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Abstract. Identity-based encryption is a very convenient tool to avoid key management. Recipient-privacy is
also a major concern nowadays. To combine both, anonymous identity-based encryption has been proposed.
This paper extends this notion to stronger adversaries (the authority itself). We discuss this new notion,
together with a new kind of non-malleability with respect to the identity, for several existing schemes. Inter-
estingly enough, such a new anonymity property has an independent application to password-authenticated
key exchange. We thus come up with a new generic framework for password-authenticated key exchange, and
a concrete construction based on pairings.

1 Introduction

Motivation. The idea of using identities instead of public keys in order to avoid the (costly) use of
certificates comes from Shamir [19]. He indeed suggested Identity-based Encryption (IBE), that would
allow a user to encrypt a message using any string, that would specify the recipient, as encryption
parameter, such that this recipient only can decrypt the ciphertext. Identity-based cryptography thus
provides this interesting feature that one does not need authenticated public keys. Key managament is
made simpler. Note however that a drawback is an authority that is required to generate the private keys
for the users, according to their identities. This authority thus has the ability to decrypt any ciphertext.
Privacy cannot be achieved with respect to this authority. Nevertheless, privacy of the plaintext is not the
unique goal in cryptography, with encryption schemes. Privacy of the recipient may also be a requirement.
Such a key-privacy notion has already been defined in the public-key setting in [3]. It has more recently
been extended to the identity-based setting in [1], under the notion of anonymity. However, the security
model in this IBE setting still trusts the authority. Whereas trusting the authority is intrinsic for privacy
of the plaintext, it is not for the privacy of the recipient: a stronger anonymity notion is possible, with
respect to the authority, but is it achievable for practical IBE?

For efficiency reasons, the use of Key Encapsulation Mechanisms KEM have been shown as a preferable
approach [21]. It consists in generating an ephemeral key and an encrypted version of the latter. The
ephemeral key is thereafter used with a Data Encryption Method DEM to encrypt the message. In
such a context, we are interested in the semantic security of the ephemeral key, and the anonymity of
the recipient. In the identity-based context, Bentahar et al. [7] defined Identity-based Key Encapsulation
Mechanisms IB-KEM. An anonymity notion with respect to the authority would then be an interesting
feature. Interestingly enough, this notion of anonymity with respect to the authority might have side
applications. One of them is PAKE [6], for password-authenticated key exchange. Such a protocol allows
two players to establish a private channel, using a short secret as a sole authentication means. The latter
is thus subject to exhaustive search, but such a short secret is very convenient for human beings.

Related Work. The idea of identity-based encryption is due to Shamir [19], in 1984. The first goal
was to simplify public key management. However, the first practical solutions appeared in 2001 only [10,
15]. Thereafter, many schemes have been proposed, based on pairing, factoring and lattices. Since such
schemes were dealing with encryption, the main security notion was the semantic security [17].
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Even if recipient-anonymity had already been addressed for public-key encryption [3] in 2001, anonym-
ity for IBE has been proposed recently by Abdalla et al. [1], but as a simple extension of the previous
public-key setting definition. In 2006, Gentry [16] and Boyen and Waters [12] presented the first anonymous
IBE schemes without random oracles.

Our contributions. As already noticed in [1], anonymity might have some side applications to search-
able encryption. In this paper, we deal with anonymity for IB-KEM, even with respect to the authority,
the so-called Key Anonymity with respect to the Authority and denoted KwrtA-Anonymity: we first provide
a formal security model, and then we discuss this security notion with existing schemes. We also consider
a new non-malleability notion for the identity, that we call identity-based non-malleability : if one encrypts
a message (or a key) for user U , one has no idea about the value obtained by another user U ′, whatever
the relation between U and U ′ (or the identities) is.

Thereafter, we show that these security notions can also have side applications to password-authentic-
ated key exchange. Such a KwrtA-anonymous and identity-based non-malleability IB-KEM scheme can
indeed be plugged into a password-authenticated two-party key exchange protocol, in the same vein as
the IPAKE construction [14] did with trapdoor hard-to-invert group isomorphisms. Our security result
holds in a stronger security model than usual (with an adaptive selection of passive and active attacks,
as in [18]), but the construction still assumes the random-oracle model [5], as in [14].

Eventually, we provide an IB-KEM, that is both KwrtA-anonymous and identity-based non-malleable,
in addition to the full-identity semantic security, against chosen-plaintext adversaries. This thus leads to
a new password-authenticated two-party key exchange protocol.

2 Anonymous Identity-Based Encryption

Anonymity for public-key encryption schemes has first been introduced by Bellare et al. [3], under the
key privacy security notion, and has been extended to identity-based encryption by Abdalla et al. [1].

In these papers, anonymity meant that even if the adversary chooses a message and two identities
(or two public keys), and the challenger encrypts the message with one of the identities (or keys), the
adversary cannot guess which one has actually been involved in the computation. This notion is quite
strong for public-key encryption, but not that strong in the identity-based setting since it does not capture
anonymity with respect to the authority that knows the master secret key, and even chooses the public
parameters PK.

Unfortunately, the previous definitions cannot be trivially extended: the adversary can easily break
anonymity if he knows the expected plaintext, and just hesitates between two identities, since he can
decrypt any ciphertext. Anonymity can only be expected against the server if the plaintexts follow a non-
trivial distribution. Since we will deal with key-encapsulation mechanisms, this non-trivial distribution is
already implicit for the ephemeral keys.

This enhanced security notion will be called Key Anonymity with respect to the Authority and de-
noted KwrtA-Anonymity. This section defines precisely this notion for identity-based key encapsulation
mechanisms.

2.1 Identity-Based Encryption and Key Encapsulation Mechanisms

We first review the definitions of identity-based encryption, and more specifically of identity-based key
encapsulation mechanisms [7]. In the following, we assume that identities are bit strings in a dictionary
Dic.
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Definition 1 (Identity-Based Encryption). An IBE scheme is specified by four algorithms:

SetupIBE(1λ). Takes as input a security parameter λ. It outputs the public parameters PK, as well as a
master secret key MK.

ExtractIBE(MK, ID). Takes as input the master secret key MK, and the identity ID of the user. It outputs
the user’s decryption key usk.

