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Abstract Gravity surveying is challenging in Antarctica because of its hostile environment and

inaccessibility. Nevertheless, many ground-based, airborne, and shipborne gravity campaigns have been

completed by the geophysical and geodetic communities since the 1980s. We present the first modern

Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million

km2, which corresponds to 73% coverage of the continent. The remove-compute-restore technique was

applied for gridding, which facilitated leveling of the different gravity data sets with respect to an Earth

gravity model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of

10 km resolution are publicly available. These grids will enable new high-resolution combined Earth gravity

models to be derived and represent a major step forward toward solving the geodetic polar data gap

problem. They provide a new tool to investigate continental-scale lithospheric structure and geological

evolution of Antarctica.

1. Introduction

The gravity field of the Earth is a key quantity of interest to geodesy and to other fields of geosciences. Being

a distinguished equipotential surface of the gravity potential, the geoid serves as a reference surface for the

realization of physical heights, which is an important task of geodesy [Forsberg et al., 2005]. In oceanography

the geoid serves as a reference for the determination of the (mean) sea surface topography. In polar regions

where the ocean is partly covered by sea ice, icebergs, or ice shelves, the geoid also provides a link between

the surface ellipsoidal height and the freeboard height, which in turn can be used to infer the thickness

of the floating ice. Determining an equipotential surface is also of significance for Antarctic subglacial lake

studies [Ewert et al., 2012]. In geophysics, analyses of gravity anomalies yield insight into the structure of the

lithosphere and into tectonic and geodynamic processes that shape the continents and surrounding oceans.

Huge progress in mapping the global Earth gravity field has been made in recent years aided in particular

by the satellite gravity missions GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity field

and steady state Ocean Circulation Explorer) which enable a coherent coverage and consistent accuracy

up to an unprecedented resolution of 130 km and 90 km, respectively. This long- to medium-wavelength

field resolved by satellite gravimetry is of considerable usefulness to study deeper lithospheric features or

large-scale regional- to continental-scale geoid patterns. However, it is the terrestrial data that critically aug-

ment our knowledge of the shorter-wavelength anomalies which are a key for studying crustal features and

for a higher-resolution view of the geoid. In order to obtain such a higher resolution (up to 10 km) ter-

restrial gravity compilations can be utilized over most continents and oceans, including the Arctic [Kenyon

et al., 2008]. However, Antarctica remains the most difficult-to-access region on Earth and, therefore, still suf-

fers from considerable gravity data coverage gaps. Nevertheless, over the years a considerable number of
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gravity surveys have successfully been completed in Antarctica. Aerogravimetry, in particular, has enabled a

huge step forward in Antarctic data coverage.

While major efforts have been made to compile all available Antarctic bedrock topography [Fretwell et al.,

2013] andmagnetic data [Golynskyetal., 2013], nomodern continental-scale compilationof gravity data exists

to date. Recognizing the pressing need for such a gravity compilation, in 2003 the International Association of

Geodesy (IAG) launched an initiative which is now organized within Subcommission 2.4f “Gravity and Geoid

in Antarctica” (AntGG). Here we present the major outcome of this international multidisciplinary initiative,

the first continental-scale gravity anomaly grid for Antarctica.

Enhanced geodetic applications include the development of next generation Earth gravity models and a

new Antarctic geoid derivation, while geophysical studies will greatly benefit from these gravity grids, too. A

higher-resolution crustal thickness and elastic thickness estimation will become possible by combining grav-

ity and seismic data compilations [Ferraccioli et al., 2011; An et al., 2015]. The gravity compilationwill also shed

new light onto the extent of major sedimentary basins and provides a new foundation to study the architec-

ture and the evolution of the continent, including the processes of subduction, collision, continental rifting,

and intraplate features.

2. Gravity Surveys in Antarctica

The acquisition of terrestrial gravity data in Antarctica is challenging because the continent and its surround-

ing ocean represent a hostile and remote environment. Conventional marine and land gravity surveying

techniques are limited by sea ice and ice shelves and by the vast extension, remoteness, and inaccessibility of

the Antarctic ice sheet, respectively. Most surveying activities are restricted to the Antarctic summer season,

but adverse weather conditions can occur also during the summer, making ground operations challenging.

Moreover,major logistic efforts are required to realize Antarctic surveys. Airborne gravimetry is the only viable

method which is capable of dealing with these conditions and enables much larger areas to be surveyed in

one season. Airborne surveys often comprise a suite of geophysical-geodetic equipment such as gravime-

ters, magnetometers to measure the Earth’s near-lithosphere magnetic field, radio echo sounding (RES) to

measure internal ice layers and subglacial topography, lasers to measure ice surface height and roughness,

inertial navigation system (INS) to measure aircraft attitude and support the determination of the flight tra-

jectory, and global navigation satellite system (GNSS) antennas and receivers to derive the flight trajectory

and kinematic accelerations.

The International Polar Year 2007/2008 [Krupnik et al., 2011] provided a springboard to launch major new air-

borne geophysical surveys, including airborne gravimetry over largely unexplored Antarctic frontiers, such as

the Gamburtsev Subglacial Mountains [Ferraccioli et al., 2011; Bell et al., 2011] and Wilkes Land in East Antarc-

tica [Aitkenetal., 2014]. Another project providing extensive newairbornegravity data coverage for Antarctica

is NASA’s Operation IceBridge that aims to bridge the gapbetween the satellite laser altimetrymissions ICESat

and ICESat-2 [Studinger et al., 2010]. In East Antarctica a long-term airborne project was conducted byGerman

institutions to unravel the largely unexploredDronningMaud Land [Riedel et al., 2012]. Over time a large num-

ber of gravimetric data sets have been collected in Antarctica by the international geosciences community

and incorporated into the AntGG database that is being maintained at TU Dresden [Scheinert, 2012].

These gravity data differ in a number of aspects. Gravimetric surveys were initiated by different nations, and

programs had different scientific goals and were realized at different observation epochs (see Table S1 in the

supporting information). Depending on the applied technique and the positioning method, the accuracy of

the gravity data differs over a large range. Issues like the realization of the gravimetric datum or survey layout

to enable cross-over calibration alsohave a strong impact on thefinal accuracyof an individual survey. The raw

data have been treated in different ways, especially with respect to filtering, reductions and/or corrections.

For airborne surveys several issues can arise such as an unclear altitude reference of the data or whether a

downward continuation was applied or not. These issues are also reflected in incomplete metadata for some

of these surveys. In some cases it is also not clear if the term gravity anomaly is correctly referred to, or if—in

the geodetic understanding—the data are given as gravity disturbances [Hackney and Featherstone, 2003].

