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Abstract
The eccentricity εu of vertex u in a connected graph G, is the distance between u and a vertex farthermost from u. The
aim of the present paper is to introduce new eccentricity based index and eccentricity based polynomial, namely modified
augmented eccentric connectivity index and modified augmented eccentric connectivity polynomial respectively. As an
application we compute these new indices for octagonal grid Om

n and we compare the results obtained with the ones ob-
tained by other indices like Ediz eccentric connectivity index, modified eccentric connectivity index and modified eccentric
connectivity polynomial ECP(G,x).

Keywords:Degree, Eccentricity, Ediz eccentric connectivity index, modified eccentric connectivity index, modified eccentric connec-
tivity polynomial ECP(G,x), octagonal grid Om

n
AMS 2010 codes:Primary: 05C12, 05C90.

1 Introduction

In recent years graph theory is extensively used in the branch of mathematical chemistry and some people
call it as chemical graph theory because this theory is related with the practical applications of graph theory
for solving the molecular problems. In mathematics a model of chemical system portrays a chemical graph that
deals to explain the relations between its segments such as its atoms, bonds between atoms, cluster of atoms or
molecules.
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A connected simple graph G= (V (G)∪E(G)) is a graph consisting of n vertices (V (G)) and m edges (E(G))
in which there is path between any of two its vertices. A network is merely a connected graph consisting of no
multiple edges and loops. The degree of a vertex v in G is the number of edges which are incident to the vertex
v and will be represented by dv. In a graph G, if there is no repetition of vertices in (u− v) walk then such kind
of walk is called (u− v) path. The number of edges in (u− v) path is called its length. The distance d(u,v)
from vertex u to vertex v is the length of a shortest (u− v) path in a graph G where u,v ∈ G. In a connected
graph G, the eccentricity εv of a vertex v is the distance between v and a vertex furthest from v in G. Thus,
εv = maxv∈V (G) d(v,u). Therefore the maximum eccentricity over all vertices of G is the diameter of G which is
denoted by D(G).

A graph can be recognized by a different type of numeric number, a polynomial, a sequence of numbers
or a matrix. A topological index is a numeric quantity that is associated with a graph which characterize the
topology of graph and is invariant under graph automorphism. Over the years topological indices like Wiener
index Balabans index [24–26], Hosoya index [16,17], Randić index [19] and so on, have been studied extensively
and recently the research and interest in this area has been increased exponentially. See too for more information
[3, 13, 14, 18, 21, 23].

There are some major classes of topological indices such as distance based topological indices, eccentricity
based topological indices, degree based topological indices and counting related polynomials and indices of
graphs. In this article we shall consider the eccentricity based indices. We note that in [5] is introduced the total
eccentricity of a graph G and is defined as the sum of eccentricities of all vertices of a given graph G and denote
by ζ (G). It is easy to see that for a k–regular graph G is held ζ (G) = kζ (G).

The Eccentric-connectivity index ξ (G) which was proposed by Sharma, Goswami and Madan defined as
[20]:

ξ (G) = ∑
u∈V (G)

duεu, (1)

Another very relevant and special eccentricity based topological index is connective Eccentric index Cξ (G) that

was proposed by Gupta et al. in [11]. The connective eccentric index is defined as.

Cξ (G) = ∑
u∈V (G)

du

εu
, (2)

In 2010, A. R. Ashrafi and M. Ghorbani [1] introduces the so called modified eccentric connectivity index
ξc(G) and it is defined as

ξc(G) = ∑
v∈V (G)

(Svεv), (3)

where Sv = ∑
u∈N(v)

du that is Sv is the sum of degrees of all vertices adjacent to vertex v.

In 2010, S. Ediz et al., [8], defined Ediz eccentric connectivity index of G as

E
ξ

c(G) = ∑
v∈V (G)

(
Sv

εv
), (4)

Similar to other topological polynomials, the corresponding polynomial, that is, the modified eccentric connec-
tivity polynomial of a graph, is defined as, [6]:

ξc(G,x) = ∑
u∈V (G)

Suxεu , (5)
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so that the modified eccentric connectivity index is the first derivative of this polynomial for x = 1.

Motivated by these above eccentricity indices, in this article we introduce what we call modified augmented
eccentric connectivity index MAξ (G), as

MA
ξ

c(G) = ∑
v∈V (G)

(Mvεv), (6)

where Mv = ∏
u∈N(v)

du that is denotes the product of degrees of all neighbors of vertex v of G.

In the same way, we define the modified augmented eccentric connectivity polynomial MAξ c(G,x), as

MA
ξ

c(G,x) = ∑
v∈V (G)

Mv xεv (7)

For more information and properties of eccentricity based topological index, see for instance [2, 7, 9, 10, 12,
15, 27].

The aim of this paper is is the introduction of the augmented eccentric connectivity index and modified aug-
mented eccentric connectivity polynomial. As an application we shall compute these new indices for octagonal
grid Om

n and we shall compare the results obtained with the ones obtained by other indices like Ediz eccen-
tric connectivity index, modified eccentric connectivity index and modified eccentric connectivity polynomial
ECP(G,x) via their computation too.

2 Octagonal Grid Om
n

In [4] and [22] Diudea et al. constructed a C4C8 net as a trivalent decoration made by alternating squares
C4 and octagons C8 in two different ways. One is by alternating squares C4 and octagons C8 in different ways
denoted by C4C8(S) and other is by alternating rhombus and octagons in different ways denoted by C4C8(R).
We denote C4C8(R) by Om

n see Figure 1. In [21] they also called it as the Octagonal grid.
For n,m≥ 2 the Octagonal grid Om

n , is the grid with m rows and n columns of octagons. The symbols V (Om
n )

and E(Om
n ) will denote the vertex set and the edge set of Om

n , respectively.

V (Om
n ) = {ut

s : 1≤ s≤ n, 1≤ t ≤ m+1}∪{vt
s : 1≤ s≤ n; 1≤ t ≤ m+1}

∪ {wt
s : 1≤ s≤ n+1, 1≤ t ≤ m}∪{yt

s : 1≤ s≤ n+1, 1≤ t ≤ m}.

E(Om
n ) = {ut

sv
t
s : 1≤ s≤ n, 1≤ t ≤ m+1}∪{ut

sw
t
s;1≤ s≤ n, 1≤ t ≤ m}

∪ {wt
sy

t
s : 1≤ s≤ n+1, 1≤ t ≤ m}∪{vt

sw
t
s+1 : 1≤ s≤ n, 1≤ t ≤ m}

∪ {vt
sy

t−1
s+1 : 1≤ s≤ n, 2≤ t ≤ m+1}∪{ut+1

s yt
s : 1≤ s≤ n, 2≤ t ≤ m}.