EncryptIBE(PK, ID, M). Takes as input the public parameter PK, the identity of the recipient, and a
message M to be encrypted. It outputs a ciphertext.

DecryptIBE(usk, c). Takes as input the user’s decryption key and a ciphertext c. It outputs the decryption
or ⊥, if the ciphertext is not valid.

In [20] Shoup proposed a more efficient framework for public-key encryption, the so-calledKEM/DEM,
for key encapsulation mechanism/data encapsulation method. More recently, Bentahar et al. [7] extended
this concept to the identity-based setting, and therefore proposed some constructions of IB-KEM seman-
tically secure. We will use the following formalism:

Definition 2 (Identity-Based Key Encapsulation Mechanism).
An IB-KEM scheme is specified by the following four algorithms:

SetupIBK(1λ). Takes as input a security parameter λ. It outputs the public parameters PK, as well as a
master secret key MK.

ExtractIBK(MK, ID). Takes as input the master secret key MK and an identity ID of the user. It outputs
the user’s decryption key usk.

EncapsIBK(PK, ID). Takes as input the public parameters PK and the identity of the recipient. It outputs
a pair (K, c), where K is the ephemeral session key and c is the encapsulation of that key.

DecapsIBK(usk, c). Takes as input the user’s decryption key usk and a ciphertext c. It outputs the key K
encapsulated in c or ⊥, if the ciphertext is not valid.
We also formally define the function DecapsIBK(ID, c), which takes as input a user identity ID and a
ciphertext c. It first extracts the decryption key usk associated to ID, and then decapsulates c under
usk.

We first review the notion of semantic security for IB-KEM, then we deal with anonymity, and an
additional security notion, that we call identity-based non-malleability.

2.2 Security Notions

We directly describe the security notions for identity-based key encapsulation mechanisms, but one can
easily derive them for identity-based encryption.

Semantic Security. The semantic security formalizes the privacy of the key. The security game, in the
strongest security model (i.e. chosen-ciphertext and full-identity attacks) is the following one:

Setup : The challenger runs the SetupIBK algorithm on input 1λ to obtain the public parameters PK,
and the master secret key MK. It publishes PK.

Find stage: The adversary A adaptively issues the following queries:
– Extract query on input an ID: The challenger runs the Extract algorithm on input (MK, ID), and

provides the associated decryption key usk.
– Decaps query on input an ID and a ciphertext c: The challenger first extracts the decryption key

for ID, and then decrypts the ciphertext c with this key. It outputs the resulting ephemeral key,
or ⊥.
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A outputs a target identity ID∗, on which no Extract-query has been asked.
Challenge: The challenger randomly gets (K0, c

∗)← EncapsIBK(PK, ID∗) and (K1, c
′)← EncapsIBK(PK, ID∗).

It flips a bit b and outputs (Kb, c
∗).

Guess stage: The adversary can issue the same queries as in the Find stage, with the restriction that
no Extract-query on input ID∗ and no Decaps-query on input (ID∗, c∗) can be asked. The adversary
finally outputs its guess b′ ∈ {0, 1} for b.

We then define the advantage of A in breaking the Semantic Security of an IB-KEM scheme with its
ability in deciding whether it actually received the real ephemeral key associated to c∗ or a random one.
We denote this security notion by IND, which can thereafter be combined with various oracle accesses,
in order to define selective/full-identity and chosen plaintext/ciphertext attacks. More formally, we want
the advantage below, to be negligible:

Advind
IBK(A) = 2× Pr

b









(PK, MK)← SetupIBK(1λ); (ID∗, s)← A1(PK)
(K0, c

∗)← EncapsIBK(PK, ID∗);
(K1, c

′)← EncapsIBK(PK, ID∗)
b′ ← A2(Kb, c

∗, s) : b = b′









− 1.

In the following, we will need a very weak notion, that we call weak semantic security, during which
attack that adversary has to choose in advance the target identity ID∗ (selective-ID), and has no oracle
access at all: no Decaps queries, and no Extract queries.

Anonymity. Anonymity against IBE means that for a chosen plaintext, and given a ciphertext c en-
crypted under ID0 or ID1 of adversary’s choice, the adversary should not be able to decide which identity
has been involved. With an appropriate DEM encryption scheme, the key encapsulation anonymity ver-
sion can be defined as follows:

Setup: The challenger runs SetupIBK on input 1λ to obtain the public parameters PK, and the master
secret key MK. It publishes PK.

Find stage: The adversary A adaptively issues Extract and Decaps queries. A outputs two identities
ID0, ID1, on which no Extract-query has been asked before.

Challenge: The challenger randomly selects b ∈ {0, 1} and gets an encapsulated pair (K∗, c∗) under
IDb. It returns (K∗, c∗).

Guess stage: The adversary can issue the same queries as in the Find stage, subject to the restriction
that no Extract-query is allowed to be asked on ID0 or ID1, and no Decaps-query can be asked on
input (ID0, c

∗), or (ID1, c
∗). It finally outputs its guess b′ ∈ {0, 1} for b.

We say that an IB-KEM scheme provides key-anonymity if the advantage of A in deciding which identity
is actually involved in the above experiment is negligible:

Advanon
IBK (A) = 2× Pr

b









(PK, MK)← SetupIBK(1λ);
(ID0, ID1, s)← A1(PK)

(K∗, c∗)← EncapsIBK(PK, IDb);
b′ ← A2(K

∗, c∗, s) : b = b′









− 1.

As already noticed, this anonymity notion does not provide any security with respect to the authority,
since the above security notion assumes that the adversary has no idea about MK.

KwrtA-Anonymity. We therefore enhance the previous security model, in order to consider the author-
ity as a possible adversary. However, it is clear that given (K∗, c∗), the authority can check the involved
ID. We thus truncate the input to c∗ only:
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Find stage: The adversary generates (valid, see below) public parameters PK. A outputs PK and two
identities ID0, ID1.

Challenge : The challenger randomly selects b ∈ {0, 1}, and generates a ciphertext for IDb, (K∗, c∗) ←
EncapsIBK(PK, IDb). It outputs c∗.

Guess stage: The adversary finally outputs its guess b′ ∈ {0, 1}.

