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Abstract. A factor u of a string y is a cover of y if every letter of y lies within some
occurrence of u in y; thus every cover u is also a border – both prefix and suffix – of
y. A string y covered by u thus generalises the idea of a repetition; that is, a string
composed of exact concatenations of u. Even though a string is coverable somewhat
more frequently than it is a repetition, still a string that can be covered by a single u

is rare. As a result, seeking to find a more generally applicable and descriptive notion
of cover, many articles were written on the computation of a minimum k-cover of y;
that is, the minimum cardinality set of strings of length k that collectively cover y.
Unfortunately, this computation turns out to be NP-hard. Therefore, in this article, we
propose new, simple, easily-computed, and widely applicable notions of string covering
that provide an intuitive and useful characterisation of a string and its prefixes: the
enhanced cover and the enhanced cover array.
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1 Introduction

The notion of periodicity in strings and its many variants have been well-studied
in many fields like combinatorics on strings, pattern matching, data compression,
automata theory, formal language theory, and molecular biology (cf. [18]). Periodicity
is of paramount importance in many applications – for example, periodic factors in
DNA are of interest to genomics researchers [16] – as well as in theoretical studies
in combinatorics on words. Not long ago the term regularity [10] was coined to cover
such variants, and a recent survey [22] provides coverage of the exact regularities
so far identified and the sequential algorithms proposed to compute them. In this
article, in an effort to capture a more natural characterisation of a string in terms of
its factors, we introduce a new form of regularity that is both descriptive and easy to
compute.

⋆ Supported by the NSF-funded iPlant Collaborative (NSF grant #DBI-0735191).
⋆⋆ Supported by a Newton Fellowship.
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a b a a a b a a a b a a a b a a a b

Figure 1. Periodicity in string abaaabaaabaaabaaab

A string y is a repetition if y = uk for some non-empty string u of length m and
some integer k ≥ 2; in this case, y has period m (see Fig. 1). But the notion of period-
icity is too restrictive to provide a description of a string such as x = abaababaaba,
which is covered by copies of aba, yet not exactly periodic. To fill this gap, the idea
of quasiperiodicity was introduced [1,2]. In a periodic string, the occurrences of the
single periods do not overlap. In contrast, the quasiperiods of a quasiperiodic string
may overlap. Quasiperiodicity thus enables the detection of repetitive structures that
would be ignored by the classical characterisation of periods (see Fig. 2 in contrast
with Fig. 3). The most well-known formalisation of quasiperiodicity is the cover of
string. A factor u of length m of a string y of length n is said to be a cover of y if
m < n, and every letter of y lies within some occurrence of u. Note that a cover of y
must also be a border – both suffix and prefix – of y. Thus in the above example aba
is a cover of x = abaababaaba.

a b a a b a a b a a a b a a a b

Figure 2. Quasiperiodicity in string abaabaabaaabaaab

a b a a b a a b a a a b a a a b

Figure 3. Periodicity in string abaabaabaaabaaab

In [3], Apostolico, Farach, and Iliopoulos described a recursive linear-time algo-
rithm to compute the shortest cover of a string y of length n, if it has a cover;
otherwise to report that no cover exists. Breslauer [4] introduced the minimal cover
array C – an array of size n of integers such that C[i], for all 0 ≤ i < n, gives the
shortest cover of y[0 . . i], or zero if no cover exists. Moreover, he described an on-
line linear-time algorithm to compute C. In [19,20], Moore and Smyth described a
linear-time algorithm to compute all the covers of y. An O(log(log n))-time parallel
algorithm was given later by Iliopoulos and Park in [13]. Finally, Li and Smyth [17]
introduced the maximal cover array CM – an array of size n of integers such that
CM[i] gives the longest cover of y[0 . . i], or zero if no cover exists – and showed that,
analogous to the border array [21], CM actually specifies all the covers of every prefix
of y. They then described a linear-time algorithm to compute CM.