In this paper, we consider Om
n with n = m.

3 Statement of main results

As we have said previously for Om
n with n = mwe shall compute modified eccentric connective index, Ediz

eccentric connectivity index, modified eccentric connective polynomial, modified augmented eccentric connec-
tive index and modified augmented eccentric connectivepolynomial and we shall compare the results obtained.
For this we have discussed two cases of n, when n ≡ 0( mod 2) and when n ≡ 1( mod 2). Also to avoid any
ambiguity related to Figure 1 note that the vertices ut

s = ut
s.
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Fig. 1 The Octagonal grid Om
n .

Theorem 1. For every n≥ 4 and n≡ 0( mod 2) consider the graph of G∼= Om
n , with n = m. Then the modified

eccentric connectivity index ξc(G) of G is equal to

ξc(Om
n ) = 225n2−112n+28

+ 36

n
2

∑
s=2

[ l n
2+1

∑
t=s+1

{4n−3(s−1)− t}
]
+36

l n
2

∑
s=2

[ s

∑
t=2
{4(n+1)− s−3t}

]

+ 36
n−1

∑
s=l n

2+1

[ n−s+1

∑
t=2
{3(n− t)+ s+2}

]
+36

n

∑
s=l n

2+2

[ l n
2+1

∑
t=n−s+2

{n+3s− t−1}
]

+ 36
l n

2−1

∑
s=2

[ n−s+1

∑
t=l n

2+2
{3(n− s)+ t +1}

]
+36

l n
2

∑
s=2

[ n

∑
t=n+2−s

{n− s+3t−2}
]

+ 36
n

∑
s=l n

2+2

[ s

∑
t=l n

2+2
{4s+ t−n−3}

]
+36

n−1

∑
s=l n

2+1

[ n

∑
t=s+1

{s+3t−4}
]
.

Proof. Let G be the graph of Om
n . Note that graph of Om

n is a symmetric about reflection and rotation at right
angles. Thus the eccentricities εut

s
= εvt

n+1−s
and from the symmetry at right angles we can obtain that the

eccentricities εyt
s
= εus

t , εwt
s
= εvs

t . Therefore, from Table 1 and formula (3), given below, the modified eccentric
connectivity index ξc(G) of Om

n is equal to

ξc(G) = ∑
v∈V (G)

(
Svεv

)
= 4 ∑

ut
s∈V (G)

(
Sut

s
εut

s

)
,

ξc(Om
n ) = 4

[
2×4×4n+2

l n
2+1

∑
s=2

5{4n+1− s}+2
n

∑
s=l n

2+2
5{3n+ s−1}

]
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+ 4

[
l n

2+1

∑
t=2

7(4n− t)+
l n

2

∑
s=2

[ l n
2+1

∑
t=s+1

9{4n−3(s−1)− t}
]

+
l n

2

∑
s=2

[ s

∑
t=2

9{4(n+1)− s−3t}
]
+

n−1

∑
s=l n

2+1

[ n−s+1

∑
t=2

9{3(n− t)+ s+2}
]

+
n

∑
s=l n

2+2

[ l n
2+1

∑
t=n−s+2

9{n+3s− t−1}
]
+

n

∑
t=l n

2+2
7{3(n−1)+ t +1}

+
l n

2−1

∑
s=2

[ n−s+1

∑
t=l n

2+2
9{3(n− s)+ t +1}

]
+

l n
2

∑
s=2

[ n

∑
t=n+2−s

9{n− s+3t−2}
]

+
n

∑
s=l n

2+2

[ s

∑
t=l n

2+2
9{4s+ t−n−3}

]
+

n−1

∑
s=l n

2+1

[ n

∑
t=s+1

9{s+3t−4}
]]

.

After some easy calculations we get

ξc(Om
n ) = 225n2−112n+28

+ 36
l n

2

∑
s=2

[ l n
2+1

∑
t=s+1

{4n−3(s−1)− t}
]
+36

l n
2

∑
s=2

[ s

∑
t=2
{4(n+1)− s−3t}

]

+ 36
n−1

∑
s=l n

2+1

[ n−s+1

∑
t=2
{3(n− t)+ s+2}

]
+36

n

∑
s=l n

2+2

[ l n
2+1

∑
t=n−s+2

{n+3s− t−1}
]

+ 36
l n

2−1

∑
s=2

[ n−s+1

∑
t=l n

2+2
{3(n− s)+ t +1}

]
+36

l n
2

∑
s=2

[ n

∑
t=n+2−s

{n− s+3t−2}
]

+ 36
n

∑
s=l n

2+2

[ s

∑
t=l n

2+2
{4s+ t−n−3}

]
+36

n−1

∑
s=l n

2+1

[ n

∑
t=s+1

{s+3t−4}
]
.
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Table 1 Partition of vertices of the type ut
s of Om

n based on degree sum and eccentricity of each vertex when n≡ 0(
mod 2).

Representative Sut
s

eccentricity Range Frequency

ut
s 4 4n− s+1 t = 1, n+1; s = 1 2

ut
s 5 4n− s+1 t = 1, n+1, n

2≤ s≤ l n
2 +1

ut
s 5 3n+ s−1 t = 1, n+1, n−2

l n
2 +2≤ s≤ n

ut
s 7 4n−3(s−1)− t s = 1, l n

2
2≤ t ≤ l n

2 +1

ut
s 9 4n−3(s−1)− t 2≤ s≤ l n

2 , l n2

8 − l 3n
4

s+1≤ t ≤ l n
2 +1

ut
s 9 4(n+1)− s−3t 2≤ s≤ l n

2 , l n2

8 − l n
4

2≤ t ≤ s

ut
s 9 3n+ s−3t +2 l n

2 +1≤ s≤ n−1, l n2

8 − l n
4

2≤ t ≤ n+1− s

ut
s 9 n+3s− t−1 l n

2 +1≤ s≤ n, l n2

8 + l n
4

n− s+2≤ t ≤ l n
2 +1

ut
s 7 3(n− s)+ t +1 s = 1, l n

2 −1
l n

2 +2≤ t ≤ n

ut
s 9 3(n− s)+ t +1 2≤ s≤ l n

2 −1, l 1
8(n−4)(n−2)

l n
2 +2≤ t ≤ n− s+1

ut
s 9 n− s+3t−2 2≤ s≤ l n

2 , l n2

8 − l n
4

n− s+2≤ t ≤ n

ut
s 9 4s−n+ t−3 l n

2 +2≤ s≤ n, l n2

8 − l n
4

l n
2 +2≤ t ≤ s

ut
s 9 s+3t−4 l n

2 +1≤ s≤ n−1, l n2

8 − l n
4

s+1≤ t ≤ n

Theorem 2. For every n≥ 3 and n≡ 1( mod 2) consider the graph of G∼= Om
n , with n = m. Then the modified

eccentric connectivity index ξc(G) of G is equal to

ξc(Om
n ) = 225n2−132n+35

+ 36
l n+1

2 −1

∑
s=2

[ l n+1
2

∑
t=s+1

{4n−3(s−1)− t}
]
+36

l n+1
2

∑
s=2

[ s

∑
t=2
{4(n+1)− s−3t}

]