We say that an IB-KEM scheme provides Key Anonymity with respect to the Authority (denoted KwrtA-

Anonymity) if the advantage of A in deciding which identity is involved in the experiment above is
negligible:

Advkwrta−anon
IBK (A) = 2× Pr

b





(PK, ID0, ID1, s)← A1(1
λ) s.t. ValidIBK(PK)

(K∗, c∗)← EncapsIBK(PK, IDb);
b′ ← A2(c

∗, s) : b = b′



− 1.

We emphasis that in the above experiment, the adversary has to generate valid public parameters
PK. Note that against KwrtA-Anonymity (vs. anonymity), on the one hand, the new adversary may know
the master key MK, but on the other hand, it must make its decision from c∗ only. Therefore, these two
security notions are not really comparable. Furthermore, since the adversary generates PK, one has to be
able to check the honest generation. In some cases, PK is a truly random value, without redundancy; in
some other cases, appropriate redundancy should be proven. We thus define an additional algorithm:

ValidIBK(PK). Takes as input the public parameters PK, and checks whether they satisfy the required
properties.

Identity-based Non-Malleability. In the application we will study later, a new security notion for
identity-based encryption will appear. It basically states that when one sends a ciphertext to a user ID,
one has no idea how user ID′ will decrypt it, even for identities chosen by the adversary. This means
that when one computes an encapsulation, it provides an ephemeral session key with a unique recipient,
and not several secret keys with several partners. We define the identity-based non-malleability game as
follows:

Setup: The challenger runs SetupIBK on input 1λ to obtain the public parameters PK, and the master
secret key MK. It publishes PK.

Attack: The adversary A adaptively issues Extract and Decaps queries, and outputs a ciphertext c, and
two pairs (K0, ID0), and (K1, ID1).

The adversary wins this game if the two formal equalities hold:

K0 = DecapsIBK(ID0, c) and K1 = DecapsIBK(ID1, c).

We thus define the success of A in breaking the Identity-based Non-Malleability of an IB-KEM scheme
by:

Succid-nm
IBK (A) = Pr





(PK,MK)← SetupIBK(1λ);
(c, (K0, ID0), (K1, ID1))← A(PK) :

K0 = DecapsIBK(ID0, c) ∧K1 = DecapsIBK(ID1, c)



 .

Note that this security notion is for a normal user, and not for the authority itself. Indeed, it would clearly
be incompatible with KwrtA-Anonymity.
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3 Anonymous and Non-Malleable IB-KEM

Since the first practical IBE schemes, new features, and new efficient/security criteria have been defined.
An efficient anonymous IBE with a tight security proof in the standard model is one of the open problems.
In this section, we first review some candidates, and then propose a new scheme that satisfies all the above
requirements: semantic security, various anonymity notions and identity-based non-malleability.

3.1 Backgrounds on Pairings

Let G1 and G2 be two cyclic groups of large prime order p. We suppose that these two groups are equipped
with a pairing, i.e. a non-degenerated and efficiently computable bilinear map ê : G1 ×G2 → GT . In the
following, we use multiplicative notation for G1 and G2: ê(ga

1 , gb
2) = ê(g1, g2)

ab, for all a, b ∈ Zp, and any
g1 ∈ G1 and g ∈ G2. For the sake of generality, we consider the asymmetric case, where G1 6= G2, but
most of the schemes below also apply in the symmetric setting, where G1 = G2.

3.2 Diffie-Hellman Assumptions

The co-CDH-Problem. Let g1 and g2 two generators of G1 and G2 respectively. We define the co-Diffie-
Hellman value co-CDHg1,g2

(u), for u = gx
1 ∈ G1, the element v = gx

2 ∈ G2.
The co-CDHG1,G2

problem can be formalized as follows: given g1, u ∈ G1 and g2 ∈ G2, output v =
co-CDHg1,g2

(u). We define the success probability of A in breaking the co-CDHG1,G2
-problem as:

Succco−cdh
G1,G2

(A) = Pr
[

g1
R
← G1; g2

R
← G2, x

R
← Zp; v ← A(g1, g2, g

x
1 ) : v = gx

2

]

.

Note that when G1 = G2 = G, the co-CDHG,G-problem is exactly the usual Computational Diffie-Hellman
Problem in G, which can still be difficult. However, the decisional version is easy, granted the pairing.

We can indeed define the co-DHG1,G2
-language of the quadruples (a, b, c, d) ∈ G1×G2×G1×G2, such

that d = co-CDHa,b(c).

The Common co-CDH-Problem. Given two elements, it is simple to complete a co-CDH-quadruple
(g1, g2, u, v). However, finding two such quadruples with constraints may not be simple. We thus define
a new problem, called the Common co-CDH-Problem, as follows: Given g, h ∈ G, and V ∈ GT , output
k0 6= k1 ∈ Zp, K0, K1 ∈ GT and a common c ∈ G, such that:

(ghk0 , V, c, K0), (ghk1 , V, c,K1) ∈ co-DHG,GT
.

We define the success of A in breaking the Common-co-CDHG,ê-Problem as:

Succcommon-co-cdh
G,ê (A) = Pr





g, h ∈ G;V ∈ GT ; (c, k0, k1, K0, K1)← A(g, h, V ) :
k0 6= k1 ∧ (ghk0 , V, c,K0) ∈ co-DHG,GT

∧(ghk1 , V, c,K1) ∈ co-DHG,GT





The CBDH-Problem. Diffie-Hellman variants have been proposed in groups equipped with pairings, and
namely in the symmetric case: let g be a generator of G. We define the Bilinear Diffie-Hellman value of
gx, gy, gz, for x, y, z ∈ Zp, in base g, the element V = ê(g, g)xyz ∈ GT .

The CBDHG,ê problem can be formalized as follows: given g, X = gx, Y = gy, Z = gz ∈ G, output
V = ê(g, g)xyz. We define the success probability of A in breaking the CBDHG,ê-problem as:

Succcbdh
G,ê (A) = Pr

[

g
R
← G;x, y, z

R
← Zp;V ← A(g, gx, gy, gz) : v = ê(g, g)xyz

]

.
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The DBDH-Problem. The decisional version can then be intractable too: given g, X = gx, Y = gy, Z =
gz ∈ G, and V ∈ GT , decide whether V = ê(g, g)xyz, or not. We define the advantage of A in breaking
the DBDHG,ê-problem as:

Advdbdh
G,ê (A) = Pr

[

g
R
← G;x, y, z

R
← Zp;V = ê(g, g)xyz : 1← A(g, gx, gy, gz, V )

]

− Pr
[

g
R
← G; x, y, z

R
← Zp;V

R
← GT : 1← A(g, gx, gy, gz, V )

]

.