Overlapping or complementary data sets may be internally consistent but can still contain systematic biases

such as offsets and tilts. Thus, the large heterogeneity of the gravity data was carefully considered in our new

Antarctic compilation.
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Overall, more than 13million gravity data points have been compiled in theAntGGdatabase, originating from

terrestrial, airborne, and shipborne surveys. More than onemillion line kilometers of aerogravimetry data are

included in our new compilation effort. Altogether, the data compilation covers an area of 10 million km2,

corresponding to about 73% of the Antarctic continent including ice shelves. The oceanic area covered by

gravity data corresponds to approximately 29% of the Southern Ocean south of 60∘S.

3. Global High-Resolution Determination of the Gravity Field of the Earth

Global Earth Gravity Models (EGM) are based on satellite data. To obtain a higher resolution than such

satellite-only models, terrestrial gravity data have to be included globally which leads to so-called combined

EGMs. The term terrestrial data is used here to denote data of ground-based, airborne, and shipborne surveys.

Combined EGMs reach a half-wavelength resolution of 70 km and better, comparable to harmonic degree

and order (d/o) 360 and higher (for the relation of degree and resolution, see Barthelmes [2013, p. 20]). Recent

high-resolution combined EGMs such as EGM2008 [Pavlis et al., 2008] or EIGEN-6C4 [Förste et al., 2014] reach

a resolution of approximately 10 km (d/o 2190) over most parts of the world. However, in Antarctica the res-

olution is much lower due to two facts: First, the deviation of the satellite orbit inclination from 90∘ leads to a

polar gap in satellite data. Second, the largest terrestrial data gaps still exist in Antarctica.

New satellite-based data provide unprecedented accuracy and resolution in the representation of the Earth’s

gravity field. The geodetic satellite mission GRACE (Gravity Recovery and Climate Experiment) has been in

orbit since March 2002 [Tapley et al., 2004] while GOCE (Gravity field and steady state Ocean Circulation

Explorer) was launched inMarch 2009 and fell from orbit in November 2013 [Floberghagen et al., 2011; vander

Meijde et al., 2015]. GRACE-based satellite-only global EGMs reach a resolution of 160 to 130 km (d/o 160 to

200), e.g., GGM05S [Tapley et al., 2014]. GOCEhas provided significantly higher-resolution data to satellite-only

EGM. For example, EIGEN-6S2 [Rudenkoetal., 2014] combines LAGEOS laser-rangingdata for the lowerdegrees

2–30, GRACE range rate data up to d/o 180, and GOCE data resulting in approximately 90 km resolution

(d/o 260). However, GOCE has a polar data gap larger than that of GRACE with a diameter of approximately

1400 kmdue to its inclinationof 96.5∘. Therefore, toobtain a stabilized EGMsolution, onehas to apply a certain

type of regularization [Metzler and Pail, 2005; Pail et al., 2011] or to include terrestrial gravity data. However,

the latter is not possible yet for Antarctica due to the lack of a continental-scale compilation.

4. Regional Gravity Field Determination in Antarctica and Choice

of Background EGM

In regional gravity field determination the remove-compute-restore (RCR) technique is commonly applied

[Forsberg, 1993; Forsberg and Tscherning, 1997; Sansò and Sideris, 2013]. However, as discussed in section 2,

Antarctic gravity data exhibit large heterogeneities and inconsistencies. How heterogeneous gravity data can

be utilized to improve the regional geoid has previously been presented for the Weddell Sea [Schwabe and

Scheinert, 2014] and Lake Vostok [Schwabe et al., 2014]. The application of a background EGM is a major step

of the RCR technique (see section 5.2).

For this, a satellite-only EGM has to be used since it is independent from terrestrial data. GOCE-based EGMs

are favorable for they enable the highest resolution. However, one has to deal with the polar data gap prob-

lem. Therefore, the reliability and the applicability of any GOCE-based EGM in the Antarctic interior depends

considerably on the regularization technique used in the spherical harmonic analysis. Different approaches

are applied in the determination of EGMs such as the European Space Agency’s (ESA) direct, timewise, and

spacewise models [Pail et al., 2011] or the family of EIGEN [Rudenko et al., 2014; Shako et al., 2014] and GOCO

[Pail et al., 2010;Mayer-Gürr, 2012] models. GRACE data weremerged up to a certain degree and order to deal

with the poor sensitivity of GOCE gravity gradient measurements at long wavelengths. A spherical cap reg-

ularization [Metzler and Pail, 2005] was computed in an iterative way as in the ESA direct model ESA-DIR/R5

[Bruinsma et al., 2013, 2014]. (For the sake of briefness, short abbrevations shall be used, like ESA-DIR/R5 for

GO_CONS_GCF_2_DIR_R5, ESA’s direct model release 5, and so on.) For the ESA-TIM/R5 a regularization was

applied using synthetic signal degree variances due to Kaula’s rule of thumb to constrain zonal and near-zonal

coefficients that suffer mostly from the polar data gap [Brockmann et al., 2014].

To investigate the performance of recent EGMs, a comparison was carried out using high-resolution air-

borne gravity data that can be regarded as providing ground truth for these global models. Our evaluation

SCHEINERT ET AL. NEW ANTARCTIC GRAVITY ANOMALY GRID 602



Geophysical Research Letters 10.1002/2015GL067439

(see Text S2 in the supporting information) considered regions both inside and outside the polar data gap.

We concluded that the GOCO03S model [Mayer-Gürr, 2012] utilizes the GOCE observations in an appropriate

way with minimum degradation of signals including the interior of the polar gap (which is due to the inclu-

sion of GRACE data). Therefore, it is an appropriate choice to apply GOCO03S as a background EGM to serve

as the common reference in adjusting the terrestrial Antarctic gravity data sets.

5. Derivation of a New Antarctic Gravity Anomaly Grid

In the compilation we focus primarily on continental surveys in order to close data gaps as best as currently

possible. The original gravity data sets made available to AntGG comprise pointwise data, profile-wise data

(as it is mostly the case for airborne and shipborne surveys), and gridded data sets. The original preprocessed

gravity data were preserved as much as possible. In view of the large amount of data records (see section 2),

and due to the generally poor linkage between the different data sets we did not attempt to mitigate all

problematic issues in the individual data sets.

Shipborne data are only considered in some regions, since in general they show big gaps, incomplete meta-

data, and sometimes unclear referencing. Also, they are not that crucial since in the ocean areas satellite

altimetry allows to derive adequate gravity information for most geodetic and geophysical applications

[Andersen et al., 2014; Sandwell et al., 2014].