+ 36
n−1

∑
s=l n+1

2 +1

[ n−s+1

∑
t=2
{3(n− t)+ s+2}

]
+36

n

∑
s=l n+1

2 +1

[ l n+1
2

∑
t=n−s+2

{n+3s− t−1}
]
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+ 36
l n+1

2 −1

∑
s=1

[ n−s+1

∑
t=l n+1

2 +1

{3(n− s)+ t +1}
]
+36

l n+1
2

∑
s=2

[ n

∑
t=n+2−s

{n− s+3t−2}
]

+ 36
n

∑
s=l n+1

2 +1

[ s

∑
t=l n+1

2 +1

{4s+ t−n−3}
]
+36

n−1

∑
s=l n+1

2 +1

[ n

∑
t=s+1

{s+3t−4}
]
.

Proof. Let G be the graph of Om
n and n≥ 3 is odd. As above note that graph of Om

n is a symmetric about reflection
and rotation at right angles. Thus the eccentricities εut

s
= εvt

n+1−s
and from the symmetry at right angles we can

obtain that the eccentricities εyt
s
= εus

t , εwt
s
= εvs

t . Therefore, by using Table 2 and equation (3) the modified
eccentric connectivity index ξc(G), we get

ξc(Om
n ) = 4

[
2×4×4n+2

l n+1
2

∑
s=2

5{4n+1− s}+2
n

∑
s=l n+1

2 +1

5{3n+ s−1}
]

+ 4

[
l n+1

2

∑
t=2

7{4n− t}+
l n+1

2 −1

∑
s=2

[ l n+1
2

∑
t=s+1

9{4n−3(s−1)− t}
]

+
l n+1

2

∑
s=2

[ s

∑
t=2

9{4(n+1)− s−3t}
]
+

n−1

∑
s=l n+1

2 +1

[ n−s+1

∑
t=2

9{3(n− t)+ s+2}
]

+
n

∑
s=l n+1

2 +1

[ l n+1
2

∑
t=n−s+2

9{n+3s− t−1}
]
+

n

∑
t=l n+1

2 +1

7{3(n−1)+ t +1}

+
l n+1

2 −1

∑
s=2

[ n−s+1

∑
t=l n+1

2 +1

9{3(n− s)+ t +1}
]
+

l n+1
2

∑
s=2

[ n

∑
t=n+2−s

9{n− s+3t−2}
]

+
n

∑
s=l n+1

2 +1

[ s

∑
t=l n+1

2 +1

9{4s+ t−n−3}
]
+

n−1

∑
s=l n+1

2 +1

[ n

∑
t=s+1

9{s+3t−4}
]]

.

After some easy calculations we get

ξc(Om
n ) = 225n2−132n+35

+ 36
l n+1

2 −1

∑
s=2

[ l n+1
2

∑
t=s+1

{4n−3(s−1)− t}
]
+36

l n+1
2

∑
s=2

[ s

∑
t=2
{4(n+1)− s−3t}

]

+ 36
n−1

∑
s=l n+1

2 +1

[ n−s+1

∑
t=2
{3(n− t)+ s+2}

]
+36

n

∑
s=l n+1

2 +1

[ l n+1
2

∑
t=n−s+2

{n+3s− t−1}
]

+ 36
l n+1

2 −1

∑
s=1

[ n−s+1

∑
t=l n+1

2 +1

{3(n− s)+ t +1}
]
+36

l n+1
2

∑
s=2

[ n

∑
t=n+2−s

{n− s+3t−2}
]

+ 36
n

∑
s=l n+1

2 +1

[ s

∑
t=l n+1

2 +1

{4s+ t−n−3}
]
+36

n−1

∑
s=l n+1

2 +1

[ n

∑
t=s+1

{s+3t−4}
]
.
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Table 2 Partition of vertices of the type ut
s of Om

n based on degree sum and eccentricity of each vertex when n≡ 1(
mod 2).

Representative Sut
s

eccentricity Range Frequency

ut
s 4 4n− s+1 t = 1, n+1; s = 1 2

ut
s 5 4n− s+1 t = 1, n+1, n−1

2≤ s≤ l n+1
2

ut
s 5 3n+ s−1 t = 1, n+1, n−1

l n+1
2 +1≤ s≤ n

ut
s 7 4n−3(s−1)− t 1 = s, (l n+1

2 −1)
2≤ t ≤ l n+1

2

ut
s 9 4n−3(s−1)− t 2≤ s≤ l n+1

2 −1, l n−3
4 (l n+1

2 −1)
s+1≤ t ≤ l n+1

2

ut
s 9 4(n+1)− s−3t 2≤ s≤ l n+1

2 , l n+1
4 (l n+1

2 −1)
2≤ t ≤ s

ut
s 9 3n+ s−3t +2 l n+1

2 +1≤ s≤ n−1, l n−1
4 (l n−1

2 −1)
2≤ t ≤ n+1− s

ut
s 9 n+3s− t−1 l n+1

2 +1≤ s≤ n, l n−1
4 (l n−1

2 +1)
n− s+2≤ t ≤ l n+1

2

ut
s 7 3(n− s)+ t +1 s = 1, (l n+1

2 −1)
l n+1

2 +1≤ t ≤ n

ut
s 9 n− s+3t−2 2≤ s≤ l n+1

2 , l n−3
4 (l n+1

2 −1)
n− s+2≤ t ≤ n

ut
s 9 4s−n+ t−3 l n+1

2 +1≤ s≤ n, l n−1
4 (l n+1

2 )

l n+1
2 +1≤ t ≤ s

ut
s 9 s+3t−4 l n+1

2 +1≤ s≤ n−1, l n−1
4 (l n−1

2 −1)
s+1≤ t ≤ n

Theorem 3. For every n ≥ 4 and n ≡ 0( mod 2) consider the graph of G ∼= Om
n , with n = m. Then the Ediz

eccentric connectivity index of G is equal to

E
ξ

c(Om
n ) = l

8
n
+40

l n
2+1

∑
s=2

1
4n+1− s

+40
n

∑
s=l n

2+2

1
3n+ s−1

+ 28
l n

2+1

∑
t=2

1
4n− t

+28
n

∑
t=l n

2+2

1
3(n−1)+ t +1

+ 36
l n

2

∑
s=2

[ l n
2+1

∑
t=s+1

1
4n−3(s−1)− t

]
+36

l n
2

∑
s=2

[ s

∑
t=2

1
4(n+1)− s−3t

]