The Successive-Power Version. For our scheme to be semantically secure, we will need a stronger
variant of the above DBDH problem, given access to a sequence of powers, similarly to the Strong Diffie-
Hellman problem [9]: More precisely, given g, gx, gy, gz, and gz/x, gz/x2

, . . . , gz/xq

, as well as V , from some
V ∈ GT , where q is a parameter, decide whether V = ê(g, g)xyz, or a random element. We define the
advantage of A in breaking the q-SP-DBDHG,ê-assumption as:

Adv
q-spdbdh
G,ê (A) = Pr

[

g
R
← G; x, y, z

R
← Zp;V = ê(g, g)xyz :

1← A(g, gx, gy, gz, gz/x, · · · , gz/xq

, V )

]

− Pr

[

g
R
← G; x, y, z

R
← Zp;V

R
← GT :

1← A(g, gx, gy, gz, gz/x, · · · , gz/xq

, V )

]

.

It is clear that such a sequence of powers should not provide much information to the adversary. And
thus, for any polynomial-time adversary A, the above advantage is negligible. We provide the proofs that
our two new problems are intractable for generic adversaries in the Appendix A.

3.3 Previous IBE Schemes

Let us review several IBE , and see which properties they satisfy. For the sake of simplicity, for all of
them, we review the key encapsulation mechanisms. In several schemes, we will need a deterministic map
F from identities onto the group G, possibly with parameter PK.

The Boneh-Franklin Scheme [10]. In this scheme, MK = s
R
← Zp and PK = gs. The map F (ID) is

independent of PK. This is a function onto G, modeled as a random oracle in the security analysis. The
ciphertext c = gr ∈ G corresponds to the key K = ê(F (ID),PK)r = BDHg(PK, c, F (ID)) = ê(uskID, c),
where uskID = F (ID)s = co-CDHg,F (ID)(PK) ∈ G.

It is quite similar to the ElGamal encryption, and thus the semantic security relies on the DBDHG,ê,
but against chosen-plaintext attacks only, in the random oracle model, even with access to the Extract-
query, which is similar to the Boneh-Lynn-Shacham signature [11] (secure against chosen-message attacks
under the CDHG problem).

Since the ciphertext is totally independent of the identity, this scheme is KwrtA-anonymous, in the
information-theoretical sense. Nevertheless, the basic anonymity is similar to the semantic security, and
relies on the DBDHG,ê. However, since the ciphertext does not involve the identity, it is easy to break the
identity-based non-malleability : knowing r and c = gr, one easily computes K = BDHg(PK, c, F (ID)) =
ê(F (ID),PK)r, for any ID of ones choice.

The Boneh-Boyen Scheme [8]. In this scheme, α
R
← Zp, g, g2, h

R
← G, and PK = (g, g1 = gα, g2, h), while

MK = gα
2 . The map FPK is defined by FPK(ID) = gID

1 · h. The ciphertext c = (gs, FPK(ID)s) corresponds
to the key

K = ê(g1, g2)
s = ê(c1, usk2)/ê(usk1, c2),
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if one gets uskID = (gr, MK · FPK(ID)r), for any r
R
← Zp.

As above, the semantic security relies on the DBDHG,ê assumption, in the standard model, but against
selective-ID chosen-plaintext attacks, even with access to the Extract-query (the underlying signature
scheme is selective-forgery secure against chosen-message attacks under the CBDH assumption).

However, because of the redundancy in the ciphertext, which matches with one identity only, this
scheme is not anonymous: one just has to check, for a candidate ID, and a ciphertext c = (c1, c2), whether

(g, FPK(ID), c1, c2) is a Diffie-Hellman tuple, by ê(c1, FPK(ID))
?
= ê(c2, g). Since this attack did not need a

candidate key K, a fortiori, this scheme is not KwrtA-anonymous.
On the other hand, since the ciphertext focuses to a specific recipient, one has no idea how another

ID′ would decrypt it, because of its randomness r′ in the decryption key: for wrong user, with usk′ =
(gr′ , gα

2 FPK(ID′)r′), and c = (gs, FPK(ID′)s′) (s′ 6= s since ID′ is not the intended recipient), K ′ = K ×
Hr′ , for H 6= 1, and r′ totally random. Therefore, it is identity-based non-malleable in the information-
theoretical sense.

The Gentry Scheme [16]. In 2006, two schemes have been proposed, with provable anonymity. Gentry’s

scheme is one of them: g, h
R
← G and α

R
← Zp. The public parameters are PK = (g, g1 = gα, h) and

MK = α. The map FPK is defined by FPK(ID) = g1 · g
−ID = gα−ID. The ciphertext c = (FPK(ID)s, ê(g, g)s)

is the encapsulation of K = ê(g, h)s, and thus, setting (usk1, usk2) = (r, (hg−r)1/(α−ID)), for any r
R
← Zp,

K = ê(c1, usk2) · c2
usk1 .

The scheme is semantically secure and anonymous against chosen plaintext attacks, even with access to
the Extract-query, under the truncated decisional augmented bilinear Diffie-Hellman exponent assumption
(see [16] for details).

However, the scheme is not KwrtA-anonymous, since using bilinear maps combined with the redun-
dancy inside the ciphertext provides a test for any target identity ID′, since knowing α, A can test whether

c2
α−ID′

= e(g, g)s(α−ID′) ?
= e(c1, g) = e(gs(α−ID′), g).

Since the ciphertext is specific to the recipient, A has no idea how an other ID′ decrypts c = (c1 =
FPK(ID′)s′ , c2 = e(g, g)s), since

K ′ = ê(c1, usk′2) · c2
usk′1 = K · (ê(g, g)usk′1/ê(g, h))s−s′ ,

is a random element in GT . Thus, the scheme is identity-based non-malleable in the information-theoretical
sense.