5.1. Compilation of Gravity Data and Metadata

For every campaignmetadata were compiled as accurately as possible. The reliability of this process depends

to a large extent on the information provided with the original gravity data sets. As a general rule, data of

airborne surveys (where a GNSS referenced trajectory is available) were assigned gravity disturbances �g

(cf. section 2), while shipborne and land data were treated as gravity anomaliesΔg. In most of the surveys the

gravity formula of GRS80 [Moritz, 1984] was taken to compute normal gravity. Where the older GRS67 formula

was used, we applied a correction term [Anderson et al., 1984] which almost results in a constant offset on the

level of 1mGal. If the gravity reference is unknown (because itwas not possible to connect to an absolute grav-

ity point), a bias was introduced. As reference surface for ellipsoidal heights, theWGS84 ellipsoid [NIMA, 2000]

was taken (which is the standard for GNSS positioning; deviations from theGRS80 ellipsoid can be neglected).

To characterize the accuracy of each individual data set—and to make the data sets comparable to each

other at least in a relative sense—an a priori standard deviation �0 was allocated to each data set. In some

cases it could be deduced from themetadata. If no informationwas available, we utilized precomparisons like

cross-over computations or previous investigations incorporating independent data, see, e.g., Schwabe and

Scheinert [2014]. Thus, a standard value of 3mGal was allocated to airborne gravity surveys where no other

valuewasgiven. The spatial resolutionof airborne campaignsdependsmainly on the line spacingwhichvaries

from typically only a few kilometers to 30 km (see Table S1). Aircraft speed and respective filtering limit the

along-line resolutionwhich, however, is normally still higher than that resulting fromthe line spacing.Whereas

the ground-based surveys ADGRAV-ROSS #23 and GEOMAUD #24 are assigned a priori standard deviations of

5mGal and 1mGal, respectively, the BAS survey #25was given a higher value of 20mGal according to previous

investigations [Schwabe et al., 2012]. The PMGE/VNIIO compilation #26 was assigned a value of 10mGal since

the data were mostly acquired before GNSS positioning became available. Also, due to unknown smoothing

and gridding procedure this data set exhibits a lower spatial resolution of about 25 to 30km and biases of up

to 25mGal (see also Studinger [1998] and Schwabe and Scheinert [2014]).

Information on the data sets incorporated into the Antarctic gravity anomaly grid are summarized in Table S1,

includingmetadata and a priori standard deviation �0. In case of aerogravimetry, approximate total length of

survey flights per campaign and line spacing are given. The individual gravimetric surveys are not discussed

in this paper. Instead, one may refer to the relevant references reported in Table S1. Figure S1 shows location

and spatial extension of the individual data sets. Multiple coverage of same areas by different surveys leads

to overlaps as illustrated in Figure S2.

5.2. Processing and Gridding Procedure

From themostly irregularly distributed data a regular gravity anomaly grid needed to be derived. To facilitate

gridding on an equidistant rectangular grid centered at the South Pole we used the polar stereographic pro-

jection (based on theWGS84 ellipsoid, true scale at parallel 71∘S, using Generic Mapping Tools (GMT) [Wessel

et al., 2013]). The grid spacingwas chosen to be 10km. Due to uncertainties and heterogeneities in the data as
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well as due to signal dampingwith increasingflight height andheterogeneous line spacingof aerogravimetry,

a higher-resolution grid mesh was not warranted at continental scale. The choice of a 10 km grid mesh pro-

vides a reasonable compromise between the older, more widely spaced, ground-based surveys and newer

and higher-resolution airborne geophysical campaigns.

Biases of the individual data sets were taken into account as well as the heterogeneous accuracy by introduc-

ing an a priori standard deviation for each data set. To consider these aspects accordingly the RCR technique

is utilized which is a commonmethod of physical geodesy (section 4). The RCR technique uses a residual dis-

turbing potential �T which enables to apply spherical approximations and linearized functionals. The residual

disturbing potential is made up of the remainder after the long-wavelength part is accounted for by a global

EGM, and the short-wavelength part is accounted for by topography. Here we are using solely (irregularly dis-

tributed) gravity anomalies which can be regarded as a functional F of T , i.e., Δg = F(T). Thus, the remove

step reads

F(�T) = F(T) − F(TEGM) − F(Ttopo) (1)

Subsequently, a compute step is applied to the residual functional which should be formally denoted by C

[F(�T)] = C F(�T) (2)

Normally, on the left-hand side of this equation �T is standing alone. For example, in case of solving the

gravimetric boundary value problem, Cmight designate the (modified) Stokes integral. Now, the parenthe-

ses [*] shall denote values given at the regular grid. After the compute step, the long-wavelength part and

short-wavelength part are restored in the grid points:

[F(T)] = [F(�T)] + [F(TEGM)] + [F(Ttopo)] (3)

As background EGM in the remove and restore steps (equations (1) and (3), respectively) GOCO03S

[Mayer-Gürr, 2012] was used up to d/o 250. Topography is usually considered in a residual terrainmodel (RTM)

approach which should have a smoothing effect on the data [Forsberg and Tscherning, 1997]. Here we carried

out test calculations using the latest publicly available Bedmap2 compilation [Fretwell et al., 2013] including

both ice surface heights and bedrock topography. However, the resulting residual anomalies did not repre-

sent an improvement over residual free-air anomalies. Where Bedmap2 has lower accuracies (data void areas

or areaswith accuracies of only somehundred or even thousandmeters), errors in bedrock topographywould

directly enter into residual gravity. Therefore, we decided not to apply the topographic reduction (in the RTM

sense). Thus, the entire procedure comprises the following steps:

1. Remove step. The contribution of the background EGM (GOCO03S) was computed in each observation point

at flight altitude (if given, see Table S1) or at the surface and subsequently subtracted from the original data

(equation (1)). As a result of this step, we obtain residual gravity anomalies �(Δg)(i) for each individual survey

(i) still given at irregularly distributed observation points. Gravity disturbances (where clearly identified)

were converted to gravity anomalies in advance, estimating the difference (Δg − �g) using the same EGM.

At the long wavelengths the downward continuation is implicitly done using the EGM. A further step of

downward continuation was not considered. Most data were taken at the surface or close to the surface

anyway, as also airborne surveys were flown in altitudes such that the height above groundwas small. It can

be shown that the vertical gradient of residual gravity anomalies at flight altitude is close to zero and that

the remaining effect of the downward continuation is of the order ofmagnitude of less than 0.1mGal with a

standard deviation of less than 1mGal. Moreover, it should be emphasized that most airborne surveys were

conducted over the Antarctic ice sheet, which means that ice thickness still adds to the distance from the

ground (the ice surface) to bedrock topography. (The Antarctic ice sheet has a mean thickness of 2126 m

[Fretwell et al., 2013].)

