

1 + b̃y
+

2b̃

(1 + b̃y)2
− k̃(d̃+ 2y)

1 + b̃y

]

,

where we have set C = 1 and y = r2

R2 . Then the mass contained within a radius s

has the form

M =
1

2

{

b̃ s3

R2

1 + b̃ s2

R2

− 2k̃

3b̃

s3

R2
+ k̃(2 − b̃d̃)

[

s

b̃2
− R

b̃5/2
arctan

[√

b̃
s

R

]

]

}

.

For simplicity we set b̃d̃ = 2 so that these expressions reduce to

ρ =
1

R2

[

b̃

1 + b̃y
+

2b̃

(1 + b̃y)2
− 2k̃

b̃

]

, (5.6.2)

M =
1

2

[

b̃

1 + b̃ s2

R2

− 2k̃

3b̃

]

s3

R2
, (5.6.3)

which are simple forms. It is now easy to calculate the density and mass for par-

ticular parameter values from (5.6.2) and (5.6.3). For example, when s = 7.07km,

R = 1km, b̃ = 0.03 and k̃ = 0.00045, we obtain the mass ME=0 = 1.436M� for

uncharged matter ME 6=0 = 0.240M� for charged matter. Note that the value of

the mass for uncharged matter is consistent with the strange star models previously

found by Sharma and Maharaj (2007) and Dey et al (1998). We have shown that

the inclusion of the electromagnetic field affects the value for the mass M . It is

also possible to to relate our results to other treatments. If we set s = 9.46km,

R = 1km, b̃ = 0.35 and k̃ = 0.00045, then we obtain the mass ME=0 = 3.103M� for

uncharged matter and ME 6=0 = 2.858M� for charged matter. These values for the

mass are similar to charged quark stellar models generated by Mak and Harko (2004)

which describe a unique static charged configuration of quark matter admitting a

one-parameter group of conformal symmetries. We have shown that the presence of
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anisotropy and charge in the matter distribution yields masses which are consistent

with other investigations.

The plots of the matter variables indicate that the solution may be used to model

quark stars, at least in the envelope if singularities are present at the origin. We

calculated the mass in a special case (a = 1, n = 1) and showed that this value is

consistent with strange matter distributions of Dey et al (1998), Mak and Harko

(2004) and Sharma and Maharaj (2007). Ours is a particular solution of the Einstein-

Maxwell system with the nice feature of containing the isothermal universe in the

isotropic limit. A more comprehensive study of other possible solutions admitted,

with the strange matter equation of state, is likely to produce other interesting

results.
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Chapter 6

Radiating relativistic matter in

geodesic motion

6.1 Introduction

Relativistic models of radiating stars are useful in the investigation of cosmic cen-

sorship hypothesis, gravitational collapse with dissipation, formation of superdense

matter, dynamical stability of radiating matter and temperature profiles in the con-

text of irreversible thermodynamics. The general model, incorporating all neces-

sary physical requirements and variables, is complicated and difficult to solve; the

treatments of Herrera et al (2004a) and Di Prisco et al (2007) involving physically

meaningful charged spherically symmetric collapse with shear and dissipation il-

lustrate the complexity of the processes. To solve the field equations, and to find

tractable forms for the gravitational and matter variables, we need to make simpli-

fying assumptions. De Oliviera et al (1985) proposed a radiating model in which

an initial static configuration leads to collapse. This approach may be adapted to

describe the end state of collapse as shown by Govender et al (2003). In a recent

treatment Herrera et al (2004b) proposed a model in which the form of Weyl ten-

sor was highlighted when studying radiative collapse with an approximate solution.

Maharaj and Govender (2005), Herrera et al (2006) and Misthry et al (2008) showed

that it is possible to solve the field equations and boundary conditions exactly in
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this scenario. For recent treatments involving collapse with equations of state and

formation of black holes see Goswami and Joshi (2004a, 2004b).

A useful approach in understanding the effects of dissipation is due to Kolassis

et al (1988) in which the fluid trajectories are assumed to be geodesic. In the limit,

in the absence of heat flow, the interior Friedmann dust solution was regained. This

solution formed the basis for many investigations involving the physical behaviour

such as the rate of collapse, surface luminosity and temperature profiles. These

include the analytic model of radiating spherical gravitational collapse with neutrino

flux by Grammenos and Kolassis (1992), the model describing realistic astrophysical

processes with heat flow by Tomimura and Nunes (1993), and models undergoing

collapse with heat flow as a possible mechanism for gamma-ray bursts by Zhe et

al (2008). Herrera et al (2002) considered geodesic fluid spheres in coordinates

which are not comoving but with anisotropic pressures. Govender et al (1998)

showed that the behaviour of the temperature in casual thermodynamics for geodesic

motion produces higher central temperatures than the Eckart theory. The first exact

solution with shear, satisfying the boundary conditions, was obtained by Naidu et al

(2006) by considering geodesic fluid trajectories. Later Rajah and Maharaj (2008)

extended this treatment and obtained classes of models which are nonsingular at

the centre.

It is clear that the assumption of geodesic motion is physically acceptable and

has been used by other investigators in attempts to describe realistic astrophysical

processes. Here we attempt to perform a systematic treatment on the governing

equation at the boundary for shear-free collapse by assuming the geodesic motion of

the fluid particle. Our intention is to show that the nonlinear boundary condition

may be analysed systematically to produce an infinite family of exact solutions.

In §6.2, we present the model governing the description of a radiating star using

the Einstein field equations together with the junction conditions. We show that

it is possible to transform the junction condition to a Bernoulli equation and a

Riccati equation. Solutions are obtained in terms of elementary functions in §6.3.

In §6.4, we show that the boundary condition, under relevant assumptions, can be
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written in the form of a confluent hypergeometric equation. We demonstrate that an

infinite family of solutions in terms of elementary functions are possible. In §6.5, we

obtain the explicit form for the causal temperature using the truncated form of the

Maxwell-Cattaneo heat transport equation for a particular metric. This illustrates

that the simple forms for the gravitational potentials obtained in this chapter are

physically plausible. The results of this chapter have been submitted for publication

in Thirukkanesh and Maharaj (2008c).

6.2 The model

We analyse a spherically symmetric relativistic radiating star undergoing shear-free

gravitational collapse. This assumption is reasonable when modelling a radiating

star in relativistic astrophysics. If we suppose that the particle trajectories are

geodesic then the acceleration vanishes. Then the line element, for the matter

distribution interior to the boundary of the radiating star, is given by

ds2 = −dt2 +B2
[

dr2 + r2(dθ2 + sin2 θdφ2)
]

(6.2.1)

where B = B(r, t) is the only surviving metric function. The energy momentum

tensor including radiation for the interior spacetime is given by

Tab = (ρ+ p)uaub + pgab + qaub + qbua (6.2.2)

where the energy density ρ, the pressure p and the heat flow vector q are measured

relative to the timelike fluid 4-velocity ua = δa
0 . The heat flow vector takes the form

qa = (0, q, 0, 0) since q · u = 0 for heat flow which is radially directed.

The nonzero components of Einstein field equations, for the line element (6.2.1)
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and the energy momentum tensor (6.2.2), can be written as

ρ = 3
Ḃ2

B2
− 1

B2

(

2
B′′

B
− B′2

B2
+

4

r

B′

B

)

, (6.2.3a)

p = −2
B̈

B
− Ḃ2

B2
+

1

B2

(

B′2

B2
+

2

r

B′

B

)

, (6.2.3b)

p = −2
B̈

B
− Ḃ2

B2
+

1

B2

(

B′′

B
− B′2

B2
+

1

r

B′

B

)

, (6.2.3c)

q = − 2

B2

(

−Ḃ
′

B
+
B′Ḃ

B2

)

, (6.2.3d)

where dots and primes denote differentiation with respect to time t and r respec-

tively. Equating (6.2.3b) and (6.2.3c) we obtain the condition

(

1

B

)′′
=

1

r

(

1

B

)′
(6.2.4)

which is the condition of pressure isotropy. Equation (6.2.4) is integrable and we

obtain

B =
d

C2(t) − C1(t)r2
(6.2.5)

where C1(t) and C2(t) are functions of time, and d is a constant. As the functional

form for the potential B is specified the matter variables ρ, p and q are known

quantities, and the system (6.2.3) has been solved in principle.

The interior spacetime (6.2.1) has to be matched across the boundary r = b to

the exterior Vaidya spacetime

ds2 = −
(

1 − 2m(v)

R

)

dv2 − 2dvdR+R2(dθ2 + sin2 θdφ), (6.2.6)

where m(v) denotes the mass of the star as measured by an observer at infinity. The

hypersurface at the boundary is denoted by Σ. The matching of the line elements

(6.2.1) and (6.2.6), and matching of the extrinsic curvature at the surface of the
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star, leads to a set of equations. The boundary conditions at Σ have the form

dt =

[

(

1 − 2m

R
+ 2

dR

dv

)1/2

dv

]

Σ

, (6.2.7a)

(rB)Σ = RΣ, (6.2.7b)

pΣ = (qB)Σ, (6.2.7c)

[m(v)]Σ =

[

r3

2

(

Ḃ2B − B′2

B

)

− r2B′
]

Σ

, (6.2.7d)

where the subscript means that the relevant quantities are evaluated on Σ.

From (6.2.3), (6.2.5) and (6.2.7c) we generate the condition

−4db(Ċ1C2 − C1Ċ2)(C1b
2 − C2) − 4C1C2(C1b

2 − C2)
2

−2d2(C̈1b
2 − C̈2)(C1b

2 − C2) + 5d2(Ċ1b
2 − Ċ2)

2 = 0. (6.2.8)

Effectively (6.2.8) results from the nonvanishing of the pressure gradient across the

hypersurface Σ. Equation (6.2.8) governs the dynamical evolution of shear-free

radiating stars in which fluid trajectories are geodesic. To complete the description

in this particular radiating model we need to explicitly solve the differential equation

(6.2.8).