Still it remains unlikely that an arbitrary string, even on alphabet {a, b}, has a
cover; for example, changing the above example x to x′ = abaaababaaba yields a
string that not only has no cover, but whose every prefix also has no cover. Accord-
ingly, in an effort to extend the descriptive power of quasiperiodicity, the notion of
k-cover was introduced [14]: if for a given string y and a given positive integer k there
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exists a set Ck of factors of y, each of length k, such that every letter of y lies within
some occurrence of some element of Ck, then Ck is said to be a k-cover of y; a minimal
k-cover if no smaller set has this property. Originally it was thought, incorrectly, that
a minimal k-cover of a string y could be computed in time polynomial in n [14], but
then later the problem was shown to be NP-complete for every k ≥ 2 [8], even though
an approximate solution could be computed in polynomial time [11].

Our contribution. We have seen that while the notion of cover captures very well
the repetitive nature of extremely repetitive strings, nevertheless most strings, and
particularly those encountered in practice, will have no cover, and so this measure of
repetitiveness breaks down. More strings will have a useful k-cover, but this feature
is hard to compute. Therefore we introduce a new and more natural and applicable
form of quasiperiodicity.

– Enhanced cover. A border u of a string y is an enhanced cover of y, if the
number of letters of y which lie within some occurrence of u in y is a maximum
over all borders of y (see Fig. 5).

This gives rise to the following data structure.

– Enhanced cover array. An array of size n of integers is the enhanced cover array
of y, if it stores the length of the enhanced cover for every prefix of y.

In this article, we present efficient methods for computing all enhanced covers and
the enhanced cover array of a string, and, in particular, the minimal enhanced cover
and the minimal enhanced cover array. These methods are based on the maintenance
of a new, simple but powerful data structure, which stores the number of positions
covered by some prefixes of the string. This data structure allows us to compute
the minimal enhanced cover of a string of length n in time O(n) and the minimal
enhanced cover array in time O(n log n).

The rest of this article is structured as follows. In Section 2, we present basic
definitions and notation used throughout this article, and we also formally define the
problems solved. In Section 3, we prove several combinatorial properties of the borders
of y, which may be of independent interest. In Section 4, we show how to compute
a few auxiliary arrays, which will be used for designing the proposed algorithms. In
Section 5, we present an algorithm for computing the minimal enhanced cover of y. In
Section 6, we present an algorithm for computing the minimal enhanced cover array
of y. In Section 7, we present some experimental results. Finally, we briefly conclude
with some future proposals in Section 8.

2 Definitions and notation

An alphabet Σ is a finite non-empty set whose elements are called letters. A string on
an alphabet Σ is a finite, possibly empty, sequence of elements of Σ. The zero-letter
sequence is called the empty string, and is denoted by ε. The length of a string x is
defined as the length of the sequence associated with the string x, and is denoted by
|x|. We denote by x[i], for all 0 ≤ i < |x|, the letter at index i of x. Each index i, for
all 0 ≤ i < |x|, is a position in x when x 6= ε. It follows that the ith letter of x is the
letter at position i− 1 in x, and that x = x[0 . . |x| − 1].
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The concatenation of two strings x and y is the string of the letters of x followed
by the letters of y. It is denoted by xy. For every string x and every natural number
n, we define the nth power of the string x, denoted by xn, by x0 = ε and xk = xk−1x,
for all 1 ≤ k ≤ n. A string x is a factor of a string y if there exist two strings u and v,
such that y = uxv. A factor x of a string y is proper if x 6= y. Let the strings x, y, u,
and v be such that y = uxv. If u = ε, then x is a prefix of y. If v = ε, then x is a
suffix of y.

Let x be a non-empty string. An integer p, such that 0 < p ≤ |x|, is called a
period of x if x[i] = x[i + p], for all 0 ≤ i < |x| − p. Note that the length of a non-
empty string is a period of this string, so that every non-empty string has at least
one period. We define thus without any ambiguity the period of a non-empty string
x as the smallest of its periods. It is denoted by per(x). A border of a non-empty
string x is a proper factor of x (including the empty string) that is both a prefix and
a suffix of x. We define the border of a non-empty string x as the longest border of x.
By border(x), we denote the length of the border of x. The notions of period and of
border are dual. It is a known fact (cf. [9]) that, for any non-empty string x, it holds
per(x) + border(x) = |x|. The border array B of a non-empty string y of length n is
the array of size n of integers for which B[i], for all 0 ≤ i < n, stores the length of
the border of the prefix y[0 . . i] of y – zero if none.