+ 36
n−1

∑
s=l n

2+1

[ n−s+1

∑
t=2

1
3(n− t)+ s+2

]
+36

n

∑
s=l n

2+2

[ l n
2+1

∑
t=n−s+2

1
n+3s− t−1

]
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+ 36
l n

2−1

∑
s=2

[ n−s+1

∑
t=l n

2+2

1
3(n− s)+ t +1

]
+36

l n
2

∑
s=2

[ n

∑
t=n+2−s

1
n− s+3t−2

]

+ 36
n

∑
s=l n

2+2

[ s

∑
t=l n

2+2

1
4s+ t−n−3

]
+36

n−1

∑
s=l n

2+1

[ n

∑
t=s+1

1
s+3t−4

]
.

Proof. Let G be the graph of Om
n and n ≡ 0( mod 2). By using the arguments in proof of Theorem 1, Table 1

and following formula the Ediz eccentric connectivity index Eξ c(G) of Om
n is equal to

E
ξ

c(G) = ∑
v∈V (G)

(
l
Sv

εv

)
= 4 ∑

ut
s∈V (G)

(
l
Sut

s

εut
s

)

E
ξ

c(Om
n ) = 4

[
2× l

4
4n

+2
l n

2+1

∑
s=2

5
4n+1− s

+2
n

∑
s=l n

2+2

5
3n+ s−1

]

+ 4

[
l n

2+1

∑
t=2

7
4n− t

+
l n

2

∑
s=2

[ l n
2+1

∑
t=s+1

9
4n−3(s−1)− t

]

+
l n

2

∑
s=2

[ s

∑
t=2

9
4(n+1)− s−3t

]
+

n−1

∑
s=l n

2+1

[ n−s+1

∑
t=2

9
3(n− t)+ s+2

]

+
n

∑
s=l n

2+2

[ l n
2+1

∑
t=n−s+2

9
n+3s− t−1

]
+

n

∑
t=l n

2+2

7
3(n−1)+ t +1

+
l n

2−1

∑
s=2

[ n−s+1

∑
t=l n

2+2

9
3(n− s)+ t +1

]
+

l n
2

∑
s=2

[ n

∑
t=n+2−s

9
n− s+3t−2

]

+
n

∑
s=l n

2+2

[ s

∑
t=l n

2+2

9
4s+ t−n−3

]
+

n−1

∑
s=l n

2+1

[ n

∑
t=s+1

9
s+3t−4

]]
.

After an easy computation, we get

E
ξ

c(Om
n ) = l

8
n
+40

l n
2+1

∑
s=2

1
4n+1− s

+40
n

∑
s=l n

2+2

1
3n+ s−1

+ 28
l n

2+1

∑
t=2

1
4n− t

+28
n

∑
t=l n

2+2

1
3(n−1)+ t +1

+ 36
l n

2

∑
s=2

[ l n
2+1

∑
t=s+1

1
4n−3(s−1)− t

]
+36

l n
2

∑
s=2

[ s

∑
t=2

1
4(n+1)− s−3t

]

+ 36
n−1

∑
s=l n

2+1

[ n−s+1

∑
t=2

1
3(n− t)+ s+2

]
+36

n

∑
s=l n

2+2

[ l n
2+1

∑
t=n−s+2

1
n+3s− t−1

]

+ 36
l n

2−1

∑
s=2

[ n−s+1

∑
t=l n

2+2

1
3(n− s)+ t +1

]
+36

l n
2

∑
s=2

[ n

∑
t=n+2−s

1
n− s+3t−2

]

+ 36
n

∑
s=l n

2+2

[ s

∑
t=l n

2+2

1
4s+ t−n−3

]
+36

n−1

∑
s=l n

2+1

[ n

∑
t=s+1

1
s+3t−4

]
.

https://www.sciendo.com


218 M. Naeem et al. Applied Mathematics and Nonlinear Sciences 3(2018) 209–228

Theorem 4. For every n ≥ 3 and n ≡ 1( mod 2) consider the graph of G ∼= Om
n , with n = m. Then the Ediz

eccentric connectivity index of G is equal to

E
ξ

c(Om
n ) = l

8
n
+40

l n+1
2

∑
s=2

1
4n+1− s

+40
n

∑
s=l n+1

2 +1

1
3n+ s−1

+ 28
l n+1

2

∑
t=2

1
4n− t

+28
n

∑
t=l n+1

2 +1

1
3(n−1)+ t +1

+ 36
l n+1

2 −1

∑
s=2

[ l n+1
2

∑
t=s+1

1
4n−3(s−1)− t

]
+36

l n+1
2

∑
s=2

[ s

∑
t=2

1
4(n+1)− s−3t

]

+ 36
n−1

∑
s=l n+1

2 +1

[ n−s+1

∑
t=2

1
3(n− t)+ s+2

]
+36

n

∑
s=l n+1

2 +1

[ l n+1
2

∑
t=n−s+2

1
n+3s− t−1

]

+ 36
l n+1

2 −1

∑
s=2

[ n

∑
t=l n+1

2 +1

1
3(n− s)+ t +1

]
+36

l n+1
2

∑
s=2

[ n

∑
t=n+2−s

1
n− s+3t−2

]

+ 36
n

∑
s=l n+1

2 +1

[ s

∑
t=l n+1

2 +1

1
4s+ t−n−3

]
+36

n−1

∑
s=l n+1

2 +1

[ n

∑
t=s+1

1
s+3t−4

]
.

Proof. Let G be the graph of Om
n and n≡ 1( mod 2). By using the arguments in proof the of Theorem 2, Table

2 and from formula (4) the result follows.