6.3 Generating analytic solutions

A particular solution to (6.2.8) was found by Kolassis et al (1988) by inspection.

We show that it is possible to transform (6.2.8) into familiar differential equations

which admit solutions in closed form. Our method is a more systematic approach

in solving equation (6.2.8). In this approach we let

C1b
2 − C2 = u(t). (6.3.1)
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On substituting (6.3.1) into (6.2.8) we can write

4bdu2Ċ1 + 4(u2 − bdu̇)uC1 − 4b2u2C2
1 = d2(2uü− 5u̇2). (6.3.2)

Equation (6.3.2) is simpler than (6.2.8) and can be viewed as a first order differential

equation in the variable C1. In general, (6.3.2) is a Riccati equation (in C1), and is

difficult solve in the above form without simplifying assumptions. For the integration

of (6.3.2), in terms of elementary functions, we consider the following two cases:

6.3.1 Bernoulli equation

We set

2uü− 5u̇2 = 0 (6.3.3)

so that the function u is given by

u = α or u = β(t+ γ)−2/3, (6.3.4)

where α, β and γ are real constants. With the assumption (6.3.3), (6.3.2) becomes

4bdu2Ċ1 + 4(u2 − bdu̇)uC1 − 4b2u2C2
1 = 0. (6.3.5)

Equation (6.3.5) is nonlinear but is a Bernoulli equation which can be linearised in

general.

When u = α, equation (6.3.5) becomes

Ċ1 +
α

bd
C1 −

b

d
C2

1 = 0 (6.3.6)

which is a Bernoulli equation with constant coefficients. The solution of (6.3.6) is

given by

C1 =
α

b2 − exp
(

α(t+e)
bd

) ,

where e is the constant of integration. Consequently the remaining function C2 has

the form

C2 =
α exp

(

α(t+e)
bd

)

b2 − exp
(

α(t+e)
bd

) .
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Hence the interior line element (6.2.1) has the specific form

ds2 = −dt2 +
d2

α2





b2 − exp
(

α(t+e)
bd

)

r2 − exp
(

α(t+e)
bd

)





2

[

dr2 + r2(dθ2 + sin2 θdφ2)
]

(6.3.7)

in terms of exponential functions. We believe that this is a new solution to the

Einstein field equations for a radiating star. It is interesting to observe that if we

set α = d when t → ∞ (or large values of the constant e) then (6.3.7) becomes the

flat Minkowski spacetime

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2)

which is a limiting case.

When u = β(t+ γ)−2/3, (6.3.5) becomes

Ċ1 +

[

β

bd
(t+ γ)−2/3 +

2

3
(t+ γ)−1

]

C1 −
b

d
C2

1 = 0 (6.3.8)

which is also a Bernoulli equation with variable coefficients. The solution of (6.3.8)

is given by

C1 =
β

[

b2 + βf exp
(

3β(t+γ)1/3

bd

)](t+ γ)−2/3

where f is the constant of integration. Consequently the remaining function C2 is

given by

C2 =
−β2f exp

(

3β(t+γ)1/3

bd

)

[

b2 + βf exp
(

3β(t+γ)1/3

bd

)](t+ γ)−2/3.

Hence the interior line element (6.2.1) takes the particular form

ds2 = −dt2 +
d2

β2





b2 + βf exp
(

3β(t+γ)1/3

bd

)

r2 + βf exp
(

3β(t+γ)1/3

bd

)





2

(t+ γ)4/3
[

dr2 + r2(dθ2 + sin2 θdφ2)
]

.

(6.3.9)

If we set

γ = 0, d =

(

M

6

)1/3

b, f =
3

ab2
, β = −b

2

3

then (6.3.9) becomes

ds2 = −dt2 +
9
(

M
6

)2/3

b2

[

1 − ab2 exp
(

6t
M

)1/3

1 − ar2 exp
(

6t
M

)1/3

]2

t4/3
[

dr2 + r2(dθ2 + sin2 θdφ2)
]
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which was first found by Kolassis et al (1988). Here we have shown that their model

found by inspection arises naturally as a solution of a Bernoulli equation. It is easy

to see that for large values of the constant f we obtain

ds2 = −dt2 + t4/3
[

dr2 + r2(dθ2 + sin2 θdφ2)
]

from (6.3.9). This corresponds to the Friedmann metric when the fluid is in the

form of dust with vanishing heat flux.

6.3.2 Riccati equation

If we set

u2 − dbu̇ = 0 (6.3.10)

then the function u is given by

u = −bd(t+ a)−1 (6.3.11)

where a is a constant. In this case equation (6.3.2) becomes

4bdĊ1 − 4b2C2
1 + d2(t+ a)−2 = 0, (6.3.12)

which is an inhomogeneous Riccati equation. The solution of equation (6.3.12) is

given by

C1 =
−d
[

1 −
√

2 + (1 +
√

2)g(t+ a)
√

2
]

2b
[

1 + g(t+ a)
√

2
] (t+ a)−1, (6.3.13)

where g is the constant of integration. Consequently the remaining function has the

form

C2 = bd







1 −

[

1 −
√

2 + (1 +
√

2)g(t+ a)
√

2
]

2
[

1 + g(t+ a)
√

2
]







(t+ a)−1.

Hence the interior metric (6.2.1) has the specific form

ds2 = −dt2 +
d2(t+ a)2

[C1(r2 − b2)(t+ a) − bd]2
[

dr2 + r2(dθ2 + sin2 θdφ2)
]

, (6.3.14)

which is written in terms of C1. We believe that (6.3.14) is a new solution for a

radiating star whose particles are constrained to travel on geodesics. The simple
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form of (6.3.14) will assist in studying the physical features of our model. The solu-

tion (6.3.14) arises in a natural way once we realise that the underlying dynamical

equation (6.2.8) at the boundary is a Riccati equation.

6.4 Special functions

The solutions found in the previous sections all have power law forms for the quantity

u. It is possible that other solutions in terms of elementary functions or special

functions may exist with a power law representation for u. Consequently, in this

section, we attempt to generate a general class of solutions to the model (6.2.8) by

assuming

u = α(t+ a)n. (6.4.1)

On substituting (6.4.1) into (6.3.2) we obtain

(t+ a)2Ċ1 +
[ α

db
(t+ a)n+1 − n

]

(t+ a)C1 −
b

d
(t+ a)2C2

1 = − d

4b
n(3n+ 2). (6.4.2)

The nonlinear equation (6.4.2) is a Riccati equation and it is difficult to solve the

equation in the above form. If we introduce a transformation

b

d
C1 = −U̇

U
(6.4.3)

then (6.4.2) becomes the second order linear differential equation

(t+ a)2Ü +
[ α

db
(t+ a)n+1 − n

]

(t+ a)U̇ − n(3n+ 2)

4
U = 0 (6.4.4)

in the function U with variable coefficients. We can transform (6.4.4) to simpler

form if we let

ψ = (t+ a)n+1, W = Uψ−k, k =
(n+ 1) ±

√

4n(n + 1) + 1

2(n+ 1)
. (6.4.5)

Then (6.4.4) becomes

(n+ 1)ψ
d2W

dψ2
+
[ α

bd
ψ + 2k(n+ 1)

] dW

dψ
+
αk

bd
W = 0. (6.4.6)

If we let

X =
−αψ

bd(n + 1)
, Y (X) = W (ψ)
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then (6.4.6) has the equivalent form

X
d2Y

dX2
+ (2k −X)

dY

dX
− kY = 0. (6.4.7)

Observe that (6.4.7) is the confluent hypergeometric equation with solution in terms

of special functions in general.

Note that the solution of (6.4.7) can be written in terms of

Y = J (k, 2k;X) ,

W = J
(

k, 2k;
−αψ

bd(n + 1)

)

where J are Kummer functions. In general the solution of the equation (6.4.6) can

be written in terms of the Kummer series. Observe that when k > 0 we can write

W̃ = J (k, 2k;X)

=
Γ(2k)

[Γ(k)]2

∫ 1

0

eXτ [τ(1 − τ)]k−1 dτ (6.4.8)

as a particular solution of the differential equation (6.4.6) where Γ(z) =
∫∞
0
e−ττ z−1dτ

is the gamma function. From (6.4.8) we note that the solution can be expressed in

terms of elementary functions for all natural numbers k. Consequently the differen-

tial equation (6.4.2) admits solutions in terms of elementary functions when k is a

natural number.

6.4.1 Particular metrics

We can regain previous cases from the general form (6.4.8). We illustrate this feature

for particular values of k. When k = 1, we obtain n = 0 or n = −2/3. For this case

the particular solution of the equation (6.4.6) becomes

W̃ =
eX − 1

X
, X =

−αψ
bd(n + 1)

(6.4.9)
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with the help of (6.4.8).