The Boyen-Waters scheme [13]. Boyen and Waters proposed another provably anonymous scheme:

ω, t1, t2, t3 and t4
R
← Zp are set to be the master secret key and Ω = ê(g, g)t1·t2·ω, g, g0, g1, v1 = gt1 , v2 =

gt2 , v3 = gt3 are the public parameters PK, with g a random generator of G and g0, g1
R
← G. The map

FPK is defined by FPK(ID) = g0 · ID. To encrypt a key, one chooses a random s ∈ Zp and sets K = Ωs,
its encapsulation has the following form: c = (c0, c1, c2, c3, c4), with c0 = FPK(ID)s, c1 = vs−s1

1 , c2 = vs1

2 ,
c3 = vs−s2

3 , and c4 = vs2

4 . To decapsulate the key, one has to compute

K−1 = Ω−s = ê(g, g)−ωt1t2s

= ê(c0, usk0)× ê(c1, usk1)× ê(c2, usk2)× ê(c3, usk3)× ê(c4, usk4)

with uskID = (usk0, usk1, usk2, usk3, usk4), where:

usk0 = gr1t1t2+r2t3t4

usk1 = g−ωt2FPK(ID)−r1t2 usk2 = g−ωt1FPK(ID)−r1t1

usk3 = FPK(ID)−r2t4 usk4 = FPK(ID)−r2t3
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for any r1, r2
R
← Zp. This scheme is semantically secure under DBDHG,ê, and anonymous under the

decision linear assumption (we do not give more details since this scheme is totally different from ours
below. The reader is refereed to [13]). However, it is not KwrtA-anonymous: since knowing the master key
and given a ciphertext c = (c0, c1, c2, c3, c4), one can decide for a target identity whether c0, c1, c2 or/and
c0, c3, c4 is a linear tuple in basis v0, v1, v2 and v0, v3, v4 respectively.

Since the key is completely independent of the identity and c0 is determined by the identity (among
other elements), the same argument than for the two previous schemes holds: it is identity-based non-
malleable in an information-theoretically sense.

Note that for all the above schemes, the public parameters consist of independent elements in appro-
priate groups. The validity check ValidIBK(PK) is thus trivial.

3.4 Our Scheme

None of the previous schemes satisfies both KwrtA-anonymity and identity-based non-malleability. In this
section, we describe our scheme, and show that it achieves all the security properties: semantic security,
anonymity, KwrtA-anonymity and identity-based non-malleability. For the sake of simplicity, we use a
symmetric pairing:.

SetupIBK. The setup algorithm chooses two random generators g, h ∈ G, and a random exponent ω ∈ Zp.
It keeps this exponent as the master key MK = ω. The corresponding system parameters are: PK =
(g, g1 = gω, h). It defines the identity-function: F (ID) = g1 · g

ID = gω+ID.
Note that, as above, the public parameters consist of independent elements in appropriate groups.
The validity check ValidIBK(PK) is thus trivial.

ExtractIBK(MK, ID). To issue a private key for identity ID, the key extraction authority computes the
private key, uskID = h1/(ω+ID).

EncapsIBK(PK, ID). In order to generate an ephemeral key with an identity ID, the algorithm chooses a
random exponent r ∈ Zp, and creates the ciphertext as: c = F (ID)r, that corresponds to the key
K = ê(g, h)r.

DecapsIBK(uskID, c). The decryption algorithm extracts the ephemeral key K from a ciphertext c by
computing: K = ê(uskID, c).

Correctness. Let us check the decryption process:

K = ê(uskID, c) = ê(h1/(ω+ID), gr(ω+ID)) = ê(h, g)r.

Semantic Security. It is worth to precise that we do not require to be able to simulate any oracle for
making use of IB-KEM schemes in the next section. The weak semantic security will be enough:

Theorem 3. The weak semantic security of our scheme (under selective-ID, chosen-plaintext and no-
identity attacks) relies on the DBDHG,ê-problem, in the standard model.

Proof. Given u, A = ua, B = ub, C = uc, and V ∈ GT the input to the DBDHG,ê-Problem, and the target
identity ID∗, we set g = A = ua, h = C = uc = gc/a, g1 = ut ·A−ID∗

= ut−aID∗

, and c = B. This implicitly

defines MK = t/a− ID∗, for a randomly chosen t
R
← Zp. Therefore, FPK(ID∗) = g1g

ID∗

= ut ·A−ID∗

·AID∗

=
ut, and the randomness r of the challenge ciphertext c = FPK(ID∗)r = utr = ub = B is r = b/t. The
corresponding encapsulated key should thus be

K = ê(h, g)r = ê(uc, ua)b/t = ê(u, u)abc/t.

By letting (V 1/t, c) be the output of the challenger, an adversary able to break the semantic security
(without Extract-queries) helps us to decide whether V is the Bilinear Diffie-Hellman value or not. ⊓⊔
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In order to show the usual semantic security (under full-ID, but chosen-plaintext attacks), we have to
be able to simulate the Extract-oracle, which thus requires additional inputs. But first, we modify a little
bit the scheme, by using H(ID), instead of ID in the above description, where H is a random oracle [5]
onto Zp.

Theorem 4. The semantic security of our scheme (by using H(ID), instead of ID) under full-ID and
chosen-plaintext (no Decaps queries) relies on the successive-power version, in the random oracle model.

Proof. Given u, A = ua, B = ub, C = uc, Ci = C1/ai

, for i = 1, . . . , q, and V ∈ GT the input to the
q-SP-DBDHG,ê-problem, we first compute {Vi = ê(u, u)bc/ai

}i=0...q, since V0 = ê(B, C), and Vi = ê(B, Ci),

for i = 1, . . . , q. Then, we set g = A = ua and g1 = ut · A−x∗

, for randomly chosen t, x∗ R
← Zp. This

implicitly defines MK = t/a − x∗. We also choose random elements x1, . . . , xq
R
← Z

∗

p, and set P (X) =
∏

(tX + xi), a polynomial of degree q, where the number of random oracle queries is q + 1. We then set
h = CP (1/a) = ucP (1/a), which can be easily computed granted C, C1, . . . , Cq.