Theorem 5. For every n≥ 4 and n≡ 0( mod 2) consider the graph of G∼= Om
n , with n = m. Then the modified

eccentric connectivity polynomial of G is equal to

ξc(Om
n ,x) = l

1
x−1

(
(−28x4n−1 +40x3n−40x4n)(l

1
x
)(l

n
2 )−40x(3n+1)(l

1
x
)n +24x4n

− 28x(7n/2)+56x4n−1 +16x4n+1
)

+ 36
l n

2

∑
s=2

[ l n
2+1

∑
t=s+1

x(4n−3(s−1)−t)
]
+36

l n
2

∑
s=2

[ s

∑
t=2

x(4(n+1)−s−3t)
]

+ 36
n−1

∑
s=l n

2+1

[ n−s+1

∑
t=2

x(3(n−t)+s+2)
]
+36

n

∑
s=l n

2+2

[ l n
2+1

∑
t=n−s+2

x(n+3s−t−1)
]

+ 36
l n

2−1

∑
s=2

[ n−s+1

∑
t=l n

2+2
x(3(n−s)+t+1)

]
+36

l n
2

∑
s=2

[ n

∑
t=n+2−s

x(n−s+3t−2)
]

+ 36
n

∑
s=l n

2+2

[ s

∑
t=l n

2+2
x(4s+t−n−3)

]
+36

n−1

∑
s=l n

2+1

[ n

∑
t=s+1

x(s+3t−4)
]
.

Proof. By using the arguments in the proof of Theorem 1, the values from Table 1 and equation (5) given below
we get

ξc(G,x) = ∑
u∈V (G)

Suxεu = 4 ∑
ut

s∈V (G)

Sut
s
xεut

s
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ξc(Om
n ,x) = 4

[
2×4x4n +2

l n
2+1

∑
s=2

5x(4n+1−s)+2
n

∑
s=l n

2+2
5x(3n+s−1)

]

+ 4

[
l n

2+1

∑
t=2

7x(4n−t)+
l n

2

∑
s=2

[ l n
2+1

∑
t=s+1

9x(4n−t)
]

+
l n

2

∑
s=2

[ s

∑
t=2

9x(4(n+1)−s−3t)
]
+

n−1

∑
s=l n

2+1

[ n−s+1

∑
t=2

9x(3(n−t)+s+2)
]

+
n

∑
s=l n

2+2

[ l n
2+1

∑
t=n−s+2

9x(n+3s−t−1)
]
+

n

∑
t=l n

2+2
7x(3(n−1)+t+1)

+
l n

2−1

∑
s=2

[ n−s+1

∑
t=l n

2+2
9x(3(n−s)+t+1)

]
+

l n
2

∑
s=2

[ n

∑
t=n+2−s

9x(n−s+3t−2)
]

+
n

∑
s=l n

2+2

[ s

∑
t=l n

2+2
9x(4s+t−n−3)

]
+

n−1

∑
s=l n

2+1

[ n

∑
t=s+1

9x(s+3t−4)
]]

.

After some easy calculations we get

ξc(Om
n ,x) = l

1
x−1

(
(−28x4n−1 +40x3n−40x4n)(l

1
x
)(l

n
2 )−40x(3n+1)(l

1
x
)n +24x4n

− 28x(7n/2)+56x4n−1 +16x4n+1
)

+ 36
l n

2

∑
s=2

[ l n
2+1

∑
t=s+1

x(4n−3(s−1)−t)
]
+36

l n
2

∑
s=2

[ s

∑
t=2

x(4(n+1)−s−3t)
]

+ 36
n−1

∑
s=l n

2+1

[ n−s+1

∑
t=2

x(3(n−t)+s+2)
]
+36

n

∑
s=l n

2+2

[ l n
2+1

∑
t=n−s+2

x(n+3s−t−1)
]

+ 36
l n

2−1

∑
s=2

[ n−s+1

∑
t=l n

2+2
x(3(n−s)+t+1)

]
+36

l n
2

∑
s=2

[ n

∑
t=n+2−s

x(n−s+3t−2)
]

+ 36
n

∑
s=l n

2+2

[ s

∑
t=l n

2+2
x(4s+t−n−3)

]
+36

n−1

∑
s=l n

2+1

[ n

∑
t=s+1

x(s+3t−4)
]
.

Theorem 6. For every n≥ 3 and n≡ 1( mod 2) consider the graph of G∼= Om
n , with n = m. Then the modified

eccentric connectivity polynomial of G is equal to

ξc(Om
n ,x) = l

1
x−1

(
(40x3n+2−28x4n+1−40x4n+2)(l

1
x
)(l

n
2+l 3

2 )−40x(3n+1)(l
1
x
)n +24x4n

− 28x(l
7n
2 )−l 1

2 +56x4n−1 +16x4n+1
)

+ 36
l n+1

2 −1

∑
s=2

[ l n+1
2

∑
t=s+1

x(4n−3(s−1)−t)
]
+36

l n+1
2

∑
s=2

[ s

∑
t=2

x(4(n+1)−s−3t)
]
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+ 36
n−1

∑
s=l n+1

2 +1

[ n−s+1

∑
t=2

x(3(n−t)+s+2)
]
+36

n

∑
s=l n+1

2 +1

[ l n+1
2

∑
t=n−s+2

x(n+3s−t−1)
]

+ 36
l n+1

2 −1

∑
s=1

[ n−s+1

∑
t=l n+1

2 +1

x(3(n−s)+t+1)
]
+36

l n+1
2

∑
s=2

[ n

∑
t=n+2−s

x(n−s+3t−2)
]

+
n

∑
s=l n+1

2 +1

[ s

∑
t=l n+1

2 +1

x(4s+t−n−3)
]
+36

n−1

∑
s=l n+1

2 +1

[ n

∑
t=s+1

x(s+3t−4)
]
.

Proof. Let G∼=Om
n , n≥ 3 and n≡ 1( mod 2). By using the arguments in the proof of Theorem 1, as in Theorem

5, the values from Table 2 and equation (5) the result follows.

In Table 3 and Table 4 we have partitioned the vertices of the type ut
s of Om

n based on degree product and
eccentricity of each vertex. This will help us to develop the coming theorems.

Theorem 7. For every n≥ 4 and n≡ 0( mod 2) consider the graph of G∼= Om
n , with n = m. Then the modified

augmented eccentric connectivity index MAξ c
c (G) of G is equal to

MA
ξ

c
c (O

m
n ) = 324n2−232n+48

+ 108
l n

2

∑
s=2

[ l n
2+1

∑
t=s+1

{4n−3(s−1)− t}
]
+108

l n
2

∑
s=2

[ s

∑
t=2
{4(n+1)− s−3t}

]

+ 108
n−1

∑
s=l n

2+1

[ n−s+1

∑
t=2
{3(n− t)+ s+2}

]
+108

n

∑
s=l n

2+2

[ l n
2+1

∑
t=n−s+2

{n+3s− t−1}
]

+ 108
l n

2−1

∑
s=2

[ n−s+1

∑
t=l n

2+2
{3(n− s)+ t +1}

]
+108

l n
2

∑
s=2

[ n

∑
t=n+2−s

{n− s+3t−2}
]

+ 108
n

∑
s=l n

2+2

[ s

∑
t=l n

2+2
{4s+ t−n−3}

]
+108

n−1

∑
s=l n

2+1

[ n

∑
t=s+1

{s+3t−4}
]
.