When n = 0, from (6.4.5) and (6.4.9) we can easily see that

Ũ =
bd

α

[

1 − exp

(−α(t+ a)

bd

)]

is a particular solution of the equation (6.4.4). Then with the help of (6.4.3) we find

that

C̃1 =
α

b2
[

1 − exp
(

α(t+a)
bd

)] (6.4.10)

is a particular solution of (6.4.2) which is given by

Ċ1 +
α

bd
C1 −

b

d
C1

2 = 0. (6.4.11)

The general solution of (6.4.11) becomes

C1 =
αD

b2
[

D + exp
(

α(t+a)
bd

)] ,

where D is an arbitrary constant. Consequently the interior metric (6.2.1) has the

specific form

ds2 = −dt2 +
b4d2

α2





D + exp
(

α(t+a)
bd

)

Dr2 + b2 exp
(

α(t+a)
bd

)





2

[

dr2 + r2(dθ2 + sin2 θdφ2)
]

(6.4.12)

in terms of exponential functions. Note that the line element (6.4.12) reduces to the

metric (6.3.7) if we set D = −b2.
When n = −2/3, from (6.4.5) and (6.4.9) we observe that

Ũ =
bd

3α

[

1 − exp

(−3α(t+ a)1/3

bd

)]

is a particular solution of the equation (6.4.4). Hence with the help of (6.4.3) we

obtain

C̃1 =
α(t+ a)2/3

b2
[

1 − exp
(

3α(t+a)1/3

bd

)] (6.4.13)

as a particular solution of (6.4.2) which has the form

Ċ1 +

[

α

bd
(t+ a)−2/3 +

2

3
(t+ a)−1

]

C1 −
b

d
C1

2 = 0. (6.4.14)
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The general solution of (6.4.14) becomes

C1 =
αD(t+ a)2/3

b2
[

D + exp
(

3α(t+a)1/3

bd

)] ,

where D is an arbitrary constant. Consequently the interior metric (6.2.1) takes the

particular form

ds2 = −dt2 +
b4d2

α2





D + exp
(

3α(t+a)1/3

bd

)

Dr2 + exp
(

3α(t+a)1/3

bd

)





2

(t+ a)4/3
[

dr2 + r2(dθ2 + sin2 θdφ2)
]

.

(6.4.15)

Note that the line element (6.4.15) reduces to the line element (6.3.9) if we set

D = b2

αf
.

6.4.2 A new solution

It is possible to generate an infinite family of new solutions from the general form

(6.4.8) by specifying values for the parameter k. These may correspond to new

solutions for a radiating sphere which are not accelerating. We illustrate this process

by taking k = 2 (so that n = −2 or n = −4/5) in (6.4.8). We consider only the case

n = −2 as the integration procedure is same for other values of k (or n) . For this

case the particular solution of the equation (6.4.6) becomes

W̃ =
6

X3

[

2 +X + (X − 2)eX
]

, X =
−αψ

bd(n + 1)
. (6.4.16)

When n = −2, from (6.4.5) and (6.4.16) we observe that

Ũ =
6b2d2

α3

[

[2bd(t+ a) + α] − [2bd(t+ a) − α] exp

(

α

bd(t+ a)

)]

is a particular solution of the equation (6.4.4). Hence with the help of (6.4.3) we

obtain

C̃1 =
2b2d2(t+ a)2 − [2bd(t+ a)(bd(t+ a) − α) + α2] exp

(

α
bd(t+a)

)

b2
[

(2bd(t+ a) − α) exp
(

α
bd(t+a)

)

− (2bd(t+ a) + α)
]

(t+ a)2
(6.4.17)

is a particular solution of (6.4.2) which has the form

Ċ1 +
[ α

bd
(t+ a)−2 + 2(t+ a)−1

]

C1 −
b

d
C1

2 = −2d

b
(t+ a)−2. (6.4.18)
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The general solution of (6.4.18) becomes

C1 = −

[

[α2 + 2bd(t+ a)(bd(t+ a) − α)] exp
(

α
bd(t+a)

)

+ 2b2d2D(t+ a)2
]

b2
[

D(2bd(t+ a) + α) + (2bd(t+ a) − α) exp
(

α
bd(t+a)

)]

(t+ a)2
, (6.4.19)

where D is an arbitrary constant. Consequently the interior metric (6.2.1) has the

specific form

ds2 = −dt2 +
d2

[C1(r2 − b2) + α(t+ a)−2]2
[

dr2 + r2(dθ2 + sin2 θdφ2)
]

, (6.4.20)

where C1 is given by (6.4.19). Hence we have found a new solution to the boundary

condition (6.2.8) by specifying a particular value for the parameter k. This process

can be repeated for other values of k and an infinite family of solutions are possible in

which the gravitational potentials can be expressed in terms of elementary functions.

6.5 Physical analysis

The simple forms of the gravitational potentials found in this chapter permit a

detailed study of the physical features of a radiating star. In this study we consider

the particular line element (6.4.12) and set α = bd and a = 0 to obtain

ds2 = −dt2 + b2
[

D + exp(t)

Dr2 + b2 exp(t)

]2
[

dr2 + r2(dθ2 + sin2 θdφ2)
]

, (6.5.1)

for simplicity. For the metric (6.5.1) the matter variables can be written as

ρ =
3D exp(t) {exp(t) [Db4 + 6b2Dr2 +Dr4 + 4b4 exp(t)] + 4D2r4}

[D + exp(t)]2 [Dr2 + b2 exp(t)]2
, (6.5.2a)

p =
D exp(t)

[D + exp(t)]2 [Dr2 + b2 exp(t)]2
×

{

exp(t))
[

2b2 exp(t)(r2 − 3b2) − 2Db2r2 − 3D(r4 + b4)
]

+ 2D2r2(b2 − 3r2)
}

,

(6.5.2b)

q =
4Dr exp(t)

[D + exp(t)]2
. (6.5.2c)
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When D = 0 then (6.5.1) becomes the Minkowski metric with ρ = p = q = 0. The

matter variables are expressed in simple analytic forms which facilitate the analysis

of the physical behaviour. From (6.5.2) we have that at the centre of the sphere

ρ0 =
3D [D + 4 exp(t)]

[D + exp(t)]2

p0 = −3D[D + 2 exp(t)]

[D + exp(t)]2

q0 = 0

so that ρ0 and p0 have finite values at the centre r = 0 with vanishing heat flux

q0. The gravitational potentials in (6.5.1) are finite at the centre and nonsingular

in the stellar interior. The quantities ρ, p and q are well behaved and regular in the

interior of the sphere, at least in regions close to the centre. At later times as t→ ∞
we note that q ∝ r so that the magnitude of the heat flux depends linearly on the

radial coordinate.

Next we briefly consider the relativistic effect of casual temperature of this model.

The Maxwell-Cattaneo heat transport equation, in the absence of rotation and vis-

cous stresses, is given by

τh b
a q̇b + qa = −κ

(

h b
a ∇bT + T u̇a

)

, (6.5.3)

where hab = gab + uaub projects into the comoving rest space, T is the local equilib-

rium temperature, κ (≥ 0) is the thermal conductivity and τ (≥ 0) is the relaxation

time. Equation (6.5.3) reduces to the acausal Fourier heat transport equation when

τ = 0. For the line element (6.2.1), the casual transport equation (6.5.3) can be

written as

T (t, r) = −1

κ

∫

[

τ ˙(qB)B + qB2
]

dr (6.5.4)

for geodesic motion. Martinez (1996), Govender et al (1998) and Di Prisco et al

(1996) have demonstrated that the relaxation time τ on the thermal evolution, plays

a significant role in the latter stages of collapse. For the line element (6.5.1), (6.5.4)
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becomes

T (t, r) =
τb2 exp(t) {2D2r2 − b2 exp(t) [exp(t) −D]}

κ [exp(t) +D] [b2 exp(t) +Dr2]2

+
2b2 exp(t)

κ [b2 exp(t) +Dr2]
+ h(t), (6.5.5)

where h(t) is a function of integration. For simplicity we assumed that τ and κ are

constant. The function h(t) may be related to the central temperature Tc(t) by

h(t) = Tc(t) −
τ [D − exp(t)]

κ [D + exp(t)]
− 2

κ
. (6.5.6)

From (6.5.5) and (6.5.6) the temperature can be written as

T (t, r) = Tc(t) −
τDr2 {Dr2 [D − exp(t)] − 2b2 exp(t)}
κ [D + exp(t)] [Dr2 + b2 exp(t)]2

− 2Dr2

κ [Dr2 + b2 exp(t)]
. (6.5.7)

When τ = 0, we can regain the acausal (Eckart) temperature profiles from (6.5.7).

In Figure 6.1, we plot the casual (solid line) and acasual (dashed line) temperatures

against the radial coordinate on the interval 0 ≤ r ≤ 5 for particular parameter

values (κ = τ = 1, b = 5, D = 70 and h(t) = 0) on the spacelike hypersurface t = 1.

We observe that the temperature is monotonically decreasing from centre to the

boundary in both casual and acasual cases. It is clear that the casual temperature

is greater than the acasual temperature throughout the stellar interior. At the

boundary Σ we have

T (t, rΣ)casual ' T (t, rΣ)acasual.

Our figures have been generated by assuming constant values for the parameters τ

and κ. Changing the values of the relaxation time and the thermal conductivity

would produce different gradients for the curves but the result would not change

qualitatively.
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Figure 6.1: Temperature T versus radial coordinate r (τ = 1).
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Chapter 7

Radiating collapse with

anisotropic pressures

7.1 Introduction

A star usually emits radiation and throws out particles during gravitational collapse.

Therefore the heat flow in the interior of the star must be taken into account so

that the interior solution of the radiating star should match to the Vaidya (1951)

exterior metric at the boundary. The investigation of the gravitational behaviour of

a collapsing star depends on the formulation of the junction conditions matching the

interior metric with the exterior Vaidya metric across the boundary of the star. In

the past, investigations in radiating collapse have focussed on shear-free spacetimes

with isotropic pressures (see the treatments of Herrera et al (2004a), Herrera et

al (2006), Maharaj and Govender (2005)and Misthry et al (2006)). This scenario

can be generalised to include anisotropic pressures in the presence of shear for fluid

particles travelling on geodesics or particles experiencing acceleration. The first

analytic solution for anisotropic pressures with shear was obtained by Naidu et

al (2006), by considering geodesic fluid trajectories. Rajah and Maharaj (2008)

generalised the Naidu et al (2006) model to be nonsingular at the centre. The

general situation requires a model which is expanding, accelerating and shearing.