A non-empty string u of length m is a cover of a non-empty string y if both
m < n, and there exists a set of positions P ⊆ {0, . . . , n − m} that satisfies both
y[i . . i + m − 1] = u, for all i ∈ P, and

⋃
i∈P{i, . . . , i + m − 1} = {0, . . . , n − 1}. In

other words, u is a cover of y, if every letter of y lies within some occurrence of u in
y, and u 6= y.

a b a a b a a b a a a b a a

Figure 4. Cover of string abaabaabaaabaa

A string u is the minimal cover of string y if u is the shortest cover of y. The
minimal cover array C of a non-empty string y of length n is the array of size n of
integers for which C[i], for all 0 ≤ i < n, stores the length of the minimal cover of the
prefix y[0 . . i] of y – zero if none.

Definition 1. A border u of a string y is an enhanced cover of y if the number of
letters of y which lie within occurrences of u in y is a maximum over all borders of y.

a b a a b a a b b a a b a a b a a b

Figure 5. Enhanced cover of string abaabaabbaabaabaab

Definition 2. We define as minimal enhanced cover the shortest enhanced cover
of y.
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Definition 3. The minimal enhanced cover array MEC of a non-empty string y of
length n is the array of size n of integers for which MEC[i], for all 0 ≤ i < n, stores
the length of the minimal enhanced cover of the prefix y[0 . . i] of y – zero if none.

Example 4. Consider the string y = abaaababaabaaaababaa. The following table
illustrates the border array B of y, the minimal cover array C of y, and the minimal
enhanced cover array MEC of y. In this example, array C consists of only zeros, as a
minimal cover does not exist for any of the prefixes of y. In contrast, array MEC is a
more powerful data structure than array C, as apart from the minimal cover of every
prefix, it also contains the minimal enhanced cover of every prefix in the case when
a minimal cover does not exist. For instance, border abaa is the minimal enhanced
cover of y, as 15 letters of y lie within some occurrence of abaa in y.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
y[i] a b a a a b a b a a b a a a a b a b a a

B[i] 0 0 1 1 1 2 3 2 3 4 2 3 4 5 1 2 3 2 3 4
C[i] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MEC[i] 0 0 1 1 1 2 3 2 3 4 2 3 4 1 1 2 3 2 3 4

We consider the following problems for a non-empty string y.

Problem 5. Compute the minimal enhanced cover of y.

Problem 6. Compute the minimal enhanced cover array MEC of y.

3 Combinatorial properties of non-periodic borders

Definition 7. A string w is called periodic if it is non-empty and 2per(w) ≤ |w|.
Otherwise it is called non-periodic.

The efficiency of the algorithms in this article is a consequence of considering only
non-periodic factors. The following fact explains why this restriction is valid.

Fact 1 A periodic string always has a (proper) cover. As a consequence, the minimal
enhanced cover is never periodic.

Proof. Let w be a periodic string with the border u. As a factor of w, u has at least
two occurrences: as a prefix and as a suffix. Since 2|u| ≥ |w|, these occurrences cover v.
In particular, if w is an enhanced cover, then u is a shorter enhanced cover. Hence w
cannot be the minimal enhanced cover. ⊓⊔

We prove two combinatorial properties of non-periodic borders, which are then
used to prove the time complexities of our algorithms. The first one is simple fact, but,
with corollaries, is the main reason behind the restriction to non-periodic borders.

Fact 2 Let u and v be borders of y, such that |v| > |u|, and v is non-periodic. Then
|v| > 2|u|.