Proof. Let G be the graph of Om
n . Therefore, from Table 3 and formula (8), given below, the modified augmented

eccentric connectivity index MAξ c
c (O

m
n ) of Om

n can be calculated. Hence the result.

MA
ξ

c(G,x) = ∑
v∈V (G)

Mv εv (8)

MA
ξ

c(Om
n ) = 4 ∑

ut
s∈V (G)

(
Mut

s
εut

s

)

MA
ξ

c(Om
n ) = 4

[
2×4×4n+2

l n
2+1

∑
s=2

6{4n+1− s}+2
n

∑
s=l n

2+2
6{3n+ s−1}

]

+ 4

[
l n

2+1

∑
t=2

12(4n− t)+
l n

2

∑
s=2

[ l n
2+1

∑
t=s+1

27{4n−3(s−1)− t}
]

+
l n

2

∑
s=2

[ s

∑
t=2

27{4(n+1)− s−3t}
]
+

n−1

∑
s=l n

2+1

[ n−s+1

∑
t=2

27{3(n− t)+ s+2}
]
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+
n

∑
s=l n

2+2

[ l n
2+1

∑
t=n−s+2

27{n+3s− t−1}
]
+

n

∑
t=l n

2+2
12{3(n−1)+ t +1}

+
l n

2−1

∑
s=2

[ n−s+1

∑
t=l n

2+2
27{3(n− s)+ t +1}

]
+

l n
2

∑
s=2

[ n

∑
t=n+2−s

27{n− s+3t−2}
]

+
n

∑
s=l n

2+2

[ s

∑
t=l n

2+2
27{4s+ t−n−3}

]
+

n−1

∑
s=l n

2+1

[ n

∑
t=s+1

27{s+3t−4}
]]

.

After some easy calculations we get

MA
ξ

c
c (O

m
n ) = 324n2−232n+48

+ 108
l n

2

∑
s=2

[ l n
2+1

∑
t=s+1

{4n−3(s−1)− t}
]
+108

l n
2

∑
s=2

[ s

∑
t=2
{4(n+1)− s−3t}

]

+ 108
n−1

∑
s=l n

2+1

[ n−s+1

∑
t=2
{3(n− t)+ s+2}

]
+108

n

∑
s=l n

2+2

[ l n
2+1

∑
t=n−s+2

{n+3s− t−1}
]

+ 108
l n

2−1

∑
s=2

[ n−s+1

∑
t=l n

2+2
{3(n− s)+ t +1}

]
+108

l n
2

∑
s=2

[ n

∑
t=n+2−s

{n− s+3t−2}
]

+ 108
n

∑
s=l n

2+2

[ s

∑
t=l n

2+2
{4s+ t−n−3}

]
+108

n−1

∑
s=l n

2+1

[ n

∑
t=s+1

{s+3t−4}
]
.

Theorem 8. For every n≥ 3 and n≡ 1( mod 2) consider the graph of G∼= Om
n , with n = m. Then the modified

augmented eccentric connectivity index ξc(G) of G is equal to

MA
ξ

c
c (O

m
n ) = 324n2−256n+60

+ 108
l n+1

2 −1

∑
s=2

[ l n+1
2

∑
t=s+1

{4n−3(s−1)− t}
]
+108

l n+1
2

∑
s=2

[ s

∑
t=2
{4(n+1)− s−3t}

]

+ 108
n−1

∑
s=l n+1

2 +1

[ n−s+1

∑
t=2
{3(n− t)+ s+2}

]
+108

n

∑
s=l n+1

2 +1

[ l n+1
2

∑
t=n−s+2

{n+3s− t−1}
]

+ 108
l n+1

2 −1

∑
s=1

[ n−s+1

∑
t=l n+1

2 +1

{3(n− s)+ t +1}
]
+108

l n+1
2

∑
s=2

[ n

∑
t=n+2−s

{n− s+3t−2}
]

+ 108
n

∑
s=l n+1

2 +1

[ s

∑
t=l n+1

2 +1

{4s+ t−n−3}
]
+108

n−1

∑
s=l n+1

2 +1

[ n

∑
t=s+1

{s+3t−4}
]
.

Proof. As in Theorem 7, by using Table 4 and equation (8) the result follows.

Theorem 9. For every n≥ 4 and n≡ 0( mod 2) consider the graph of G∼= Om
n , with n = m. Then the modified

augmented eccentric connectivity polynomial of G is equal to

MA
ξ

c
c (O

m
n ,x) = l

1
x−1

(
(48x4n−1 +48x3n−48x4n)(l

1
x
)(l

n
2 )−48x(3n+1)(l

1
x
)n +32x4n
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Table 3 Partition of vertices of the type ut
s of Om

n based on degree product and eccentricity of each vertex when n≡ 0(
mod 2).

Representative Mut
s

eccentricity Range Frequency

ut
s 4 4n− s+1 t = 1, n+1; s = 1 2

ut
s 6 4n− s+1 t = 1, n+1, n

2≤ s≤ l n
2 +1

ut
s 6 3n+ s−1 t = 1, n+1, n−2

l n
2 +2≤ s≤ n

ut
s 12 4n−3(s−1)− t s = 1, l n

2
2≤ t ≤ l n

2 +1

ut
s 27 4n−3(s−1)− t 2≤ s≤ l n

2 , l n2

8 − l 3n
4

s+1≤ t ≤ l n
2 +1

ut
s 27 4(n+1)− s−3t 2≤ s≤ l n

2 , l n
4(l

n
2 −1)

2≤ t ≤ s

ut
s 27 3n+ s−3t +2 l n

2 +1≤ s≤ n−1, l n
4(l

n
2 −1)

2≤ t ≤ n+1− s

ut
s 27 n+3s− t−1 l n

2 +1≤ s≤ n, l n
4(l

n
2 +1)

n− s+2≤ t ≤ l n
2 +1

ut
s 12 3(n− s)+ t +1 s = 1, l n

2 −1
l n

2 +2≤ t ≤ n

ut
s 27 3(n− s)+ t +1 2≤ s≤ l n

2 −1, l 1
8(n−4)(n−2)

l n
2 +2≤ t ≤ n− s+1

ut
s 27 n− s+3t−2 2≤ s≤ l n

2 , l n
4(l

n
2 −1)

n− s+2≤ t ≤ n

ut
s 27 4s−n+ t−3 l n

2 +2≤ s≤ n, l n
4(l

n
2 −1)

l n
2 +2≤ t ≤ s

ut
s 27 s+3t−4 l n

2 +1≤ s≤ n−1, l n
4(l

n
2 −1)

s+1≤ t ≤ n

− 48x(7n/2)+96x4n−1 +16x4n+1
)