Noguiera and Chan (2004) attempted such a study but found that they had to
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utilise numerical techniques to make progress. Our objective here is to show that is

possible to model such processes exactly.

In this chapter we attempt to perform a systematic treatment on the governing

equation at the boundary of the radiating star. In §7.2, we present the field equa-

tions. The junction condition are given in §7.3. In §7.4, we generate the differential

equation governing the gravitational behaviour of a radiating, shearing and acceler-

ating sphere. The master equation is rewritten in the form of a Riccati equation. In

§7.5, we consider the situation where the fluid particles are travelling on geodesics

and obtain two classes of solutions which contain models found previously. In §7.6,

we consider the most general case of expanding, shearing and accelerating radiative

collapse and obtain three classes of solutions in terms of arbitrary functions on the

radial and temporal coordinates. In §7.7, we briefly investigate the physical features

of the model generated and present the casual and acasual temperature profiles.

7.2 Field equations

The most general form for the interior space time of a spherically symmetric col-

lapsing star with nonzero shear and accelerating fluid particle is given by the line

metric

ds2 = −A2dt2 +B2dr2 + Y 2(dθ2 + sin2 θdφ2), (7.2.1)

where A,B and Y are functions of both the temporal coordinate t and radial coordi-

nate r. The fluid 4-velocity vector u is given by ua = 1
A
δa
0 which is comoving. For the

line element (7.2.1) the 4-acceleration, the expansion scalar Θ and the magnitude

of the shear scalar σ are given by

u̇a =

(

0,
A′

AB2
, 0, 0

)

, (7.2.2a)

Θ =
1

A

(

Ḃ

B
+ 2

Ẏ

Y

)

, (7.2.2b)

σ = − 1

3A

(

Ḃ

B
− Ẏ

Y

)

, (7.2.2c)
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where primes and dots denote the differentiation with respect to r and t respectively.

The energy momentum tensor for the interior matter distribution is described by

Tab = (ρ+ p)uaub + pgab + qaub + qbua + πab, (7.2.3)

where p is the isotropic pressure, ρ is the density of the fluid, πab is the stress tensor

and qa is the heat flux vector. The stress tensor has the form

πab = (pr − pt)

(

nanb −
1

3
hab

)

, (7.2.4)

where pr is the radial pressure, pt is the tangential pressure and n is a unit radial

vector given by na = 1
B
δa
1 . The isotropic pressure

p =
1

3
(pr + 2pt) (7.2.5)

relates the radial pressure and the tangential pressure.

For the line element (7.2.1) and matter distribution (7.2.3) the coupled Einstein

field equations become

ρ =
2

A2

Ḃ

B

Ẏ

Y
+

1

Y 2
+

1

A2

Ẏ 2

Y 2

− 1

B2

(

2
Y ′′

Y
+
Y ′2

Y 2
− 2

B′

B

Y ′

Y

)

, (7.2.6a)

pr =
1

A2

(

−2
Ÿ

Y
− Ẏ 2

Y 2
+ 2

Ȧ

A

Ẏ

Y

)

+
1

B2

(

Y ′2

Y 2
+ 2

A′

A

Y ′

Y

)

− 1

Y 2
, (7.2.6b)

pt = − 1

A2

(

B̈

B
− Ȧ

A

Ḃ

B
+
Ḃ

B

Ẏ

Y
− Ȧ

A

Ẏ

Y
+
Ÿ

Y

)

+
1

B2

(

A′′

A
− A′

A

B′

B
+
A′

A

Y ′

Y
− B′

B

Y ′

Y
+
Y ′′

Y

)

, (7.2.6c)

q = − 2

AB2

(

− Ẏ
′

Y
+
Ḃ

B

Y ′

Y
+
A′

A

Ẏ

Y

)

, (7.2.6d)
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where the heat flux qa = (0, q, 0, 0) has only the nonvanishing radial component.

The system of equations (7.2.6a)-(7.2.6d) governs the general situation in describ-

ing matter distributions with anisotropic pressures in the presence of heat flux for

a spherically symmetric relativistic stellar object. The system of field equations

(7.2.6a)-(7.2.6d) describes the nonlinear gravitational interaction for a shearing mat-

ter distribution which is expanding and accelerating. From (7.2.6a)-(7.2.6d), we

observe that if forms for the gravitational potentials A,B and Y are known, then

the expressions for the matter variables ρ, pr, pt and q follow immediately.

7.3 Junction conditions

The Vaidya exterior spacetime of radiating star is given by

ds2 = −
(

1 − 2m(v)

R

)

dv2 − 2dvdR+R2(dθ2 + sin2 θdφ2), (7.3.1)

where m(v) denotes the mass of the fluid as measured by an observer at infinity. The

line element (7.3.1) describes coherent null radiation which is flowing in the radial

direction relative to the hypersurface Σ which represents the boundary of the star.

The matching of the interior spacetime (7.2.1) with the exterior spacetime (7.3.1)

leads to the following set of junction conditions on the hypersurface:

A(RΣ, t)dt =

(

1 − 2m

RΣ
+ 2

dRΣ

dv

)
1
2

dv, (7.3.2a)

Y (RΣ, t) = RΣ(v), (7.3.2b)

m(v)Σ =

[

Y

2

(

1 +
Ẏ 2

A2
− Y ′2

B2

)]

Σ

, (7.3.2c)

(pr)Σ = (qB)Σ. (7.3.2d)

The nonvanishing radial pressure at the boundary Σ leads to the additional equation

(7.3.2d), which has to be satisfied with the system of field equations (7.2.6a)-(7.2.6d).

The junction condition for shear-free spacetimes was first derived by Santos (1985)
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and later it was extended by Glass (1989) and Maharaj and Govender (2000) to

incorporate spacetimes with nonzero shear.

7.4 The master equation

Substituting (7.2.6b) and (7.2.6d) in (7.3.2d) we obtain

2Y Ÿ + Ẏ 2 − 2

(

Ȧ

A
+
A′

B

)

Y Ẏ + 2
A

B
Y Ẏ ′

−2
A

B2

(

A′ + Ḃ
)

Y Y ′ − A2

B2
Y ′2 + A2 = 0. (7.4.1)

The equation (7.4.1) governs the gravitational behaviour of the radiating anisotropic

star with nonzero shear, acceleration and expansion. As the equation (7.4.1) is highly

nonlinear, it is difficult to solve without simplifying assumptions. Equation (7.4.1)

contains the three gravitational functions A(r, t), B(r, t) and Y (r, t). Therefore, to

find a solution we have to specify any two functions. For convenience we rewrite

(7.4.1) in the form of a Riccati equation in the gravitational potential B as

Ḃ =

[

Ÿ

AY ′ +
Ẏ 2

2AY Y ′ −
Ȧ

A2

Ẏ

Y ′ +
A

2Y Y ′

]

B2

+

[

Ẏ ′

Y ′ −
A′

A

Ẏ

Y ′

]

B −
[

A′ +
AY ′

2Y

]

. (7.4.2)

From (7.4.2) it is clear that to solve the Riccati equation (7.4.2) we should specify

the potentials A(r, t) and Y (r, t) as demonstrated in the following sections. When

A = 1 then fluid particles are geodesic and (7.4.2) becomes

Ḃ =

[

Ÿ

Y ′ +
Ẏ 2

2Y Y ′ +
1

2Y Y ′

]

B2 +
Ẏ ′

Y ′B − Y ′

2Y
. (7.4.3)

The case of geodesic motion was previously studied by Naidu et al (2006) and Rajah

and Maharaj (2008).
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7.5 Geodesic motion with anisotropic pressures

In previous investigations it was assumed that the potential Y (r, t) is separable.

In this section we demonstrate that it is possible to find solutions systematically

without assuming separable forms for Y (r, t). If we introduce the transformation

B = ZY ′ (7.5.1)

then equation (7.4.3) becomes

Ż =
1

2Y

[

FZ2 − 1
]

, (7.5.2)

where we have set

F = 2Y Ÿ + Ẏ 2 + 1.

Observe that equation (7.5.2) is integrable if we set F as a constant or function of

r only. We demonstrate that this technique leads to new solutions in the following

sections.

7.5.1 Analytic solution I

If we set F = 1 then the function Y is given by

Y (r, t) = [R1(r)t+R2(r)]
2/3, (7.5.3)

where R1(r) and R2(r) are any functions of r only. For this case equation (7.5.2)

becomes

Ż =
1

2[R1(r)t+R2(r)]2/3

[

Z2 − 1
]

. (7.5.4)

On integrating (7.5.4) we obtain

Z =
1 + f(r) exp

[

3(R1t+ R2)
1/3/R1

]

1 − f(r) exp [3(R1t+R2)1/3/R1]
, (7.5.5)

where f(r) is a function of integration. Hence from (7.5.1), (7.5.3) and (7.5.5) we

get

B =
2

3

[

1 + f(r) exp
[

3(R1t+R2)
1/3/R1

]

1 − f(r) exp [3(R1t+R2)1/3/R1]

]

[R′
1t+R′

2]

[R1t+R2]1/3
. (7.5.6)
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Therefore the line element (7.2.1) takes the particular form

ds2 = −dt2 +
4

9

[

1 + f(r) exp
[

3(R1t+R2)
1/3/R1

]

1 − f(r) exp [3(R1t+R2)1/3/R1]

]2
[R′

1t+R′
2]

2

[R1t+R2]2/3
dr2

+[R1(r)t+R2(r)]
4/3(dθ2 + sin2 θdφ2). (7.5.7)

From (7.5.7) observe that the line element is given in terms of arbitrary functions

R1(r), R2(r) and f(r) so that it is possible to generate an infinite number of exact

solutions.