2. Compute step—Project. This step is also done for each data set individually. The observation points origi-

nally given by geographical coordinates weremapped by polar stereographic projection into points on the

plane. Then, the residual gravity anomalies were interpolated from the irregularly distributed points onto

a regular grid with 10 km spacing. For this, we used the Generic Mapping Tool (GMT) [Wessel et al., 2013].
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Figure 1. Gridded data set of surface free-air gravity anomalies in Antarctica.

Routine blockmean was used as a preprocessing step to avoid aliasing of shorter wavelengths. It com-

putes the mean position and mean value for every grid cell that is not empty. After that, routine surface

was applied to realize the interpolation to the regular grid. This is accomplished by solving

(1 − t) ⋅ Δs(Δsz) + t ⋅ Δsz = 0 (4)

whereΔs denotes the surface Laplacian operator, t a tension factor [Wessel and Smith, 2015], and z = z(x, y)

the data to be gridded at rectangular coordinates, i.e., residual gravity anomalies given in terms of polar

stereographic coordinates. A nonzero tension factor relaxes the constraint of minimum curvature that oth-

erwise can result in “undesired oscillations” and “false local maxima and minima” [Smith andWessel, 1990].

It is recommended to use values of 0.25,… , 0.3 for potential field data, whereas a larger tension factor

(0.35) should be used for topography data [Wessel and Smith, 2015]. Here a tension factor of 0.3 was utilized.

Depending on the respective (mean) spacing, a mask was derived for each data set considering its effective

coverage in order to prevent gaps between profiles or single observation points. Gridded residual gravity

anomalies [�(Δg)(i)] are resulting from this step. Their statistics are given in Table S2.

3. Compute step—Level. In subtracting the respective mean from the residual gravity anomalies (cf. Table S2)

each data set (i) is individually referenced to the background EGM. In this way, systematic effects are

accounted for, e.g., biases originating from different gravity datum realizations. This simple ansatz gives

comparable results to amore complex computation using least squares estimation including the estimation

of offsets as realized by Schwabe and Scheinert [2014]. Considerable offsets of up to 40mGal were detected.

A higher-order detrendingwas also tested but omitted, since it can cause additional tilts or a degradation of

the relative consistency between two overlapping data sets. As a result, leveled residual gravity anomalies

[�(Δg)
(i)

0
] are obtained.
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Figure 2. Gridded data set of complete Bouguer gravity anomalies in Antarctica using Bedmap2 [Fretwell et al., 2013].

See section 5.3 for explanations.

4. Compute step—Merge.Up to this step thedata setswere treated individually. According to coverage, leveled

residual gravity anomalies [�(Δg)
(i)

0
] ofmore than one survey could be given in one grid point. Now the final

value is computed by a pointwise weighted mean from the individual gridded residual gravity anomalies:

[�(Δg)] =

∑

pi [�(Δg)
(i)

0
]

∑

pi
(5)

Weights were derived taken inverse a priori variances (Table S1): pi = 1∕�2
i
. Edge effects may occur where

multiple data sets of different accuracy intersect or overlap. However, a filtering was not applied in order

not to propagate such effects more widely throughout the grid. This step results in a regular grid of residual

gravity anomalies [�(Δg)].

5. Restore step. The contribution of the background EGM is restored according to equation (3). This was accom-

plishedbyadding the long-wavelengthpart evaluated fromthebackgroundEGM in thepoints of the regular

grid at the surface. This results in the desired regular grid of gravity anomalies [Δg].

5.3. Results

The resulting gridded data set of (surface) gravity anomalies is the main outcome. In Figure 1 the planar grid

was mapped to geographic coordinates by means of inverse polar stereographic projection. Figure S1 gives

the root-mean-square (RMS) of the weighted mean, propagated from a priori standard deviations as listed in

Table S1.

To evaluate the impact of newer aerogravimetry data, the RMS of residual individual data sets was estimated

with respect to the residual gridded data set (Figure S3). For example, this map clearly demonstrates the con-

sistency of IceBridge data (#22) with other overlapping aerogravimetric data, e.g., in the Weddell Sea and

Antarctic Peninsula regions and also at higher latitudes closer to the pole. Vice versa, larger deviations can

be detected for the PMGE/VNIIO compilation #26 in East Antarctica (between 60∘E and 90∘E). A major reason

SCHEINERT ET AL. NEW ANTARCTIC GRAVITY ANOMALY GRID 606



Geophysical Research Letters 10.1002/2015GL067439

for the lower accuracy lies in the fact that a lot of the data incorporated into this compilation were acquired

prior to the availability of GNSS positioning. In the region of the Antarctic Peninsula, larger deviations are

partly due to data set #25 (see discussion in section 5.1). Here an improvement is likely to occurwhen accurate

topography information is incorporated into the RCR processing scheme.

Finally, from the gridded gravity anomalies, complete Bouguer anomalies (Figure 2) were computed making

use of the Bedmap2 data set [Fretwell et al., 2013]. For this, the GRAVSOFT routine TC [Forsberg and Tscherning,

2008] was utilized applying a spherical prism integration with an integration radius of 300 km. To compute

the complete Bouguer anomaly all density discontinuities were taken into account, with (standard) densities

of 2670 kg/m3 for rock, 917 kg/m3 for ice, and 1025 kg/m3 for water.

6. Implications for Antarctic Geophysics

Our compilationof gravity anomalies provides a newbasis for thegeophysical community to study large-scale

crustal architecture, effective elastic thickness, and isostatic and tectonic processes that shaped the Antarctic

continent from the Precambrian to the Cenozoic. The continental-scale gravity compilation will also assist in

developing more robust geophysical ties between Antarctica and formerly adjacent continents within the

Gondwana, Rodinia, and Columbia supercontinents [Aitken et al., 2016].

Recent continental-scale estimations of crustal thickness variations beneath Antarctica have relied mainly

on inversions of satellite gravity [Block et al., 2009; O’Donnell and Nyblade, 2014] or compilations of relatively

sparse and mostly passive seismic arrays [An et al., 2015]. Our new free-air and Bouguer anomaly grids are

capable of resolving much shorter wavelength features related, for example, to major sedimentary basins

and other intracrustal density variations. By incorporating the more regional-scale flexural responses to

these intracrustal loads [Watts, 2001], improved crustal thickness estimations and tectonic interpretations for

Antarctica will in turn become possible. Deriving improved estimates of crustal and sedimentary basin thick-

ness in Antarctica is important in the quest to better constrain geothermal heat flux variations [Maule et al.,

2005] and quantify their potential influence on subglacial hydrology and ice sheet dynamics [Bell et al., 1998;

Schroeder et al., 2014]. Efforts to select the ideal candidate sites for drilling the oldest ice [Fischer et al., 2013]

also require an improved knowledge of the crustal structure in East Antarctica, which can influence regional

geothermal heat flux patterns and hence the preservation of old basal ice.