+ 48
l n

2

∑
s=2

[ l n
2+1

∑
t=s+1

x(4n−3(s−1)−t)
]
+48

l n
2

∑
s=2

[ s

∑
t=2

x(4(n+1)−s−3t)
]

+ 48
n−1

∑
s=l n

2+1

[ n−s+1

∑
t=2

x(3(n−t)+s+2)
]
+48

n

∑
s=l n

2+2

[ l n
2+1

∑
t=n−s+2

x(n+3s−t−1)
]

+ 48
l n

2−1

∑
s=2

[ n−s+1

∑
t=l n

2+2
x(3(n−s)+t+1)

]
+48

l n
2

∑
s=2

[ n

∑
t=n+2−s

x(n−s+3t−2)
]
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Table 4 Partition of vertices of the type ut
s of Om

n based on degree product and eccentricity of each vertex when n≡ 1(
mod 2).

Representative Mut
s

eccentricity Range Frequency

ut
s 4 4n− s+1 t = 1, n+1; s = 1 2

ut
s 6 4n− s+1 t = 1, n+1, n−1

2≤ s≤ l n+1
2

ut
s 6 3n+ s−1 t = 1, n+1, n−1

l n+1
2 +1≤ s≤ n

ut
s 12 4n−3(s−1)− t 1 = s, (l n+1

2 −1)
2≤ t ≤ l n+1

2

ut
s 27 4n−3(s−1)− t 2≤ s≤ l n+1

2 −1, l n−3
4 (l n+1

2 −1)
s+1≤ t ≤ l n+1

2

ut
s 27 4(n+1)− s−3t 2≤ s≤ l n+1

2 , l n+1
4 (l n+1

2 −1)
2≤ t ≤ s

ut
s 27 3n+ s−3t +2 l n+1

2 +1≤ s≤ n−1, l n−1
4 (l n−1

2 −1)
2≤ t ≤ n+1− s

ut
s 27 n+3s− t−1 l n+1

2 +1≤ s≤ n, l n−1
4 (l n−1

2 +1)
n− s+2≤ t ≤ l n+1

2

ut
s 12 3(n− s)+ t +1 s = 1, (l n+1

2 −1)
l n+1

2 +1≤ t ≤ n

ut
s 27 n− s+3t−2 2≤ s≤ l n+1

2 , l n−3
4 (l n+1

2 −1)
n− s+2≤ t ≤ n

ut
s 27 4s−n+ t−3 l n+1

2 +1≤ s≤ n, l n−1
4 (l n+1

2 )

l n+1
2 +1≤ t ≤ s

ut
s 27 s+3t−4 l n+1

2 +1≤ s≤ n−1, l n−1
4 (l n−1

2 −1)
s+1≤ t ≤ n

+ 48
n

∑
s=l n

2+2

[ s

∑
t=l n

2+2
x(4s+t−n−3)

]
+48

n−1

∑
s=l n

2+1

[ n

∑
t=s+1

x(s+3t−4)
]
.

Proof. By using the arguments in the proof of Theorem 1, the values from Table 3 and equation (8) given below
we get

MA
ξ

c
c (G,x) = ∑

u∈V (G)

Muxεu = 4 ∑
ut

s∈V (G)

Mut
s
xεut

s

MA
ξc(Om

n ,x) = 4
[

2×4x4n +2
l n

2+1

∑
s=2

6x(4n+1−s)+2
n

∑
s=l n

2+2
6x(3n+s−1)

]

+ 4

[
l n

2+1

∑
t=2

12x(4n−t)+
l n

2

∑
s=2

[ l n
2+1

∑
t=s+1

27x(4n−t)
]
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+
l n

2

∑
s=2

[ s

∑
t=2

27x(4(n+1)−s−3t)
]
+

n−1

∑
s=l n

2+1

[ n−s+1

∑
t=2

27x(3(n−t)+s+2)
]

+
n

∑
s=l n

2+2

[ l n
2+1

∑
t=n−s+2

27x(n+3s−t−1)
]
+

n

∑
t=l n

2+2
12x(3(n−1)+t+1)

+
l n

2−1

∑
s=2

[ n−s+1

∑
t=l n

2+2
27x(3(n−s)+t+1)

]
+

l n
2

∑
s=2

[ n

∑
t=n+2−s

27x(n−s+3t−2)
]

+
n

∑
s=l n

2+2

[ s

∑
t=l n

2+2
27x(4s+t−n−3)

]
+

n−1

∑
s=l n

2+1

[ n

∑
t=s+1

27x(s+3t−4)
]]

.

After some easy calculations we get

MA
ξ

c
c (O

m
n ,x) = l

1
x−1

(
(48x4n−1 +48x3n−48x4n)(l

1
x
)(l

n
2 )−48x(3n+1)(l

1
x
)n +32x4n

− 48x(7n/2)+96x4n−1 +16x4n+1
)

+ 48
l n

2

∑
s=2

[ l n
2+1

∑
t=s+1

x(4n−3(s−1)−t)
]
+48

l n
2

∑
s=2

[ s

∑
t=2

x(4(n+1)−s−3t)
]

+ 48
n−1

∑
s=l n

2+1

[ n−s+1

∑
t=2

x(3(n−t)+s+2)
]
+48

n

∑
s=l n

2+2

[ l n
2+1

∑
t=n−s+2

x(n+3s−t−1)
]

+ 48
l n

2−1

∑
s=2

[ n−s+1

∑
t=l n

2+2
x(3(n−s)+t+1)

]
+48

l n
2

∑
s=2

[ n

∑
t=n+2−s

x(n−s+3t−2)
]

+ 48
n

∑
s=l n

2+2

[ s

∑
t=l n

2+2
x(4s+t−n−3)

]
+48

n−1

∑
s=l n

2+1

[ n

∑
t=s+1

x(s+3t−4)
]
.