Proof. Clearly, u is a border of v, hence |v| − |u| is a period of v. However v is non-
periodic, so 2(|v| − |u|) > |v|, i.e. |v| > 2|u|. ⊓⊔

Corollary 8. The length of the kth shortest non-periodic border of y is at least 2k−1.
In particular, the total number of the non-periodic borders of y is at most log n.
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Proof. Let bk be the length of the kth shortest non-periodic border of y. From Fact 2,
bk+1 ≥ 2bk+1. Moreover, b1 ≥ 1. The first part of Corollary follows by induction. For
the second part, it is enough to see that if there were k > log n non-periodic borders,
then bk ≥ 2k − 1 > n− 1, which is clearly a contradiction. ⊓⊔

Note that by Corollary 8, the total number of occurrences of the non-periodic
prefixes of y is O(n log n). This is because if a prefix v ends with an occurrence of u,
then u = v or u is a border of v. This induces a one-to-one correspondence between
such occurrences – with exception of O(n) ones starting 0 – and the non-periodic
borders of prefixes of y. It turns out that, if we consider just the occurrences of
non-periodic borders of y, the number drops to O(n).

Before we proceed, let us introduce a notion, which we use across the proofs
below. Let X be an array of size n of integers for which X[i], for all 0 ≤ i < n,
stores the number of those non-periodic borders of the prefix y[0 . . i] of y, which are
simultaneously borders of y.

Lemma 9. The total number of occurrences of the non-periodic borders of y is linear.
More precisely

n−1∑

i=0

X[i] ≤ 2n.

Let us start with an auxiliary claim.

Claim. Let 0 ≤ i, j < n be integers. If X[i] > k then i ≥ 3 · 2k − 2. Moreover, if i < j,
X[i] > k and X[j] > k then j − i ≥ 2k.

Proof. Clearly, if u and v are non-periodic borders of y, then the shorter one is a non-
periodic border of the longer one. Thus X[i] > k if and only if the k + 1th shortest
non-periodic border of y is a border of y[0 . . i]. Let us denote this border by b. By
Corollary 8, |b| ≥ 2k+1 − 1. Any two occurrences of b in y must have their starting

positions distant by at least |b|+1

2
≥ 2k. A pair of closer occurrences would induce a

period of b no larger than |b|
2
, which may not exist, since b is non-periodic.

For the first part of the Claim, consider the occurrence starting at 0 and the
occurrence ending at i, i.e. starting at i− |b|+ 1. These are different occurrences, so
i ≥ |b| − 1 + 2k ≥ 3 · 2k − 2. In the second part, there are occurrences of b ending at
i and at j, which implies that j − i ≥ 2k. ⊓⊔

Proof (of Lemma 9). In the following proof, we use the Iverson bracket [P ]. For a
logical statement P , the Iverson bracket [P ] is by definition equal to 1 if P is satisfied,
and 0 otherwise.

Clearly for a non-negative integer m we have m =
∑∞

k=0
[k < m]. Hence

n−1∑

i=0

X[i] =
n−1∑

i=0

∞∑

k=0

[k < X[i]] =
∞∑

k=0

n−1∑

i=0

[X[i] > k].

Let us bound the single term of the outer sum. This sum counts positions i such that
X[i] > k. By Claim, the first of them is at least 3 ·2k−2, and the distance between any
two such positions is at least 2k. This means that if we write them all in increasing
order, then the mth one is at least (m + 2) · 2k − 2. In particular, for m > n

2k
, the
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mth position would be at least n+ 2 · 2k − 2 ≥ n, which is clearly impossible. Hence,
there cannot be more than n

2k
such positions, i.e.

n−1∑

i=0

[X[i] > k] ≤
n

2k
.

Therefore
n−1∑

i=0

X[i] =
∞∑

k=0

n−1∑

i=0

[X[i] > k] ≤
∞∑

k=0

n

2k
= 2n.