The first terrestrial gravity anomaly grids for Antarctica will help shed new light onto the evolution of fun-

damental large-scale geological processes such as continental rifting in West Antarctica [Damiani et al.,

2014; Jordan et al., 2013a; Bingham et al., 2012; Jordan et al., 2010] and intraplate mountain building in

the Transantarctic Mountains [Stern and ten Brink, 1989; Studinger et al., 2004, 2006; Jordan et al., 2013b],

the Gamburtsev Subglacial Mountains [Ferraccioli et al., 2011], and Dronning Maud Land [Näslund, 2001].

Gravity anomalies can aid studies of subduction and terrane accretion processes [Ferraccioli et al., 2002, 2006]

and intraplate basin formation [Ferraccioli et al., 2009]. The availability of new terrestrial gravity anomaly grids

for Antarctica will also augment current international efforts to compile almost two million line kilometers

of recent magnetic anomaly data for the continent [Golynsky et al., 2013] and together with these data, will

provide a window on Antarctic subglacial geology and tectonic evolution [Jokat et al., 2003; Riedel and Jokat,

2007; Ferraccioli et al., 2009; Aitken et al., 2014].

7. Conclusions and Outlook

The first Antarctic-wide gridded data set of gravity anomalies has been derived by incorporating all available

gravity data collected over the continent over the last three decades. In the gridding procedure our aim was

to preserve, as much as possible, the features of the original data sets (namely, accuracy and variability). The

scientific user is provided thegrids of (surface) free-air gravity anomalies andof Bouguer anomalieswith a grid

spacing of 10 kmeach aswell as a grid of accuracymeasures (propagated RMS). TheAntarctic gravity anomaly

grid is ready to be used in the derivation of new global Earth Gravity Models. Also, as a next step of AntGG,

an improved continent-wide Antarctic regional geoid will be derived from our new grid. Although the data

coverage is still partially incomplete, the new compilation represents the biggest step forward so far toward

solving the polar data gap problem. Further gravity surveys (especially airborne campaigns) are to be carried

out, especially over the South Pole region, the largest of the gaps that is of significant hindrance, in particular,

for global models derived from GOCE data. As several international projects are planned in this respect, there
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is a high probability that the remainingmajor data gaps will be closedwithin the next few years. In the course

of time, with new data being available, it is anticipated to provide updates of the Antarctic gravity anomaly

grid presented here.

Data sets are available at https://doi.org/10.1594/PANGAEA.848168.
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on the history of AntGG (to complement Section 2 of the
main text), a detailed explanation on the choice of the back-
ground earth gravity model (to complement Section 4 of
the main text), and supplementing remarks on the remove-
compute-restore technique (to complement Subsection 5.2
of the main text).

Figures S1 to S3 add more detailed views on the number-
ing and propagated RMS of the individual gravity datasets
used in our continental-scale Antarctic gravity compilation
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(Fig. S1), on the number of overlapping datasets (Fig. S2)
and on the RMS of residual individual datasets w.r.t. the
residual gridded dataset (Fig. S3). For details, refer to Sec-
tion 5 of the paper.

Table S1 is an extended version of Table 1 of the main
paper, giving more detailed metadata such as survey line
and tie line spacing of the airborne surveys, referred quan-
tity (gravity anomaly ∆g or gravity disturbance δg), used
gravity formula, observation height levels, reference heights,
height datum, and a priori standard deviation σ0. Table S2
summarizes some statistics for the datasets (in addition to
Section 5.3 of the main paper).

Figures S4 and S5 refer to Section S2 of this supporting
information.

S1. Remarks on the history of AntGG
(Supplement to Section 2)

In the framework of international organizations such as
International Association of Geodesy (IAG) and Scientific
Committee on Antarctic Research (SCAR) several attempts
were started to overcome the deficient coverage of gravity
data in Antarctica. An early IAG initiative dates back to
1993 [Sjöberg and Fan, 1993]. The SCAR Expert Group
on Geodetic Infrastructure in Antarctica (GIANT) has de-
fined an appropriate project in its work program (named
“Gravity Field” since 2012). As one of the projects to com-
pile Antarctic gravity data of different sources the Antarctic
Digital Gravity Synthesis (ADGRAV) shall be mentioned
which originated from an initiative of the SCAR Working
Group on Solid Earth Geophysics in 1998 [Bell , 2000]. In
2003, IAG initiated a working group to deal with the is-
sue which in 2011 was transferred to IAG Sub-Commission
2.4f “Gravity and Geoid in Antarctica” (AntGG), chaired
by the first author [Scheinert , 2005; Scheinert et al., 2008;
Scheinert , 2011, 2012; Scheinert et al., 2013].

S2. Choice of the background global Earth
Gravity Model (Supplement to Section 4)

In order to investigate the performance of recent Earth
Gravity Models (EGM) over Antarctica, a comparison
was carried out using high-resolution ground-based air-
borne gravity datasets that can be regarded as providing
ground truth for these global models. To demonstrate that
the global EGMs yield different predictions depending on
whether the respective region is located inside or outside the
polar data gap resulting from the GOCE orbit inclination
(see Section 3), two datasets were chosen accordingly. A bet-
ter performance would be expected adopting a dataset out-
side the polar data gap. Comparing the EGM with a dataset
inside the polar data gap, on the other hand, the effects
of satellite data deficiency and of the respective regulariza-
tion technique should become visible. Latest ESA GOCE-
based models, the latest ITSG GRACE model [Mayer-Gürr
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et al., 2014] and two combined EGMs were used to com-
pute gravity disturbances at flight altitude which were then
subtracted from the respective airborne data. The trunca-
tion degree of the harmonic series expansion was stepwise
increased by one up to the maximum degree 300. Thus,
we obtained differences for each EGM at each truncation
degree, that is given at the axis of abscissae in Figures S4
and S5. These differences, which can be considered as resid-
ual gravity disturbances, contain the omission error (due to
truncation of the harmonic expansion at the respective de-
gree) and the commission error of the EGM (due to the prop-
agation of measurement errors into the model solution) as
well as the error noise of the airborne measurements. From
the residual gravity disturbances mean difference, standard
deviation and maximum absolute difference were calculated
and plotted over the respective truncation degree (Figures
S4 and S5). These three parameters were used to evaluate
the performance of the different EGMs.