It is interesting to see that for particular choices of the arbitrary functions we

regain models found previously. If we set

R1 = R3/2 and R2 = aR3/2

then the line element (7.5.7) reduces to

ds2 = −dt2

+(t+ a)4/3







R′2
[

1 + f(r) exp
[

3(t+ a)1/3/R
]

1 − f(r) exp [3(t+ a)1/3/R]

]2

dr2 +R2(dθ2 + sin2 θdφ2)







.

(7.5.8)

The line element (7.5.8) corresponds to the first category of the Rajah and Maharaj

(2008) models for anisotropic radiating star with shear. If we set a = 0 and R = r

then (7.5.8) reduces to

ds2 = −dt2 + t4/3







[

1 + f(r) exp
[

3t1/3/r
]

1 − f(r) exp [3t1/3/r]

]2

dr2 +R2(dθ2 + sin2 θdφ2)







. (7.5.9)

The metric (7.5.9) was first found by Naidu et al (2006) in their analysis of pressure

anisotropy and heat dissipation in a spherically symmetric radiating star undergoing

gravitational collapse. Note that when

R1 = r3/2, R2 = 0 and f(r) = 0
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the line element (7.5.7) reduces to

ds2 = −dt2 + t4/3
[

dr2 + r2(dθ2 + sin2 θdφ2)
]

. (7.5.10)

The line element (7.5.10) corresponds to the Friedmann metric when the fluid is in

the form of dust with vanishing heat flux. If we set

R1 = 0 and R2 = r3/2

then the line element (7.5.7) takes the form

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2)

which corresponds to flat Minkowski spacetime. Note that the Minkowski spacetime

cannot be regained from the Rajah and Maharaj (2008) model due to the separable

form chosen for the potential Y in their treatment.

7.5.2 Analytic solution II

If we set F = 1 +R2
1(r) then the function Y is given by

Y (r, t) = R1(r)t+R2(r), (7.5.11)

where R1(r) and R2(r) are any functions of r only. For this case equation (7.5.2)

becomes

Ż =
[R2

1 + 1]

2[R1t+R2]

[

Z2 − 1

[R2
1 + 1]

]

. (7.5.12)

The solution of (7.5.12) can be written as

Z =
1

√

R2
1 + 1

[

1 + g(r)[R1t+R2]
√

R2
1+1/R1

1 − g(r)[R1t+R2]
√

R2
1+1/R1

]

, (7.5.13)

where g(r) is the function of integration. Hence from (7.5.1), (7.5.11) and (7.5.13)

we get

B =
1

√

R2
1 + 1

[

1 + g(r)[R1t+R2]
√

R2
1+1/R1

1 − g(r)[R1t+R2]
√

R2
1+1/R1

]

[R′
1t+R′

2]. (7.5.14)
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Therefore the line element (7.2.1) takes the particular form

ds2 = −dt2 +
1

[R2
1 + 1]

[

1 + g(r)[R1t+R2]
√

R2
1+1/R1

1 − g(r)[R1t+R2]
√

R2
1+1/R1

]2

[R′
1t+R′

2]
2dr2

+[R1(r)t+R2(r)]
2(dθ2 + sin2 θdφ2) (7.5.15)

in terms of arbitrary functions R1(r), R2(r) and g(r). Therefore again we can gen-

erate an infinite number of exact solution to (7.4.3).

Note that when

R1 = R and R2 = aR

the line element (7.5.15) reduces to

ds2 = −dt2

+(t+ a)2







R′2

[R2 + 1]

[

1 + h(r)[t+ a]
√

R2+1/R

1 − h(r)[t+ a]
√

R2+1/R

]2

dr2 +R2(dθ2 + sin2 θdφ2)







,

(7.5.16)

where we have defined the new arbitrary function h(r) = g(r)R
√

R2+1/R. The line

element (7.5.16) corresponds to the second category of the Rajah and Maharaj

(2008) models for anisotropic radiating star with shear. If we set

R1 = 0, R2 = r and g(r) = 0

the line element (7.5.15) reduces to the flat Minkowski spacetime

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2).

7.6 Accelerating motion with anisotropic pressures

In this section we consider the more general case with the gravitational potential

A being any function of r and t. In the integration of equation (7.4.2) we consider

three cases.
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7.6.1 Bernoulli equation

Observe that equation (7.4.2) reduces to a Bernoulli equation if we set

A′ +
AY ′

2Y
= 0.

If we take

Y (r, t) = R(r)C1(t) (7.6.1)

then

A(r, t) =
α

√

R(r)
C2(t), (7.6.2)

where α is a real constant, C1(t) and C2(t) are functions of t, and R(r) is a function

of r. Substituting (7.6.1) and (7.6.2) into (7.4.2) we get

Ḃ − R3/2

αR′C1

[

C̈1

C2
+

Ċ1
2

2C1C2
− Ċ1Ċ2

C2
2

+
α2C2

2R3C1

]

B2 − 3

2

Ċ1

C1
B = 0, (7.6.3)

which is a Bernoulli equation in the variable B.

On integrating (7.6.3) we obtain

B =
−αR′C

3/2
1

R3/2

∫

[

C̈1

C2

+
Ċ1

2

2C1C2

− Ċ1Ċ2

C2
2

+
α2C2

2R3C1

]

√

C1dt− αR′g(r)

, (7.6.4)

where g(r) is a function of integration. Therefore the functions

A =
α√
R
C2, (7.6.5a)

B =
−αR′C

3/2
1

R3/2

∫

[

C̈1

C2

+
Ċ1

2

2C1C2

− Ċ1Ċ2

C2
2

+
α2C2

2R3C1

]

√

C1dt− αR′g(r)

(7.6.5b)

Y = RC1, (7.6.5c)

satisfy the junction condition (7.4.2). From (7.6.5) we can generate an infinite

family of solutions for different choices of the arbitrary functions C1(t), C2(t) and

R(r). In principle the quantity B can be evaluated if the functions C1(t) and C2(t)

are specified.
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7.6.2 Inhomogeneous Riccati equation

Note that equation (7.4.2) becomes an inhomogeneous Riccati equation if we set

Ẏ ′

Y ′ −
A′

A

Ẏ

Y ′ = 0.

If we take

Y (r, t) = R(r)C(t) (7.6.6)

then

A(r, t) = αẎ , (7.6.7)

where α is a real constant and R(r) and C(t) are arbitrary functions of r and t

respectively. Substituting (7.6.6) and (7.6.7) into (7.4.2) we get

Ḃ =
(1 + α2)

2αR′
Ċ

C2
B2 − 3

2
αR′Ċ, (7.6.8)

which is an inhomogeneous Riccati equation.

It is difficult to solve the equation (7.6.8) in the above form; we first introduce

a transformation to obtain a more convenient form. Note that the transformation

B = wC

leads to a separable equation:

C

Ċ
ẇ =

(1 + α2)

2αR′ w2 − w − 3

2
αR′. (7.6.9)

In general it is difficult to solve the equation (7.6.9). However it is possible to

integrate (7.6.9) for α = −2. When α = −2 the equation (7.6.9) can be written as

ẇ

(5w − 6R′)(w + 2R′)
=

−1

4R′
Ċ

C
.

On integrating the above equation we obtain

w =
2R′[3C4 + f(r)]

5C4 − f(r)
,

where f(r) is a function of integration. Hence, we get the result

B =
2R′C[3C4 + f(r)]

5C4 − f(r)
. (7.6.10)
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Therefore the solution to the equation (7.4.2) becomes

A = −2RĊ, (7.6.11a)

B =
2R′C[3C4 + f(r)]

5C4 − f(r)
, (7.6.11b)

Y = RC. (7.6.11c)

We can observe from (7.6.11) that it is possible to generate an infinite number of

models for different choices of the arbitrary functions R(r), f(r) and C(t).

7.6.3 Linear equation

Note that equation (7.4.2) becomes a linear equation if we set

Ÿ

AY ′ +
Ẏ 2

2AY Y ′ −
Ȧ

A2

Ẏ

Y ′ +
A

2Y Y ′ = 0.

For this case it is difficult to find a general relationship between the potentials Y and

A similar to previous cases in this chapter. However it possible to find particular

functions that satisfy this condition. For example, if we take

Y (r, t) = R(r)[α+ βt− γ2t2], (7.6.12a)

A(r, t) = 2γR(r)
√

α + βt− γ2t2, (7.6.12b)

where α, β and γ is a real constant and R(r) is a functions of r only, then (7.4.2)

becomes

Ḃ + 3γR′
√

α+ βt− γ2t2 = 0. (7.6.13)

On integrating (7.6.13) we get

B =
3R′

8γ2

[

2γ(β − 2γ2t)
√

α + βt− γ2t2

−(β2 + 4αγ2) arctan

[

2γ2t− β

2α
√

α + βt− γ2t2

]]

+ g(r),
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where g(r) is a function of integration. Therefore the functions

A = 2γR
√

α + βt− γ2t2, (7.6.14a)

B =
3R′

8γ2

[

2γ(β − 2γ2t)
√

α + βt− γ2t2

−(β2 + 4αγ2) arctan

[

2γ2t− β

2α
√

α + βt− γ2t2

]]

+ g(r), (7.6.14b)

Y = R(α + βt− γ2t2), (7.6.14c)

satisfy the junction condition (7.4.2).