First, all the random oracle queries will be answered by an x∗ + xi, or x∗ (for a unique randomly
chosen query): we hope to assign x∗ to H(ID∗), the target identity, which happens with probability 1/q.
Let us assume this situation:

– By definition, as above, FPK(ID∗) = g1g
H(ID∗) = ut ·A−x∗

·Ax∗

= ut;

– For all the other identities, H(IDj) = xj , and then uskj can be computed as

h1/(MK+x∗+xj) = CP (1/a)/(MK+x∗+xj) = CP (1/a)/(t/a+xj) = CPj(1/a),

where Pj is a polynomial of degree q−1. Then uskj can be easily computed granted C, C1, . . . , Cq−1.
Hence the simulation of the Extract-oracle.

As above, the challenge ciphertext is set c = B = ub = FPK(ID∗)r for r = b/t. The corresponding
encapsulated key should thus be

K = ê(g, h)r = ê(ua, ucP (1/a))b/t = (ê(u, u)abc)P (1/a)/t.

Let us expand P (X) =
∑i=q

i=0 piX
i, and then

K = ê(u, u)abc·p0/t ×

i=q
∏

i=1

ê(u, u)bc/ai−1
·pi/t =

(

ê(u, u)abc
)p0/t

×

i=q
∏

i=1

V
pi/t
i−1 .

If V = ê(u, u)abc, the correct key is V p0/t ×
∏i=q

i=1 V
pi/t
i−1 . In the random case, the same computation

leads to a totally random key (note that p0 =
∏

xi 6= 0 mod p). Then, by letting (V p0/t×
∏i=q

i=1 V
pi/t
i−1 , c) be

the output of the challenger, an adversary able to break the semantic security helps us to decide whether
V is the Bilinear Diffie-Hellman value or not. We thus break the q-SP-DBDHG,ê-problem. ⊓⊔

Anonymity. The usual anonymity notion relies on the same assumption as the semantic security. Since
the ciphertext consists of c = F (ID)r, a random element in G, whatever the identity ID. It is thus clearly
KwrtA-anonymous, in the information-theoretical sense.

Theorem 5. Our scheme is unconditionally KwrtA-anonymous.
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Client C Server S

pw ∈ Dic pw ∈ Dic

accept← false accept← false

Valid(PK)?
S, PK
←−−−−−− (PK, MK)← Setup(λ)

(K, c)← Encaps(PK, pw)
C, c

−−−−−−→ usk← Extract(MK, pw)
K′ ← Decrypt(usk, c)

AuthS′ = H1(S, C, PK, c, pw, K)
S, AuthS
←−−−−−− AuthS = H1(S, C, PK, c, pw, K′)

AuthS
?
= AuthS′

If no error/reject
accept← true

AuthC = H2(S, C, PK, c, pw, K)

sk = H0(S, C, PK, c, pw, K)
C, AuthC
−−−−−−→ AuthC′ = H2(S, C, PK, c, pw, K′)

AuthC
?
= AuthC′

If no error/reject
accept← true

sk = H0(S, C, PK, c, pw, K)

Fig. 1. IBK-PAKE: a Password-Authenticated Key-Exchange Protocol

Idendity-based Non-Malleability. Let us consider the ciphertext c, and its decryption with respect
to IDi for i ∈ {0, 1}. In the following, ri is formally defined by c = F (IDi)

ri , and Ki = ê(g, h)ri . Thus,
the identity-based non-malleability relies on the intractability of finding c, {IDi, Ki}, with ID0 6= ID1 such
that ri = logê(g,h)(Ki) = logF (IDi)(c). This thus leads to a solution of the Common co-CDH-Problem.

Theorem 6. The identity-based non-malleability of our scheme relies on the Common co-CDH-Problem
in groups G and GT .

4 IBK − PAKE: Our PAKE Protocol

The previous sections focused on identity-based key encapsulation mechanisms, and new anonymity prop-
erties. We now show how a weakly semantically secure IB-KEM, that is both KwrtA-anonymous and
identity-based non-malleable, can be used to build a password-authenticated key exchange.

4.1 Description of our Scheme

Our new scheme is generic. It basically consists in generating the session key using this IB-KEM, under
the common password as the identity, see Figure 1. The other party can easily recover the session key.
Security notions for semantic security and perfect forward secrecy follow from the (weak) semantic security
and anonymity properties of the IB-KEM scheme.

4.2 Security Analysis

Communication Model. We assume to have a fixed set of protocol participants, and each of them can
be either a client or a server. They are all allowed to participate to several different, possibly concurrent,
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executions of the key exchange protocol. We model this by allowing each participant an unlimited number
of instances able to initiate or participate to executions of the protocol.

In the password-based scenario, the two parties share a low-entropy secret pw which is drawn from a
small dictionary Dic. In the following, we assume that the distribution is uniform. More complex distri-
butions could be considered.

We use the security model introduced by Bellare et al. [4], improved by Abdalla et al. [2] to consider
the Real-or-Random security notion instead of the Find-then-Guess. In this model, the adversary A has
the entire control of the network, which is formalized by allowing A to ask the following query, Send(U, m),
that models A sending the message m to instance U . The adversary A gets back the response U generates
in processing the message m according to the protocol. A query Send(U, INIT) initializes the key exchange
algorithm, by activating the first player in the protocol.

From the original security model, we suppress the Execute-queries. Even if they were important to
model passive attacks vs. active attacks, we consider a stronger security model where the adversary
always uses Send-queries, either for simply forwarding a flow generated by a honest user, or for mod-
ifying/manufacturing a flow. Thereafter, if the whole transcript of an execution of the protocol turns
out to consist of forwarded flows only, this execution is then considered as a passive attack: it is similar
to an Execute-query in previous models [4]. If one flow has been modified or manufactured, the session
corresponds to an active attack.

As a consequence, in addition to the usual security model with Execute-queries, the adversary can
adaptively decide, during an execution of the protocol, whether the session will correspond to a passive
attack, or to an active one, and not from the beginning of the session only (as in [18]). An attack game
will consist of a mix of passive and active attacks, in a concurrent manner.

However, as usual, we will be essentially interested in active attacks: qactiveC and qactiveS will, respec-
tively, denote the number of active attacks in which the adversary played against the client and the server,
respectively. We want to show that qactiveC + qactiveS is an upper-bound on the number of passwords the
adversary may have tried.