S2.1. Lake Vostok survey

Outside the polar data gap, the Lake Vostok (LVS) sur-
vey [Studinger et al., 2003a, b; Holt et al., 2006] provided
a homogeneous, high-quality dataset. It covered an area of
approx. 165 by 330 km (dataset #16, for location see Fig.
S1, for metadata see Tab. S1), thus capturing a maximum
half-wavelength of 165 km which corresponds to approx. d/o
155. Therefore, a spectral gap should not occur in the resid-
ual data. The residual gravity disturbances were taken at
the reference altitude of 3,960 m.

Figure S4 shows the three parameters determined from
the residual gravity disturbances as described above. The
mean differences (Fig. S4, top panel) of almost all models
exhibit a quite uniform behavior. They converge in a band
of ±1 mGal, that is below the reported a priori accuracy of
the airborne gravity data, and remain almost constant from
approx. d/o 210 onwards. Therefore, both EGM and air-
borne data can be regarded unbiased. However, the mean
differences also indicate that GOCO03S [Mayer-Gürr , 2012]
coincides best with the airborne data. Over the Antarctic
continent the combined model EGM2008 [Pavlis et al., 2008]
does not contain additional information apart from GRACE
observations up to d/o 180. Therefore, its mean difference
remains constant at about –6mGal above that d/o. Unlike
EGM2008, EIGEN-6C4 [Förste et al., 2014] also incorpo-
rates GOCE observations. It fits slightly better, but is also
degraded compared to the satellite-only model EIGEN-6S2
[Rudenko et al., 2014] due to missing terrestrial data.

A similar behavior can be noted for the standard devi-
ations (Fig. S4, middle panel). From d/o 170 EGM2008
remains on a level of about 35mGal, likewise EIGEN-6C4
(level of about 33mGal above d/o 200). ITSG-Grace2014
[Mayer-Gürr et al., 2014] shows peculiar oscillations starting
at about d/o 180, i.e., close to its formal maximum d/o 200.
The fact, that ITSG-Grace2014 was inferred without apply-
ing any (Kaula-type) constraint could explain this behavior.
This is in accordance with its signal-to-noise ratio falling
below one at d/o 170 to 180 [ibid]. The lowest standard
deviation approximating the airborne data in that region
is obtained for the ESA timewise and direct models ESA-
TIM/R5 and ESA-DIR/R5 (better than 25 mGal above d/o
240). GOCO03S, EIGEN-6S2 and ESA’s spacewise model
ESA-SPW/R4 perform only slightly worse ( 27 mGal from
d/o 220). Similar properties can be stated in terms of the
maximum absolute difference (Fig. S4, lower panel).

S2.2. Pensacola Pole Transect survey

To deal with terrestrial gravity data inside the polar data
gap of GOCE there are not many surveys to chose from. The
Pensacola Pole Transect (PPT) survey was selected [Davis,

2001; Studinger et al., 2006] (dataset #14, for location see
Fig. S1, for metadata see Table S1), because it provided
the only dataset which is almost completely situated inside
the polar data gap. It covered a narrow strip of 100 by 800
km and was flown at different altitudes, starting at 800 m
close to the southern tip of the Ross Ice Shelf and covering
a range of 3,150 to 3,700 m over the Antarctic ice sheet.

The three parameters obtained to characterize the result-
ing residual gravity disturbances (Figure S5) reveal a strik-
ingly different behavior. In the mean difference (Fig. S5,
top panel), a considerable bias is visible. Except ITSG-
Grace2014 all models remain at a stable level between 28
and 35 mGal above d/o 210 with ESA-TIM/R5 showing
the lowest bias and GOCO03S the largest bias. One could
discuss if this bias reveals a spectral gap caused by an incon-
sistency between the EGM resolution and the extension of
the area covered by the airborne survey. However, the mean
difference of all EGM remains almost constant above d/o
210. Therefore, most likely there is a bias in the airborne
data.

The standard deviations of the residual gravity distur-
bances (Fig. S5, middle panel) are even more meaningful.
In contrast to the Lake Vostok case the combined models
EGM2008 and EIGEN-6C4 provide the best representation
inside the polar data gap. However, their standard devia-
tions are not much better than those of ESA’s direct model
ESA-DIR/R5 and, up to their maximum d/o, of GOCO03S
and EIGEN-6S2. This is due to the fact that no addi-
tional information went into the spherical harmonic solu-
tion up to d/o 250. The ESA spacewise and timewise mod-
els (ESA-SPW/R4 and ESA-TIM/R5) are performing worse
(level of 26 mGal compared to 20 to 21 mGal for the other
models). Thus, the stabilizing effect becomes visible, ei-
ther of the spherical cap regularization (ESA-DIR/R5) or of
the GRACE data that were incorporated into the combina-
tion (EIGEN-6S2 and GOCO03S). Again, this is no surprise
since GOCE is not sensitive at the longer wavelengths (cf.
above). The model ISTG-Grace2014 exhibits larger oscilla-
tions similar to the case of the Lake Vostok survey due to
their unconstrained inference. Most interestingly, the lower
panel of Fig. S5 reveals that the GOCO03S model provides
by far smaller maximum residuals, i.e. a much smoother
representation inside the polar data gap. This holds true
even at the highest resolution.

S2.3. Conclusion

The investigation of global EGMs was focused on the
Antarctic continent, since a different picture can be expected
when considering regions close to the pole or even inside the
polar data gap caused by GOCE’s inclination. The compari-
son was done in terms of residual gravity disturbances, taken
a respective maximum degree of the harmonic expansion of
the EGMs. From the comparison with the Lake Vostok sur-
vey (dataset #16) – outside the polar data gap – one can
conclude that GOCO03S does not perform worse than the
latest ESA GOCE models ESA-DIR/R5 and ESA-TIM/R5.
Comparing the models with the Pensacola Pole Transect
survey (dataset #14) – situated inside the polar data gap –,
from the mean difference one cannot conclude which model
performs best. Instead, most likely there is a bias in the air-
borne data. On the other hand, in the standard deviation
as well as in the mean difference it becomes visible whether
GRACE data were used (or not used) in the determina-
tion of the model in order to mitigate the polar data gap
problem. In the determination of the ESA-TIM/R5 model,
GRACE observations were not introduced. In the determi-
nation of GOCO03S and ESA-DIR/R5, GOCE data were
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combined with GRACE data. For all three models an ad-
ditional regularization technique was applied (either Kaulas
rule of thumb using synthetic degree variances or the spheri-
cal cap regularization according to Metzler and Pail [2005]).
It becomes clear that the inclusion of GRACE data is su-
perior, since ESA-TIM/R5 performs worse than GOCO03S
and ESA-DIR/R5 (especially in terms of the maximum ab-
solute difference). Thus, ESA-DIR/R5 and ESA-TIM/R5
might generally be better in terms of accuracy and spatial
resolution, but only if one investigates these models over the
entire globe. If emphasis is put on the Antarctic continent
alone, the results are different as shown by our evaluation.