7.7 Physical analysis

The simple forms of the solutions found in this chapter facilitate a study of physical

behaviour. In this section we briefly consider the physical features of the solution

generated in §7.6.2. For the gravitational potentials obtained in (7.6.11), the line

element (7.2.1) becomes

ds2 = −4R2Ċ2dt2 +

[

2R′C[3C4 + f(r)]

5C4 − f(r)

]2

dr2 +R2C2(dθ2 + sin2 θdφ2). (7.7.1)

In the study of the physical features we take C(t) = (t + a)n and f(r) = k, where

a, n and k are real constants, for simplicity. In this case the kinematical quantities

become

u̇a =

(

0,
[5(t+ a)4n − k]2

4RR′[3(t+ a)4n + k]2(t+ a)2n
, 0, 0

)

, (7.7.2a)

Θ =
[3k2 + 26k(t+ a)4n − 45(t+ a)8n]

2R[−k2 + 2k(t+ a)4n + 15(t+ a)8n](t+ a)n
, (7.7.2b)

σ =
16k(t+ a)3n

3R[k2 − 2k(t+ a)4n − 15(t+ a)8n]
. (7.7.2c)
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The matter variables become

ρ =
[−3k3 − 43k2(t+ a)4n + 15k(t+ a)8n + 95(t+ a)12n]

2R2[3(t+ a)4n + k]2[5(t+ a)4n − k](t+ a)2n
(7.7.3a)

pr =
1

4R2(t+ a)2n

[

3[5(t+ a)4n − k]2

[3(t+ a)4n + k]2
− 5

]

(7.7.3b)

pt =
4[−13k2 − 45k2(t+ a)4n − 95k(t+ a)8n + 25(t+ a)12n]

R2[k2 − 2k(t+ a)4n − 15(t+ a)8n]2
(7.7.3c)

q =
[k3 + 25k2(t+ a)4n − 165k(t+ a)8n + 75(t+ a)12n]

4R2R′[3(t+ a)4n + k]3(t+ a)3n
(7.7.3d)

The expressions in (7.7.2a)-(7.7.2c) and (7.7.3a)-(7.7.3d) are given in terms of simple

elementary functions which will assist in a physical analysis. The total luminosity

for an observer rest at infinity is given by the equation

L∞ = −
(

dm

dv

)

∑

=
(pr)

∑

2

[

Y 2

(

Y ′

B
+ Ẏ

)2
]

∑

, (7.7.4)

where dm
dv

≤ 0 as L∞ ≥ 0. Therefore the total luminosity L∞ can be easily obtainable

from (7.7.3b), (7.6.11b) and (7.6.11c).

Next we briefly consider the relativistic effect of casual temperature of our model.

The Maxwell-Cattaneo heat transport equation, in the absence of rotation and vis-

cous stress in the truncated version, is given by

τh b
a q̇b + qa = −κ

(

h b
a ∇bT + T u̇a

)

, (7.7.5)

where τ is the relaxation time, κ is the thermal conductivity and hab = gab + uaub

projects into the comoving rest space. Equation (7.7.5) reduces to the acausal

Fourier heat transport equation when τ = 0. For the line element (7.2.1) the casual

transport equation (7.7.5) can be written as

T (t, r) = − 1

κA

∫

[

τ ˙(qB)B + AqB2
]

dr. (7.7.6)

Martinez (1996), Govender et al (1998) and Di Prisco et al (1996) has demonstrated

that the relaxation time τ on the thermal evolution, plays a significant role in the
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latter stages of collapse. Rajah and Maharaj (2008) and Naidu et al (2006) showed

that for geodesic motion in the presence of shear stress, the relaxation time decreases

as the collapse proceeds and the central temperature increases. For our model, when

R(r) = r + b, (7.7.6) becomes

T (t, r) =
τ [−k3 + 15k2(t+ a)4n − 315k(t+ a)8n + 45(t+ a)12n]

κ(r + b)2[3(t+ a)4n + k]2[5(t+ a)4n − k](t+ a)2n

+
[k2 + 30k(t+ a)4n − 15(t+ a)8n] ln[r + b]

κ(r + b)[−k2 + 2k(t+ a)4n + 15(t+ a)8n](t+ a)n
+ h(t),(7.7.7)

where h(t) is a function of integration and we set τ and κ to be constant. We have

expressed the temperature T in a simple analytic form in terms of powers of t. The

function h(t) may be related to the central temperature Tc(t) as

h(t) = Tc(t) −
τ [−k3 + 15k2(t+ a)4n − 315k(t+ a)8n + 45(t+ a)12n]

κb2[3(t+ a)4n + k]2[5(t+ a)4n − k](t+ a)2n

− [k2 + 30k(t+ a)4n − 15(t+ a)8n] ln[b]

κb[−k2 + 2k(t+ a)4n + 15(t+ a)8n](t+ a)n
, (7.7.8)

Note that Herrera et al (2006) also assumed the same relation when they studied

shear-free spacetimes. From (7.7.7) and (7.7.8) the temperature can be written as

T (t, r) = Tc(t)

− τr(r + 2b)

κb2(r + b)2

[−k3 + 15k2(t+ a)4n − 315k(t+ a)8n + 45(t+ a)12n]

[3(t+ a)4n + k]2[5(t+ a)4n − k](t+ a)2n

−1

κ

[

ln[b]

b
− ln[r + b]

(r + b)

]

[k2 + 30k(t+ a)4n − 15(t+ a)8n]

[−k2 + 2k(t+ a)4n + 15(t+ a)8n](t+ a)n
. (7.7.9)

When τ = 0, we can regain the acausal (Eckart) temperature profiles from (7.7.9).

In Figure 7.1, we plot the casual (solid line) and acasual (dashed line) temperatures

against the radial coordinate on the interval 0 ≤ r ≤ 2 for particular parameter

values (a = 1, b = 0.1, k = 1, n = 2, t = 3, κ = 2, τ = 10 and h(t) = 0). We

can easily observe that the temperature is monotonically decreasing from centre to

boundary in both casual and acasual cases. It is clear that the casual temperature
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is greater than the acasual temperature throughout the stellar interior. At the

boundary
∑

:

T (t, r∑)casual ' T (t, r∑)acasual.

0.5 1.0 1.5 2.0
r

0.05

0.10

0.15

0.20

0.25

T

Acausal

Causal

Figure 7.1: Temperature T vs radial coordinate r (τ = 10).
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Chapter 8

Conclusion

The goal of this thesis was to generate new classes of exact solutions to the Einstein

and Einstein-Maxwell field equations which may be used to model realistic stellar

objects in spherically symmetric spacetimes. By a consideration of the nonlinear

structure of the Einstein field equations, which describes the gravitational behaviour

of the interior of a relativistic star, we sought to introduce suitable transformations

to simplify the master equation into an integrable form. Several new families of

solutions were obtained to the Einstein-Maxwell system by specifying different, but

physically reasonable forms, for one of the gravitational potentials and the electric

field intensity. In addition, we examined the more general situation of the Einstein-

Maxwell system with anisotropic pressures. New classes of exact solutions were

generated which may be useful to study strange stars with a linear equation of

state. Then we studied relativistic radiating stars under going gravitational collapse

and a number of new exact solutions were obtained. We showed that these solutions

met the necessary physical requirements and generated causal temperature profiles.

We now present an overview of the main results achieved during the course of

this project:

• The objective of Chapter 2 was to study the Einstein-Maxwell system in the

presence of isotropic pressures. For the the gravitational potential

Z =
1 + ax

1 + bx

106



and the electric field

E2 =
αCbx

(1 + bx)2

the condition of pressure isotropy reduced to the differential equation

4X [aX − (a− b)]
d2Y

dX2
+ 2(a− b)

dY

dX
+ [(b− a) − α]Y = 0,

where X = 1 + bx and Y (X) = y(x), and a, b and α are real constants. In

general the solution of the above equation was given in a series form; in ad-

dition we obtained two families of solutions in terms of elementary functions

for specific values of the parameters a, b and α. The solutions found satisfy

a barotropic equation of state p = p(ρ). We regained the charged solutions

of Hansraj and Maharaj (2006) and Maharaj and Komathiraj (2007); the un-

charged neutron star models of Finch and Skea (1989), Durgapal and Bannerji

(1983) and Tikekar (1990) arise as special cases of our general class. We plotted

the behaviour of ρ, p, E2 and dp
dρ

, for particular parameter values, and verified

that the models were physically viable. Graphs were plotted to distinguish

between the behaviour of the charged and uncharged models.

• The intention of Chapter 3 was to investigate the Einstein-Maxwell system in

the presence of isotropic pressures for the potential

Z(x) =
(1 + ax)2

1 + bx

and the electric field intensity

E2 =
αa(b− a)Cx

(1 + bx)2
.

In this case the condition of pressure isotropy reduced to

4(1 + ax)2 [b(1 + ax) − (b− a)] ÿ + 2a(1 + ax) [b(1 + ax) − 2(b− a)] ẏ

+a(b− a)(b− a− αa)y = 0.

Two categories of solutions are possible corresponding to α = b
a
− 1 and α 6=

b
a
−1. When α = b

a
−1 the general solution is expressible in terms of elementary
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functions only. When α 6= b
a
−1, and using the method of Frobenius, we showed

that a series solution exists. We demonstrated that two classes of solutions

can be extracted in terms of elementary functions from the general class to

the above equation. Note that if α = 0 then we regain uncharged solutions

of the Einstein field equations. The simple form of the exact solutions, in

terms of polynomials and algebraic functions, facilitates the analysis of the

physical features of a charged sphere. The solutions found satisfy a barotropic

equation of state. We showed that our model is a generalisation of the charged

solutions found previously by Komathiraj and Maharaj (2007a). For particular

parameter values we plotted the behaviour of ρ, p, E2 and dp
dρ

and showed that

they were physically reasonable.