Theorem 10. For every n≥ 3 and n≡ 1( mod 2) consider the graph of G∼= Om
n , with n = m. Then the modified

augmented eccentric connectivity polynomial of G is equal to

MA
ξ

c
c (O

m
n ,x) = l

1
x−1

((
−48x3n+2−48x4n+1−48x4n+2)(l 1

x
)(l

n
2+l 3

2 )−48x(3n+1)(l
1
x
)n +32x4n

− 48x(l
7n
2 )−l 1

2 +96x4n−1 +16x4n+1
)

+ 108
l n+1

2 −1

∑
s=2

[ l n+1
2

∑
t=s+1

x(4n−3(s−1)−t)
]
+108

l n+1
2

∑
s=2

[ s

∑
t=2

x(4(n+1)−s−3t)
]

+ 108
n−1

∑
s=l n+1

2 +1

[ n−s+1

∑
t=2

x(3(n−t)+s+2)
]
+108

n

∑
s=l n+1

2 +1

[ l n+1
2

∑
t=n−s+2

x(n+3s−t−1)
]

+ 108
l n+1

2 −1

∑
s=1

[ n−s+1

∑
t=l n+1

2 +1

x(3(n−s)+t+1)
]
+108

l n+1
2

∑
s=2

[ n

∑
t=n+2−s

x(n−s+3t−2)
]
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+
n

∑
s=l n+1

2 +1

[ s

∑
t=l n+1

2 +1

x(4s+t−n−3)
]
+108

n−1

∑
s=l n+1

2 +1

[ n

∑
t=s+1

x(s+3t−4)
]
.

Proof. As in Theorem 9, by using Table 4 and the equation (8) the result follows.

4 Conclusions and comparison between the indices

Table 5 Values of eccentric connectivity index, modified eccentric connectivity index and modified augmented eccentric
connectivity index for all possible structures with three and four.

S.N Structure ξ (G) MAξ c(G) ξc(G)

1 6 9 10

2 6 12 12

3 14 16 24

4 9 19 21

5 13 32 32

6 16 32 32

7 14 60 29

8 12 108 36

High discriminating power and extremely low degeneracy are desirable properties of an ideal topological index,
which researchers in theoretical chemistry are striving to achieve. The values of MAξ c(G) were computed for
all the possible structure of three and four vertices. The values and the structures have been presented in Table
5 and their comparison is presented in Table 6. Modified augmented eccentric connectivity index demonstrate
exceptionally high discriminating power, defined as the ratio of the highest to lowest value for all possible
structures with the same number of vertices. This is evident from the fact that the ratio of the highest to lowest
value for all possible structure containing three and four vertices is very high in contrast to ξ (G) and ξc(G).
The ratio of the highest to lowest value for all possible structures containing four vertices for MAξ c(G) is 6.75
in comparison to 1.78 and 1.7 for ξ (G) and ξc(G), respectively. The exceptionally high discriminating power
of the proposed indices makes them extremely sensitive towards minor change(s) in molecular structure. This
extreme sensitivity towards branching and the discriminating power of proposed indices are clearly evident from
the respective index values of all the possible structures with four vertices.
Degeneracy: the number of compounds having identical values/the total number of compounds with the same
number of vertices.
Degeneracy is a measure of the ability of an index to differentiate between the relative positions of atom in
a molecule. MAξ c(G) did not exhibit any degeneracy for all possible structures with three vertices whereas

https://www.sciendo.com


226 M. Naeem et al. Applied Mathematics and Nonlinear Sciences 3(2018) 209–228

Table 6 Comparison of the discriminating power and degeneracy of eccentric connectivity index, modified eccentric
connectivity index and modified augmented eccentric connectivity index using all possible structures with three and four
vertices.

ξ (G) MAξ c(G) ξc(G)

• For three vertices
Minimum value 6 9 10
Maximum value 6 12 12
Ratio 1:1 1:1.34 1:1.2
Degeneracy 1/2 0/2 0/2
• For four vertices
Minimum value 9 16 21
Maximum value 16 108 36
Ratio 1:1.78 1:6.75 1:1.7
Degeneracy 1/6 1/6 1/6

MAξ c(G) had a very low degeneracy of one in the case of all possible structures with four vertices (Table 6).
ξ (G) had one identical values out of 6 structures with only four vertices. Extremely low degeneracy indicates the
enhanced capability of these indices to differentiate and demonstrate slight variations in the molecular structure,
which clearly reveals the remote chance of different structures having the same value.

The Table 7 shows a comparison between the eccentric connectivity index, modified eccentric connectivity
index and modified augmented eccentric connectivity index for octagonal grid On

m for finite n = 3, . . . ,10.

Table 7 comparison of ξc(On
m),

Eξ c(On
m) and MAξ c(On

m) for On
m, when m = n.

[n, m] ξc(On
m)

Eξ c(On
m)

MAξ c(On
m)

[3,3] 2888
5369
165

5880

[4,4] 6564
616039
15015

14456

[5,5] 13460
74609462
1322685

32260

[6,6] 22972
563513878
8580495

56868

[7,7] 37280
803471620793
10039179150

95576

[8,8] 55364
1361165885969
15168440430

144424

[9,9] 79784
1929246726361
18627909300

212136

[10,10] 109176
1149037176620287
10119188365650

293432
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[5] T. Došlić, M. Saheli: Eccentric connectivity index of composite graphs. Util. Math. 95 (2014), 3–22.
[6] N. De, A. Pal, S. M. A. Nayeem, Modified eccentric Connectivity of Generalized Thorn Graphs. International Journal

of Computational Mathematics (2014), Article ID 436140, 1-8. doi: 10.1155/2014/436140
[7] N. De, S. M. A. Nayeem and A. Pal,Total eccentricity index of the generalized index and polynomial of thorn graph.

Applied Mathematics, 3 (2012), 931–934.
[8] S. Ediz, Computing Ediz eccentric connectivity index of an infinite class of nanostar dendrimers. Optoelectron. Adv.

Mater. Rapid Commun. 4 (2010), 1847-1848.
[9] M. R. Farahani, Eccentricity Version of Atom-Bond Connectivity Index of Benzenoid Family ABC5(Hk). World Applied

Sciences Journal, 21(9) (2013), 1260–1265.
[10] Y. Guihai, Q. Hui, L. Tang, L. Feng,On the connective eccentricity index of trees and unicyclic graphs with given di-

ameter. Journal of Mathematical Analysis and Applications, 420 (2014,), 1776–1786. doi: 10.1016/j.jmaa.2014.06.050
[11] S. Gupta, M. Singh, and A. K. Madan, Connective eccentricity index: a novel topological descriptor for predicting

biological activity. J. Mol. Graph. Model. 18 (2000), 18–25.
[12] S. Gupta, M. Singh and A. K. Madan,Application of Graph Theory: Relationship of eccentric Connectiv-

ity Index and Wiener’s Index with Anti-inflammatory Activity. J. Math. Anal. Appl, 266 (2002), 259–268. doi:
10.1006/jmaa.2000.7243
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