Security Notions. Two main security notions have been defined for key exchange protocols. The first
is the semantic security of the key, which means that the exchanged key is unknown to anybody other
than the players. The second one is unilateral or mutual authentication, which means that either one, or
both, of the participants actually know the key. In the following, we focus on the semantic security, also
known as AKE Security.

The semantic security of the session key is modeled by an additional query Test(U). Since we are
working in the Real-or-Random scenario, this Test-query can be asked as many times as the adversary A
wants, but to fresh instances only. The freshness notion captures the intuitive fact that a session key is
not “obviously” known to the adversary. More formally an instance is said to be fresh if it has successfully
completed execution and

1. Neither it nor its partner was corrupted before the session started

2. or, the attack, on this session, was passive.

Two instances are partners if they run a key exchange protocol together. This is formally modeled by the
notion of session ID: the session ID is a string defined from the transcript (usually, it consists of the first
flows, sent and received), and two instances are partners if they share the same session IDs.

The Test-query is answered as follows: a (private) coin b has been flipped once for all at the beginning
of the attack game, if b = 1 (Real), then the actual session key sk is sent back, if b = 0 (Random), or a
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random value is returned. Note that for consistency reasons, in the random case, the same random value
is sent to partners.

We denote the AKE advantage as the probability that A correctly guesses the value of b with its
output b′: Advake(A) = 2 Pr[b = b′]− 1.

The adversary will also have access to the Corrupt-query that leaks the password: it is useful to model
the perfect forward secrecy. The latter notion means that a session key remains secret even after the
leakage of the long-term secret.

Security Result. For our protocol, we can state the following security result, which proof can be found
in the full version.

Theorem 7 (AKE Security). Let us consider an Identity-Based Key Encapsulation Mechanism IBK =
(Setup,Extract,Encaps,Decaps) that is weakly semantically secure (selective-ID, chosen-plaintext attacks
and no Extract-queries), anonymous, KwrtA-anonymous, and identity-based non-malleable, then our pro-
tocol IBK-PAKE, provides semantic security and perfect forward secrecy:

Adv
ake
ibk−pake(A) ≤ 4×

qactive

N
+ negl(),

where qactive = qactiveC + qactiveS is the number of active attacks and N is the size of the dictionary.

5 Conclusion

In this paper, we have first introduced two new security notions for identity-based key encapsulation
mechanisms: the first one is an enhancement of the usual anonymity, the second one formalizes a kind on
non-malleability, with respect to the recipient identity.

Then, we proposed the first scheme that is full-ID semantically secure against chosen-message attacks,
and that achieves our new security notions.

We furthermore showed that these new security notions could be useful for identity-based schemes as
a tool: we provided a new framework for password-authenticated key exchange, with an identity-based
key encapsulation mechanism as a core sub-routine.
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18. David Pointcheval and Sébastien Zimmer. Multi-factor authenticated key exchange. In ACNS 2008, LNCS 5037, pages

277–295. Springer, 2008.
19. Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO ’84, LNCS 196, pages 47–53. Springer,

1985.
20. Victor Shoup. Using hash functions as a hedge against chosen ciphertext attack. In EUROCRYPT 2000, LNCS 1807,

pages 275–288. Springer, 2000.
21. Victor Shoup. ISO 18033-2: An emerging standard for public-key encryption. December 2004. Final Committee Draft.

A Analysis in the Generic Model

A.1 The Common co-CDH-Problem

Let us first recall the Common co-CDH-Problem: given g, h ∈ G, and V ∈ GT , output c ∈ G, k0 6= k1 ∈ Zp,
and K0, K1 ∈ GT such that:

ghki = co-CDHKi,c(V ) for i = 0, 1.

We define the success of A in breaking the Common-co-CDHG,ê-Problem, denoted by Succcommon-co-cdh
G,ê (A)

as:

Pr

[

g, h
R
← G;V ∈ GT ; (c, k0, k1, K0, K1)← A(g, h, V ) :

k0 6= k1 ∧ ghk0 = co-CDHK0,c(V ) ∧ ghk1 = co-CDHK1,c(V )

]

.

Theorem 8. Let A be an adversary that makes at most q group operation queries (internal laws in G or
GT , or pairing operations). On inputs g, h ∈ G, and V ∈ GT , the probability that A outputs a solution
(k0, k1, K0, K1, c) to the Common co-CDH-Problem is bounded by

(3q + 4)2 + 3

p
≤ O

(

q2

p

)

.
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Proof. Let A be an adversary against the Common co-CDH-Problem. We define a simulator B that
emulates the group oracles: B maintains two lists L1 and LT of polynomials L1 = {(F1,i, ξ1,i), i = 1, · · · , t1}
and LT = {(FT,i, ξT,i), i = 1, · · · , tT } such that at step t, t1 + tT ≤ 3 · t + 4. The entries ξ1,i, ξT,i are set to
be distinct random strings and are used to represent elements in G and GT respectively. At the beginning
of the game, B just sets two polynomials F1,0 = 1 and F1,1 = x1, which refer to a generator g and a
random element h = gx1 in G, respectively. Similarly, B defines two polynomials FT,0 = 1 and FT,1 = X1

associated to elements U = e(g, g) and V = e(g, g)X1 in GT .

For any oracle query, B updates the lists L1 and LT :

– Group Operation in G: when A asks for the addition of two elements in G, it gives two represen-
tations ξi and ξj . Theses two strings are either associated to the polynomials F1,i, F1,j ((F1,i, ξi) and
(F1,j , ξj) are in L1) or one defines a new variable x1,i and set F1,i = x1,i associated to ξi and thus
adds (F1,i, ξi) to L1 (or for index j). We thus assume that (F1,i, ξi) and (F1,j , ξj) are in L1.

Then, it computes the sum of the polynomials, F1,k = F1,i + F1,j . If the resulting polynomial F1,k

already appears in the list for some index l ≤ t1, then it sets ξ1,k ← ξ1,l, else it chooses a new random
string in {0, 1}log2 p for ξ1,k. Note that group operations in G result in multivariate polynomials of
degree at most one in variables x1, · · · , xm, for some integer m ≤ t1.