• In Chapter 4, we derived a general framework for the Einstein-Maxwell system

with linear equation of state that models the interior of a dense star as an

anisotropic charged imperfect fluid sphere. To solve the system we made the

assumptions

pr = αρ− β,

Z =
1 + (a− b)x

1 + ax
,

E2 =
kC(3 + ax)

(1 + ax)2
.

The equation of state may be applicable to strange stars with quark matter

and dark energy stars. Three new classes of exact solutions were generated to

this system. Our class of solutions contain the uncharged anisotropic models of

Sharma and Maharaj (2007) and Lobo (2006); the uncharged isotropic models

of de Sitter and Einstein were regained as special cases from our general class

of solutions. We showed that the masses and densities for stellar objects are

consistent with the results of Dey et at (1998) and Sharma and Maharaj (2007)

in the limit of vanishing charge. Consequently these solutions may be useful

in the investigation of stellar bodies such as SAX J1808.4-3658.
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• The objective of Chapter 5 was to study the Einstein-Maxwell system of equa-

tions with a strange matter equation of state for anisotropic matter distribu-

tions. To solve the field equations we made the assumptions

pr = αρ− β,

Z =
1

a + bxn
,

E2 =
2kC(d+ 2x)

a+ bxn
.

A new class of exact solutions was obtained to the system of nonlinear Einstein-

Maxwell equations. We regained the general relativistic isothermal universe

of Saslaw et al (1996), which is an extension of the conventional Newtonian

isothermal universe with density ρ ∝ r−2, when the anisotropy vanishes. The

plots of the matter variables indicate that the solution may be used to model

quark stars, at least in the envelope if singularities are present at the origin. We

calculated the stellar mass for particular parameters values (a = 1, n = 1) and

showed that this value is consistent with strange matter distributions of Dey

et al (1998), Mak and Harko (2004) and Sharma and Maharaj (2007). Ours

is a particular solution of the Einstein-Maxwell system with the interesting

feature of containing the isothermal universe in the isotropic limit.

• In Chapter 6, we investigated the simple situation of a shear-free metric with

particles travelling on geodesic trajectories. The governing equation of the

boundary condition of the stellar model was transformed to the Riccati equa-

tion

4bdu2Ċ1 + 4(u2 − bdu̇)uC1 − 4b2u2C2
1 = d2(2uü− 5u̇2).

Under certain assumptions this equation was reduced to a Bernoulli equation

that admits two solutions in terms of elementary functions. The first solution

contains the Minkowski spacetime as a limiting case while the second solution

corresponds to the Kolassis et al (1988) model with the Friedmann dust space-
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time as the limiting case. Then we transformed the Riccati equation into the

confluent hypergeometric equation

X
d2Y

dX2
+ (2k −X)

dY

dX
− kY = 0

that admits solution in terms of special functions namely the Kummer func-

tions, in general. For particular parameter values in the special function we

demonstrated that an infinite family of solutions, in terms of elementary func-

tions, are possible. The simple form of the solutions makes it possible to study

the physical features of the model and to find an analytic form for the causal

temperature.

• The aim of Chapter 7 was to generate new analytical solutions that model

the interior of a spherically symmetric radiative star undergoing gravitational

collapse with an accelerating, expanding and shearing matter distribution. We

rewrote the junction condition in the form of the Riccati equation

Ḃ =

[

Ÿ

AY ′ +
Ẏ 2

2AY Y ′ −
Ȧ

A2

Ẏ

Y ′ +
A

2Y Y ′

]

B2

+

[

Ẏ ′

Y ′ −
A′

A

Ẏ

Y ′

]

B −
[

A′ +
AY ′

2Y

]

.

We found two classes of exact solutions when the fluid particles are travelling

on geodesics which contain the models of Naidu et al (2006), Rajah and Ma-

haraj (2008), the Friedmann dust metric and the Minkowski spacetime. Three

classes of accelerating, expanding and shearing solutions were generated by

transforming the master equation into a Bernoulli equation, an inhomogeneous

Riccati equation and a linear equation. These solutions depend on arbitrary

functions of the temporal coordinate and the radial coordinate which allow

for an infinite family of solutions. For a particular metric we investigated the

physical features. We derived the temperature profiles in general and plotted

the behaviour of the casual and acasual temperatures for particular parameter

values.
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Appendix A

In Appendix A we derive the elementary functions (2.5.1) and (2.5.2).

On substituting r = 0 into equation (2.4.5) we find that

ci+1 =
4ai(i− 1) − ((a− b) + α)

(a− b)(2i+ 2)(2i− 1)
ci, i ≥ 0. (A.0.1)

If we set a−b+α = 4an(n−1), where n is a fixed integer and we assume that a 6= 0,

then cn+1 = 0. It is easy to see that the subsequent coefficients cn+2, cn+3, cn+4, ...

vanish and equation (A.0.1) has the solution

ci = −n(n− 1)

(

4a

b− a

)i
(2i− 1)(n+ i− 2)!

(2i)!(n− i)!
c0 , 1 ≤ i ≤ n. (A.0.2)

Then from equation (2.4.3) (when r = 0) and (A.0.2) we generate

Y1 = c0

[

1 − n(n− 1)
n
∑

i=1

(

4a

b− a

)i
(2i− 1)(n+ i− 2)!

(2i)!(n− i)!
X i

]

(A.0.3)

where a− b+ α = 4an(n− 1).

On substituting r = 3
2

into (2.4.5), we get

ci+1 =
a(2i+ 3)(2i+ 1) − ((a− b) + α)

(a− b)(2i+ 5)(2i+ 2)
ci, i ≥ 0. (A.0.4)

If we set a−b+α = a(2n+3)(2n+1), where n is a fixed integer and we assume that

a 6= 0, then cn+1 = 0. Also we see that the subsequent coefficients cn+2, cn+3, cn+4, ...

vanish and equation (A.0.4) is solved to give

ci =

(

4a

b− a

)i
3(2i+ 2)(n+ i+ 1)!

(n + 1)(n− i)!(2i+ 3)!
c0, 1 ≤ i ≤ n. (A.0.5)
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Then from equations (2.4.3) (when r = 3
2

) and (A.0.5) we generate

Y1 = c0X
3
2

[

1 +
3

(n+ 1)

n
∑

i=1

(

4a

b− a

)i
(2i+ 2)(n+ i+ 1)!

(n− i)!(2i+ 3)!
X i

]

(A.0.6)

where a− b+ α = a(2n+ 3)(2n+ 1). The elementary functions (A.0.3) and (A.0.6)

comprise the first solution of the differential equation (2.3.6) for appropriate values

of a− b+ α.

We take the second solution of (2.3.6) to be of the form

Y2 = [aX − (a− b)]
1
2 u(X)

where u(X) is an arbitrary function. On substituting Y2 into (2.3.6) we obtain

4X [aX − (a− b)] ü− 2 [2aX + (a− b)] u̇− [2a− b+ α]u = 0 (A.0.7)

where dots denote differentiation with respect to X. We write the solution of the

differential equation (A.0.7) in the series form

u =
∞
∑

n=0

cnX
n+r , c0 6= 0. (A.0.8)

On substituting (A.0.8) into the differential equation (A.0.7) we find

2(a− b)c0r[−2(r − 1) + 1]Xr−1 −
∞
∑

n=0

(2(a− b)cn+1(n+ 1 + r)[2(n+ r) − 1]

−cn[4a(n + r)2 − (2a− b+ α)]
)

Xn+r = 0.

(A.0.9)

Setting the coefficient of Xr−1 in (A.0.9) to zero we find

(a− b)c0r[2(r − 1) − 1] = 0.

which is the indicial equation. Since c0 6= 0 and a 6= b we must have r = 0 or r = 3
2
.

Equating the coefficient of Xn+r in (A.0.9) to zero we find that

cn+1 =
4a(n+ r)2 − (2a− b+ α)

2(a− b)(n + r + 1)[2(n+ r) − 1]
cn (A.0.10)
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We establish a general structure for the coefficients by considering the leading terms.

On substituting r = 0 in equation (A.0.10) we obtain

ci+1 =
4ai2 − (2a− b+ α)

(a− b)(2i+ 2)(2i− 1)
ci. (A.0.11)

We assume that a − b + α = a(2n + 3)(2n + 1) where n is a fixed integer. Then

cn+2 = 0 from (A.0.11). Consequently the remaining coefficients cn+3, cn+4, cn+5, ...

vanish and equation (A.0.11) has the solution

ci = −(n + 1)

(

4a

b− a

)i
(2i− 1)(n+ i)!

(2i)!(n− i+ 1)!
c0, 1 ≤ i ≤ n+ 1. (A.0.12)

Then from the equations (A.0.8) (when r = 0) and (A.0.12) we find

u = c0

[

1 − (n+ 1)
n+1
∑

i=1

(

4a

b− a

)i
(2i− 1)(n+ i)!

(2i)!(n− i+ 1)!
X i

]

.

Hence we generate the result

Y2 = c0 [aX − (a− b)]
1
2

[

1 − (n+ 1)
n+1
∑

i=1

(

4a

b− a

)i
(2i− 1)(n+ i)!

(2i)!(n− i+ 1)!
X i

]

(A.0.13)

where a− b+ α = a(2n+ 3)(2n+ 1).