Altogether, one can state that the GOCO03S model
[Mayer-Gürr , 2012] utilizes the GOCE observations in an
appropriate way with minimum degradation of signals in-
cluding the interior of the polar gap (which is due to the
inclusion of GRACE data). The latest GOCE-based mod-
els have improved compared to earlier versions but still do
not appear to perform better than GOCO03S. Therefore,
it is an appropriate choice to apply GOCO03S as a back-
ground EGM to serve as the common reference in adjusting
the terrestrial Antarctic gravity datasets.

S3. Short description of publicly available
datasets

Datasets are available at: http://dx.doi.org/10.1594/
PANGAEA.848168.

We provide the data in two different formats, namely
ASCII and NetCDF, respectively. Grid coordinates x and y
are given according to polar stereographic projection, pro-
jection centre at 90◦S, true scale at 71◦S, ellipsoid WGS84,
unit: km. Longitude and latitude of the grid points are
calculated according to the inverse polar stereographic pro-
jection. Subsequently, all data are also given as functions of
(x, y), namely:

– Ellipsoidal surface height [m] from Bedmap2 [Fretwell
et al., 2013]; in area north of 60◦S values are set to NaN ;

– Orthometric surface height [m] from Bedmap2 [Fretwell
et al., 2013]; in area north of 60◦S values are set to zero (cor-
responding to sea level);

– Free-air gravity anomaly [mGal] at surface (Fig. 1 of
main paper);

– Accuracy measure [mGal] for the free-air gravity
anomaly (RMS, propagated from a priori standard devia-
tion) (Fig. S3);

– Complete Bouguer anomaly [mGal] (Fig. 2 of main
paper).
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Sjöberg, L. E., and H. Fan (1993), The Antarctic Gravity and
Geoid Solution, report to the IAG General Meeting 1993, Bei-
jing (unpublished).

Studinger, M. (1998), Compilation and analysis of potential field
data from the Weddell Sea, Antarctica: Implications for the
break-up of Gondwana, Berichte zur Polarforschung (Reports
on Polar Research) 276, Alfred Wegener Institute for Polar
and Marine Research, Bremerhaven.

Studinger, M., and H. Miller (1999), Crustal structure of the
Filchner-Ronne Shelf and Coats Land, Antarctica, from grav-
ity and magnetic data: Implications for the breakup of Gond-
wana, J. Geophys. Res.: Solid Earth, 104 (B9), 20,379–20,394,
doi: 10.1029/1999JB900117.

Studinger, M., R. Bell, C. Finn, and D. Blankenship (2002),
Mesozoic and Cenozoic extensional tectonics of the West
Antarctic Rift System from high-resolution airborne geophys-
ical mapping, Roy. Soc. of New Zealand Bull., 35, 563–569.

Studinger, M., et al. (2003a), Ice cover, landscape setting, and
geological framework of Lake Vostok, East Antarctica, Earth
Planet. Sci. Lett., 205 (3-4), 195–210, doi: 10.1016/S0012-
821X(02)01041-5.

Studinger, M., G. Karner, R. Bell, V. Levin, C. Raymond,
and A. Tikku (2003b), Geophysical models for the tectonic
framework of the Lake Vostok region, East Antarctica, Earth
Planet. Sci. Lett., 216 (4), 663–677, doi: 10.1016/S0012-
821X(03)00548-X.

Studinger, M., R. Bell, W. Buck, G. Karner, and D. Blankenship
(2004), Sub-ice geology inland of the Transantarctic Moun-
tains in light of new aerogeophysical data, Earth Planet. Sci.
Lett., 220, 391–408, doi:10.1016/S0012-821X(04)00066-4.

Studinger, M., R. E. Bell, P. G. Fitzgerald, and W. R. Buck
(2006), Crustal architecture of the Transantarctic Mountains
between the Scott and Reedy Glacier region and South Pole
from aerogeophysical data, Earth Plan. Sci. Lett., 250 (1–2),
182 – 199, doi: 10.1016/j.epsl.2006.07.035.



SCHEINERT ET AL.: NEW ANTARCTIC GRAVITY ANOMALY GRID X - 5

Studinger, M., L. Koenig, S. Martin, and J. Sonntag (2010), Op-
eration IceBridge: Using instrumented aircraft to bridge the
observational gap between IceSat and IceSat-2, IEEE Inter-
national, pp. 1918–1919, doi:10.1109/IGARSS.2010.5650555,
Geoscience and Remote Sensing Symposium (IGARSS) 2010.

Corresponding author: M. Scheinert, Technische Universität

Dresden, Institut für Planetare Geodäsie, 01062 Dresden, Ger-

many. (Mirko.Scheinert@tu-dresden.de)



X
-
6

S
C
H
E
IN

E
R
T

E
T

A
L
.:

N
E
W

A
N
T
A
R
C
T
IC

G
R
A
V
IT

Y
A
N
O
M
A
L
Y

G
R
ID

Table S1. Summary of gravity datasets and available metadata. Methods: A: aerograv., G: ground-based relative grav., S: shipborne grav. n/a: not available or unknown. Line km:
Total length of airborne profiles. Spacing: Separation of main lines / tie lines (where given). σ0: A priori standard deviation (italic typed numbers: assumed values, see Sect. 5.1).