⊓⊔

4 Auxiliary arrays

Our algorithms make use of a few auxiliary arrays. In this section, we show how to
compute these arrays efficiently. Below we assume the availability of the border array
B, which is computable in linear time (see, e.g. [15,9,21]), and an array CB of size n

such that, for all 0 ≤ i < n, CB[i] is 1 if i + 1 is a border of y, and 0 otherwise. CB
is trivially computed from B as the borders of y are exactly the longest border of y
and its borders.

Definition 10. Given a string y of length n, the pruned border array A is an array
of size n of integers for which A[i], for all 0 ≤ i < n, stores the length of the longest
non-periodic border of y[0 . . i] – zero if none.

The pruned border array A of a string y can be computed by Algorithm 1 in linear
time. Algorithm 1 loops through the prefixes of y and in each step considers two
cases. If the longest border u of a prefix v is non-periodic, then u is the border of
v we are looking for. Otherwise, the longest non-periodic border of v is the longest
non-periodic border of u.

Algorithm 1: PrunedBorderArray

Input : The border array B of string y[0 . . n− 1]
Output: The pruned border array A

1 for i← 0 to n− 1 do

2 b← B[i]
3 if b = 0 or 2 · B[b− 1] < b then

4 A[i]← b

5 else

6 A[i]← A[b− 1]

Definition 11. Given a string y of length n, let R be an array of size n of integers
for which R[i], for all 0 ≤ i < n, stores the length of the longest non-periodic border
of y[0 . . i], which is also a border of y – zero if none.

R can be computed by Algorithm 2 in linear time. For each prefix v of y we
determine the longest non-periodic border u of v and consider the following cases. If
u is a border of y (in particular if u is empty), then clearly R[i] = A[i]. Otherwise,
the border we seek is a shorter non-periodic border of v, so the result for v is same
as for u.
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Algorithm 2: Array R

Input : The pruned border array A and array CB of string y[0 . . n− 1]
Output: Array R

1 for i← 0 to n− 1 do

2 b← A[i]
3 if b = 0 or CB[b− 1] = 1 then

4 R[i]← b

5 else

6 R[i]← R[b− 1]

Definition 12. Given a string y of length n, PCP is an array of size n of integers
for which PCP[i], for all 0 ≤ i < n, stores the number of letters of y which lie within
an occurrence of the non-periodic prefix of length i+1 having at least two occurrences
in y – zero if the prefix is periodic or does not have two occurrences.

The PCP array of string y can be computed by Algorithm 3. It takes as input the
pruned border array A of y. We also maintain an array LO of size n of integers, for
which LO[i], for all 0 ≤ i < n, stores the ending position of the last occurrence of the
non-periodic prefix of length i + 1 in y, not taking into account the occurrence as a
prefix. Fields corresponding to periodic prefixes are never read or written.

Algorithm 3: PositionsCoveredByPrefixesArray

Input : The pruned border array A[0 . . n− 1] of string y[0 . . n− 1]
Output: The PCP array

1 PCP← FillWithZeros

2 for i← 0 to n− 1 do

3 b← A[i]
4 while b > 0 do

5 if PCP[b− 1] = 0 then

6 PCP[b− 1]← min(2b, i+ 1)

7 else

8 PCP[b− 1]← PCP[b− 1] + min(b, i− LO[b− 1])

9 LO[b− 1]← i

10 b← A[b− 1]

The algorithm consists of an outer for loop, going through the pruned border
array A, and an inner while loop, iterating through the non-periodic borders of prefix
y[0 . . i]. If the first occurrence of some border of length b of y[0 . . i] is found (line 5),
we take the minimum between 2b, that is in case y[0 . . b − 1] does not overlap with
y[i− b+ 1 . . i], and i+ 1, that is in case they overlap (line 6). If another occurrence
of the same border is found (line 7), we update PCP[b − 1] by adding the minimum
between b, that is in case y[i− b+ 1 . . i] does not overlap with the last occurrence of
the border, and i − LO[b − 1], that is in case they overlap (line 8). Hence we obtain
the following result.