On substituting r = 3
2

into equation (A.0.10) we obtain

ci+1 =
a(2i+ 3)2 − (2a− b+ α)

(a− b)(2i+ 5)(2i+ 2)
ci. (A.0.14)

We assume that a − b+ α = 4an(n − 1) where n is a fixed integer. Then cn−1 = 0

from (A.0.14). Consequently the remaining coefficients cn, cn+1, cn+2, ... vanish and

(A.0.14) can be solved to obtain

ci =

(

4a

b− a

)i
3(2i+ 2)(n+ i)!

n(n− 1)(2i+ 3)!(n− i− 2)!
c0, i ≤ n− 2. (A.0.15)

Then from the equations (A.0.8) (when r = 3
2
) and (A.0.15) we have

u = c0X
3
2

[

1 +
3

n(n− 1)

n−2
∑

i=1

(

4a

b− a

)i
(2i+ 2)(n+ i)!

(2i+ 3)!(n− i− 2)!
X i

]

.

Hence we generate the result

Y2 = c0 [aX − (a− b)]
1
2 X

3
2

[

1 +
3

n(n− 1)

n−2
∑

i=1

(

4a

b− a

)i
(2i+ 2)(n+ i)!

(2i+ 3)!(n− i− 2)!
X i

]

(A.0.16)
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where a − b + α = 4an(n − 1). The functions (A.0.13) and (A.0.16) generate the

second solution of the differential equation (2.3.6).

The solutions found can be written in terms of two classes of elementary func-

tions. We have the first category of solutions

Y = D1 [aX − (a− b)]
1
2

[

1 − (n+ 1)
n+1
∑

i=1

(

4a

b− a

)i
(2i− 1)(n+ i)!

(2i)!(n− i+ 1)!
X i

]

+D2X
3
2

[

1 +
3

(n + 1)

n
∑

i=1

(

4a

b− a

)i
(2i+ 2)(n+ i+ 1)!

(n− i)!(2i+ 3)!
X i

]

(A.0.17)

for a − b + α = a(2n + 3)(2n + 1), where D1 and D2 are arbitrary constants. In

terms of x the solution (A.0.17) becomes

y = d1(1 + ax)
1
2

[

1 − (n + 1)
n+1
∑

i=1

(

4a

b− a

)i
(2i− 1)(n+ i)!

(2i)!(n− i+ 1)!
(1 + bx)i

]

+d2 (1 + bx)
3
2

[

1 +
3

(n+ 1)

n
∑

i=1

(

4a

b− a

)i
(2i+ 2)(n+ i+ 1)!

(n− i)!(2i+ 3)!
(1 + bx)i

]

(A.0.18)

where d1 = D1

√
b and d2 = D2 are new arbitrary constants. The second category

of solutions is given by

Y = D1 [aX − (a− b))]
1
2 X

3
2

[

1 +
3

n(n− 1)

n−2
∑

i=1

(

4a

b− a

)i
(2i+ 2)(n+ i)!

(2i+ 3)!(n− i− 2)!
X i

]

+D2

[

1 − n(n− 1)

n
∑

i=1

(

4a

b− a

)i
(2i− 1)(n+ i− 2)!

(2i)!(n− i)!
X i

]

(A.0.19)

for a− b+α = 4an(n− 1), where D1 and D2 are arbitrary constants. In terms of x

the solution (A.0.19) becomes

y = d3(1 + ax)
1
2 (1 + bx)

3
2

[

1 +
3

n(n− 1)

n−2
∑

i=1

(

4a

b− a

)i
(2i+ 2)(n+ i)!

(2i+ 3)!(n− i− 2)!
(1 + bx)i

]

+d4

[

1 − n(n− 1)

n
∑

i=1

(

4a

b− a

)i
(2i− 1)(n+ i− 2)!

(2i)!(n− i)!
(1 + bx)i

]

(A.0.20)

where d3 = D1

√
b and d4 = D2 are new arbitrary constants.
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Appendix B

In the Appendix B we derive the elementary functions (3.5.1) and (3.5.2).

On substituting r = 0 in (3.4.9) and setting d = −n, we obtain

ci =

(

b

a− b

)

(n− i+ 1)(2n− 2i+ 3)

i(2i− 3)
ci−1, i ≥ 1 (B.0.1)

where n is a fixed integer. Then from (B.0.1) we observe that cn+1 = 0. It is easy

to see that the subsequent coefficients cn+2, cn+3, cn+4, . . . vanish and equation

(B.0.1) has the solution

ci = (−1)i−1

(

b

b− a

)i
(2i− 1)(2n+ 1)!

(2i)!(2n− 2i+ 1)!
c0, 0 ≤ i ≤ n. (B.0.2)

Then from (3.4.7) (when r = 0) and (B.0.2), we generate

U1 = c0

n
∑

i=0

(−1)i−1

(

b

b− a

)i
(2i− 1)(2n+ 1)!

(2i)!(2n− 2i+ 1)!

[

(1 + ax) − (b− a)

b

]i

(B.0.3)

where d = −n.

On substituting r = 0 in (3.4.9) and setting d = 1
2
− n we obtain

ci =

(

b

a− b

)

(n− i+ 1)(2n− 2i+ 1)

i(2i− 3)
ci−1, i ≥ 1 (B.0.4)

where n is fixed integer. Then from (B.0.4) we observe that cn+1 = 0. Therefore

the subsequent coefficients cn+2, cn+3, cn+4, . . . vanish and the equation (B.0.4) is

solved to give

ci = (−1)i−1

(

b

b− a

)i
(2i− 1)(2n)!

(2i)!(2n− 2i)!
c0, 0 ≤ i ≤ n. (B.0.5)
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Then from (3.4.7) (when r = 0) and (B.0.5), we generate

U1 = c0

n
∑

i=0

(−1)i−1

(

b

b− a

)i
(2i− 1)(2n)!

(2i)!(2n− 2i)!

[

(1 + ax) − (b− a)

b

]i

(B.0.6)

where d = 1
2
− n. The elementary functions (B.0.3) and (B.0.6) comprise the first

solution of the differential equation (3.4.6) for appropriate values of d.

On substituting r = 3/2 into (3.4.9) and setting d = −n, we get

ci =

(

b

a− b

)

(n− i)(2n− 2i− 1)

i(2i+ 3)
ci−1, i ≥ 1 (B.0.7)

where n is fixed integer. From (B.0.7) we observe that cn = 0. Therefore the

subsequent coefficients cn+1, cn+2, cn+3, . . . vanish and the equation (B.0.7) is

solved to give

ci = 6

(

b

a− b

)i
(i+ 1)(2n− 2)!

(2i+ 3)!(2n− 2i− 2)!
c0, 0 ≤ i ≤ n− 1. (B.0.8)

From (3.4.7) (when b = 3/2) and (B.0.8) we generate

U2 = 6c0

[

(1 + ax) − (b− a)

b

]3/2

×
n−1
∑

i=0

(

b

a− b

)i
(i+ 1)(2n− 2)!

(2i+ 3)!(2n− 2i− 2)!

[

(1 + ax) − (b− a)

b

]i

(B.0.9)

where d = −n.

On substituting r = 3/2 in (3.4.9) and setting d = 1
2
− n, we obtain

ci =

(

b

a− b

)

(n− i− 1)(2n− 2i− 1)

i(2i+ 3)
ci−1, i ≥ 1 (B.0.10)

where n is fixed integer. From (B.0.10) we observe that cn−1 = 0. Therefore the

subsequent coefficients cn, cn+1, cn+2, . . . vanish and the equation (B.0.10) has the

solution

ci = 6

(

b

a− b

)i
(i+ 1)(2n− 3)!

(2i+ 3)!(2n− 2i− 3)!
c0, 0 ≤ i ≤ n− 2 (B.0.11)

From (3.4.7) (when r = 3/2) and (B.0.11) we generate

U2 = 6c0

[

(1 + ax) − (b− a)

b

]3/2

×

n−2
∑

i=0

(

b

a− b

)i
(i+ 1)(2n− 3)!

(2i+ 3)!(2n− 2i− 3)!

[

(1 + ax) − (b− a)

b

]i

(B.0.12)
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where d = 1
2
− n. The functions (B.0.9) and (B.0.12) generate the second solution

of the differential equation (3.4.6) for appropriate values of d.

The solutions found can be written in terms of two classes of elementary func-

tions. We have the first category of solutions

y(x) = A1
1

(1 + ax)n

n
∑

i=0

(−1)i−1

(

b

b− a

)i
(2i− 1)

(2i)!(2n− 2i+ 1)!

[

(1 + ax) − (b− a)

b

]i

+A2
1

(1 + ax)n

[

(1 + ax) − (b− a)

b

]3/2

×

n−1
∑

i=0

(

b

a− b

)i
(i+ 1)

(2i+ 3)!(2n− 2i− 2)!

[

(1 + ax) − (b− a)

b

]i

(B.0.13)

where b
a
− 1 − α = 4n2 relates the constants a, b, α and n. The second category of

solutions is given by

y(x) = A1
1

(1 + ax)n−1/2

n
∑

i=0

(−1)i−1

(

b

b− a

)

(2i− 1)

(2i)!(2n− 2i)!

[

(1 + ax) − (b− a)

b

]i

+A2
1

(1 + ax)n−1/2

[

(1 + ax) − (b− a)

b

]3/2

×

n−2
∑

i=0

(

b

a− b

)i
(i+ 1)

(2i+ 3)!(2n− 2i− 3)!

[

(1 + ax) − (b− a)

b

]i

(B.0.14)

where b
a
− 1 − α = 4n(n− 1) + 1 relates the constants a, b, α and n.
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