No Campaign Reference Meth. Line km Spacing Quan-
tity

gravity
formula

obs. height
level(s) [m]

reference
height [m]

height
datum

σ0

[mGal]

1 BAS-1996 A (4,500) δg GRS80 2270–3890 2777 WGS84 3.0

2 BAS-Evans Jones et al. [2002] A 11,500 12 δg GRS80 1340–2170 2777 WGS84 5.0
3 BAS-SPARC Ferraccioli et al. [2006] A >20,000 5/25 δg GRS80 2730–5350 2777 WGS84 3.0
4 BAS-AGAP Ferraccioli et al. [2011] A 120,000 5/33 δg GRS80 in situ WGS84 3.0

5 BAS-BBAS Jordan et al. [2010] A 30,000 30/30 δg GRS80 in situ WGS84 2.8
6 BAS-Dufek Ferris et al. [2003] A, G 8,300 5/20 δg GRS80 in situ WGS84 3.0

7 BAS-I&M AFI Jordan et al. [2013a] A 23,000 7.5/25 δg GRS80 in situ WGS84 3.0

8 BAS-JRI Jordan et al. [2009] A 3,500 2/10 δg GRS80 in situ WGS84 2.9
9 BAS-MAMOG Ferraccioli et al. [2005] A 15,500 1/8 δg GRS80 in situ WGS84 2.0

10 BAS-Torus (unpublished) A (10,000) δg GRS80 in situ WGS84 3.0

11 BAS-WLK Jordan et al. [2013b] A (40,000) 8.8/44 δg GRS80 in situ WGS84 2.8
12 SOAR-WAIS Bell et al. [1999]; Studinger et al. [2002] A 150,000 5/5 δg GRS80 varying in situ WGS84 3.0
13 SOAR-WMB Luyendyk et al. [2003] A 35,000 5.3–10.6 δg GRS80 900–2300 in situ WGS84 5.0
14 SOAR-PPT Davis [2001]; Studinger et al. [2006] A 13,000 10/30 δg GRS80 800/3150/

3400/3700
in situ WGS84 3.0

15 SOAR-WLK Studinger et al. [2004] A 21,000 10.6/31.8 δg GRS80 3050/3720/
3850

in situ WGS84 2.6

16 SOAR-LVS Studinger et al. [2003a, b]; Holt et al. [2006] A 20,000 7.5/11.25 δg GRS80 3960 3960 WGS84 1.2
17 AGASEA Diehl et al. [2008] A (38,000) 15/15 δg GRS80 varying 3600 WGS84 2.3
18 ICECAP Aitken et al. [2014] A (37,000) δg GRS80 varying in situ WGS84 3.0

19 PCMEGA Damaske and McLean [2005]; McLean and Re-

itmayr [2005]
A 20,500 5/25 δg GRS67 2160/2760/

3360
in situ WGS84 3.0

20 VISA Riedel and Jokat [2007]; Riedel et al.

[2012, 2013]; Mieth and Jokat [2014]
A 85,000 10–20 δg GRS80 1200–4580 in situ WGS84 4.0

21 USAC Bell et al. [1990]; Brozena et al. [1990];
LaBrecque and Ghidella [1997]

A (11,000) 35/35 δg GRS80 260–870 in situ WGS84 3.0

22 ICEBRIDGE Studinger et al. [2010]; Cochran and Bell [2012] A >150,000 δg GRS80 360–11550 in situ WGS84 3.0

23 ADGRAV-ROSS Greischar et al. [1992]; Karner et al. [2005] G ∆g n/a varying n/a n/a 5.0

24 GEOMAUD Korth [1998]; Reitmayr [2005] G δg GRS80 50–3090 in situ WGS84 1.0

25 BAS-LAND Renner et al. [1985]; Herrod [1987]; Maslanyi

[1991]; McGibbon and Smith [1991]
G ∆g GRS80 0–2660 in situ n/a 20

26 PMGE/VNIIO Studinger [1998]; Studinger and Miller [1999];
Aleshkova et al. [2000a, b, 2004]

A,G,S 190,000 20/50/100 n/a GRS67 varying n/a n/a 10

27 ADGRAV-AWI S ∆g GRS80 0 in situ MSL 2.0
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Table S2. Statistics of gridded residual gravity anomalies [δ(∆g)(i)] after subtraction of
background EGM (remove step) and grid interpolation (compute step/project). Values are
given in mGal.

No Campaign Mean Standard
Deviation

1 BAS-1996 -1.0 34.8
2 BAS-Evans 5.0 28.8
3 BAS-SPARC 3.3 27.7
4 BAS-AGAP 1.2 16.9
5 BAS-BBAS 0.3 15.1
6 BAS-Dufek 22.2 39.8
7 BAS-I&M AFI -3.9 20.8
8 BAS-JRI 1.7 27.2
9 BAS-MAMOG 8.3 38.8

10 BAS-Torus -7.4 28.5
11 BAS-WLK 5.0 22.4
12 SOAR-WAIS 40.9 16.3
13 SOAR-WMB 25.2 18.2
14 SOAR-PPT 34.4 21.2
15 SOAR-WLK -13.4 16.9
16 SOAR-LVS 0.6 25.8
17 AGASEA 0.5 15.9
18 ICECAP 0.7 19.4
19 PCMEGA -1.0 29.4
20 VISA 8.8 23.8
21 USAC 0.0 11.6
22 ICEBRIDGE -0.8 16.8
23 ADGRAV-ROSS 6.7 31.2
24 GEOMAUD -0.7 23.3
25 BAS-LAND 26.4 41.3
26 PMGE/VNIIO 4.5 17.0
27 ADGRAV-AWI 10.5 13.0

Table S3. Statistics of derived free-air gravity anomaly ∆g, complete Bouguer anomaly
∆gB and, for comparison, simple Bouguer anomaly ∆gplate (only plate reduction applied).

Dataset / Parameter Mean Standard
Deviation

RMS Minimum Maximum

Free-air anomaly ∆g -0.48 32.92 32.92 -384.49 204.84

Complete Bouguer anomaly ∆gB 48.06 154.16 161.48 -395.63 371.92

Simple Bouguer anomaly ∆gplate 50.73 165.55 173.15 -430.06 399.26
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Figure S1. RMS propagated from a priori standard deviations in the process of interpolation and calculation
of weighted mean. The RMS can be taken as an accuracy measure using the gravity anomalies for further
analyses. Also, this map shows the extension of the different datasets and their overlapping. Numbers denote
individual datasets (cf. Table S1). Additionally, the datasets are explicitely designated which were used for
the investigation in Section S2, namely dataset #14 (Pensacola Pole Transect) and dataset #15 (Lake Vostok).
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Figure S2. Number of datasets overlapping in certain areas in Antarctica.
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Figure S3. RMS of residual individual datasets w.r.t. residual gridded dataset. See Sect. 5 for explanations.
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Figure S4. Mean difference (upper panel), standard deviation (middle panel) and maximum difference (lower
panel) of the residual gravity disturbances (airborne data minus respective EGM harmonic series expansion
truncated at certain maximum degree) for the Lake Vostok survey. Details see Subsection S2.1.
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Figure S5. Mean difference (upper panel), standard deviation (middle panel) and maximum difference (lower
panel) of the residual gravity disturbances (airborne data minus respective EGM harmonic series expansion
truncated at certain maximum degree) for the Pensacola Pole Transect survey. Details see Subsection S2.2.
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