Theorem 13. The PCP array of a string of length n can be computed by Algorithm 3
in time O(n log n).
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Proof. The algorithm consists of an outer for loop, going through the pruned border
array A, and an inner while loop, iterating through the non-periodic borders of prefix
y[0 . . i]. By Corollary 8, the number of non-periodic borders of each prefix is bounded
by log n. Hence, in overall, the time required is O(n log n). ⊓⊔

We define one more array, similar to PCP but restricted to borders of the whole
string only.

Definition 14. Given a string y of length n, PCB is an array of size n of integers
for which PCB[i], for all 0 ≤ i < n, stores the number of letters of y which lie within
an occurrence of the non-periodic prefix of length i+ 1, which is a border of y – zero
if the prefix is periodic or is not a border of y.

Example 15. Consider the string y = aabaabaabbaaabaabaa. The following table
illustrates the border array B of y, and the auxiliary arrays A, CB, R, PCP, and PCB

of y.
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

y[i] a a b a a b a a b b a a a b a a b a a

B[i] 0 1 0 1 2 3 4 5 6 0 1 2 2 3 4 5 6 7 8
A[i] 0 1 0 1 1 3 4 5 3 0 1 1 1 3 4 5 3 4 5

CB[i] 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
R[i] 0 1 0 1 1 0 1 5 0 0 1 1 1 0 1 5 0 1 5

PCP[i] 13 0 15 14 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PCB[i] 13 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 Minimal enhanced cover

In this section, we show how to compute the minimal enhanced cover of string y. The
minimal enhanced cover of y can be computed by Algorithm 4. It takes as input the
array R of y. The algorithm consists of an outer for loop, going through the array R,
and an inner while loop, iterating through the non-periodic borders of prefix y[0 . . i]
which are also borders of y. The key idea is the on-line maintenance of the PCB array
(lines 5–8). Notice that array R considers only borders of the prefixes of y which are
also borders of y (line 3). The number of positions covered by the border of length b

is given by PCB[b− 1] (line 10).
By Lemma 9, the total number of occurrences of the considered borders is bounded

by 2n. Hence we obtain the following result.

Theorem 16. The minimal enhanced cover of a string of length n can be computed
in time O(n).

6 Minimal enhanced cover array

In this section, we show how to compute the minimal enhanced cover array MEC of
string y. Array MEC of y can be computed by Algorithm 5. It takes as input the
pruned border array A of y. Similarly as in the case of Algorithm PositionsCov-

eredByPrefixesArray, it goes through the pruned border array A, and iterates
through the pruned set of borders of prefix y[0 . . i]. Thus we are able to maintain
the PCP array on-line, and use it to compute array MEC. For each prefix y[0 . . i],
in addition to the maintenance of the PCP array, we store the maximum value of
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Algorithm 4: MinimalEnhancedCover

Input : The array R of string y[0 . . n− 1]
Output: The length ℓ of the minimal enhanced cover

1 PCB[0 . . n− 1]← FillWithZeros; δ ← 0; ℓ← 0
2 for i← 0 to n− 1 do

3 b← R[i]
4 while b > 0 do

5 if PCB[b− 1] = 0 then

6 PCB[b− 1]← min(2b, i+ 1)

7 else

8 PCB[b− 1]← PCB[b− 1] + min(b, i− LO[b− 1])

9 LO[b− 1]← i

10 if PCB[b− 1] > δ then

11 δ ← PCB[b− 1]
12 ℓ← b

13 else if PCB[b− 1] = δ and b < ℓ then

14 ℓ← b

15 b← R[b− 1]

Algorithm 5: MinimalEnhancedCoverArray

Input : The pruned border array A[0 . . n− 1] of string y[0 . . n− 1]
Output: The minimal enhanced cover array MEC

1 PCP[0 . . n− 1]← FillWithZeros

2 for i← 0 to n− 1 do

3 b← A[i]
4 ℓ← 0
5 δ ← 0
6 while b > 0 do

7 if PCP[i] = 0 then

8 PCP[i]← min(2b, i+ 1)

9 else

10 PCP[i]← PCP[i] + min(b, i− LO[b− 1])

11 if PCP[b− 1] ≥ δ then

12 δ ← PCP[b− 1]
13 ℓ← b

14 LO[b− 1]← i

15 b← A[b− 1]

16 MEC[i]← ℓ

PCP[b− 1], for each border of length b of that prefix, in a variable δ, and the length
b in a variable ℓ (lines 11–13).