– Pairing: when A requests a pairing query. It gives two representations ξ1,i and ξ1,j . As above, by
possibly setting the undefined elements, we can assume that (F1,i, ξi) and (F1,j , ξj) are in L1. Then,
B computes the product of the polynomials, FT,k = F1,i · F1,j . If the resulting polynomial already
appears in the list for some index l ≤ tT , then it sets ξT,k ← ξT,l, else it chooses a new random string
ξT,k in {0, 1}log2 p for FT,k.

Since we know that polynomials in L1 are of degree 1 in the variables x1, . . ., the polynomials we
create with this simulation are of degree 2 in the same variables.

– Group operation in GT : when A asks for the addition of two elements in GT , it gives two represen-
tations ξi and ξj . As above, by possibly setting the undefined elements (and new variables Xi or Xj),
we can assume that (FT,i, ξi) and (FT,j , ξj) are in LT . Then, B computes the sum of the polynomials,
FT,k = FT,i + FT,j . If the resulting polynomial already appears in the list for some index l ≤ tT , then
it sets ξT,k ← ξT,l, else it chooses a new random string ξT,k in {0, 1}log2 p for FT,k.

In the previous simulation, we created polynomials in LT of degree 2 in the variables x1, . . .. We
can thus add these polynomials: they remain polynomials of degree 2 in the variables x1, . . .. We
can also add these polynomials with the initial polynomials FT,1, FT,2, . . . and the new variables Xi:
polynomials of degree 1 in the variables X1, . . ..

As a consequence, any polynomial F in LT can be split in two polynomials A ∈ Zp[x1, · · · , xm] (of degree
2) and B ∈ Zp[X1, · · · , Xn] (of degree 1) such that F = A + B.

Note that for each group operation query, the oracle adds at most three new variables in the list. Thus
if q is the number of queries we have t1 + tT ≤ 3q + 4.

To evaluate the success of any adversary in distinguishing the above simulation from the real oracles,
one has to define the event raised in case of deviation. This happens if the evaluations of two polynomials on
the initial vector (x1, . . . , X1, . . .) refer to the same value: the oracles would output the same representation
whereas our simulation just compares the polynomials and would thus output different representations.
More precisely, the simulation can be detected if there exists a pair of polynomials (F, F ′) such that for
a random choice of x1, · · · , xn, X1, · · · , Xm in Zp,

F (x1, · · · , xn, X1, · · · , Xm) = F ′(x1, · · · , xn, X1, · · · , Xm) whereas F 6= F ′.
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Since polynomials are of degree at most 2, this can happen with probability less than 2/p for each
pair of polynomials: after q queries, the probability that the adversary distinguishes the two executions
is bounded by 2 · (3q + 4)2/p.

Unless the adversary A detects the simulation, it terminates by outputting a tuple (k0, k1, ξ
T
0 , ξT

1 , ξ1
c ),

where k0, k1 are in Zp. B retrieves, in the list, the polynomials associated to ξT
0 (representation of K0), ξT

1

(representation of K1) and ξ1
c (representation of c), if they exist. Otherwise, as before, it adds new variables.

Let thus F0, F1 and P be the polynomials associated to ξT
0 , ξT

1 and ξ1
c respectively: P ∈ Zp[x1, x2, · · · , xm]

of degree one, and Fi ∈ Zp[x1, · · · , xm, X1, · · · , Xn] of degree two. More precisely, as noted before, we can
split Fi = Ai + Bi, with Ai ∈ Zp[x1, x2, · · · , xm] of degree two, and Bi ∈ Zp[X1, · · · , Xn] of degree one.

If A is successful, this means that for some βi, we have:

cβi = ghki and V βi = Ki

The equalities above implies the following ones:

{

βi · P (x1, x2, · · · , xn) = 1 + kix1

X1 · βi = Ai(x1, x2, · · · , xn) + Bi(X1, · · · , Xm)

After substitution, we obtain

(Ai(x1, x2, · · · , xm) + Bi(X1, · · · , Xn)) · P (x1, x2, · · · , xm)− (1 + kix1) ·X1 = 0.

At this point, either the success probability of the adversary is negligible (the above polynomial is
non-zero), or

Ai(x1, x2, · · · , xm) = 0, Bi(X1, X2, · · · , Xn) = βi ·X1

where βi is now known to be a constant. Since P is a common polynomial, one gets

(1 + k1x1) · β0 − (1 + k0x1) · β1 = 0.

Again, either the success probability of the adversary is negligible (the above polynomial is non-zero), or
β0 = β1 and k1β0 = k0β1, which implies that k0 = k1. However, a successful attack does not allow that,
which concludes the proof.

B Analysis of the Successive-Power Problem.

The Successive-Power problem is the following: given g, gx, gy, gz, and gz/x, gz/x2
, . . . , gz/xq

, as well as
V , from some V ∈ GT , where q is a parameter, decide whether V = ê(g, g)xyz, or V is a random element
of GT .

Theorem 9. Let A be an adversary that makes at most t group operation queries. On input g, gx, gy, g
z

xi ,
for i ∈ {0, · · · , q}, the advantage of A in distinguishing the distribution of V = ê(g, g)xyz from the random
distribution in GT is bounded by

(3t + q + 7)2

p
≤ O

(

t2 + q2

p

)
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Proof. As in previous proof, we construct an algorithm B that interacts with A, using lists of pairs
L1 = {(F1,i, ξ1,i)} and LT = {(FT,i, ξT,i)}, but this time, we use fractions of polynomials. It starts with
F1,1 = 1, F1,2 = X, F1,3 = Y, F1,i = Z

Xi−4 for i = {4, · · · , q + 4}, and FT,1 = 1, FT,2 = T0, FT,3 = T1.
X, Y, Z are unknown variables. For a random bit b, Tb is also a really new unknown variable, whereas
T1−b = XY Z (but considered as an independent variable too. The adversary has to guess b.

When A terminates, it outputs its guess b′, and then B chooses a random assignment x, y, z, tb ∈ Zp,
for X, Y, Z, and Tb but sets T1−b = xyz.

In the simulated game, the advantage of the adversary is clearly zero: all the polynomials built during
the simulation are independent to XY Z.

One thus have just to evaluate the probability the adversary can detect that it is interacting with a
simulator: after t queries, the number of polynomials is upper-bounded by 3t+ q +7, which concludes the
proof.
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