By Theorem 13, the PCP array can be computed in time O(n log n). Hence we
obtain the following result.

Theorem 17. The minimal enhanced cover array of a string of length n can be com-
puted in time O(n log n).
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7 Experimental results

We were able to verify the runtime of the proposed algorithms in experiments.

Fig. 6 illustrates the maximal ratio of the total number of occurrences of the non-
periodic borders of y, computed by Algorithm MinimalEnhancedCover, to the
length n of string, for all strings on the binary alphabet of lengths 1 to 31. These
ratios are known to be smaller than 2 by Lemma 9. However, values close to this
bound are not observed for small word length.

Figure 6. Maximal ratio of of the total number of occurrences of the non-periodic borders to the
length n of string, for all strings on the binary alphabet

Fig. 7 and Fig. 8 illustrate the maximal ratio of the number of operations of
AlgorithmMinimalEnhancedCoverArray to the length n of string, for all strings
on the binary alphabet of lengths 1 to 31, and the ratio of the number of operations
to the length n of string, for Fibonacci strings f3 to f45, respectively. These ratios are
known to be smaller than log n by Theorem 13.

The main observation from Fig. 7 is that, although the upper theoretical bound of
these ratios isO(log n), in practice, this is much less for strings on the binary alphabet.
Fig. 8 strongly indicates that these ratios are probably constant for Fibonacci strings;
something it would be interesting to show in the future.

In order to evaluate the performance of Algorithm MinimalEnhancedCover-

Array with real datasets, we measured the ratio of the number of operations to
the length of three DNA sequences: the single chromosome of Escherichia coli str.
K-12 substr. MG1655; chromosome 1 of Mus musculus (laboratory mouse), Build
37.2; and chromosome 1 of Homo sapiens (human), Build 37.2. The measured ratios
are 1.000006, 1.000000, and 1.001192, respectively, suggesting linear runtime of the
proposed algorithms in practical terms.

The implementation of the proposed algorithms is available at a website
(http://www.exelixis-lab.org/solon/asc.html) for further testing.

http://www.exelixis-lab.org/solon/asc.html
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Figure 7. Maximal ratio of the number of operations of Algorithm 4 to the length n of string, for
all strings on the binary alphabet

Figure 8. Ratio of the number of operations of Algorithm 4 to the length n of string, for Fibonacci
strings

8 Concluding remarks

There are several directions for future work. Our immediate target is to investigate
analogous data structures for other quasiperiodic notions such as the seed [12], the
left seed [7], and the right seed [6] of a string. We will also consider the following
problems for an array A of size n of integers.

Problem 18. Decide if A is the minimal enhanced cover array of some string.

Problem 19. When A is a valid minimal enhanced cover array, infer a string, whose
minimal enhanced cover array is A.

For certain applications, the definition of the minimal enhanced cover might not
be useful, since it primarily optimises the number of positions covered, while the
length of the enhanced cover cannot be controlled. We can extend this notion by
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introducing the d-restricted enhanced cover of string y, which is the shortest border
of y of length not exceeding d which covers the largest number of positions among
borders no longer than d. The algorithm computing the minimal enhanced cover,
with almost no extra computations, can compute the d-restricted enhanced covers
for every positive integer d < n. Moreover, the algorithm computing the minimal
enhanced cover array can be given an additional array D of size n of integers as
input, and compute the D[i]-restricted enhanced cover of y[0 . . i], for all 0 ≤ i < n.
This also requires no additional effort.

Another interesting open problem is to allow the enhanced cover to be any factor of
the string – not only a border. A similar problem, though with different constraints on
the occurrences of the cover, is considered in the context of grammar compression [5],
but, to the best of our knowledge, no efficient solution for either problem has been
published.
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